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August 2007

Financial support from the Deutsche Forschungsgemeinschaft, SFB 504, at the University of

Mannheim, is gratefully acknowledged.

∗Sonderforschungsbereich 504, email: sylvain.beal@awi.uni-heidelberg.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6576435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PERCEPTRON VERSUS

AUTOMATON∗

Sylvain Beal†

August 6, 2007

Abstract

We study the finitely repeated prisoner’s dilemma in which the

players are restricted to choosing strategies which are implementable

by a machine with a bound on its complexity. One player must use a

finite automaton while the other player must use a finite perceptron.

Some examples illustrate that the sets of strategies which are induced

by these two types of machines are different and not ordered by set

inclusion. The main result establishes that a cooperation in almost all

stages of the game is an equilibrium outcome if the complexity of the

machines players may use is limited enough. This result persists when

there are more than T states in the player’s automaton, where T is

the duration of the repeated game. We further consider the finitely

repeated prisoner’s dilemma in which the two players are restricted to

choosing strategies which are implementable by perceptrons and prove

that players can cooperate in most of the stages provided that the

complexity of their perceptrons is sufficiently reduced.

Keywords: prisoner’s dilemma, finitely repeated games, machine games,

automaton, perceptron, bounded complexity.

JEL Classification number: C72, C73.

1 Introduction

The best-understood class of dynamic games is that of repeated games for
which well known results, called folk theorems, delineate the set of equilib-
rium outcomes. One of these results asserts that any feasible and individ-
ually rational payoff vector is obtained at some equilibrium of the infinite
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repetition of the game. Benoît, Krishna (1987) determine the conditions
under which the main insights underlying this infinite-horizon folk theorem
are maintained in finite time horizons. However, in some cases, the set of
equilibrium outcomes of the finitely repeated game differs sharply from that
of its infinitely repeated counterpart. For instance, the unique equilibrium
outcome of the T -period repeated prisoner’s dilemma is the one in which all
players defect in all periods. This uniqueness result is disturbing in light of
experiments with this game in which real players do not always choose the
dominant action of defecting (See Axelrod, 1984 for references). This paper
explores one attempt to resolve this finite horizon paradox in the finitely
repeated prisoner’s dilemma by restricting the strategies players may use.

There are numerous methods of restricting strategies. The approach we
adopt in this paper consists in bounding the complexity of players’ strate-
gies. Players are restricted to choosing strategies which are implementable
by a machine and the complexity of a strategy is measured by the size of
the smallest machine that implements it. Two types of machines are consid-
ered : the perceptron and the finite automaton. More explicitely, player 1
is restricted to perceptrons not exceeding a certain number k∗ of classifiers
while player 2 is restricted to finite automata not exceeding a certain number
m∗ of states. In contrast to the proximate litterature (Neyman, 1985, 1998
and Neyman, Okada, 2000) where at least one player can implement any of
the strategies available to his opponent, it turns out that, in our model, one
cannot determine which of the players has the greatest ability to implement
repeated game strategies.1 On one side, the perceptron summarizes any his-
tory by an aggregate according to the empirical frequency of each stage-game
outcome and a threshold decision rule dictates the player’s decision. There-
fore, the perceptron processes the entire history, but imperfectly since it
cannot distinguish between two different histories with the same distribution
of outcomes. On the other side, the automaton dictates the player’s decision
according to the last opponent’s action. Therefore, an automaton does not
process the entire history, but its states may perfectly keep track of some of
the last opponent’s moves. The present paper contains two examples which
show that the set of repeated game strategies induced by perceptrons does
not include, nor is included by, the set of repeated game strategies induced
by finite automata. For that reason, it makes sense to ask whether equilib-
rium outcomes are affected by such heterogeneity. In particular, we wonder

1Exceptions are the situations in which k∗ ≥ T and m∗ ≥ T . In fact, any sequence of
T actions is induced by some automata with T states and we prove that this statement
holds for perceptrons with T classifiers (proposition 1). Nevertheless, it does not exactly
amount to say that such “complex” machines can induce any repeated game strategies.
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if players with non comparable sets of strategies can achieve some mode of
cooperation in the finitely repeated prisoner’s dilemma.

