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Abstract. We examine a repeated interaction between an agent, who undertakes ex-
periments, and a principal who provides the requisite funding for these experiments. The
agent’s actions are hidden, and the principal, who makes the offers, cannot commit to
future actions. We identify the unique Markovian equilibrium (whose structure depends
on the parameters) and characterize the set of all equilibrium payoffs, uncovering a col-
lection of non-Markovian equilibria that can Pareto dominate and reverse the qualitative
properties of the Markovian equilibrium. The prospect of lucrative continuation payoffs
makes it more expensive for the principal to incentivize the agent, giving rise to a dynamic
agency cost. As a result, constrained efficient equilibrium outcomes call for nonstationary
outcomes that front-load the agent’s effort and that either attenuate or terminate the
relationship inefficiently early.
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Incentives for Experimenting Agents

Johannes Hörner and Larry Samuelson

1 Introduction

1.1 Experimentation and Agency

Suppose an entrepreneur has a potential project that may or may not be profitable.
The project’s profitability can be investigated and potentially realized only through a
series of costly experiments. For example, the project may involve new technological
developments that require building and testing a sequence of prototypes, until either
achieving a breakthrough or abandoning the project in discouragement. Alternatively,
the project may involve a consumer product that requires successive marketing campaigns
until it is either caught up in the latest fashion trend or abandoned to obscurity.

For an entrepreneur with sufficient financial resources, the result is a conceptually
straightforward programming problem. He funds a succession of experiments until either
realizing a successful outcome or becoming sufficiently pessimistic as to make further ex-
perimentation unprofitable. But what if he lacks the resources to support such a research
program? What if the project can only be realized through the joint efforts of an en-
trepreneur, supplying the requisite technical expertise but no capital, and a technically
unable but financially endowed venture capitalist? What constraints does the need for
outside funding place on the experimentation process? What is the nature of the contract
between the venture capitalist and entrepreneur?

This paper addresses these questions. The answers are relatively simple if the en-
trepreneur can sell the project to the venture capitalist. The venture capitalist will then
duplicate the optimal experimentation process that the entrepreneur would have under-
taken in the absence of financial constraints. Suppose, however, that the entrepreneur
cannot sell the project to the venture capitalist. The entrepreneur and venture capi-
talist may have different information about the project, leading to a prohibitive lemons
problem. For example, the venture capitalist may be unable to ascertain whether the
blueprints spread in front of her really describe a new energy technology. Alternatively,
an interpretation we adopt here, it may be that the entrepreneur’s participation in the
experimentation process is essential. There may be no amount of explaining sufficient
to equip the venture capitalist with the skills required to design the new fashion line or
perform the new music that the entrepreneur is convinced will sweep the world.

The venture capitalist must then provide funding for the entrepreneur’s experimenta-
tion, in return for a payoff in the event of a success. In the absence of any contractual
difficulties, the problem is still relatively straightforward. Suppose, however, that the
experimentation requires costly effort on the part of the entrepreneur that the venture
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capitalist cannot monitor. It may require hard work to develop either a new super-
efficient battery or a new pop act. The venture capitalist may be able to verify whether
the entrepreneur has been successful, but unable to discern whether a string of failures
represents the unlucky outcomes of earnest experimentation or the product of too much
time spent playing computer games. We now have an incentive problem that significantly
complicates the relationship. In particular, the entrepreneur continually faces the tempta-
tion to simply pocket the funding provided for experimentation, explaining the resulting
failure as an unlucky draw from a good-faith effort, and hence must receive sufficient rent
to forestall this possibility.

The problem of providing incentives for the entrepreneur to exert effort is complicated
by the assumption that the venture capitalist cannot commit to future contract terms.
Perhaps paradoxically, one of the advantages to the entrepreneur of a failure is that the
entrepreneur may then be able to extract further rent from future experiments, while a
success terminates the rent stream. The venture capitalist may be able to reduce the cost
of current incentives by committing to a string of less lucrative future contracts (perhaps
terminating experimentation altogether) in the event of failure. We allow the venture
capitalist to alter future contract terms or terminate the relationship only if doing so is
sequentially rational.

Our exercise is motivated by quite real considerations. As summarized by Hall [8], the
literature on venture capital emphasizes the importance of the following key features of
our model: (i) moral hazard (hidden actions); (ii) asymmetric information (hidden infor-
mation); (iii) learning over time;1 and (iv) rates of return for the venture capitalist above
those normally used for conventional investment. The latter feature, which distinguishes
our analysis from Bergemann and Hege [2], is well-documented in the empirical literature
(see, for instance, Blass and Yosha [4]). Funding for project development is scarce: tech-
nology managers often report that they have more projects they would like to undertake
than funds to spend on them.2 Our results resonate with a key empirical finding in the
literature: investors often wish to downscale or terminate projects that entrepreneurs are
anxious to continue.3

1In the words of Hall [8, p. 411], “An important characteristic of uncertainty for the financing of
investment in innovation is the fact that as investments are made over time, new information arrives
which reduces or changes the uncertainty. The consequence of this fact is that the decision to invest in
any particular project is not a once and for all decision, but has to be reassessed throughout the life of the
project. In addition to making such investment a real option, the sequence of decisions complicates the
analysis by introducing dynamic elements into the interaction of the financier (either within or without
the firm) and the innovator.”

2See Peeters and van Pottelsberghe [10].
3See Cornelli and Yosha [5].
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1.2 Optimal Incentives: A Preview of Our Results

Our analysis begins (Section 3) with the case in which the entrepreneur and the venture
capitalist know the (fixed and constant) probability with which a particular experiment
yields a breakthrough success that obviates the need for further experimentation. We refer
to this as the case of a development project, since a success may still require a potentially
long sequence of experiments or development stages.

As one would expect, agency is costly. The need to provide the entrepreneur with
the incentives to undertake experiments not only places a lower bound on the share of
the surplus going to the entrepreneur, but can lead to inefficiency. In particular, there
are success probabilities for which it would be optimal to experiment until achieving a
success in the absence of the agency problem, but under which no experimentation can
be achieved in the presence of agency.

We first consider stationary (i.e. Markovian) equilibria of the agency relationship. If
the project is sufficiently unprofitable, the only equilibrium features a (possibly inefficient)
complete lack of experimentation. At the other end, if the development project is suffi-
ciently lucrative (i.e., the benefit-cost ratio of the expected payoff of an experiment to its
cost is sufficiently high), then the unique stationary equilibrium calls for the entrepreneur
to work until a success is achieved. Surprisingly, however, there is a gap between these two
outcomes, a range of development projects of intermediate profitability in which experi-
mentation must occur in equilibrium, but in which the entrepreneur cannot be induced
to always experiment. Here, the entrepreneur works, but not at the maximal rate.

To see what lies behind this “partial work” equilibrium, note that the entrepreneur
bears two costs whenever working. One is that the entrepreneur does not divert for
personal use the financing provided by the venture capitalist, and the other is that the
entrepreneur risks a success, thereby eliminating the chance to earn future experimenta-
tion rents. Slowing the pace at which the entrepreneur works reduces these future rents,
making it cheaper to provide current incentives. For development projects of intermediate
value, this is the only way the venture capitalist can support experimentation.

The development project is inherently stationary—a failure leaves the players facing
precisely the situation with which they started. One might then expect that the set
of equilibrium payoffs is exhausted by considering equilibria with stationary outcomes
(though not necessarily stationary equilibria), but this is the case only if the benefit-cost
ratio of the development project is very high. We show that the set of all (weak perfect
Bayesian) equilibrium payoffs is spanned by a simple class of equilibria, including a worst
equilibrium and a collection of efficient equilibria. In the latter, the entrepreneur is in-
duced to experiment at the maximal rate for some initial segment of time, after which
experimentation is either terminated completely (if the benefit-cost ratio of the develop-
ment project is intermediate, in which case such a threat is credible) or the entrepreneur
switches permanently to exerting partial effort (for higher benefit-cost ratios). Front-
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loading the entrepreneur’s effort reduces the entrepreneur’s continuation value and hence
reduces the cost of current incentives, in the process increasing the venture capitalist’s
payoff. Somewhat surprisingly, this front-loading can be better (than any stationary-
outcome equilibrium) for the entrepreneur as well as the venture capitalist.

The next step is to consider the more general case of research projects (Section 4),
in which the (fixed) success probability characterizing an experiment is unknown. The
problem is now inherently nonstationary, as each failure makes players a bit more pes-
simistic about the project. We start the analysis by considering Markovian equilibria,
in which the belief about the project serves as one obvious state variable. Because the
entrepreneur’s action is hidden, his private belief may differ from the public belief held
by the venture capitalist, introducing a second, hidden state variable. Part of our con-
tribution is accordingly methodological, as we explicitly solve for the unique Markovian
equilibrium of this hidden-action, hidden-information problem. We then characterize the
entire set of (Markovian or not) equilibrium payoffs, and prove that, as for development
projects, there is a class of simple equilibria spanning this payoff set.

Not surprisingly, the structure of Markovian equilibria is more complex here than in
the case of development projects, although the underlying logic is similar. Depending on
whether the cost-benefit ratio and the players’ rate of learning are low or high, four possible
configurations emerge. In all of them, experimentation always takes place until the venture
capitalist’s belief reaches a threshold, at which point the project is abandoned. In two
cases, however, this time is never actually reached in equilibrium, with experimentation
instead gradually grinding to a halt. Again, slowing the pace of experimentation allows
the venture capitalist to profitably economize on incentive costs, and may be necessary
in order to cost-effectively induce effort. Now, however, the pace of experimentation
can vary as does the posterior probability of a success, and it may be that the pace of
experimentation is low early in the process when the venture capitalist is optimistic, but
high for subsequent, lower beliefs. In this case, the venture capitalist is better off when
the project is less promising, to the point that the venture capitalist would prefer a less
promising experiment.

Even though the evolution of beliefs can provide implicit commitment power within the
framework of a Markovian equilibrium, the venture capitalist can still reap gains from non-
Markovian equilibria. In the case of a development project, a non-Markovian equilibrium
can never reduce the venture capitalist’s payoff below that of the Markovian equilibrium,
and in some cases non-Markovian equilibria do not expand the set of equilibrium payoffs
at all. In the case of a research project, non-Markovian equilibria offer the potential
for reducing the venture capitalist’s payoff, and always open the prospect of increasing
her payoff. The venture capitalist’s favorite equilibrium, which may make both players
better off, calls for the entrepreneur to experiment at the maximal rate for some duration
that is deliberately kept short, after which the equilibrium switches to a low pace of
experimentation, or even to a premature abandonment of the project. Unlike in the
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Markovian case, in this equilibrium, more promising projects are always more profitable
for the venture capitalist than less promising ones.

1.3 Implications

What do we learn from this analysis? The development project appears to be inher-
ently stationary, and in the research project, the evolution of beliefs appears to capture
all of the relevant dynamic aspects of the project. Our results show that intertemporal
links in incentives generate additional dynamics, giving rise to efficient equilibria whose
structure belies the seemingly simple structure of the environment.

• Agency is costly, in the sense that experimentation may be efficient in the absence
of agency and impossible within the agency relationship. Dynamic agency is yet
more costly, in the sense that full experimentation may be possible with a single
agency interaction, but impossible in a repeated interaction.

• Under dynamic agency, the constrained-efficient outcome4 front-loads the entrepreneur’s
effort. The venture capitalist supplies full funding and the entrepreneur exerts full
effort for an initial phase, after which no funding is ever offered again. In particular,
this front-loading of effort reduces the entrepreneur’s continuation values and hence
relaxes his incentive constraints.

• Sequential rationality may preclude the existence of a constrained-efficient equilib-
rium by making it impossible for the venture capitalist to terminate funding. How-
ever, there are non-Markovian equilibria that achieve some degree of front-loading:
the initial phase of full funding is followed by a worst (again, non-Markovian) equi-
librium in which funding is either reduced or actually terminated. The resulting
dynamics can completely reverse the qualitative properties of Markovian equilibria.

• The efficient equilibrium reproduces a key feature of the venture capital market:
investors routinely terminate projects early.5

1.4 Related Literature

Our paper is most directly related to Bergemann and Hege [2].6 Bergemann and Hege
[2] examine a model differing primarily from ours in that their entrepreneur makes an

4That is, the surplus-maximizing outcome, dropping the venture capitalist’s sequential rationality
constraint, but retaining individual rationality constraints and the entrepreneur’s incentive constraints.

5Efficient equilibrium outcomes call for terminating or attenuating effort, when the equilibrium in a
static agency problem would call for full effort. From a practical point of view, investors often reduce
funding while entrepreneurs insist on the viability of their project (cf. Cornelli and Yosha [5]).

6Bergemann, Hege and Peng [3] present an alternative model of sequential investment in a venture
capital project, without an agency problem, which they then use as a foundation for an empirical analysis
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offer to the venture capitalist in each period, reversing the bargaining positions from ours
(in which the venture capitalist makes offers).7

Perhaps seemingly a minor detail, our results show that switching the bargaining power
to the venture capitalist has a surprisingly significant impact. In particular, Bergemann
and Hege find an array of Markovian equilibria analogous to ours, including four regions of
parameter values, each with a Markovian equilibrium whose qualitative properties match
those of the current paper. However, in Bergemann and Hege, these Markovian equilibria
account for all of the equilibrium possibilities—there are no non-Markovian equilibria.
The link between constrained efficiency and front-loaded effort, the rich structure of non-
Markovian equilibria (and sharp contrast with Markovian equilibria), and the optimality
of early abandonment are all absent from Bergemann and Hege. We return to the forces
behind this difference in Section 5.

Our analysis combines elements of optimal experimentation and learning, venture
capital provision, and dynamic contracting, giving rise to a vast collection of potentially
related papers. We mention here only the most directly related papers in which an agent
undertakes experimentation on behalf of a principal. Gerardi and Maestri [7] examine a
model that differs in that the principal need not provide funding to the agent in order for
the latter to exert effort, the length of the relationship is fixed (though the principal can
end the relationship by making the decision early), the outcome of the agent’s experiments
is unobservable (and so the agent must be given incentives to report that outcome), and
the principal can ultimately observe and condition payments on the state. Mason and
Välimäki [9] examine a model in which the probability of a success is known and the
principal need not advance the cost of experimentation to the agent, instead making a
single payment to the agent upon completion of the contract.

Finally, our paper incorporates both hidden action and hidden information. Such
models are notoriously challenging when the uninformed party (here, the principal) makes
the offers. In this sense, this paper is related to the literature on repeated moral hazard
with unmonitored wealth. In both cases, the agent takes a hidden action (here, how much
to divert funds; there, how much to save income) that affects his future attitudes towards
risk-taking (here, it affects his optimism; there, his actual risk-aversion). See, for instance,
Werning [11] and Doepke and Townsend [6].

of venture capital projects. Bergemann and Hege [1] examine a model in which the players can sign long-
term contracts governing the financing of the experimentation process, removing the sequential rationality
considerations that play a key role in Bergemann and Hege [2] and in the current paper.

7Bergemann and Hege allow the entrepreneur to choose effort levels from the interval [0, e] ⊂ [0, 1),
with effort level e incurring cost ce and generating success probability e. Choosing an effort level e < e
effectively slows the pace of experimentation, an effect we achieve below by having the players observe
a public randomization device, some realizations of which lead to an offer to the entrepreneur from the
venture capitalist and some of which do not. Bergemann and Hege consider the case of “relationship
financing,” in which the venture capitalist observes the effort expended by the entrepreneur, as well as
“arm’s length” financing, where (as in our model) the venture capitalist cannot do so.
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2 The Model

2.1 The Agency Relationship

We consider an entrepreneur, hereafter called the agent or he, and a venture capitalist,
hereafter the principal or she. The agent has access to a project that is either good or bad.
The project’s type is potentially unknown, with principal and agent initially assigning
probability q ∈ (0, 1] to the event that it is good. In each period, the agent can conduct
an experiment, at cost c. If the project is bad, the experiment is inevitably a failure,
yielding no payoffs in that period but leaving open the possibility of conducting further
experiments in future periods. If the project is good, the experiment yields a failure
with probability 1 − p and a success with probability p ∈ (0, 1). A success represents a
breakthrough that obviates the need for further experimentation, ending the process with
a payoff of π > 0 representing the future value of the successful project. The agent is
unable to fund his experimentation, and in order to conduct an experiment, must obtain
the requisite funding c > 0 from the principal.

The principal and agent interact for potentially an infinite number of periods, dis-
counting at the common rate δ ∈ (0, 1). We will often be interested in the limit as δ
approaches 1, viewed as representing the case in which time periods become arbitrarily
short, so that any commitment power vanishes. To keep things in proportion, the cost c
and success probability p will be proportional to the period length, while the lump-sum
success payoff π and the interest rate per unit of time will remain fixed.

In each period t, the players first observe the outcome of a random variable with
continuous cumulative distribution, i.e. players have access to a public correlation device.
We shall briefly explain as we proceed how we could dispense with the resulting possibility
for correlated actions, at the cost of more cumbersome strategies. The principal then either
offers no contract to the agent, in which case we proceed to the next (discounted) period
with no further ado, or the principal advances the cost c of experimentation to the agent
and fixes a sharing rule st ∈ [0, 1]. If offered such a contract, the agent can either work (or,
equivalently, experiment, or exert effort) or shirk. In the former case, the agent spends
c on the experiment, leading to a success with probability p if the project is good (0 if
not) and failure otherwise. In the latter case, the agent expropriates the advance c and
conducts no experiment. The principal cannot observe the agent’s action, observing only
a success (if the agent experiments and draws a favorable outcome) or failure (otherwise).
In the event of a success, the principal receives (normalized) payoff (1 − δ)(stπ − c) and
the agent retains (1− δ)(1− st)π. A more formal description of the model is relegated to
Appendix A. The timing is illustrated in Figure 1.

Note that, if q < 1, the agent’s hidden action gives rise to hidden information: if the
agent deviates, he will update his belief unbeknownst to the principal, and this will affect
his future incentives to work and hence his payoff from deviating. In turn, the principal

7
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Public randomization device

Principal
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effort no effort
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no contract

Figure 1: Timing of the period-t stage game. A success ends the game with payoffs
(1−δ)(stπ−c) to the principal and (1−δ)(1−st)π to the agent. If no contract is offered,
an event observed by both players, the game proceeds to period t + 1 with no current
payoffs. If a contract is offered and the agent exerts no effort, current payoffs to the agent
and principal are (c,−c) and the game continues to period t+1. If the agent exerts effort
and the outcome is not a success, current payoffs are (0,−c) and the game continues to
period t + 1. Only the agent observes whether he exerted effort.
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must compute this payoff in order to determine which offers will induce the agent to work.
We thus have a potentially quite difficult hidden-information problem. We accordingly
first focus on the simpler case in which q = 1 (Section 3). We refer to this as the case of
a development project, since the project is known to be good, but nonetheless requires a
series of development stages before yielding a success. We then turn our attention to the
case in which q < 1 (Section 4). We refer to this as a research project, since the players
must now ascertain whether the project is good. In this latter case, every failure is bad
news, leading to a more pessimistic posterior expectation that the project is good.

We examine weak perfect Bayesian equilibria of this game in which, in equilibrium,
the agent (but not necessarily the principal) plays a pure strategy. This ensures that
along the equilibrium path (though not out of equilibrium) the principal and agent have
identical beliefs about the value of the project.

2.2 The First-Best Policy

Suppose first that there is no agency problem—either the principal can conduct the
experiments (or equivalently the agent can fund the experiments himself), or there is no
monitoring problem and hence the agent necessarily experiments whenever asked to do
so by the principal.

2.2.1 Development Projects

If the project is known to be good (q = 1), then the value of conducting an experiment
is given by

V = (1 − δ)(pπ − c) + δ(1 − p)V

=
(1 − δ)(pπ − c)

1 − δ(1 − p)
.

The optimal action is to experiment if and only if V ≥ 0, or

p ≥
c

π
. (1)

The optimal strategy thus either never conducts any experiments, or relentlessly conducts
experiments until a success is realized, depending on whether p < c/π or p > c/π.

2.2.2 Research Projects

A principal facing a project that may or may not be good will experiment until either
achieving a success, or being rendered sufficiently pessimistic by a string of failures as

9



to deem further experimentation unprofitable. Let ϕ(qt) be the posterior probability the
project is good, given prior qt and having observed a failure. We have

ϕ(qt) =
(1 − p)qt

1 − pqt
< qt and hence

qt

ϕ(qt)
=

1 − pqt

1 − p
. (2)

The value of the project to the principal, given a current probability qt that the project
is good, is given by

V (qt) = max{0, (1 − δ)(qtpπ − c) + δ(1 − qtp)V (ϕ(qt))}.

Since V (ϕ(qt)) ≤ V (qt), this is strictly positive if and only if qtpπ − c > 0. Hence, the
principal experiments if and only if

qt >
c

pπ
, or qtp >

c

π
. (3)

Notice that the experimentation criterion for the development project (given by (1)) and
the research project (3) are equivalent, with the relevant success probability p in the first
case giving way to qtp in the second.

3 Development Projects: Fixed Success Probability

We begin our inquiry by stripping away learning considerations to examine develop-
ment projects. We start by considering stationary equilibria, that is, equilibria in which
the actions specified in any period t are independent of the period t and of the history up
to t. Because of stationarity, we omit the time subscripts throughout.

3.1 Stationary Full-Effort Equilibrium: Lucrative Projects

We first investigate a particularly simple and intuitive candidate for behavior—a sta-
tionary equilibrium in which the principal extends funding and the agent exerts effort in
every period. If the principal offers share s, she receives an expected payoff in each period
of

(1 − δ)[psπ − c].

The agent’s payoff solves, by the principle of optimality,

W = max{(1 − δ)c + δW, (1 − δ)p(1 − s)π + δ(1 − p)W},

or

W = max

{

c,
(1 − δ)p(1 − s)π

1 − δ(1 − p)

}

. (4)

10



Therefore, such an equilibrium will exist if and only if the principal finds it optimal to
fund the project and the agent finds it optimal to work, or (respectively)

(1 − δ)psπ ≥ (1 − δ)c, and ((1 − s)(1 − δ)π − δc)p ≥ (1 − δ)c.

Combining, this is equivalent to

p · min{(1 − δ)sπ, (1 − s)(1 − δ)π − δc} ≥ (1 − δ)c.

There is some value of s ∈ [0, 1] rendering the second term in the minimum positive, a
necessary condition for the agent to work, only if (1 − δ)π > δc. If this is the case, then
since the arguments of the minimum vary in opposite directions with respect to s, the
lowest value of p or lowest ratio π/c for which such an equilibrium exists is attained when
the two terms are equal, that is, when

s =
1

2

(

1 − δ
c

(1 − p)π

)

, (5)

in which case the constraint reduces to

p ≥
2(1 − δ)c

(1 − δ)π − δc
≡ p, or

π

c
≥

2

p
+

δ

1 − δ
, (6)

which implies (1−δ)π > δc. Hence, necessary and sufficient conditions for the existence of
a full-effort stationary equilibrium are that the project be sufficiently lucrative to satisfy
(6).

The principal will choose s to make the agent indifferent between working and shirk-
ing, giving equality of the two terms in (4) and hence an agent payoff of W ∗ = c. This is
expected—by always shirking, the agent can secure a payoff of c. In a stationary equilib-
rium, this must also be his unique equilibrium payoff, since the principal has no incentive
to offer him more than the minimal share that induces him to work (the continuation play
being independent of current behavior).

The total surplus S of the project satisfies

S = (1 − δ)(pπ − c) + δ(1 − p)S, or S =
(1 − δ)(pπ − c)

1 − δ(1 − p)
.

The principal’s payoff is then

(1 − δ)(pπ − c)

1 − δ(1 − p)
− c =

(1 − δ)(pπ − 2c) − δpc

1 − δ(1 − p)
≡ V ∗,

which is positive if and only if p ≥ p.
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3.2 Stationary Equilibria for Other Parameters

What happens if the success probability falls below the boundary p for the existence
of a stationary equilibrium in which the agent always works?

3.2.1 Unprofitable Projects: Null Equilibrium

If the agent is going to work, it must be that

(1 − δ)p(1 − s)π + δ(1 − p)W ≥ (1 − δ)c + δW,

where W is the agent’s continuation value in the event the project is not a success (whether
this is the result of shirking or working coupled with an unlucky draw). The left side is
the payoff from working and the right from shirking.

This condition indicates that inducing effort is more expensive, in the sense that the
minimum value of 1 − s satisfying this equation is higher when the continuation value
W is higher. Shirking ensures the continuation value is realized, while working runs the
risk of a game-ending success. If we consider the case in which effort is cheapest, namely
W = 0, we have

(1 − δ)(1 − s)pπ ≥ (1 − δ)c,

or
pπ − c ≥ spπ. (7)

The principal’s payoff is (1 − δ)[spπ − c] (recall that the principal must provide c to the
agent if the agent is to undertake the experiment). Since (7) implies that

spπ − c ≤ pπ − 2c,

the principal will never find it optimal to induce work if

p < p ≡
2c

π
, or

π

c
<

2

p
.

In this case, the unique equilibrium involves the principal never funding the project. If
an (out-of-equilibrium) offer is made, the agent works if and only if the offer is at least
c/(pπ).

The requirement p ≥ p for experimentation is a more demanding bound on p than when
the principal conducts the experiments himself (cf. (1)): agency is costly. In addition,

p =
2c

π
<

2(1 − δ)c

(1 − δ)π − δc
= p,

which means that there remains a region of values for π/c for which we have not yet
constructed equilibria. This reflects a dynamic agency cost. If there were only one op-
portunity to experiment, the principal would induce such experimentation from the agent

12



whenever p > 2c/π. In the presence of repeated opportunities, the principal can elicit
consistent experimentation only if p exceeds p > 2c/π. In the intermediate range, the
dynamics of the agent’s incentive constraint place an upper bound on how much effort
the principal can induce from the agent.

3.2.2 Intermediate Projects: Mixed, Partial-Work Equilibria

We now consider the remaining case in which p ∈ (p, p), or equivalently

2

p
<

π

c
<

2

p
+

δ

1 − δ
.

The only remaining possibility is a stationary mixed-strategy equilibrium. In any given
period, with probability z, the principal offers a share s < 1 that makes the agent exert
effort, while with complementary probability, the project is not funded. The agent is
willing to shirk whenever offered a nontrivial contract, and so his payoff is (1 − δ)(zc +
δzc + δ2zc + · · · ) = zc.8

The principal is indifferent in each period between offering the contract s < 1 and
offering no contract, and so it must be that she just breaks even: psπ = c. On the other
hand, since the agent is indifferent between shirking and not, we must have

(1 − δ)c + δzc = (1 − δ)p(1 − s)π + δ(1 − p)zc.

This gives

z =
1 − δ

δ

(

π

c
−

2

p

)

∈ [0, 1), and s =
c

pπ
.

The payoff of the principal in this equilibrium is 0, and the agent’s payoff is

W =
(1 − δ)(pπ − 2c)

δp
.

As p increases from p to p, the agent’s payoff in this equilibrium increases from 0 to c.
Since the parameter restrictions for the three possible types of equilibria partition the

space of parameters, Sections 3.1–3.2 provide a complete characterization of stationary
equilibria, yielding payoffs that are summarized in Figure 2.

3.3 Nonstationary Equilibria

We now extend our analysis to a characterization of all equilibria, including nonsta-
tionary ones. We will find no additional equilibria for either unprofitable projects or for

8More formally, the agent’s strategy specifies that he works if and only if s ≥ c/(pπ).
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+ δ
1−δ
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p
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c

π
c

0

V

W

Figure 2: Payoffs from the stationary equilibrium of a development project, as a function
of the “benefit-cost” ratio π/c, fixing c (so that we can identify c on the vertical axis).
Both players obviously earn zero in the null equilibrium of an unprofitable project. The
principal’s payoff is fixed at zero for intermediate projects, while the agent’s increases as
does π. The agent’s payoff is fixed at c for lucrative projects, while the principal’s payoff
increases in π.

very lucrative projects. However, we will find additional equilibria for both intermediate
projects and for projects that are lucrative, but not too lucrative. In each case, we first
find equilibria with stationary outcomes backed up by the threat of out-of-equilibrium
punishments, and then use these to construct a family of equilibria with nonstationary
outcomes.

Our first step is the following lemma, proved in Appendix B.1.

Lemma 3.1 The agent’s equilibrium payoff never exceeds c.

We then need to consider the three cases identified in Sections 3.1–3.2.

3.3.1 Lucrative Projects

Suppose first that π
c
≥ 2

p
+ δ

1−δ
. Section 3.1 established that there then exists a

stationary equilibrium in which the agent always works on the equilibrium path, with
payoffs

(W ∗, V ∗) ≡

(

c,
(1 − δ)(pπ − 2c) − δpc

1 − δ(1 − p)

)

.
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It is immediate that V ∗ puts a lower bound on the principal’s payoff in any equilibrium.
In particular, the share s offered by the principal in this equilibrium necessarily induces
the agent to work, since it does so when the agent expects his maximum continuation
payoff of W ∗ (cf. Lemma 3.1), and hence when it is hardest to motivate the agent. By
continually offering this share, the principal can then be assured of payoff V ∗.

We begin our search for additional equilibrium payoffs by constructing a family of
potential equilibria with stationary equilibrium paths. For the first time in the analysis,
we use the public randomization device.9 In each period, this device yields the outcome
“work” with probability z and “wait” with probability 1 − z. In the former case, the
principal provides the capital c and a sharing rule s to the the agent, making the agent
indifferent between working and not working. In the latter, nothing happens until the
next period.

Why doesn’t the principal make an offer to the agent anyway? Doing so prompts
an immediate switch to the full-effort equilibrium with payoffs (W ∗, V ∗) (with the agent
shirking unless offered a share at least as large as in the full-effort equilibrium). We will
then have an equilibrium as long as the principal’s payoff exceeds V ∗, and δ is sufficiently
close to one.10

The agent is indifferent between working and shirking, whenever offered a nontrivial
contract, and so his payoff is (1− δ)(zc + δzc + δ2zc + · · · ) = zc. Using this continuation
value, the agent’s incentive constraint is

(1 − δ)p(1 − s)π + δ(1 − p)zc = (1 − δ)c + δzc,

or
(1 − δ)(pπ − 2c) − δpzc = (1 − δ)(pπs − c).

Using this for the second equality, the principal’s value is then

V = z(1 − δ)(psπ − c) + δ(1 − zp)V

= z[(1 − δ)(pπ − 2c) − δpzc] + δ(1 − zp)V

= z
(1 − δ)(pπ − 2c) − δpzc

1 − δ(1 − zp)
.

This gives us a value for the principal that equals V ∗ when z = 1, in which case we have
simply duplicated the stationary full-effort equilibrium. However, these strategies may
give equilibria with a higher payoff to the principal, and a lower payoff to the agent, when
z < 1. In particular, as we decrease the probability z of funding and work, we decrease

9The public randomization device is simply a convenient way to smooth out the description of strate-
gies, and can be replaced by considering strategies that depend on calendar time.

10This ensures that, conditional on the outcome “wait,” the principal’s continuation payoff is still
arbitrarily close to her expected payoff, so that she prefers not to fund the project rather than to receive
V ∗.
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both the total surplus and the rent that the agent can guarantee by shirking. This implies
that the principal might be better off scaling down the project from z = 1, if the cost of the
rent is large relative to the profitability of the project, i.e., if π/c is relatively low. Indeed,
this returns us to the intuition behind the existence of mixed-strategy stationary equilibria
for intermediate projects, where π/c is too low for the existence of an equilibrium with
z = 1: by scaling down the project, the principal’s payoff might increase (and become
nonnegative).11

Let V (z) denote the principal’s payoff as a function of z. We have V (0) = 0 when
z = 0, giving the expected result that there is no payoff when no effort is invested. Are
there any values for which V (z) > V (1)? The function V (·) is concave, and V (z) = V (1)
admits a unique root z† 6= 1 equal to

z† =
1 − δ

δpc
V ∗,

which is less than one if and only if

π

c
≤

2

p
+

δ

1 − δ

(

2 +
δ

1 − δ
p

)

.

Note that this inequality is compatible with the restriction π
c
≥ 2

p
+ δ

1−δ
defining a lucrative

project, but is not implied by this restriction.
We must then split our analysis of lucrative projects into two cases. If π/c is large

(i.e., π
c

> 2
p
+ δ

1−δ

(

2 + δ
1−δ

p
)

), then z† > 1. Since V is concave, this means that V (z) < V ∗

for all z < 1. Therefore, our search for nonstationary equilibria has not yet turned up
any additional equilibria. Indeed, Lemma (3.2) shows that there are no other equilibria
in this case. Alternatively, if z† < 1, i.e. if π/c is not too large (2

p
+ δ

1−δ
≤ π

c
< 2

p
+

δ
1−δ

(

2 + δ
1−δ

p
)

), then as the agent’s work probability z in our construction drops below
unity, the principal’s payoff initially increases. We have then constructed an entire family
of stationary-outcome equilibria, one for each value z ∈ [z†, 1] (recalling again that V is
concave). These nonstationary (but stationary-outcome) equilibria give the agent a payoff
less than W ∗ = c and the principal a payoff larger than V ∗.

The following lemma, proven in Appendix B.2, states that these equilibria yield the
lowest equilibrium payoff to the agent.

Lemma 3.2

11We were considering stationary equilibria when examining intermediate projects, and hence the
optimality of the principal’s mixture required that the principal be indifferent between offering a contract
and not offering one, which in turn implied that the principal’s payoff was zero. Here, we are using the
public randomization device to essentially make the principal’s mixture observable (though see note 9)
and then the threat of a reversion to payoff V ∗ to enforce the resulting action, and hence the principal
need not be indifferent and can earn a positive payoff.
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[3.2.1] [Very Lucrative Projects] If

π

c
≥

2

p
+

δ

1 − δ

(

2 +
δ

1 − δ
p

)

,

then the lowest equilibrium payoff W to the agent is given by W ∗ = c. Hence, there is
then a unique equilibrium with payoffs (W ∗, V ∗).

[3.2.2] [Moderately Lucrative Projects] If

2

p
+

δ

1 − δ
≤

π

c
<

2

p
+

δ

1 − δ

(

2 +
δ

1 − δ
p

)

,

then the infimum over equilibrium payoffs W to the agent (as δ → 1) is given by W (z†) =
1−δ
δp

V ∗ ≤ c.