This paper continues the line of research on machine games suggested
by Aumann (1981) and initiated by Neyman (1985) for the finitely repeated
prisoner’s dilemma in which the two players use finite automata. Neyman
(1985) proves that a cooperation in all stages is an equilibrium outcome if
the players are restricted to choosing automata with less than T states and
that the cooperative average payoff can be achieved in mixed strategies even
when the number of states in these automata is reasonably larger than T . For
instance, a pair of “grim trigger” two-state automata is an equilibrium that
results in the cooperative outcome in each stage of the game. Such a coopera-
tive equilibrium path fails to exist in our machine game due to the ability of a
perceptron to defect in stage T if the cooperative outcome is induced in each
of the preceding stages. It turns out that there is no equilibrium outcome
in which the players cooperate in each stage, for any duration of the game
and any complexity of the machine of each player (proposition 2). Neyman
(1998) extends his seminal result to the class of two-player finitely repeated
games played by finite automata and shows that equilibrium payoffs coincide
with those of the folk theorem for infinitely repeated games provided that the
sizes of the automata chosen by the players are also not too large compared
to T . Our approach departs from that of Neyman (1985, 1998) in that each
player in our model uses a different type of machine. In particular, the cur-
rent paper is a first attempt to use perceptrons to bound the complexity of a
player’s strategies in a finitely repeated game since its introduction in game
theory by Cho (1994).2 The absence of equilibrium in which the cooperative
outcome is induced in each stage of the game does no preclude equilibria
in which players achieve some measure of cooperation. More precisely, each
player can ensure a payoff arbitrarily close to the cooperative one provided
that one player is restricted to perceptrons with no more than one classifier
and the other player is restricted to automata with no more than two states
(proposition 3). Surprisingly, the result persists when the number of states
in player 2’s automaton is larger than T (proposition 4). In that case, it
is worth emphasizing that player 2 can behave as if he were unrestricted
since he can choose an automaton which induces any sequence of T actions.
Next, we consider a variant of the model in which both players are assumed
to use perceptrons with limited complexity. It appears that if one player is

2Cho (1994) recovers the perfect folk theorem (Fudenberg, Maskin, 1986) for two-player
infinitely repeated games when the players must use strategies which are implementable
by perceptrons. The perceptron has also been studied in infinitely repeated games by Cho
(1995, 1996a, 1996b) and Cho, Li (1999), and in economics by Rubinstein (1993).
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restricted to perceptrons with at most one classifier and the other player can
choose perceptrons with at most five classifiers, there is an equilibrium that
results in the cooperative outcome in all but the very last stages of the game
(proposition 6).

The idea to confront players with different abilities to implement strate-
gies has been examinated in two-player repeated games in which a player
restricted to choosing finite automata plays against an unrestricted player.
In two-player finitely repeated games, Neyman, Okada (2000) prove a folk
theorem which includes pairs of equilibrium payoffs in which the “restricted”
player obtains no more than his maxmin payoff. In infinitely repeated games,
Gilboa, Samet (1989) restrict one player to strategies which are implementable
by finite connected automata i.e. automata which can be represented by a
connected “transition diagram”. They show that the “unrestricted” player
has a dominant strategy in the repeated game but cannot prevent the “re-
stricted” player to secure almost his best feasible and individually rational
payoff. These two approaches differ from ours since the “unrestricted” player
can induce any of the strategies available to the “restricted” player.

The rest of the paper is organized as follows. Section 2 introduces the
prisoner’s dilemma, the finite automaton and the perceptron. Examples il-
lustrating that the sets of strategies induced by the two types of machines
are distinct and not ordered by set inclusion are given is section 3. Section 4
contains the results for the repeated prisoner’s dilemma in which one player
is restricted to choosing finite automata and the other player is restricted
to choosing perceptrons. The variant of the model in which both players
are restricted to using strategies which are implementable by perceptrons is
studied in section 5. Various aspects of the model are discussed in section 6.

2 Preliminaries

2.1 Prisoner’s dilemma

Let G = (A1, A2, π1, π2) be a two-person prisoner’s dilemma game in normal
form. Ai = {C,D} is the set of actions for player i = 1, 2 and a = (a1, a2) ∈
A1 × A2 =: A is called an action pair. For each i = 1, 2, πi : A −→ R is
player i’s payoff function defined by table 1 where b, c > 0 and c − b < 1.
Since action D is stricly dominant, (D,D) is the unique Nash equilibrium
but (C,C) is the efficient outcome. Player i can secure a null payoff against
any action of the opponent, i.e., his minmax payoff is 0. We will refer to
G = (A1, A2, π1, π2) as the stage game. Throughout, −i will denote the
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opponent of player i.