In the latter case, the limit of the equilibria corresponding to z = z†, as δ → 1, gives
the principal payoff V ∗, and so gives both players their lowest equilibrium payoff. We
accordingly refer to this as the worst equilibrium and denote the corresponding payoffs
by (W, V ) = (W, V ∗). To be clear, references here and below to this “worst equilibrium”
are an abuse of language (see footnote 10): this simultaneous lower bound on the players’
equilibrium payoffs is not achieved by any equilibrium, but for any ε > 0, there is δ < 1
such that for all δ > δ, there exists an equilibrium with payoffs within ε of (W, V ). We
simplify the exposition by proceeding as if we can actually obtain this worst equilibrium,
recognizing that the set of payoffs determined below is then actually the closure of the
equilibrium payoff set as δ → 1. Avoiding this simplification would change none of the
results, but would replace various statements with more cumbersome “ǫ−δ” counterparts.

We have now established (W ∗, V ∗) as the unique equilibrium payoffs for very lucrative
projects. For moderately lucrative projects, we have bounded the principal’s payoff below
by V ∗ and bounded the agent’s payoff below by W (z†) and above by W ∗. To characterize
the complete set of equilibrium payoffs for moderately lucrative projects, we must consider
equilibria with nonstationary outcomes.

Appendix B.3 establishes the following technical lemma:

Lemma 3.3 Let the parameters satisfy 2
p
+ δ

1−δ
≤ π

c
< 2

p
+ δ

1−δ

(

2 + δ
1−δ

p
)

and let (W, V )
be an arbitrary equilibrium payoff. Then

V − V

W − W
≤

δp

1 − δ
=

V

W
.

The geometric interpretation of this lemma is immediate: the ratio of the principal’s to
the agent’s payoff is maximized by the worst equilibrium.

Any equilibrium payoff can be achieved by an equilibrium in which, in each period t,
the worst equilibrium is played with probability 1−xt (for some xt) and with probability
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xt (relying on the public randomization device) an equilibrium is played that maximizes
the principal’s payoff, conditional on the payoff of the agent.12 In addition, the latter
equilibrium calls for the principal to offer some share st to the agent that induces the
agent to work.13 Bearing this in mind, given W , consider the supremum over values of V
among equilibrium payoffs, and say that such a payoff is on the frontier of the equilibrium
payoff set. Using Lemma 3.3, Appendix B.4 completes our characterization of equilibria
by showing:

Lemma 3.4 In an equilibrium whose payoff is on the frontier of the equilibrium payoff
set, it cannot be that both xt ∈ (0, 1) and xt+1 ∈ (0, 1). More precisely, xt is weakly
decreasing in t, and there is at most one value of t for which xt is in (0, 1).

This lemma tells us that the equilibria on the frontier can be described as follows:
for some T ∈ N ∪ {∞} periods, the project is funded by the principal, and the agent
exerts effort, being indifferent between doing so or not. From period T onward, the worst
(or, more precisely, an equilibrium arbitrarily close to the worst) equilibrium is played.
We have already seen the two extreme points of this family: if T = ∞, the project is
always funded, resulting in the payoff pair (W ∗, V ∗). If T = 0, the worst equilibrium is
obtained. For very lucrative projects, all these equilibria are equivalent (since the full-
effort equilibrium is then the worst equilibrium), and only the payoff vector (W ∗, V ∗) is
obtained. For moderately lucrative projects, however, this defines a sequence of points
(one for each possible value of T ), the convex hull of which defines the set of all equilibrium
payoffs. Any payoff in this set can be achieved by an equilibrium that randomizes in the
initial period between the worst equilibrium, and an equilibrium on the frontier.

An analytical determination of the set of equilibrium payoffs is obtained in the continuous-
time limit described in Section 3.3.4, and illustrated in the two right panels of Figure 3.

12Because the set of equilibrium payoffs is bounded and convex, any equilibrium payoff can be written
as a convex combination of two extreme payoffs. One of these extreme payoffs can be chosen freely, and
hence can be taken to be the worst equilibrium payoff (W, V ), and because this is the worst equilibrium
payoff for both players, the other extreme payoff must maximize the principal’s payoff, conditional on
that of the agent.

13If this latter equilibrium, with payoffs (W, V ), calls for the principal to offer no contract with some
probability, then (W, V ) is itself the convex combination of two payoffs, one corresponding to the case in
which a contract is offered and one corresponding to offering no contract. But the latter is an interior
payoff, given by δ times the accompanying continuation payoff, and hence (W, V ) cannot be extreme.
Should the principal be called upon to offer a contract that induces the agent to shirk, it is a straight-
forward calculation (cf. footnote 26) that it increases the principal’s payoff, while holding that of the
agent constant, to increase the share st just enough to make the agent indifferent between working and
shirking, and to have the agent work, again ensuring that (W, V ) is not extreme.
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3.3.2 Unprofitable Projects

When
π

c
<

2

p
,

we have seen that the agency cost exceeds the surplus that can be generated. Therefore, in
this case, the unique equilibrium payoff vector is (W, V ) = (0, 0), whether or not attention
is restricted to stationary equilibria.

3.3.3 Intermediate Projects

Consider now the case in which

2

p
≤

π

c
<

2

p
+

δ

1 − δ
.

The stationary equilibria in this region involve a zero payoff for the principal. This means,
in particular, that we can construct an equilibrium in which both players’ payoff is zero:
on the equilibrium path, the principal makes no offer to the agent; if he ever deviates, both
players play the stationary equilibrium from that point on, which for those parameters
also yields zero profit to the principal. Since this equilibrium gives both players a payoff
of zero, it is trivially the worst equilibrium.

Lemma 3.4 is valid here as well,14 and so the equilibrium payoffs on the frontier
are again obtained by considering the strategy profiles indexed by some integer T such
that the project is funded for the first T periods, and effort is exerted (the agent being
indifferent doing so), after which the worst equilibrium is played. Unlike in the case of
a lucrative project, we now have a constraint on T . In particular, as T → ∞, the value
to the principal of this strategy profile becomes negative. Since the value must remain
nonnegative in equilibrium, this defines an upper bound on the values of T that are
consistent with equilibrium. While the sequence of such payoffs can be easily computed,
and the upper bound implicitly defined, the analysis is crisper once we consider the
continuous-time limit, and the set is illustrated on the second panel of Figure 3.

3.3.4 A Continuous-Time Description

Section 3.3 explicitly describes the set of equilibrium payoffs. However, this description
is not easy to use, as the difference equations describing the boundaries of the equilibrium
payoff set are rather unwieldy. We consider here the limit of these difference equations,
and hence of the payoff set, as we let the length dt of a period tend to 0. Note that in
doing so, we are not defining and examining a game in continuous time. Instead, we are

14In this range of parameters, W = V = 0, and upon inserting these values, the proof of Lemma 3.4
continues to hold. From (25), the counterpart of Lemma 3.3 in this case is V

W
≤ pπ−2c

c
.
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describing the limit of the difference equations defining the equilibrium payoff set of the
discrete-time game.

We interpret p > 0 and c > 0 as the rate at which a success arrives and the flow cost
of effort, when the agent exerts effort. That is, given that the length of time between two
successive periods is given by dt and that effort is exerted in period t, the probability that
a success arrives in the interval [t, t + dt] is given by p · dt, and the cost of this effort to
this agent is c · dt. We let r denote the interest rate. The lump-sum in case of success, π,
remains unchanged.

Given an equilibrium in which the agent invariably exerts effort, the value Vt at time
t to the principal solves (up to terms of order dt2 or higher)

Vt = pstπdt − cdt + (1 − (r + p)dt)(Vt + V̇tdt),

or, in the limit as dt → 0,

0 = pstπ − c − (r + p)V (t) + V̇ (t), (8)

where st is the share to the principal in case of success, and V̇ is the time derivative of V
(whose differentiability is easy to derive from the difference equations).15 Similarly, if the
agent is indifferent between exerting effort or not, we must have (up to terms of order dt2

or higher)

Wt = p(1 − st)πdt + (1 − (r + p)dt)(Wt + Ẇtdt) = cdt + (1 − rdt)(Wt + Ẇtdt),

where Wt is the agent’s continuation payoff from time t onwards. In the limit as dt → 0,
this gives

0 = p(1 − st)π − (r + p)Wt + Ẇt = c − rW (t) + Ẇt. (9)

We may use these formulae to obtain closed-forms in the limit for the boundaries of the
payoff sets described above. For this description, it is useful to introduce

σ ≡ p/r and ξ ≡ (pπ − c)/c.

Unsurprisingly, the different cases arising in discrete time translate into as many cases in
the limit. To understand the necessary restrictions on parameters, let us first ignore the
terminal condition and study the stationary case in which V̇t = Ẇt = 0 for all t. Then

Wt = W ∗ ≡
c

r
, Vt = V ∗ ≡

ξ − σ − 1

σ + 1

c

r
,

which are positive provided ξ ≥ 1 + σ. If instead ξ < 1 + σ, the principal’s payoff is zero
in the unique stationary equilibrium. It is easy to check that if in addition ξ < 1, it is

15Throughout, given a function f , ḟ denotes the time derivative of f .
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not possible to have the agent exert effort in any equilibrium, and the unique equilibrium
payoff vector is (0, 0). This provides us with two of the relevant boundaries, between
unprofitable and intermediate projects, and between intermediate and lucrative projects.
The derivation of the boundary between moderately lucrative and very lucrative projects
is more involved, and available along with the proof of Proposition 1 in Appendix B.8
(where we take advantage of of some intermediate results developed in the course of
analyzing research projects, of which the development project is a limiting case). There,
straightforward computations translate our results into the following:

Proposition 1 The set of equilibrium payoffs for a development project, in the limit as
period length becomes short, is given by:

Unprofitable Projects (ξ < 1). No effort can be induced, and the unique equilib-
rium payoff is (W, V ) = (0, 0).

Intermediate Projects (1 ≤ ξ < 1 + σ). The set of equilibrium payoffs is given
by the pairs (W, V ), where W ∈ [0, W †], and

0 ≤ V ≤
ξ

σ + 1

[

1 −

(

1 −
rW

c

)σ+1
]

c

r
− W,

where W † is the unique positive value for which the upper extremity of this interval is
equal to zero. In the equilibria achieving payoffs on the frontier, the project is always
funded, and the agent always exerts effort, until some time T < ∞ at which funding
stops altogether. Such equilibria exist for all T below some parameter-dependent
threshold T .

Moderately Lucrative Projects (1 + σ ≤ ξ < (1 + σ)2). The set of equilibrium
payoffs is given by the pairs (W, V ), for W ∈ [W, c

r
], and

V ∗ ≤ V ≤

[

ξ

σ + 1
−

(

(1 + σ)2 − ξ − 1

σ(σ + 1)

)−σ (

1 −
rW

c

)σ+1
]

c

r
− W,

where V ∗ = ξ−σ−1
σ+1

c
r

and W = V ∗/σ. In the equilibria achieving payoffs on the
frontier, the project is always funded, and the agent exerts effort, until some time
T ≤ ∞ from which point on the project is only funded a fraction of the time, with
continuation payoff (W, V ∗).

Very Lucrative Projects (ξ ≥ (1 + σ)2). The unique equilibrium payoff involves
the principal always funding the project, and the agent exerting effort: (W, V ) =
( c

r
, V ∗).
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Figure 3: Set of equilibrium payoffs for a development project, measuring the agent’s
payoff W on the horizontal axis and the principal’s payoff V on the vertical axis. To obtain
concrete results, we set c/r = 1 and σ = 1 and, from left to right, ξ = 0 (unprofitable
project), ξ = 3/2 (intermediate project), ξ = 3 (moderately lucrative project), and ξ =
7 (very lucrative project). The point in each case identifies the payoffs of stationary
equilibria. The dotted line in the case of a moderately lucrative project identifies the
payoffs of the equilibria with stationary outcomes, and the shaded areas identify the sets
of equilibrium payoffs. Note that neither axis in the third panel starts at 0.

3.3.5 Summary

Figure 3 summarizes our characterization of the set of equilibrium payoffs for a de-
velopment project. In each case, the stationary equilibrium puts a lower bound on the
principal’s payoff. For either very lucrative or (of course) unprofitable projects, there
are no other equilibria. It is not particularly surprising that, for moderately lucrative
projects, there are equilibria with stationary outcomes backed up by out-of-equilibrium
punishments that increase the principal’s payoff. The principal has a commitment prob-
lem, preferring to reduce the costs of current incentives by reducing the pace and hence the
value of continued experimentation. The punishments supporting the equilibrium path
in the case of moderately lucrative projects effectively provide such commitment power,
allowing the principal to increase her payoff at the expense of the agent. It is somewhat
more surprising that for intermediate and moderately lucrative projects the principal’s
payoff is maximized by an equilibrium whose outcome is nonstationary, coupling an ini-
tial period of maximal experimentation with a future in which the project is either scaled
back or abandoned. Moreover, in the case of an intermediate project, such equilibria can
increase the payoffs of both agents.

4 Research Projects: Unknown Success Probability

We now turn our attention to research projects (q < 1), in which the players’ posterior
probability that the project is good evolves over the course of the agent’s experimentation.
Given this evolution of beliefs, we can no longer expect any equilibrium to be stationary.
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Instead, the obvious place to start looking for equilibria is among the class of Markovian
equilibria, in which the prescribed actions depend only on the posterior probability that
the project is good.

4.1 A Candidate Markovian Full-Effort Equilibrium

Paralleling our investigation of the development project, we begin by considering a
full-effort equilibrium in which the principal asks the agent to work in every period, and
the agent does so, until the posterior falls below a threshold (in the event of continued
failure) after which no further experimentation occurs.

Let q be the threshold (to be determined) below which the project is abandoned. A
successive string of failures generates a corresponding sequence of posterior probabilities
q, ϕ(q), ϕ(ϕ(q)), . . . , until the posterior falls below q. It is convenient to number periods
backwards, letting q0 < q be the posterior produced by the final failure, after which
experimentation ceases, q1 ≥ q be the preceding posterior, at which the final experiment
is undertaken, and so on.

Because of the agent’s hidden action, the agent’s behavior and payoff depend both on
the public belief about the project, derived from the public history of offers (along with
the equilibrium strategies), and on his privately held belief, given his history of actual
effort choices. On the equilibrium path, both beliefs coincide. But to identify the agent’s
optimal action, we must determine his payoff from deviating, at which point those beliefs
would differ. Thus, define W (q, q′) as the agent’s payoff when the public belief is q and
his private belief is q′, in the candidate full-effort equilibrium. Since we are considering a
full-effort equilibrium, the only deviations that are available to the agent lead to q′ ≥ q,
as shirking by the agent when it is not expected by the principal leads the agent to be
more optimistic than the principal.

The principal’s offer st in period t must suffice to induce effort on the part of the
agent, and hence must satisfy

(1 − δ)(1 − st)qtpπ + δ(1 − qtp)Wt−1(qt−1, qt−1) ≥ (1 − δ)c + δWt−1(qt−1, qt) (10)

= (1 − δ)c + δ
qt

qt−1
Wt−1(qt−1, qt−1). (11)

The first inequality is the agent’s incentive constraint, with the left side being the expected
payoff from exerting effort. This effort brings an immediate payoff of (1 − st)qtpπ, being
the agent’s share (1−st) of the expected payoff qtpπ of an experiment, plus the probability
1− qtp of a failure multiplied by the discounted continuation value W (qt−1, qt−1). On the
right side, the current payoff to shirking is the value c of expropriating the experimentation
funding (ensuring a failure). The continuation payoff is now W (qt−1, qt), as the principal
operates under the equilibrium hypothesis that the agent has worked and hence enters
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the next period with posterior qt−1, while the agent knows that no such work has been
done and retains posterior qt.

The second equality in (10)–(11) rests on the following key observation, proven in
Appendix B.5, that allows us to reduce the dimension of the state space.

Lemma 4.1 In any equilibrium in which the agent never shirks,

∀q′ ≥ q : W (q, q′) =
q′

q
W (q, q). (12)

Hence, the agent’s expected payoffs from the asymmetric beliefs that potentially arise off
the equilibrium path are linear in the agent’s beliefs. This relationship is intuitive, as
higher beliefs simply scale up all the success probabilities involved in the agent’s expected
payoff calculation.

Two comments on this candidate equilibrium are in order. First, because the equi-
librium is Markovian, the principal will invariably offer a share st causing the incentive
constraint (10)–(11) to hold with equality, and will offer such a contract only if the result
is a nonnegative payoff. Given this, the agent’s strategy is to work if and only if he is
offered at least this share.16 In (the final) period 1, the incentive constraint is

(1 − δ)[(1 − s1)q1pπ − c] ≥ 0.

The principal’s payoff is (1 − δ)(s1q1pπ − c). Using the incentive constraint, this is non-
negative only if q1pπ − 2c ≥ 0, and hence only if

q1 ≥ q =
2c

pπ
.

Here again, we see the cost of agency. The unconstrained optimal solution experiments
until the posterior drops to c/pπ, while the agency cost forces experimentation to cease
at 2c/pπ. Intuitively, the principal must pay the cost of the experiment c, and must
also provide the agent with a rent of at least c, to ensure the agent does not shirk and
appropriate the experimental funding.

To verify that the proposed strategies are indeed an equilibrium, we must show that
the principal is earning a nonnegative payoff. The share st that the principal can retain
while satisfying the agent’s incentive constraint may be so low (indeed, may be negative)
that it does not cover the principal’s outlay of the experimentation cost c. Using (11), we
can write the agent’s incentive constraint as

(1 − δ)[(1 − st)qtpπ − c] ≥ δp
qt

qt−1
W (qt−1, qt−1).

16That is, as long as he has not deviated in the past himself; otherwise, his acceptance threshold
depends on both beliefs; given the equilibrium offers, he is more optimistic than the principal after a
deviation, and therefore has a strict incentive to work.
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The principal’s share must at least cover the cost of her expenditure c, or stqtpπ ≥ c,
giving

(1 − δ)[qtpπ − 2c] ≥ δp
qt

qt−1

W (qt−1, qt−1). (13)

Could this inequality fail? If so, then there is no way to satisfy the agent’s incentive
constraint and still cover the principal’s experimentation cost. The key observation here is
that as the agent’s continuation value becomes more lucrative, it becomes more expensive
to provide incentives for the agent. Experimenting exposes the agent to the risk that
the project may be a success now, eliminating future returns. Shirking now ensures an
immediate payment of c (the diverted funds) plus the prospect of future experimentation.
If the latter is too tempting, the principal cannot always work.

The principal may thus prefer, or indeed the existence of a Markovian equilibrium
may require, an outcome in which the agent does not always exert effort. This is not
to suggest that the principal will find it optimal to provide experimental funding to the
agent knowing that the agent will abscond with it, but rather that the principal may
prefer to sometimes attenuate the pace of experimentation, to ensure that her payoff is
nonnegative. If her payoff is zero for some belief, the principal is indifferent between
funding the project or not; in that case, by randomizing between those two choices, she
delays the agent’s opportunities to divert the funds, and so reduces his outside option.
This makes it cheaper to induce the agent to work, and we can then determine the amount
of delay that would make the principal indifferent between funding the project or not.
Alternatively, for some beliefs, the aforementioned constraint might not be binding; in
that case, there can be no delay (in a Markovian equilibrium), since the principal strictly
prefers to fund the project.

It is then clear how to solve for both (mutually exclusive) possibilities arising at any
point in time in a Markovian equilibrium: either the principal’s payoff is zero, allowing us
to solve for the delay; or the delay is zero, allowing us to solve for the principal’s payoff.
In either case, if an offer is made, it is such that the agent is indifferent between shirking
or not. The next section uses these two possibilities to identify the unique Markovian
equilibrium, as a function of the parameters of the research project.

4.2 The Markovian Equilibrium

4.2.1 Building Blocks

Analyzing the research project is more intricate than its development-project counter-
part, and so we move more quickly to the continuous-time limit. We study the limit as
the period length goes to zero, to determine for which parameters, if any, condition (13)
holds. Once again, we emphasize that we are not defining or examining a continuous-time
game, but summarizing the equilibrium behavior of our discrete-time game, insisting on
the discrete-time context for substantive proofs. In continuous time, it is less confusing to
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assume that higher values of t correspond to later times, and we denote by T ∈ R ∪ {∞}
the time at which experimentation stops altogether, if ever.

As in Section 3.3.4, we let p denote the flow rate of success if the project is good, c
the flow cost of working, and r the discount rate. Then the payoff to the principal solves,
approximately,

Vt = (qtpstπ − c)dt + (1 − rλtdt)(1 − pqtdt)Vt+dt,

or, in the limit,
0 = qtpstπ − c − (rλt + pqt)Vt + V̇t. (14)

Elaborating on the presentation in Section 3.3.4, the variable λt ≥ 1 captures the possi-
bility that the principal may offer the agent a contract with probability less than one.17

In particular, we interpret λt > 1 as indicating that the principal offers the agent a con-
tract at less than the maximal rate, but still at a rate of the order dt. When taking the
continuous-time limit, we can rescale so as to encompass this probability in the discount
factor, making the effective discount factor rλt, with offering a contract with non-unitary
probability causing the discount factor to increase (hence λt > 1 in this case).

Similarly, whenever the agent is indifferent between shirking and not (as must be the
case in a Markovian equilibrium), the payoff to the agent, Wt, must solve, approximately,

Wt = qtp(1 − st)πdt + (1 − rλtdt)(1 − qtpdt)Wt+dt = cdt + (1 − rλtdt)(Wt+dt + Xtdt),

where

Xt =

∫ T

t

e−
R

u

t
rλτ dτ (−q̇u)p(1 − su)πdu

is the gain from t + dt onward from not exerting effort at t (given that effort is then
optimal at all later dates as long as it would have been in the absence of a deviation, since
the off-the-equilibrium-path relative optimism of the agent makes the agent more likely
to accept the principal’s offer).18 Using (12), we obtain

Xtdt = Wt+dt(qt) − Wt+dt =

(

qt

qt+dt
− 1

)

Wt+dt = p(1 − qt)Wtdt.

Expanding and taking limits, the agent’s payoff satisfies

0 = qtpπ(1 − st) + Ẇt − (rλt + qtp)Wt = c − rλtWt + Ẇt + p(1 − qt)Wt. (15)

17This notational convention allows us to view the rate of experimentation as constant, but the rate of
discounting as variable, which turns out to be a convenient representation. For example, it simplifies the
evolution of beliefs (cf. (16)). Note, however, that this means that the variable t should not literally be
interpreted as real time. We return to this distinction in Section 4.2.7.

18To understand the expression for Xt, note that, at any later time u, the agent gets her share (1− su)
of π with a probability that is increased by a factor −q′(u), relative to what it would have been had she
not deviated. Of course, even if the project is good, it succeeds only at a rate p, and this additional
payoff must be discounted.
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It follows from Bayes’ rule that the belief q follows the familiar law of motion

q̇t = −pqt(1 − qt). (16)

We now have two possible regimes, for a given t, that might arise in a Markovian equi-
librium:

1. No delay, and positive principal value. Here, we have λt = 1, and we must confirm
that Vt ≥ 0.

2. Delay and zero principal value. Here, Vt = 0, and so qtpstπ = c. For this to be an
equilibrium, we must confirm that λt ≥ 1.

Indeed, for given parameters, both situations might arise at different values of t, and it
may be necessary to “paste” the corresponding value functions.

Since we are considering Markovian equilibria (for now), it will often prove useful to
change variables and express V and W in terms of the posterior belief q rather than in
terms of t. Let w(q) = Wt and v(q) = Vt be those payoffs to the agent and principal,
respectively. With an abuse of notation, we shall write λ(q) and s(q) when referring to
delay and shares as a function of the belief q.

As with development projects, it is useful to introduce

σ ≡ p/r and ξ ≡ (pπ − c)/c.

With this notation, the lower threshold below which there is no experimentation, q =
2c/(pπ), is now 2/(ξ + 1), and so we restrict attention to ξ > 1. In our former terms, we
hereafter ignore unprofitable projects.

The detailed analysis of both regimes is carried out in Appendices B.6 and B.7, re-
spectively. When there is never any delay until q = q, the differential equations have as
solutions

v(q) =

[

2 − σ − q

σ − 1
+

qξ

σ + 1
+

(

1 − q

1 − q

q

q

)
1

σ

(

1 −
q(1 − q)

(σ − 1)q
−

ξ

σ + 1

q(1 − q)

1 − q

)

]

c

r
, (17)

and

w(q) =

[

qσ − 1

σ − 1
−

(

1 − q

1 − q

q

q

)
1

σ q

q

qσ − 1

σ − 1

]

c

r
. (18)
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4.2.2 Classifying Research Projects

Using the tools developed in Appendices B.6 and B.7, we now describe the unique
Markovian equilibrium of the research project. The nature of this equilibrium depends
on the parameters of the research project, with the analysis in Appendices B.6 and B.7
directing our attention to the following four cases:

ξ > 3 ξ < 3
ξ > 1 + σ Lucrative Lucrative

Fast Learning Slow Learning

ξ < 1 + σ Intermediate Intermediate
Fast Learning Slow Learning

In each of these four cases, the Markovian equilibrium is unique, with details presented in
the following four subsections. One of these classifications is familiar from the development-
project case, where we identified projects for which ξ > 1 + σ as lucrative projects and
those with ξ < 1 + σ as intermediate projects. In the case of a research project, another
distinction appears, involving ξ alone. To control for the information already contained
in the designation of a project as lucrative or intermediate, we rewrite ξ as ξ − σ + p/r.
Those cases in the left column then involve high values of p/r (adjusting parameters so
as to keep ξ − σ fixed), while those in the right column involve relatively low values of
p/r. The higher is p, the more rapidly does the players’ posterior probability that the
project is good evolve (conditional on failed experiments), while the lower is r, the less
steeply are the future periods in which this information is available discounted. We thus
characterize a high value of p/r as a “fast-learning” environment and a small value of p/r
as a “slow-learning” environment.

4.2.3 Lucrative, Fast-Learning Projects: Full Effort

In this case, the full-effort candidate equilibrium developed in Section 4.1 is the unique
Markovian equilibrium: there is no delay until the belief reaches q (in case of repeated
failures). At this stage, the project is abandoned.

To say that the agent learns quickly is to say that the terminal belief at which the
project is abandoned arrives relatively quickly. As a result, future payoffs are not espe-
cially valuable to the agent. There is then little scope for reducing incentive costs by
reducing the agent’s future payoffs. Hence, if it is ever going to be profitable to induce
effort from the agent, it will be profitable to induce effort for all subsequent beliefs. Be-
cause the project is lucrative, it is optimal to induce effort for all beliefs. This is the most
profitable environment, combining a lucrative project with fast learning (which tends to
reduce incentive costs), and so it is unsurprising that this environment supports consistent
full effort.
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4.2.4 Intermediate, Fast-Learning Projects: Delay for High Beliefs

In this case, the unique Markovian equilibrium is characterized by some belief q∗ ∈
[q, 1). (The value of q∗ is the unique root in (q, 1) of v, as defined by (17)). For higher
beliefs, there is delay, i.e. the project is only undertaken a fraction of the time, and the
principal’s payoff is zero. As the belief reaches q∗, delay disappears (in fact, delay is
discontinuous at q∗), and the project is then funded at a maximal rate, until the project
is abandoned when the belief reaches q. The equilibrium specifies the minimal amount
of delay that drives the agent’s payoff down to the point where the principal just breaks
even when inducing the agent to work.

Once again, the fast learning ensures that if effort is to be induced for any given
belief, it will be induced for all smaller beliefs. It is indeed possible to induce effort for
relatively low beliefs, where continuation payoffs are relatively unimportant and hence
effort relatively cheap. Because this is only an intermediate project, however, as beliefs
get large, incentive costs become so large that full effort is no longer compatible with a
nonnegative principal payoff. At this point, the equilibrium requires delay and hence a
zero principal payoff. The fast learning here again tends to induce low incentive costs, but
the project is only intermediate and not lucrative, precluding full effort for high beliefs
(where incentive costs are relatively high).

4.2.5 Lucrative, Slow-Learning Projects: Delay for Low Beliefs

In this case, the unique Markovian equilibrium is characterized by some belief q∗∗ ≡
(2 − σ)/(ξ + 1 − 2σ) ∈ (q, 1). When beliefs are higher than q∗∗, there is no delay, as the
project gets funded at maximal rate. However, from the point at which the belief reaches
q∗∗, funding starts being delayed (here, delay is continuous at q∗∗).

The agent is slow learner here, and hence continuation payoffs are relatively important.
As a result, incentive costs are relatively high, and there is both considerable scope and
considerable gain to be had from reducing incentive costs by reducing continuation values.
We thus have delay for low probabilities that the project is good. Because the project is
lucrative, we can capitalize on the resulting relatively small incentive costs by supporting
full effort for higher beliefs.

4.2.6 Intermediate, Slow-Learning Projects: Perpetual Delay

In this case, the unique Markovian equilibrium involves delay for all values of q ∈ [q, 1].
Once again, slow learning implies that if the agent is to exert effort, the cost-effective way
to provide the appropriate incentives involves continuation-payoff-reducing future delay.
In this case, however, the combination of an intermediate project and slow learning makes
the incentives sufficiently expensive as to preclude any possibility of full effort. This is
the least profitable environment (at least as far as Markovian equilibria are concerned),
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combining an intermediate project with the high incentive costs associated with slow
learning, and hence we have no possibility of full effort.

4.2.7 Summary

We collect the highlights of our characterization of Markovian equilibria in Proposition
2 and Figure 4.19

Proposition 2 The research project admits a unique Markovian equilibrium, whose form
depends on the project’s parameters as follows:20

• Lucrative, Fast-Learning Projects (ξ > 1+σ and ξ > 3): The agent exerts full effort
until either achieving a success or until the posterior probability of a good project
drops below q. The principal’s payoff is positive for all posteriors exceeding q.

• Intermediate, Fast-Learning Projects (ξ < 1 + σ and ξ > 3): The principal initially
induces partial effort from the agent by mixing between offering an effort-inducing
contract and offering no contract, until the posterior probability drops to a threshold
q∗ > q. The principal subsequently induces full effort until the posterior hits q. The
principal’s payoff is zero for q > q∗ and positive for q ∈ (q, q∗).

• Lucrative, Slow-Learning Projects (ξ > 1 + σ and ξ < 3): The principal initially
induces full effort, enjoying a positive payoff, until the posterior drops to a threshold
q∗∗ > q, at which point the principal elicits partial effort and commands a payoff of
zero.

• Intermediate, Slow-Learning Projects (ξ < 1 + σ and ξ < 3): The principal induces
only partial effort from the agent, for every posterior, with a zero payoff.

Appendix B.9 provides the proof. Perhaps the most interesting case here is that of
an intermediate, fast-learning project. The principal’s payoff is zero when she is quite
optimistic about the project, and then becomes positive when the principal becomes
pessimistic. Hence, the principal would actually actually prefer to be pessimistic about
the project. Given the chance to “burn” some probability that the project is good, the
principal would do so.

Development and research projects appear to be fundamentally different, with the
stationarity of the former contrasting with the backward induction from the terminal

19Bergemann and Hege [2] use an analogous four-fold classification to describe the Markovian equilibria
in their model, with high-return and low return taking the place of our lucrative and intermediate
classification, and with high discount factor and low discount factor taking the place of our fast learning
and slow learning designations.

20Of course, in case q is lower than the relevant threshold, part of the description does not apply.
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Figure 4: The principal’s payoff (vertical axis) from the Markovian equilibrium, as a
function of the probability q that the project is good (horizontal axis). The parameters
are c/r = 1 for all curves. For the dotted curve, (ξ, σ) = (4, 27/10), giving a lucrative,
fast-learning project, with no delay and the principal’s value positive throughout. For
the dashed curve, (ξ, σ) = (5/2, 5/4), giving a lucrative, slow-learning project, with delay
and a zero principal value below the value q∗∗ = 0.75. For the solid curve, (ξ, σ) = (4, 4),
giving an intermediate, fast-learning project, with delay and a zero principal value for
q > q∗ ≈ .94. We omit the case of an intermediate, slow-learning project, where the
principal’s payoff is 0 for all q. Notice that the principal’s payoff need not be monotonic
in the probability the project is good.

belief q of the latter. However, in the two possible cases of a slow-learning research
project, there is delay in equilibrium for beliefs that are low enough. There might be
sufficient delay that the possibility of beliefs reaching q = 2/(ξ+1) is essentially irrelevant
in determining payoffs. Indeed, it is straightforward to verify that not only does the “rate
of delay” λ(q) diverge as q ց q, but so does the cumulative delay, i.e.,

lim
qցq

∫ q

q

λ(u)du = ∞. (19)

That is, the event that the project is abandoned is entirely discounted away in the case
of a slow-learning research project. Remembering that we have modeled delay in terms
of the discount factor (see footnote (17)), this means that in real time, the belief q is
only reached asymptotically—the pace of experimentation slows sufficiently fast that the
belief q is never actually reached and hence the project is never actually abandoned. The
contrast between research and development projects is then not as sharp as it initially
appears.
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4.3 Non-Markovian Equilibria

We now study the other perfect Bayesian equilibria of the game. Our first step is to
understand how severely players might be credibly punished for a deviation, and thus,
each player’s lowest equilibrium.

4.3.1 Lowest Equilibrium Payoffs: Slow-Learning Projects (ξ < 3)

We first discuss the relatively straightforward case of a slow-learning project. In the
corresponding unique Markovian equilibrium, there is delay for all beliefs that are low
enough, i.e., for all values of q in a lower interval I, where I = [q, q∗∗] in the lucrative case
and I = [q, 1] in the intermediate case. When there is delay, the principal’s equilibrium
payoff is zero. This in turn implies that, for beliefs q ∈ I, there exists a trivial non-
Markovian equilibrium in which the principal offers no funding on the equilibrium path,
and so both players get a zero payoff. This is supported by the convention that if the
principal deviates and makes an offer, players revert to the strategies of the Markovian
equilibrium, thus ensuring that the principal has no incentive to deviate. Let us refer to
this equilibrium as the “full-stop equilibrium.”

The existence of the full-stop equilibrium implies that, at least for q in the interval
I, both players’ minmax (and lowest equilibrium) payoffs are 0. We claim that this
is also the case for all lucrative projects. (The interval I already exhausts the set of
beliefs for intermediate projects.) First, we can construct a non-Markovian “no-delay”
equilibrium in which there is no delay from the prior q until the belief reaches some given
q̂ ∈ I with q̂ > q, at which point players revert to the full-stop equilibrium (with the
contract st making the agent indifferent between shirking and not for all intermediate
beliefs q ∈ (q̂, q]). This no-delay equilibrium gives a positive payoff to the principal only
if q is not too large relative to the fixed belief q̂. That is, there exists q(q̂) at which this
equilibrium gives the principal a payoff of zero. Note that it must be that limq̂→q q(q̂) = q,
since otherwise the payoff function v(q) defined by (17) would not be negative for values
of q close enough to q. This implies that q(I), the image of I under this map q̂ 7→ q(q̂),
intersects I, and hence I1 ≡ I∪q(I) is an interval of length strictly greater than I. Hence,
for every initial belief q in I1, we can choose q̂ ∈ I such that q = q(q̂) and construct a
no-delay equilibrium, giving the principal a value of 0. We can then in turn construct
an equilibrium for every such belief in which no offers are ever made, with any offer
prompting the agents to switch immediately to the no-delay equilibrium, in the process
obtaining an equilibrium for q in which both agents receive their minmax payoffs of zero.