C D

C 1, 1 −b, 1 + c

D 1 + c,−b 0, 0

Table 1: The prisoner’s dilemma.

2.2 Finitely repeated game

Let GT be the supergame obtained by repeating G at stages t = 1, 2, . . . , T ,
T ∈ N. A history ht = (a1, . . . , at−1) at the beginning of stage t records the
actions taken by each player in stages 1, 2, . . . , t− 1. Let H t = At−1 be the
set of all histories at stage t and H =

⋃T

t=1H
t be the set of all histories,

where H1 = {∅} is the null history at the beginning of the game.

A pure strategy si for player i is a sequence of functions {st
i}

T
t=1 where,

for each t ≥ 1, the function st
i : H t −→ Ai determines player i’s action at

stage t, denoted by si(h
t) ∈ Ai, as a function of the previous t − 1 action

pairs ht ∈ H t. Let Si be the set of all strategies for player i and S := S1×S2.

Each pair of strategies s = (s1, s2) ∈ S induces a unique sequence of action
pairs (at)T

t=1. The fonction fi : S −→ R assigns to each pair of strategies
s ∈ S the average payoff

fi(s) =
1

T

T∑

t=1

πi(a
t)

for player i = 1, 2. A pair of strategies s ∈ S is a Nash equilibrium of the
repeated game GT if for each i = 1, 2 and each s′i ∈ Si, fi(s) ≥ fi(s

′
i, s−i). In

the finitely repeated prisoner’s dilemma GT , the unique equilibrium outcome
consists in T action pairs (D,D).

2.3 Machine game

We now turn to the machine game that consists in the repeated game GT

in which the players are restricted to choosing strategies which are imple-
mentable by a machine with bounded complexity. More precisely, player 1
must choose a perceptron with no more than k∗ ∈ N classifiers and player 2
must choose a finite automaton with no more than m∗ ∈ N states.
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A finite perceptron for player 1 is a triple ψ1 = (Z,K, R) where

1. For each t ≥ 2, a summary function Z : A×H t −→ R assigns to each
(a, ht) ∈ A×H t the empirical frequency

Z(a, ht) =
1

t− 1
#{τ ≤ t− 1 : aτ = a}

of a in ht. By definition,
∑

a∈A Z(a, ht) = 1 for each ht ∈ H t ;

2. A finite collection K of k classifiers.3 A classifier Kl ∈ K is a triple
Kl = (αl, β

1
l , dl), where the function αl : A −→ R assigns a synaptic

weight αl(a) to each a ∈ A. The value associated to ht by Kl is

βt
l =

∑

a∈A

αl(a)Z(a, ht) +
β1

l

t− 1
,

where β1
l ∈ R is the initial value of Kl. The decision unit used through-

out this paper is the threshold function dl : R −→ {0, 1} defined by

dl(β
t
l ) =

{
1 if βt

l ≥ 0,
0 if βt

l < 0.

To make short, let dl := dl(β
t
l ).

3. A decision function R : {0, 1}k −→ A1 which assigns to each vector
(d1, . . . , dk) ∈ {0, 1}k an action R(d1, . . . , dk) ∈ A1.

In stage 1, the perceptron dictates the action to be played according to
the initial values of the classifiers. Let Ψ1 be the set of all finite perceptrons
for player 1.

A finite automaton or Moore machine M2 for player 2 is a four-tuple
(Q2, q

1
2, λ2, µ2) where

1. Q2 is the finite set of m states in M2 ;

2. q1
2 is the initial state ;

3. λ2 : Q2 −→ A2 is the output function which plays action λ2(q2) ∈ A2

whenever M2 is in state q2 ;

3When k = 0 the perceptron has no classifier and plays the same action in all stages
regardless of the opponent’s strategy.
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4. µ2 : Q2 × A1 −→ Q2 is the transition function. In stage t, if M2 is in
state q2 ∈ Q2 and player 1 chooses a1 ∈ A1, then the machine’s next
state is µ2(q2, a1) ∈ Q2.