We may now repeat the entire argument, beginning with the interval I1. For each
such belief q̂ ∈ I1, we can use this belief as the point at which experimentation stops in a
no-delay equilibrium for some initial belief q(q̂) chosen to be sufficiently large as to give
the principal a payoff of zero. This allows us to obtain a collection of no-delay equilibria
giving the principal a payoff of zero, and hence of full-stop equilibria giving both agents
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payoffs of zero, for an interval I2 which is a superset of I1. Continuing, we have a sequence
of intervals In+1 ≡ In ∪ q(In).

Plainly, every q in [q, 1) is in In for n large enough. We have thus shown that for every
prior belief, there is an equilibrium giving each agent the minmax payoff of 0. We shall
refer to this equilibrium payoff as the worst equilibrium payoff. Summarizing:

Lemma 4.2 For slow-learning projects and for any probability that the project is good,
there exists an equilibrium giving both players their minmax payoffs of zero.

4.3.2 Lowest Equilibrium Payoffs: Fast-Learning Projects (ξ > 3)

This case is considerably more involved, as the unique Markovian equilibrium features
full effort for initial beliefs that are low enough, i.e., for all values of q in a lower interval
I, where I = [q, q∗) for intermediate projects and I = [q, 1] for lucrative projects. For
intermediate fast-learning projects and relatively high prior beliefs (q ≥ q∗), the same
arguments as above yield that there is a worst equilibrium with a zero payoff for both
players. But what about beliefs q ∈ I?

Because the principal’s payoff in the corresponding Markovian equilibrium is not zero,
we can no longer construct a full-stop equilibrium with zero payoffs. Indeed, the Marko-
vian equilibrium yields the principal’s minmax payoff. Intuitively, by successively making
the offers associated with the Markovian equilibrium, the principal can secure this payoff.
This intuition does not provide a complete argument, because the principal cannot com-
mit to this sequence of offers, and the agent’s behavior, given such an offer, depends on his
beliefs regarding future offers. Since the argument involves game-theoretic considerations,
it must be performed in discrete time, before limits can be taken. Appendix B.10 proves:

Lemma 4.3 When ξ > 3 (fast-learning project) and q 6∈ I (possible for an intermediate
project), there is an equilibrium giving the principal her minmax value of 0. When ξ > 3
and q ∈ I, the principal’s minmax payoff converges (as time periods become short) to the
payoff of the full-effort equilibrium presented in Section 4.2.3.

Having determined the principal’s lowest equilibrium payoff (which is also her minmax
payoff), we now turn to the agent’s lowest equilibrium payoff. In such an equilibrium, it
must be the case that the principal is getting her minmax payoff herself (otherwise, we
could simply increase delay, and threaten the principal with reversion to the Markovian
equilibrium in case she deviates, yielding a new equilibrium, with a lower payoff to the
agent). Also, in such an equilibrium, the agent must be indifferent between accepting or
rejecting offers (otherwise, by lowering the offer, we could construct an equilibrium with
a lower payoff to the agent).

Therefore, we must identify the smallest payoff that the agent can get, subject to the
principal getting her minmax payoff, and the agent being indifferent between accepting
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and rejecting offers. This is an optimization problem, and so we may carry it out directly
in the continuous-time framework. This problem turns out to be remarkably tractable, as
explained below and summarized in Lemma 4.4. However, readers without any particular
penchant for Riccati equations may skip the following derivations without much loss.

Let us denote by vM , wM the payoff functions in the Markovian equilibrium, given by
(17) and (18), and by sM the corresponding share (as a function of q). Our purpose, then,
is to identify all other solutions (v, w, s, λ) to the differential equations characterizing such
an equilibrium, for which v = vM , and in particular, the one giving the lowest possible
value of w(q). Rewriting the differential equations (14) and (15) in terms of beliefs q,
(vM , w, s, λ) solves

0 = qpsπ − c − (rλ + pq)vM(q) − pq(1 − q)v′
M(q),

and

0 = qpπ(1−s)−pq(1−q)w′(q)−(rλ+qp)w(q) = c−rλw(q)−pq(1−q)w′(q)+p(1−q)w(q).

Since sM solves the first equation for λ = 1, any alternative solution (w, s, λ) with λ > 1
must satisfy (by subtracting the first equation for (sM , 1) from the first equation for (s, λ))

r(λ − 1)vM(q) = qpπ(s − sM).

Therefore, as is intuitive, s > sM if and only if λ > 1: delay allows the principal to increase
her share. This allows us to eliminate s from the other two equations, and combining
them gives

pw(q) = qpπ − 2c − (rλ + pq)vM(q) − pq(1 − q)v′
M(q).

Solving for λ in terms of w gives

rλ =
qpπ − 2c − pq(1 − q)v′

M(q) − pw(q)

vM (q)
− pq.

Inserting in the second equation for w and rearranging yields

pw(q)2 − (pqπ − 2c − pq(1 − q)v′
M(q) − pvM (q))w(q) + vM (q)c = pq(1 − q)vM(q)w′(q).

This is a Riccati equation, for which the general solution can be derived from any partic-
ular solution. Fortunately, we know one such solution, namely wM . Define

Φ(q) ≡ exp

{
∫

[2pwM(u) − (puπ − 2c − pu(1 − u)v′
M(u) − pvM(u))]

du

pu(1 − u)vM(u)

}

=
(1 − q)1+ 2

σ q1− 2

σ

(1 − q̃)1+ 2

σ q̃1− 2

σ

vM(q̃)

vM(q)
exp

{

c

σr

∫ q

q̃

(ξ + 1)u − 2

u(1 − u)vM(u)
du

}

,
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for some arbitrary q̃ ∈ I, where the second equality uses our knowledge of vM . As is
well-known, the general solution to the Riccati equation can be written as

w(q) = wM(q) − Φ(q)

[

C +

∫

Φ(u)

u(1 − u)vM(u)
du

]−1

.

(The particular solution wM corresponds to C = ∞). It remains to determine which
solution yields the lowest payoff to the agent. Appendix B.11 proves:

Lemma 4.4 When ξ > 3 (fast-learning) and q 6∈ I (possible for an intermediate project),
there is an equilibrium giving the agent his minmax value of 0 (as well as giving the
principal payoff 0). When ξ > 3 and q ∈ I, the infimum over the agent’s equilibrium
payoffs is given by

w(q) = wM(q) −
Φ(q)

C∗ +
∫ q

q̃
Φ(u)

u(1−u)vM (u)
du

, (20)

where

C∗ ≡
vM(q̃)

(1 − q̃)1+ 2

σ q̃1− 2

σ

∫ q̃

q

(

1−u
u

)
2

σ

vM (u)2
exp

{

c

σr

∫ u

q̃

(ξ + 1)y − 2

y(1 − y)vM(y)
dy

}

du. (21)

There may or may not be an equilibrium that achieves the infimum over the agent’s
equilibrium payoffs (see Appendix B.11 for the necessary and sufficient condition). If not,
of course, there are equilibria giving the agent payoffs arbitrarily close to this infimum. To
simplify subsequent statements (by eliminating straightforward “ǫ − δ” phrases), we will
refer to this infimum as the lowest equilibrium payoff, even if it can only be approximated.
Since in this equilibrium the principal also obtains her lowest equilibrium payoff, we will
refer to this strategy profile as the worst equilibrium.

The somewhat formidable looking (20)–(21) identify two equilibrium payoffs. One
is the agent’s payoff in the Markovian equilibrium, given by the function wM(q) (and
corresponding to the solution of (20) we would obtain if we set C∗ = ∞, eliminating the
second term). The other is the lower payoff w(q), corresponding to the value C∗ given
by (21). Figure 5 shows w and wM < w for the case ξ = 4, σ = 2. (In this example, the
infimum is not achieved.)

We can check some consistency properties of these results. First, consider an inter-
mediate, fast-learning project. It is straightforward to check that the delay associated
with the agent’s worst equilibrium payoff grows without bound as q ր q∗ (reminiscent of
(19)), and so the agent’s lowest payoff tends to 0 (as does the principal’s, by definition of
q∗). The worst equilibrium payoffs for the principal and agent are both 0 for q > q∗, and
hence these worst payoffs are continuous at q∗.

Second, let us consider a lucrative, fast-learning project, and ask what happens as
q ր 1, pushing us closer and closer to the case of a development project. If ξ ≥ (1 +
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Figure 5: Functions wM(q) (upper curve) and w(q) (lower curve), giving the agent’s pay-
offs from the Markovian equilibrium (wM) and the infimum over the agent’s equilibrium
payoffs (w) as a function of the probability q that the project is good (measured on the
horizontal axis) for ξ = 4 and σ = 2 (lucrative, fast-learning project). The horizontal axis
is positioned at q = 2/5. Notice that w(1) > wM(1), which is consistent with the fact
that ξ < (1+σ)2, indicating that, as q → 1, this research project converges to the case of
a moderately lucrative development project, with w(1) and wM(1) corresponding to the
smallest and largest agent payoff pictured in the third panel of Figure 3.

σ)2, the lower payoff w(q) tends to wM(1) = c/r as q → 1. In this case, there is no
equilibrium for q = 1 giving the agent a payoff strictly below the Markovian equilibrium
payoff, while simultaneously giving the principal a payoff as high as the Markovian payoff.
This corresponds to the case of a highly lucrative development project, with its unique
equilibrium payoff (cf. Proposition 1 and Figure 3). On the other hand, if ξ < (1 + σ)2

(but still ξ ≥ 1 + σ, so that we have the case of a lucrative research project) the solution
w(q) tends to V ∗/σ < c/r as q → 1. In this case, the limiting values V ∗/σ = w(1) and
c/r = wM(1) < w(1) are precisely the lowest and highest agent equilibrium payoffs for a
development project (Proposition 1 and Figure 3).

The worst equilibrium payoffs for all but a lucrative, slow-learning research project thus
converge to the corresponding payoffs for a development project, as q ր 1.21 However,
wM(q) < w(q) for all q < 1. Hence, there are always non-Markovian equilibria for a
research project that yield the agent a payoff below the Markovian equilibrium payoff.

21This continuity result is immediate for intermediate research projects, with their zero-payoff equilibria
in the case of both development and research projects.
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Therefore, there are also always equilibria that yield the principal a payoff above the
Markovian equilibrium payoff. The development project, in contrast, is a somewhat
special case, since for highly lucrative development projects the Markovian equilibrium
payoffs are the only equilibrium payoffs.

Finally, lucrative slow-learning research projects present a discontinuity. For any prior
probability less the one, we have an equilibrium giving both agents a payoff of zero, while
the lowest equilibrium payoffs for the corresponding development project are bounded
away from zero.

4.3.3 The Set of Equilibrium Payoffs: Slow-Learning Projects (ξ < 3)

We have shown that the worst equilibrium, in the sense of simultaneously minimizing
the equilibrium payoffs of both players, is well defined. To identify the set of equilibrium
payoffs, it remains to describe the frontier of the equilibrium payoff set.

As was the case for a development project, efficiency requires that delay (if unavoid-
able) be postponed as much as possible. Appendix B.12 proves:

Lemma 4.5 Any equilibrium payoff on the frontier can be achieved by an equilibrium in
which there is no delay up to some belief, at which point the equilibrium reverts to the
worst equilibrium.22

Hence, as in the development case, a simple class of equilibria spans the entire equilibrium
payoff set. They consist of an initial randomization between the worst equilibrium and
an equilibrium on the frontier. The latter equilibrium specifies full effort until some time
T < ∞, after which play reverts to the worst equilibrium from that point on.

We now focus on the equilibrium on the frontier that is best from the point of view
of the principal, and briefly describe some of its features. For slow-learning projects,
characterizing the principal’s favorite equilibrium is straightforward, given Lemma (4.5)
and our finding that the agent’s lowest equilibrium payoff is zero. Somewhat paradoxically,
this means that the principal’s maximal equilibrium payoff is rather high, since she can
resort to a severe punishment.

Let us fix an arbitrary belief q1 ∈ [q, q] at which point the project is abandoned in favor
of a continuation equilibrium with payoffs (0, 0). We can then solve for the corresponding
differential equations determining the principal’s value v and agent’s value w, as a function
of the probability q that the project is good, with boundary conditions v(q1) = w(q1) = 0.
To determine the optimal stopping probability q1, we take the derivative of v(q) with

22More precisely, we must remember that the lowest equilibrium payoff to the agent might not be
achieved, so that the “frontier” described here identifies payoffs to which we can come arbitrarily close
as period length becomes arbitrarily short.
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respect to q1 to obtain

∂v(q)

∂q1
=

(

1 − q

q

q1

1 − q1

)
1

σ q(1 − q1) − (1 − q)q1ξ

q2
1(1 − q1)2

,

whose numerator reduces to q−q > 0 when evaluated at q1 = q. Therefore, the principal’s
favorite equilibrium involves termination at a belief q1 strictly above q. In fact, it is not
hard to determine the optimal belief at which the project must be abandoned, leading to:

Proposition 3 For a slow-learning research project, the principal’s equilibrium payoff is
maximized by an equilibrium in which the agent works at the maximum possible rate until
terminating experimentation altogether at some belief q1 > q, given by

q1 =
2q

2q − 1 +
√

1 − 4q(1 − q)ξ
.

The principal’s payoff from this equilibrium is increasing in the initial probability q that
the project is good, and exceeds the payoff available from a Markovian equilibrium.

Figure 6 compares the principal’s payoff from this “best” (from her point of view)
equilibrium with the corresponding payoff from a Markovian equilibrium. The larger is
the initial belief q that the project is good, the larger the terminal belief q1 > q at which
the project is abandoned.

4.3.4 The Set of Equilibrium Payoffs: Fast-Learning Projects (ξ > 3)

The case of a fast-learning project raises similar issues, though is somewhat less
tractable. We have:

Proposition 4 For a fast-learning research project, the principal’s equilibrium payoff is
maximized by an equilibrium in which the agent works at the maximum possible rate until
reaching some belief q1 > q, at which point play switches to a continuation equilibrium
involving partial effort that minmaxes the agent. The principal’s payoff is increasing in
the initial probability q that the project is good, as is the probability q1 at which the project
is abandoned, and the principal’s payoff exceeds that from a Markovian equilibrium.

The form of the equilibrium again follows from Lemma 4.5. A closed-form solution
for q1 is elusive,23 but it is not hard to see that this belief increases in q. In addition, the
equilibrium will revert to the continuation giving the agent his lowest payoff before the
belief drops to q. This can be shown by explicitly determining the payoff of the principal

23We can solve for q1 for the case of an intermediate, fast-learning project and sufficiently large q, in
which case the agent’s minmax payoff is as in a slow-learning project.
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Figure 6: The solid line gives the principal’s payoff v(q) from the equilibrium maximizing
the principal’s payoff, as a function of the initial probability q that the project is good
(measured on the horizontal axis). The dotted line gives the principal’s payoff from the
Markovian equilibrium. In this figure, ξ = 2 and σ = 1/2 (a lucrative, slow-learning
research project). We have q∗∗ = 3/4, so that the principal’s payoff in the Markovian
equilibrium is zero for q < 3/4, and q = 2/3, so that the Markovian equilibrium abandons
the project at q = 2/3. If (for example) q = 3/4, then the principal earns a strictly
positive payoff in her best equilibrium, which abandons the project at q1 = .7208.

as a function of q1, the belief at which switching occurs (the boundary condition at belief
q1 is known, as the principal then gets v0(q1) and the agent gets w(q1) = w(q1)). Taking
derivatives at q1 = q gives that

∂v(q)

∂q1
|q1=q =

4(ξ + 1)3

σ(ξ − 1)2

(

q

1 − q

1 − q

q

)
1

σ

(q(ξ + 1) − 2) > 0,

and so switching before the belief reaches q is always better for the principal. Figure 7
compares the payoff from the principal’s best equilibrium with the Markovian payoff, for
parameters corresponding to a lucrative, fast-learning research project.

In the case of intermediate, fast-learning projects, the principal’s payoff-maximizing
equilibrium reverses the properties of the Markovian equilibrium. The Markovian equi-
librium resorts to delay early in the experimentation process, finishing with a burst of
full effort that (in the absence of a success) pushes the project across the abandonment
threshold q. The payoff-maximizing equilibrium, instead, begins with a period of full
effort, only to switch (at q1) to a partial effort continuation. Indeed, any equilibrium
on the efficiency frontier has this property, confirming the inefficiency of the Markovian
equilibrium.
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Figure 7: The solid line gives the principal’s payoff v(q) from the equilibrium maximizing
the principal’s payoff, as a function of the initial probability q that the project is good
(measured on the horizontal axis). The dotted line gives the principal’s payoff from the
Markovian equilibrium. In this figure, ξ = 4 and σ = 2 (a lucrative, fast-learning project).

5 Discussion

A fundamental point runs through both Bergemann and Hege [2] and the current
paper—if an agent is to have incentives to invest in experimentation, the agent must be
compensated not only for the foregone chance to divert the investment funds for personal
use, but also for the fact that current experimentation risks giving rise to a success that
closes off future experimentation rents. This imposes a dynamic agency cost on top of the
expected agency cost. As a result, creating incentives may entail deliberately curtailing the
scale of the agent’s experimentation, reducing the cost of current incentives by reducing
the allure of future experimentation. We see this in the fact that a stationary equilibrium
in the case of a development project (known success probability) may require only partial
effort from the agent, and in the fact that a Markovian equilibrium in the case of a research
project (unknown success probability) may require partial effort for some posteriors.

At this point, our papers part ways. Bergemann and Hege [2] invest the agent with all
of the bargaining power by assuming that the agent makes the contract proposal in each
period. This in turn ensures that the principal’s payoff is zero in every period of every
equilibrium. This eliminates many of the intertemporal links that appear in our model,
in the process ensuring that the Markovian equilibria are also the only equilibria.

We assume instead that the principal (the venture capitalist) rather than the agent
(the experimenting entrepreneur) makes the offers and hence has the bargaining power.
We view this as a realistic description of many settings in which venture capital is in short
supply (cf. Blass and Yosha [4]). Given the agent’s private information (on whether he
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has actually conducted experiments), however, this significantly complicates the analysis.
What new insights have we found?

Once the principal has the bargaining power, both players potentially receive positive
payoffs, giving rise to a richer set of intertemporal trade-offs. Our basic result is then
that constrained efficiency requires completely front-loading the agent’s effort, coupling
a phase of full effort with an abrupt, premature termination of the project.24 Sequen-
tial rationality constraints typically preclude attaining this constrained efficient outcome,
but the best equilibrium outcomes nonetheless feature front-loaded effort and premature
termination or attenuation. Our Markovian equilibria are thus joined by a collection of
other equilibria, including equilibria with nonstationary outcomes, despite the eminently
stationary nature of the project, in the case of a development project; and equilibria
that can precisely reverse the pattern of effort found in the Markovian equilibrium (for
intermediate, fast-learning research projects) or lead to premature abandonment of the
project (for lucrative, slow-learning research projects). The behavioral implications of our
model are thus quite different. Indeed, if one finds efficiency compelling, then the various
Markovian cases of Bergemann and Hege (in which effort may be front-loaded, or may
be back-loaded) give way here to the simple prescription of front-loaded and prematurely
reduced effort. Allowing a seemingly more complicated array of equilibrium behavior
simplifies the qualitative nature of the results, while bringing on board what appear to
be some key features of real venture capital markets.

We have worked throughout with a seemingly restricted set of contracting instruments—
the principal can either offer the agent nothing, or can advance the agent the funding c
required to conduct an experiment (but no more or less) and then offer the agent a share
of the proceeds in the event of a success. Would more general contracts allow us to do
more? The key restriction here is that the agent cannot make payments to the principal.
If such payments were allowed, the agent could buy the right to receive funding from the
principal and retain all of the rewards in the event of a success, eliminating the agency
problem. If this were possible, of course, it is not clear why the agent needs the principal
in the first place. If we are to retain the essence of the agency problem by imposing a
limited liability constraint on the agent, then given the binary (success/failure) nature of
the possible experimental outcomes, there is no loss of generality in restricting the princi-
pal to creating incentives by offering the agent a (time-dependent) share of the proceeds
of a success.

24Effort is front-loaded in the Markovian equilibrium of a lucrative, slow-learning project, but for
reasons that have nothing to do with efficiency considerations (as shown by the fact that an intermediate,
fast-learning project back-loads effort).
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A Appendix: Formal Description of the Model

The horizon is infinite and time is discrete, indexed by t = 0, 1, 2, . . .. There are two
states of the world, ω ∈ {ω0, ω1}. The project is bad and a success never obtains when
the state is ω0, while if the project is good (state ω1), success obtains with probability p
in any given period in which (full) effort is exerted. There are two players: player 1 is the
principal, and player 2 is the agent. Players share a common prior q that ω = ω1.

In every period t, the players first observe the realization xt of a random variable
Xt that is uniformly drawn from the unit interval, independently across periods, and
independently of ω. The principal then chooses an action a1t ∈ A1 = {NF}∪ [0, 1], where
the action NF has the interpretation of no funding for this period, and s ∈ [0, 1] has the
interpretation of the principal providing funding c to the agent and retaining share s of the
payoff π in case of success in this period. Conditional on the principal not choosing NF ,
the agent then chooses an action in a2t ∈ A2 = {0, 1}, with the interpretation that the
agent chooses to exert no effort if the action is 0, and exerts effort otherwise. The choice of
action by the agent is unobserved, while the actions of the principal are observed. Nature
than draws an action a0t that is necessarily 0 (failure) if either ω = ω0, the principal chose
NF , or the agent chose 0; and is otherwise 0 with probability 1 − p and 1 (success) with
probability p, independently across periods and of ω and the xt.

The game ends, if ever, when the first success obtains. Therefore, an outcome is either
a finite vector (x0, a10, a20, a00, x1, a11, a21, a01, . . . , xt, a1t, a2t, a0t), with a0τ = 0 if and only
if τ < t; or is an infinite vector (x0, a10, a20, a00, x1, a11, a21, a01, . . . , ), with a0τ = 0 for all
τ . A history of length t for the principal is a vector

ht
1 = (x0, a10, a00, x1, a11, a01, . . . , xt−1, a1t−1, a0t−1, xt) ∈ H t

1 ≡ ([0, 1] × A1 × A0)
t × [0, 1],

(set h0
1 = {x0} ∈ H0

1 ), with a0τ = 0 for all τ . A history of length t for the agent is a vector

ht
2 = (x0, a10, a20, a00, x1, a11, a21, a01, . . . , xt−1, a1t−1, a2t−1, a0t−1, xt, a1t),

in H t
2 ≡ ([0, 1] × A1 × A2 × A0)

t × [0, 1]2 (set h0
2 = {x0, a10} ∈ H0

2 and take a2t = ∅ if
a1t = NF ). Notice that we restrict attention to histories in which, in the last period,
the principal chose to fund the project, as otherwise the agent has no decision to make
in that period. A strategy for the principal is a probability transition σ1 = (σ1t)t from
H1 = ∪t≥0H

t
1 → △A1 with the interpretation that s1t(h

t
1) is the (possibly random) action

chosen by the principal in period t given history ht
1 (△A1 is endowed with the weak*-

topology). Similarly, a strategy for the agent is a probability transition σ2 = (σ2t)t from
∪t≥0H

t
2 → △A2. The random variable ω, along with any strategy profile σ = (σ1, σ2)

and the collection of random variables (Xt)t induce a probability distribution denoted by
P(ω,σ) (the random variables Xt are omitted from the notation) over outcomes. This in
turn induces a probability distribution over the random time τ ∈ N ∪ {∞} at which a

42



success arrives (if ever). The expected payoff of the principal, given a strategy profile σ
and a history ht

1, is then

V1(σ|h
t
1) = (1 − δ)

∑∞

k=0
δk

Eω,σ[σ1[h
t+k
1 ]π · 1τ=t+k − c1σ1[ht+k

1
] 6=NF ],

where 1E is the indicator function of the event E. Similarly, the agent’s expected payoff,
given ht

2 is given by

V2(σ|h
t
2) = (1 − δ)

∑∞

k=0
δk

Eω,σ[(1 − σ1[h
t+k
1 ])π · 1τ=t+k + c · 1σ2[ht+k

2
]=01σ1[ht+k

1
] 6=NF ].

B Appendix: Derivations and Proofs

B.1 Proof of Lemma 3.1

Let W be the agent’s maximal equilibrium payoff. We can restrict attention to cases
in which the principal has offered a contract to the agent, and in which the agent works.25

We first note that a lower bound on the principal’s payoff is provided by always
choosing that value s′ satisfying (and hence inducing the agent to work, no matter how
lucrative a continuation value the agent expects)

(1 − δ)p(1 − s′)π + δ(1 − p)W = (1 − δ)c + δW,

which we can rearrange to give

(1 − δ)[ps′π − c] = −δpW + (1 − δ)[pπ − 2c],

and hence a principal payoff of

(1 − δ)[ps′π − c]

1 − δ(1 − p)
=

(1 − δ)[pπ − 2c] − δpW

1 − δ(1 − p)
.

We can then characterize W as the solution to the maximization problem:

W = max
s,W,V

(1 − δ)p(1 − s)π + δ(1 − p)W

s.t. W ≥ (1 − δ)c + δW

W ≥ W

(1 − δ)(psπ − c) + δ(1 − p)V ≥
(1 − δ)[pπ − 2c] − δpW

1 − δ(1 − p)

V + W ≤
(1 − δ)(pπ − c)

1 − δ(1 − p)
,

25If c is an upper bound on the agent’s payoff conditional on a contract being offered, then it must
also be an upper bound on an equilibrium path in which a contract is offered in the current period with
probability less than one. If the agent shirks, then we have W = (1 − δ)c + δW , giving W = c.
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where W and V are the agent’s and principal’s continuation values, the first constraint is
the agent’s incentive constraint, the second establishes W as the largest agent payoff, the
third imposes the lower bound on the principal’s payoff, and the final constraint imposes
feasibility. Notice that if the first constraint binds, then (using the second constraint)
we immediately have W ≤ c, and so we may drop the first constraint. Next, the final
constraint will surely bind (otherwise we can decrease s and increase V so as to preserve
the penultimate constraint while increasing the objective), allowing us to write

W = max
s,W

(1 − δ)p(1 − s)π + δ(1 − p)W

s.t. W ≥ W

(1 − δ)(psπ − c) + δ(1 − p)

[

(1 − δ)(pπ − c)

1 − δ(1 − p)
− W

]

=
(1 − δ)[pπ − 2c] − δpW

1 − δ(1 − p)
.

Now notice that the objective and the final constraint involve identical linear tradeoffs of
s versus W . We can thus assume that W = W , allowing us to write the problem as

W = max
s

(1 − δ)p(1 − s)π + δ(1 − p)W (22)

s.t. (1 − δ)(psπ − c) + δ(1 − p)

[

(1 − δ)(pπ − c)

1 − δ(1 − p)
− W

]

=
(1 − δ)[pπ − 2c] − δpW

1 − δ(1 − p)
. (23)

We now show that this implies W = c. From (22), we have (subtracting (1 − δ)c from
both sides)

(1 − δ)(psπ − c) = (1 − δ)pπ + δ(1 − p)W − W − (1 − δ)c.

Now using (23), we can write this as

(1 − δ)[pπ − 2c] − δpW

1 − δ(1 − p)
−δ(1−p)

[

(1 − δ)(pπ − c)

1 − δ(1 − p)
− W

]

= (1−δ)pπ+δ(1−p)W−W−(1−δ)c

or, isolating W ,

W

[

δp

1 − δ(1 − p)
− 1

]

=
(1 − δ)[pπ − 2c]

1 − δ(1 − p)
− δ(1 − p)

(1 − δ)(pπ − c)

1 − δ(1 − p)
− (1 − δ)[pπ − c]

or (simplifying the left side, multiplying by −1 and eliminating (1 − δ)),

W

1 − δ(1 − p)
= (pπ − c) +

δ(1 − p)(pπ − c)

1 − δ(1 − p)
−

pπ − 2c

1 − δ(1 − p)

or
W = [1 − δ(1 − p)](pπ − c) + δ(1 − p)(pπ − c) − (pπ − 2c) = c.
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B.2 Proof of Lemma 3.2

We consider an artificial game in which the principal is free of sequential rationality
constraints. Having eliminated such constraints, there is no loss of generality in simplifying
the notation by also dispensing with the public randomization device. The principal
names, at the beginning of the game a pair of functions z : H1 → [0, 1] and s : H1 → [0, 1],
giving the probability with which the principal offers a contract and the share offered in
that contact, as a function of the principal’s history, with the principal’s objective being
to minimize the agent’s payoff subject to the constraint that the principal’s payoff in the
continuation game starting at each period is at least V ∗. We show that the bounds on
the agent’s payoff given by c (if z† > 1) and 1−δ

δp
V ∗ (if z† < 1) apply to this artificial

game. The bounds must then also hold in the original game. Since we have equilibria of
the original game giving the agent payoff c in the first case and giving the agent a payoff
approaching (as δ → 1) 1−δ

δp
V ∗ in the second case, this establishes the result.

First, we note that the agent’s incentive constraint can be taken to be binding whenever
the agent receives an offer, no matter what the history giving rise to that offer, and must
bind after any history that occurs with positive probability. Suppose to the contrary that
some history ht

1 has been reached and an offer made, with

(1 − δ)(1 − s(ht
1))pπ + δ(1 − p)W (ht

1) > (1 − δ)c + δW (ht
1),

where W (ht
1) is the agent’s continuation value. Let s∗ satisfy this constraint with equal-

ity. Then replacing s(ht
1) with s∗ while leaving continuation play unaffected preserves the

agent’s incentives (since the continuation value of every previous period is decreased, this
only strengthens the incentives in previous periods) while increasing the principal’s and
reducing the agent’s payoff (if this history occurs with positive probability), a contradic-
tion.

Let W be the agent’s minimum equilibrium payoff. Because the agent’s incentive
constraint always binds, W must equal the expected payoff from persistent shirking, and
hence is given by

W = (1 − δ)c
∑

ht
1
∈H1

P(ht
1)z(ht

1), (24)

where P(ht
1) is the probability with which history ht

1 appears. The principal’s payoff is
given by

(1 − δ)[pπ − c]
∑

ht
1
∈H1

P(ht
1)z(ht

1) − W.

Notice that W (ht
1) ≥ W , for every ht

1, since otherwise W is not the lowest equilibrium
payoff possible for the agent. Next, we claim that W = W (ht

1) for any history ht
1 that

occurs with positive probability. If not, we could construct an alternative equilibrium that
matches the candidate equilibrium for any history that is not a continuation of ht

1, and
that after history ht

1 continues with an equilibrium in the resulting continuation game that
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gives payoff W . Because W < W (ht
1), this allows us to reduce the first-period value s0

while still preserving the (binding) incentive constraint for the agent. The resulting lower
first-period payoff and lower continuation value decrease the agent’s payoff (and increase
the principal’s), a contradiction. Using (24), this in turn implies that z(ht

1) = z(h0
1) for

every ht
1. However, we have characterized the equilibria that feature a constant value of

z, finding that the only such equilibrium gives payoff W ∗ = c when z† > 1 and that the
agent’s lowest payoff from such an equilibrium approaches (as δ → 1) 1−δ

δp
V ∗ if z† < 1.

B.3 Proof of Lemma 3.3

We consider an equilibrium with payoffs (W0, V0). We are interested in an upper
bound on the ratio V0−V

W0−W
, which we denote by ζ . It suffices to consider an equilibrium in

which a period-0 mixture with probability (1 − x0) prompts the players to continue with
equilibrium payoffs (W, V ), and with probability x0 calls for a current contract s, followed
by a period-1 mixture attaching probability 1 − x1 between continuation payoffs (W, V )
and probability x1 to continuation play with payoffs (W ′

1, V
′
1), and so on. In addition, we

can assume that any contract offered to the agent induces the agent to work.26 Hence,
we have

V0 = x0 [(1 − δ)(psπ − c) + δ(1 − p)[x1V
′
1 + (1 − x1)V ]] + (1 − x0)V

W0 = x0 [(1 − δ)p(1 − s)π + δ(1 − p)[x1W
′
1 + (1 − x1)W ]] + (1 − x0)W

≥ x0 [(1 − δ)c + δ[x1W
′
1 + (1 − x1)W ]] + (1 − x0)W,

where the inequality is the agent’s incentive constraint. Setting an equality in the incentive
constraint, we can solve for

(1 − δ)psπ = (1 − δ)(pπ − c) − δp[x1W
′
1 + (1 − x1)W ].

26Suppose we have a contract that does not induce effort, and hence gives payoffs (1 − δ)(−c) + δV
and (1− δ)(c)+ δW to the principal and agent, respectively, for some continuation payoffs (W, V ). There
exists an alternative equilibrium with the same continuation payoffs, but in which the principal induces
effort by offering a share s satisfying

(1 − δ)c + δW = (1 − δ)(1 − s)pπ + δ(1 − p)W.

Solving this expression gives (1 − δ)(pπ − c) − δpW = (1 − δ)spπ, and hence a principal payoff of
(1−δ)(pπ−2c)−δpW +δ(1−p)V . It is then a contradiction to our hypothesis that we are dealing with an
extreme equilibrium, hence establishing the result, to show that this latter payoff exceeds (1−δ)(−c)+δV ,
or (1 − δ)(pπ − 2c) − δpW + δ(1 − p)V > (1 − δ)(−c) + δV , which is (1 − δ)(pπ − c) > δp(W + V ), or

(1 − δ)(pπ − c)

δp
> V + W.

The left side is an upper bound on the value of the project without an agency problem, giving the result.
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Using this to eliminate the share s from the principal’s payoff, and returning to the agent’s
binding incentive constraint, we obtain

V0 − V = x0 [(1 − δ)(pπ − 2c) − δp[x1W
′
1 + (1 − x1)W ] + δ(1 − p)[x1V

′
1 + (1 − x1)V ] − V ]

W0 − W = x0 [(1 − δ)c + δ[x1W
′
1 + (1 − x1)W ] − W ]

and hence

ζ ≡
V0 − V

W0 − W
=

(1 − δ)(pπ − 2c) − δp[x1(W
′
1 − W ) + W ] + δ(1 − p)[x1(V

′
1 − V ) + V ] − V

(1 − δ)c + δ[x1(W ′
1 − W ) + W ] − W

.