Let M2 be the set of all finite Moore machines for player 2. In the machine
game GT , a pair (ψ1,M2) ∈ Ψ1 ×M2 is a Nash equilibrium is for all ψ′

1 ∈ Ψ1

and all M ′
2 ∈ M2, f1(ψ1,M2) ≥ f1(ψ

′
1,M2) and f2(ψ1,M2) ≥ f2(ψ1,M

′
2).

3 Examples

In order to illuminate how the two types of machines induce a strategy, let
us construct an automaton and a perceptron which implement the grim

trigger strategy. Next we will examine a couple of examples to see that
perceptrons and automata have distinct abilities to induce repeated game
strategies. The grim trigger strategy si for player i is defined for t = 1
by s1

i (∅) = C and for each t ≥ 2 by

st
i(h

t) =

{
C if aτ

−i = C, ∀τ = 1, . . . , t− 1,
D otherwise.

The perceptron ψ1
1 for player 1 with a single classifier K1 and the two-

state automaton M1
2 for player 2 which implement this strategy are given in

figure 1.4

D

qD

C

qC

C C, D

D

M1
2 :

K1
1 : α1(C,C) = 0

α1(C,D) = −2
α1(D,C) = 0
α1(D,D) = −2

β1
1 = 1

Figure 1: Perceptron and automaton for the grim trigger strategy.

As suggested by Cho (1995, footnote page 268) for infinitely repeated
games, some strategies are induced by a perceptron but not by a finite au-
tomaton. This is also the case for finitely repeated games even if the complex-
ity of the perceptron is considerably reduced. As a first example, consider
the prisoner’s dilemma repeated for T > m∗ stages. Suppose that player 1
chooses the grim trigger strategy and that m2 ≤ m∗ states are allowed in
player 2’s automaton M2. Such an automaton cannot implement a strategy

4Observe that M1

2
is not exactly equivalent to si since the automaton does not specify

how to behave after its own deviation.
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that consists in playing C in the first m∗ stages and D thereafter. A per-
ceptron with a unique classifier can induced such a strategy (this machine is
constructed in the proof of proposition 2).

The next example shows that the strategy induced by a four-state au-
tomaton cannot be induced by a perceptron even with an arbitrarily large
number of classifiers.

C D C D

C C, D

D C, D C, D

M2
2 :

Figure 2: Strategy which cannot be induced by a perceptron.

Example 1 Suppose T ≥ 5, m∗ = 4 and k∗ ∈ N. Consider the strategy sa

induced by the four-state automaton represented in figure 2. A perceptron
cannot induce this strategy. We argue by contradiction. Firstly, assume that
player 1 can construct a perceptron ψ1 with a unique classifier K1 that imple-
ments sa. Consider two sequences h5

2 = (C,C,D,D) and h′52 = (C,D,D,C)
of four actions of player 2. According to sa, the perceptron ψ1 must react by
playing in the first five stages the sequences of actions h6

1 = (C,C,C,D,C)
and h′61 = (C,C,D,C,D) respectively. Observe that the two histories

h5 =

(
C C C D
C C D D

)

and h′5 =

(
C C D C
C D D C

)

induced at the beginning of stage 5 contain exactly the same action pairs,
even if the order in which they occur is different. As a consequence, the value
β5

1 associated to these two histories by K1 is identical. It follows that ψ1 must
play the same action in response to h5

2 and h′52 , which is contradictory with
the two sequences h6

1 and h′61 specified by sa. We conclude that sa cannot
be induced by a perceptron with at most one classifier. The same argument
applies for each classifier in a perceptron with finitely many classifiers. �

4 Perceptron versus automaton

In this section, we study the set of achievable pairs of equilibrium payoffs in
the finitely repeated prisoner’s dilemma defined in table 1. Player 1 must
choose strategies which are implementable by perceptrons with k ≤ k∗ clas-
sifiers and player 2 must choose strategies which are implementable by au-
tomata with m ≤ m∗ states. The first result states that if there is at least
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T classifiers available to player 1, then he can construct a perceptron which
induces any sequence of T actions.