We obtain an upper bound on this expression by taking first taking V ′
1 −V = ζ(W ′

1 −W )
on the right side and then rearranging to obtain

ζ ≤
(1 − δ)(pπ − 2c) − δp[x1(W

′
1 − W ) + W ] + (1 − δ)V

(1 − δ)c + δ[x1p(W ′
1 − W ) + W ] − W

.

We now note that W ′
1 − W appears negatively in the numerator and positively in the

denominator, so that an upper bound on ζ is obtained by setting W ′
1 − W = 0 on the

right side, giving

ζ ≤
(1 − δ)(pπ − 2c) − δpW − (1 − δ(1 − p))V

(1 − δ)c − (1 − δ)W
=

δp

1 − δ
, (25)

where the final equality is obtained by using W = 1−δ
δp

V to eliminate W , and then sim-
plifying.

B.4 Proof of Lemma 3.4

We now assume that x0, x1 ∈ (0, 1) and establish a contradiction. Using the incentive
constraint, we can write

W0 = x0 [(1 − δ)c + δ[x1W1 + (1 − x1)W ]] + (1 − x0)W

V0 = x0 [(1 − δ)(pπ − 2c) − δp[x1W
′
1 + (1 − x1)W ] + δ(1 − p)[x1V

′
1 + (1 − x1)V ] − (1 − x0)V ]

We now identify the rates at which we could decrease x1 and increase x0 while preserving
the value W0. Thinking of x0 as a function of x1, we can take a derivative of this expression
for W0 to find

dW0

dx1
=

dx0

dx1

W0 − W

x0
+ δx0(W1 − W ) = 0,

and then solve for
dx0

dx1

= δx2
0

W1 − W

W0 − W
.
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Now let us differentiate V0 to find to find

dV0

dx1

=
dx0

dx1

V0 − V

x0

+ δx0[(1 − p)(V1 − V ) − p(W1 − W )]

= −δx0
W1 − W

W0 − W
(V0 − V ) + δx0[(1 − p)(V1 − V ) − p(W1 − W )].

It is a contradiction to show that this derivative is negative, since then we could increase
the principal’s payoff, while preserving the agent’s by decreasing x1. Eliminating the term
δx0 and multiplying by W0 − W > 0, we have

[(1 − p)(V1 − V ) − p(W1 − W )](W0 − W ) − (V0 − V )(W1 − W ) ≤ 0.

We now substitute for W0 − W and V0 − V to obtain

[(1 − p)(V1 − V ) − p(W1 − W )]x0 [(1 − δ)c + δ[x1W
′
1 + (1 − x1)W ] − W ]

− x0 [(1 − δ)(pπ − 2c) − δp[x1W
′
1 + (1 − x1)W ] + δ(1 − p)[x1V

′
1 + (1 − x1)V ] − V ] (W1 − W )

≤ 0.

Deleting the common factor x0 and canceling terms, this is

[(1 − p)(V1 − V ) − p(W1 − W )] [(1 − δ)c − (1 − δ)W ]

− [(1 − δ)(pπ − 2c) − δpW + δ(1 − p)V − V ] (W1 − W ) ≤ 0.

Rearranging, we have

(1 − p)(V1 − V ) − p(W1 − W )

W1 − W
≤

(1 − δ)(pπ − 2c) − δpW − (1 − δ(1 − p))V

(1 − δ)c − (1 − δ)W
,

which follows immediately from the inequality in (25) from the proof of Lemma 3.3.

B.5 Proof of Lemma 4.1

We invoke a simple induction argument. In the last period of the game, the agent’s
value is

W (q1, q1) = (1 − δ)(1 − s1)q1pπ ≥ (1 − δ)c,

where the inequality is the incentive constraint that the agent want to work, devoid of a
continuation value in this case because the next posterior, q0, is too pessimistic to support
further experimentation. Now observe that if the agent holds the private belief q′ > q1,
then again the agent will be asked to work one period, with a failure ending the game
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(because the principal’s posterior will then drop below q, even if the agent’s does not).
Hence,

W (q1, q
′) = (1 − δ)(1 − s1)q

′pπ

=
q′

q1
(1 − δ)(1 − s1)q1pπ

=
q′

q1

W (q1, q
′)

> (1 − δ)c,

where the final inequality provides the (strict) incentive constraint, ensuring that the
agent will indeed work.

Now suppose this relationship holds for all periods τ < t. Then we have

W (qt, q
′) = (1 − δ)(1 − st)q

′pπ + δ(1 − q′p)W (qt−1, ϕ(q′))

=
q′

qt

[

(1 − δ)(1 − st)qtpπ + δ(1 − q′p)
qt

q′
ϕ(q′)

qt−1

W (qt−1, qt−1)

]

=
q′

qt

[

(1 − δ)(1 − st)qtpπ + δ(1 − q′p)
1 − qtp

1 − q′p
W (qt−1, qt−1)

]

=
q′

qt
[(1 − δ)(1 − st)qtpπ + δ(1 − qtp)W (qt−1, qt−1)]

=
q′

qt

W (qt, qt),

where the second equality uses the induction hypothesis, the third uses (2), the fourth
rearranges terms, and the remaining two use the definition of W .

This argument builds on the implicit assumption that, given the equilibrium hypothe-
sis that the agent will work in every period, an agent who arrives in period t with posterior
q′ > qt will find it optimal to work. To verify this, we need to show

(1 − δ)(1 − st)q
′pπ + δ(1 − q′p)W (qt−1, ϕ(q′)) ≥ (1 − δ)c + δW (qt−1, q

′).

Using (10), this is

q′

qt

[(1 − δ)c + δW (qt−1, qt) − δ(1 − qtp)W (qt−1, qt−1)]

≥ (1 − δ)c + δW (qt−1, q
′) − δ(1 − q′p)W (qt−1, ϕ(q′)).

We can eliminate the terms involving (1 − δ)c from each side, noting that the term
eliminated from the left is strictly greater than the term on the right, and then divide by
δ, so that it suffices to show

q′

qt
[W (qt−1, qt) − (1 − qtp)W (qt−1, qt−1)] ≥ W (qt−1, q

′) − (1 − q′p)W (qt−1, ϕ(q′)).
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This relationship obviously holds (with equality, both sides being zero) when t = 1. Using
the induction hypothesis that it holds for all τ < t, we can write the period-t version of
this inequality as

q′

qt

[

qt

qt−1 − (1 − qtp)

]

≥
q′

qt−1
− (1 − q′p)

ϕ(q′)

qt−1

which (using (2)) is an equality.

B.6 Details, Full Effort (No Delay) and Positive Principal Payoff

Because λt = 1, equation (15) reduces to

qtpπ(1 − st) = (r + qtp)Wt − Ẇt and rWt − Ẇt − c = p(1 − qt)Wt.

The second of these equations can be rewritten as

rw(q) + pq(1 − q)w′(q) − c = p(1 − q)w(q),

where w′ is the derivative of w. The solution to this differential equation is

w(q) =
pq − r

p − r

c

r
+ A(1 − q)r/pq1−r/p,

for some constant A. Let γ(q) = pq(1 − s)π (where, with an abuse of notation, s is a
function of q) so the first equation writes

γ(q) = (r + pq)w(q) + pq(1 − q)w′(q) =
p2q − r2

p − r

c

r
+ Ap(1 − q)r/pq1−r/p,

giving us the share s. Finally, using the previous equation to eliminate s, equation (14)
simplifies to

0 = pqπ − c − γ(q) − (r + pq)v(q) − pq(1 − q)v′(q).

The solution to this differential equation is given by

v(q) =
pqπ

p + r
+

2r2 − p2 + pr(1 − 2q)

r(p2 − r2)
c + (B(1 − q) − A)

(

1 − q

q

)r/p

, (26)

for some constant B. Note that the function v(q) given by (26) yields

v(1) =
ξ − σ − 1

σ + 1

c

r
,

which is positive if and only if ξ ≥ 1 + σ.
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We have thus solved for the payoffs to both agents, as well as for the share s, over
any interval of time in which there is no delay. Note that the function v has at most one
inflection point in the unit interval, given, if any, by

(A − B)(p + r)

2pA − (p + r)B
,

and so it has at most three zeroes. Note also that, if the interval without delay includes
q, we can solve for the constants of integration A and B using v(q) = w(q) = 0, namely

A =
(2σ − ξ − 1)(ξ − 1)−1/σ

2(σ−1)/σ(1 − σ)

c

r
and B =

((ξ + 1)2(1 + σ) − 8σξ)((ξ − 1))−1−1/σ

2(σ−1)/σ(1 − σ2)

c

r
.

Plugging back into the value for v, we obtain that

v′(q) = 0, v′′(q) =
(ξ + 1)3(ξ − 3)

4σ(ξ − 1)2

c

r
, (27)

so that v is positive or negative for q close to q according to whether v is convex or concave
at q; it is positive if ξ > 3, and negative if ξ < 3 (if ξ = 3, it is positive if ξ > 2σ − 1 and
negative if ξ < 2σ − 1, as can be verified from v′′′(q)). The closed-form formulas for the
case in which the boundary conditions are v(q) = w(q) = 0 are given by (17) and (18).
Direct inspection of these formulas gives that v(1) = (ξ−σ−1)/(σ +1), which is positive
if and only if ξ ≥ 1 + σ. Therefore, we cannot have full effort for high enough beliefs if
ξ < 1 + σ.

B.7 Details, Partial Effort (Delay) and Zero Principal Value

Combining the two equations (15) for the agent gives, using qtpstπ = c,

Wt = qtπ − 2c/p, or w(q) = qπ − 2c/p.

Therefore, differentiating and using Bayes’ rule,

Ẇt = −pqt(1 − qt)π.

Inserting back into the first equality of (15) yields

(rλt + pqt)Wt = pqtπ − c + Ẇt = pq2
t π − c.

We obtain our candidate value for the delay

λ(q) =
2q − 1

pqπ − 2c

pc

r
=

(2q − 1)σ

q(ξ + 1) − 2
, (28)
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which is strictly larger than one if and only if

(2σ − ξ − 1)q > σ − 2. (29)

We have thus solved for the values of both players’ payoffs (v(q) = 0), and for the delay
over any interval of time in which there is delay. Note from (29) that the delay λ strictly
exceeds 1 at q = 1 if and only if ξ < 1 + σ and at q = 2/(ξ + 1) if and only if ξ < 3. In
fact, since the left-hand side is linear in q, λ(q) ≥ 1 for all q ≤ 1 if ξ ≥ 3 and ξ ≥ 1+σ, in
which case this configuration cannot occur. Conversely, if ξ < 3 and ξ < 1 + σ, the value
of λ always strictly exceeds one.

B.8 Proof of Proposition 1

The two differential equations (8)–(9) have as solutions, for some C1, C2 ∈ R,

W (t) =
c

r
+ C1e

rt, and V (t) =
ξ − σ − 1

σ + 1

c

r
− C1e

rt + (C1 + C2)e
r(1+σ)t.

If ξ < 1+σ, then, since the first term of the principal’s payoff is strictly negative, it must
be that either C1 or C1 + C2 is nonzero. Since the solution must be bounded, it implies,
as expected, that effort cannot be supported indefinitely. If effort stops at time T , then,
since W (T ) = 0, C1e

rT = −c/r, and C2 is then obtained from V (T ) = 0. Eliminating T
then yields the following relationship between V = V (0) and W = W (0):

V =
ξ

σ + 1

[

1 −

(

1 −
rW

c

)σ+1
]

c

r
− W.

There exists a strictly positive root of this expression, denoted by W †, if dV/dW > 0
when evaluated at W = 0. Differentiating, the required condition is ξ > 1, providing the
lower inequality in the definition of an intermediate project. If W ∈ [0, W †], then V ≥ 0,
and these are the values that can be obtained for times T for which the principal’s payoff
is positive. This yields the result for intermediate projects. For reference, the stationary
equilibrium in this region is given by (V, W ) = (0, ξ−1

σ
c
r
).

Now consider lucrative projects, or ξ ≥ 1 + σ, so that the principal’s payoff in the
stationary full-effort equilibrium is positive. We need to describe the equilibrium payoffs
of potential stationary-outcome partial-effort equilibria. While there are several ways of
doing so, we follow the procedure described in more detail in Section 4.2.1, and encompass
partial effort in the discount rate. That is, players discount future payoffs at rate rλ, for
λ ≥ 1. The payoffs to the agent and principal, under such a constant rate, are

W (t) =
c

λr
, V (t) =

λ(ξ − 1) − σ

σ + λ

c

λr
.
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There exists exactly one value of λ 6= 1 for which the principal’s payoff is equal to that
obtained for λ = 1, namely

λ =
σ(1 + σ)

ξ − 1 − σ
,

which is larger than one if and only if ξ ≤ (1 + σ)2. As before, if ξ > (1 + σ)2, then we
have the case of a very lucrative project, for which there is no other equilibrium payoff
than the stationary payoff (W ∗, V ∗).

Let us then focus on moderately lucrative projects for which

ξ ∈
[

(1 + σ), (1 + σ)2
)

,

in which case λ > 1, so that there exists an equilibrium in which constant funding is
provided, but at a slower rate than possible. The agent’s payoff in this equilibrium is

W =
ξ − 1 − σ

σ(σ + 1)

c

r
.

We may now solve the differential equations with boundary condition V (T ) = V ∗, W (T ) =
W for an arbitrary T ≥ 0. Eliminating T gives the following relationship between V =
V (0) and W = W (0):

V =

[

ξ

σ + 1
−

(

(1 + σ)2 − ξ − 1

σ(σ + 1)

)−σ

(1 − rW/c)σ+1

]

c

r
− W,

completing the results for moderately lucrative projects.

B.9 Proof of Proposition 2

The proof uses extensively the analysis performed in Appendices B.6 and B.7.

Case 1 (ξ ≥ 3 and ξ > 1+σ): To see that this is an equilibrium, note that the value
v given by (17) for the initial conditions v(q) = w(q) = 0 is positive everywhere on [q, 1].
Further, as we observed that λ(q) can never exceed one if ξ ≥ 3 and ξ > 1 + σ, this must
be the unique Markovian equilibrium.

Case 2 (ξ ≥ 3 and ξ < 1 + σ): To see that there is a root in this interval, note that,
as we remarked, ξ ≥ 3 implies that v is positive for q close enough to q, while ξ < 1 + σ
implies that it is negative for q = 1. Since v is continuous in (q, 1), the equation v(q) = 0
must admit a root in this interval. Since v is convex and positive for q close enough to q,
and negative at q = 1, there must be an inflection point in (q, 1). As we remarked, such
an inflection point must be unique, and so q∗ is unique.
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To establish sufficiency, we must show that the value of λ exceeds 1 on (q∗, 1]. The
argument is a little more involved, since q∗ admits no closed-form solution. It is easy to
check that the coefficient of ((1 − q)q/(q(1 − q))1/σ in (17) is positive given ξ ≥ 3 and
ξ < 1 + σ, so that, by ignoring this term while solving for the root, we obtain a lower
bound on q∗. That is, q∗ ≥ q̃ = (σ − 2)(σ + 1)/[(ξ − σ − 1)σ]. Since λ(q) > 1 if and only
if q > (σ − 2)/(2σ − 1− ξ) (from 29 given that ξ < 2σ + 1 in this case), it suffices now to
note that

(σ − 2)(σ + 1)

(ξ − σ − 1)σ
≥

σ − 2

2σ − 1 − ξ

in this case. Note that the inequality is typically strict, so that, in fact, delay does not
vary continuously at q = q∗.

Uniqueness follows from the fact that there cannot be delay for q close to q (as (29)
is violated at q = q for ξ ≥ 3 and ξ < 1 + σ), and that the principal’s payoff must be
continuous in q (λ is bounded for q bounded away from q), so that v(q) = 0 must hold
as we move from one configuration to the next. Therefore, there cannot be delay for
q < q∗. To prove that there cannot be a subinterval (q1, q2) of (q∗, 1] in which there is
no delay, consider such a maximal interval and note that it would have to be the case
that v(q1) = 0 and w(q1) = q1π− 2c/p, by continuity in q of the players’ payoff functions.
Solving for the differential equations for v, w in such an interval (q1, q2), one obtains that,
at q1, v(q1) = v′(q1) = 0, while

v′′(q1) =
σ − 2 + q1(ξ + 1 − 2σ)

q2
1(1 − q1)2σ2

.

Yet the numerator of this expression is necessarily negative for all q1 > q̃, and thus, in
particular, for q > q∗. This contradicts the fact that v(q) must be nonnegative on the
interval (q1, q2).

Case 3 (ξ < 3 and ξ ≥ 1 + σ): Recall that q∗∗ is defined by the fact that delay is
continuous at q = q∗∗, i.e. λ(q∗∗) = 1, or

q∗∗ =
2 − σ

ξ + 1 − 2σ
,

which given that ξ < 3 and ξ ≥ 1 + σ is indeed in (q, 1]. That there must be delay for q
close enough to q follows from our earlier remarks about the negativity of (17) for such
values of q, because ξ < 3. Similarly, we already noticed that there cannot be delay for q
close enough to 1 if ξ ≥ 1 + σ.

For sufficiency, note that λ is decreasing in q over the interval (q, 1) in this case,
so that λ(q) ≥ 1 over the interval [q, q∗∗). We can solve for the differential equations
giving v and w over the range [q∗∗, 1], with boundary conditions w(q∗∗) = q∗∗π − 2c/p =
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(q∗∗(ξ + 1) − 2)c/(σr), and v(q∗∗) = 0. It is easy to check that v′′(q∗∗) = 0 (compare, for
instance, with v′′(q1) above), so the curvature of v is actually zero at q∗∗. However,

v′′′(q∗∗) =
(ξ + 1 − 2σ)5

σ2(σ − 2)2(1 + σ − ξ)2
,

which is strictly positive because ξ > 2σ − 1 in this case. Since v admits at most one
inflection point over the interval (q∗∗, 1), and it is positive at 1, it follows that it is positive
over the entire interval.

For necessity, we now rule out equilibria of this type with different values of q∗∗.
Because λ is decreasing in q over the interval (q, 1), the only other values of the threshold
to consider are values of q in (q, q∗∗). So fix q1 ∈ (q, q∗∗). Since v(q1) = 0 and w(q1) =
(q1(ξ + 1) − 2)c/(σr), we can solve for v and w. This gives that v′(q1) = 0 and the same
value of v′′(q1) as in the case of a lucrative, low-discount project. However, this value is
strictly negative because ξ > 1 + σ, ξ ≤ 3 ⇒ σ − 2 + q(ξ + 1− 2σ) < 0. This implies that
v is strictly decreasing at q, and hence strictly negative over some range above q, which is
not possible in an equilibrium. More generally, this argument shows that we cannot have
an interval without delay that involves values of q lower than q∗∗. Since also we cannot
have λ(q) ≥ 1 for values of q strictly above q∗∗, uniqueness follows.

To see that this is an equilibrium, recall that λ(q) exceeds one for all values of q if
ξ < 3 and ξ < 1 + σ.

Case 4 (ξ < 3 and ξ < 1 + σ): For necessity, suppose for sake of contradiction that
there was an interval (q1, q2) in which there was no delay. Again, we can show that, solving
the differential equations for v and w, the value of v′′(q1) is as in the case of a lucrative,
low-discount project, which is negative in this case. Since v(q1) = v′(q1) = 0, this implies
that the payoff of the principal would be strictly negative for values of q slightly above
q1, a contradiction.

B.10 Proof of Lemma 4.3

Let dt be the length of a period, and fix q1 such that

ϕ(q1) =
(1 − pdt)q1

1 − pdtq1
< q =

2c

pπ
.

Hence, if an experiment is undertaken at posterior q1, no further experimentation will oc-
cur. Notice that q1 approaches q as dt gets small, though we will suppress the dependence
of q1 on dt. We have

W (q1) = (1 − δ)c

W (q1) = (1 − δ)(q1pπ − c),
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where W (·) is the agent’s payoff under the candidate, stationary, always-work equilibrium
and W (·) is an upper bound on the agent’s payoff, where both are a function of the
posterior probability of a good project. In particular, W (q1) is simply the entire value of
the first-best surplus, at posterior q1.

Now let us calculate the agent’s payoff under the candidate equilibrium. We have

W (qt) = (1 − δ)(1 − st)qtpπ + δ(1 − pqt)W (qt−1)

= (1 − δ)c + δ
qt

qt−1
W (qt−1),

where the second equality is the incentive constraint. Using this second equality to iterate,
we have

W (qt) = (1 − δ)c + δ
qt

qt−1
Wt−1

= (1 − δ)c + δ
qt

qt−1

(

(1 − δ)c + δ
qt−1

qt−2

W (qt−2)

)

= (1 − δ)c + δ
qt

qt−1
(1 − δ)c + δ2 qt

qt−2
W (qt−2)

= (1 − δ)c + δ
qt

qt−1

(1 − δ)c + δ2 qt

qt−2

(1 − δ)c + δ3 qt

qt−3

W (qt−3)

...
...

= (1 − δ)cqt

[

1

qt
+

δ

qt−1
+

d2

qt−2
+

δ3

qt−3
+ . . . +

dt−2

q2

]

+ δt−1 qt

q1
W (q1).

We now ask what would be the most the principal would have to pay each period, in
order to get the agent to work, and what would be the agent’s resulting payoff. If this
payoff approaches W ∗(qt), as the period length gets small, then the principal’s minmax
payoff approaches V ∗(qt).

The largest amount the principal has to pay to induce work is obtained by assuming
that the agent’s incentive constraint is slack, but that should the principal offer anything
less, then the equilibrium hypothesis is that the agent shirks, followed by the maximum
possible continuation value.27 The constraint on our desire to make effort as costly as
possible for the principal is then that the principal not offer such a large share to the

27Alternatively, the largest amount the principal may have to pay in order to induce effort may occur
in circumstances in which the agent’s incentive constraint binds, so that the agent must be given a value
of

(1 − δ)c + δ
qt

qt−1

W t−1.

That effort is more expensive under the hypothesis that even slightly smaller offers induce shirking is
then equivalent to the statement that W (qt) > qt

qt−1

W (qt−1), which is immediate.
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agent as to make the agent not prefer to surreptitiously work, or

(1 − δ)c + δW (qt) = (1 − δ)(1 − st)pqtπ + δ(1 − pqt)W t(qt, qt−1). (30)

At the same time, we have

W t = (1 − δ)(1 − st)pqtπ + δ(1 − pqt)W t−1. (31)

We now note that
qt−1

qt

W (qt) ≥ W (qt, qt−1).

In particular, the left side is the value to the agent if the latter continues to work in
every subsequent period, which may not be optimal. Hence, we overestimate the amount
the agent is to be paid if we replace (30) with

(1 − δ)c + δW (qt) = (1 − δ)(1 − st)pqtπ + δ(1 − pqt)
qt−1

qt

W (qt). (32)

Using (32) to eliminate the term involving st from (31) and then using (2) for the second
and third equalities, we have

W (qt) = (1 − δ)c +

[

δ − δ(1 − pqt)
qt−1

qt

]

W (qt) + δ(1 − pqt)W t−1

=
(1 − δ)c

(1 − δ)p
+

δ(1 − pqt)

(1 − δ)p
W t−1

=
(1 − δ)c

(1 − δ)p
+

δ(1 − p)

(1 − δ)p

qt

qt−1

W t−1

≡ B + AtW t−1,

where

B =
(1 − δ)c

(1 − δ)p

At =
δ(1 − p)

(1 − δ)p

qt

qt−1

.
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We now solve for

W (qt) = AtW (qt−1) + B

= AtAt−1W (qt−2) + AtB + B

= AtAt−1At−2W (qt−3) + AtAt−1B + AtB + B

= AtAt−1At−2At−3W (qt−4) + AtAt−1At−2B + AtAt−1B + AtB + B

...
...

= At · · ·A2W (q1) + At · · ·A3B

+ At · · ·A4B

...

+ AtAt−1B

+ AtB

+ B.

Now we compare terms. The first term in the equilibrium payoff W (qt) is

δt−1 qt

q1
W (q1) = δt−1 qt

q1
(1 − δ)c,

while the bound has as its corresponding term

δt−1 qt

q + 1

(1 − p)t−1

(1 − δp)t−1
W (q1) = δt−1 qt

q1

(1 − p)t−1

(1 − δp)t−1
(1 − δ)(q1pπ − c).

We then note that both terms approach zero as does dt.
Under the equilibrium, the sum of the remaining term comprising W (qt) is given by

(1 − δ)cqt times
1

qt
+

δ

qt−1
+

d2

qt−2
+

δ3

qt−3
+ . . . +

dt−2

q2
.

Under our bound, the corresponding term is (1 − δ)cqt times

δt−2 1

q2

(1 − p)t−2

(1 − δp)t−1
+ δt−3 1

q3

(1 − p)t−3

(1 − δp)t−2
. . . + δ

1

qt−1

1 − p

(1 − δp)2
+

1

qt

1

1 − δp
.

We can multiply and divide by (1 − p), and then note that 1−p
1−δp

< 1, to get an upper
bound on our upper bound of

1

1 − p

[

1

qt
+

δ

qt−1
+

d2

qt−2
+

δ3

qt−3
+ . . . +

dt−1

q1

]

.
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But this implies that in the limit as dt gets small (and hence we can ignore the first terms)

W t ≤
1

1 − p
Wt,

which we couple with the observation that 1
1−p

→ 1 as time periods get short to give the
result.

B.11 Proof of Lemma 4.4

Using the formula for Φ, we get

w(q) = w0(q)−Φ(q)



C +
v0(q̃)

(1 − q̃)1+ 2

σ q∗1−
2

σ

∫ q

q̃

(

1−u
u

)
2

σ

v0(u)2
exp

{

c

σr

∫ u

q̃

(ξ + 1)y − 2

y(1 − y)v0(y)
dy

}

du





−1

.

The smaller the constant C, the lower the corresponding solution. Let us first state some
properties of Φ(q).

1. limq→1 Φ(q) = 0 if ξ > (1 + σ)2; if instead ξ < (1 + σ)2, limq→1 Φ(q) = ∞.

2. limq→q Φ(q) = 0 if ξ > 3 (which is the case). In fact, limq→q Φ(q)/v0(q) = 0 for
ξ > 3.

Because we must have w ≤ w0, it follows that the only values of C that need be considered
are:

C ≥ C∗ =
v0(q̃)

(1 − q̃)1+ 2

σ q∗1−
2

σ

∫ q̃

q

(

1−u
u

)
2

σ

v0(u)2
exp

{

c

σr

∫ u

q̃

(ξ + 1)y − 2

y(1 − y)v0(y)
dy

}

du.

Consider the case C = C∗, as w is increasing in C. Using l’Hospital’s rule, we have
that, for q → q,

Φ(q)
∫ q

q
Φ(u)

u(1−u)v0(u)
du

=
q(1 − q)v0(q)Φ

′(q)

Φ(q)
= q(1 − q)v0(q) ln(Φ(q))′

=
2pw0(q) − (pqπ − 2c − pq(1 − q)v′

0(q) − pv0(q))

p
,

and so

w(q) =
pqπ − 2c − pq(1 − q)v′

0(q) − pv0(q) − pw0(q)

p
.
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Since w0 satisfies pw0(q) = qpπ − 2c − (r + pq)v0(q) − pq(1 − q)v′
0(q), we obtain

w(q) =
(1 − σ(1 − q))v0(q)

σ
,

which means that non-negativity is satisfied if and only if 1 ≥ σ(1−q), or 1+σ ≥ (σ−1)ξ.
This condition is not implied by the conditions that define cases 1 or 2, and so it might
or might not hold.

At the other end (q → 1), it follows from property 1 above that, if ξ > (1 + σ)2,
limq→1 w(q) = w0(1). If instead ξ < (1 + σ)2, we may again use l’Hospital’s rule to get
that limq→1 w(q) = v0(1)/σ, and the condition ξ < (1 + σ)2 precisely guarantees that
v0(1)/σ ≤ w0(1).

On the other hand, for any C > 0, and for any ε > 0, there exists η > 0, for all
q ∈ (q, q + η),

w(q) = w0(q) −
Φ(q)

C +
∫ Φ(u)

u(1−u)v0(u)
du

= w0(q) −

∫ Φ(u)
u(1−u)v0(u)

du

C +
∫ Φ(u)

u(1−u)v0(u)
du

(

w0(q) −
(r − p(1 − q))v0(q)

p

)

> (1 − ε)w0(q) > 0,

because

v0(q) =
1

2

(

1

ξ + 1
+

1

ξ − 3

)−1
(

q − q
)

w0(q) + o(q − q)2,

so that the term in parenthesis in the penultimate line is positive for q − q small enough,
and because limq→q Φ(q)/v0(q) = 0, so that the coefficient can be made arbitrarily small
by choosing C large enough. Thus, the function w is non-negative everywhere for all
C > 0. Furthermore, it is continuous in C for fixed q, and so indeed, pointwise, for q > q,
the lowest payoff is

w(q) = w0(q) −
Φ(q)

C∗ +
∫ q

q̃
Φ(u)

u(1−u)v0(u)
du

,

but it might not be achieved.

B.12 Proof of Lemma 4.5

The proof invokes arguments similar to those used to prove Lemmas 3.3 and 3.4. Given
W , we consider the value of V that maximizes the principal’s payoff among equilibrium
payoffs. We can again restrict attention to sequences (xt, st), where, in period t, the worst
equilibrium (given the current posterior) is played with probability 1 − xt (determined
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by the public randomization device); and if not, a share st is offered in that period that
induces the agent to work. We fix a posterior probability and let W0 and V0 be the
candidate equilibrium values, with W 0 and V 0 being the values of the worst equilibrium
given that posterior, and with W1, V1, W 1 and V 1 being the counterparts for the next
period (and the next posterior, under the assumption that the agent worked and generated
a failure). We will typically suppress the notation for the posterior probabilities on which
these values depend.

Now, let ζ be such that for any posterior probability,

V0 − V 0

W0 − W 0

≤ ζ.

We now note that

V0 = x0 [(1 − δ)(psπ − c) + δ(1 − p)[x1V
′
1 + (1 − x1)V 1]] + (1 − x0)V 0

W0 = x0 [(1 − δ)p(1 − s)π + δ(1 − p)[x1W
′
1 + (1 − x1)W 1]] + (1 − x0)W 0

≥ x0 [(1 − δ)c + δ[x1θW
′
1 + (1 − x1)θW 1]] + (1 − x0)W 0,

where the inequality is the agent’s incentive constraint and θ > 1 is given by

θ =
q

ϕ(q)
=

1 − pq

1 − p
,

and hence is the ratio of next period’s posterior to the current posterior, given a failure.
Setting an equality in the agent’s incentive constraint and rearranging gives

(1 − δ)psπ = (1 − δ)(pπ − c) + δ(1 − p)[x1W
′
1 + (1 − x1)W 1] − δ[x1θW

′
1 + (1 − x1)θW 1].

Using this to eliminate the variable s from the value functions gives

V0 − V 0 = x0 [(1 − δ)(pπ − 2c) + δ(1 − p)[x1W
′
1 + (1 − x1)W 1] − δ[x1θW

′
1 + (1 − x1)θW 1]

+δ(1 − p)[x1V
′
1 + (1 − x1)V 1] − V 0] (33)

W0 − W 0 = x0 [(1 − δ)c + δ[x1θW
′
1 + (1 − x1)θW 1] − W 0] . (34)

Dividing (33) by (34), we obtain

V0 − V 0

W0 − W 0

=
(1 − δ)(pπ − 2c) + [δ(1 − p) − δθ]x1[W

′
1 − W 1] + [δ(1 − p) − δθ]W 1

(1 − δ)c + δθ[x1(W1 − W 1) + W 1] − W 0

+
δ(1 − p)x1(V

′
1 − V 1) + δ(1 − p)[V 1 − V 0]

(1 − δ)c + δθ[x1(W1 − W 1) + W 1] − W 0

Using the hypotheses that V ′
1 − V 1 ≤ ζ(W ′

1 − W 1), we can substitute and rearrange to
obtain an upper bound on ζ , or

ζ ≤
(1 − δ)(pπ − 2c) + (δ(1 − p) − δθ)(W ′

1 − W 1) + (δ(1 − p) − δθ)W 1 + δ(1 − p)V 1 − V 0

(1 − δ)c + δθx1(W
′
1 − W 1) + δθW 1 − W 0 − [δ(1 − p)x1](W1 − W 1)

.
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We obtain an upper bound on the right side by setting W ′
1 − W 1 = 0, obtaining

ζ ≤
(1 − δ)(pπ − 2c) + (δ(1 − p) − δθ)W 1 + δ(1 − p)V 1 − V 0

(1 − δ)c + δθW 1 − W 0

.

We now differentiate (34) to find

dW0

dx1
=

dx0

dx1

W0 − W 0

x0
+ δx0θ(W

′
1 − W 1)

and hence, setting dW0

dx1
= 0,

dx0

dx1
= −δx2

0θ
W ′

1 − W 1

W0 − W 0

. (35)

Differentiating (33) and using (35), we have

dV0

dx1

=
dx0

dx1

V0 − V 0

x0

+ δx0 ((1 − p − θ)[W ′
1 − W 1] − (1 − p)[V1 − V 1])

= −δx0θ
W ′

1 − W 1

W0 − W 0

(V0 − V 0) + δx0 ((1 − p − θ)[W ′
1 − W 1] − (1 − p)[V ′

1 − V 1]) .

It concludes the argument to show that this derivative is negative. Multiplying by W0 −
W 0, this is

(W0 − W 0) ((1 − p − θ)(W ′
1 − W 1) + (1 − p)(V ′

1 − V 1)) − (W ′
1 − W 1)(V0 − V 0)θ < 0.

Substituting for V0 − V 0 and W0 − W 0 from (33)–(34) and dropping the common factor
x0, this is

[(1 − p − θ)(W ′
1 − W 1) + (1 − p)(V ′

1 − V 1)] ((1 − δ)c + δ(x1θW
′
1 + (1 − x1)θW 1) − W 0)

< (W ′
1 − W 1)θ [(1 − δ)(pπ − 2c) + δ(1 − p − θ)[x1W

′
1 + (1 − x1)W 1]

+ δ(1 − p)[x1V
′
1 + (1 − x1)V 1) − V 0] ,

which simplifies to

(1−p−θ)+(1−p)
V ′

0 − V 0

W ′
0 − W 0

< θ
(1 − δ)(pπ − 2c) + (δ(1 − p) − δθ)W 1 + δ(1 − p)V 1 − V 0

(1 − δ)c + δθW 1 − W 0

,

which is immediate from the definition of ζ .
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