Proposition 1 Assume T ∈ N, m∗ ∈ N and k∗ ≥ T . For any automaton

M2 of player 2 and any strategy s1 ∈ S1, player 1 can construct a perceptron

ψ1 which induces the sequence of T actions played by s1 against M2.

Proof. Assume T ∈ N, m∗ ∈ N and k∗ ≥ T . Consider any automaton M2

of player 2 and any repeated game strategy s1 ∈ S1. Let (a1
1, . . . , a

T
1 ) be the

sequence of T actions played by s1 against M2. We construct a perceptron
ψ2

1 , with T classifiers denoted by K1, . . . , KT , which induces (a1
1, . . . , a

T
1 ).

Each classifier Kl, l = 1, . . . , T , is defined by :

Kl : αl(a) = −1, ∀a ∈ A

β1
l = l − 2

The decision function R : {0, 1}T −→ {C,D} is defined by

R(d1, . . . , dT ) =







at
1 if

T∑

l=1

dl = T − t,

a1 ∈ {C,D} otherwise.

(1)

For each l = 1, . . . , T and each a ∈ A, we have αl(a) = −1. This implies
that the actions chosen by the perceptron ψ2

1 do not depend on the opponent’s
automaton M2. In the first stage, β1

1 = −1 and β1
l ≥ 0 for each l > 1. Thus,

d1 = 0 and dl = 1 for each l = 2, . . . , T . It follows that

T∑

l=1

dl = T − 1,

which implies that R(d1, . . . , dl) = a1
1. In the second stage, β2

l = l − 3, for
each l = 1, . . . , T , regardless of the action played by the opponent in stage
1. Therefore, β2

l < 0 for l = 1, 2 and β2
l ≥ 0 for each l > 2. This implies

that d1 = d2 = 0 and dl = 1 for each l = 3, . . . , T . Hence,
∑T

l=1 dl = T − 2
implies R(d1, . . . , dl) = a2

1. Then, in each stage t = 3, . . . , T , it must be the
case that

βt
l =

l − 1 − t

t− 1

regardless of the history ht at the beginning of this stage, or equivalently
βt

l < 0 if l ≤ t and βt
l ≥ 0 if l > t. We deduce that dl = 0 if l ≤ t and dl = 1

if l > t such that the statement R(d1, . . . , dT ) = at
1 follows from the equality

T∑

l=1

dl = T − t.
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Player 1’s perceptron ψ2
1 induces the sequence (a1

1, . . . , a
T
1 ) of T actions

as desired. �

Observe that the result does not depend on the assumption that player
2’s strategy must be implementable by a finite automaton. It is neither
related to the particular form of the prisoner’s dilemma. In fact, this result
is not restricted to 2×2 games, it applies for any two-player game. The next
corollary follows from proposition 1.

Corollary 1 Assume T ∈ N, k∗ ≥ T and m∗ ≥ T − 1. The only Nash

equilibrium of GT induces at each stage the Nash equilibrium (D,D) of G.

Proof. Consider any T ∈ N and suppose that k∗ ≥ T and m∗ ≥ T − 1. By
proposition 1, player 1 can construct a perceptron which mimics the behavior
of any repeated game strategy against a given automaton of the opponent.
Therefore, player 1’s the best reply to any automaton of player 2 induces the
play of D in stage T . Next, by way of contradiction, suppose that there is a
Nash equilibrium (ψ1,M2) that does not induce (D,D) in each stage. Since
ψ1 plays D in stage T , it is the interest of player 2 to construct a strategy that
dictates D in the last two stages. Therefore, the Nash equilibrium (ψ1,M2)
must induce (D,D) in stage T since such a strategy can be induced by an
automaton with no more than T − 1 states. Let tC < T be the last stage in
which (D,D) is not induced by (ψ1,M2). If ψ1 plays C in this stage, player
1 has an incentive to construct a T -classifier perceptron ψ′

1 which mimics ψ1

up to stage tC − 1 and then plays D from stage tC . If M2 plays C in stage
tC ≤ T −1, player 2 can also construct an automaton M ′

2 with at most T −1
states which mimics M2 during the first tC − 1 stages and then plays D from
stage tC . This contradicts the initial assumption that (ψ1,M2) is a Nash
equilibrium. We conclude that if k∗ ≥ T and m∗ ≥ T − 1, the unique Nash
equilibrium of GT induces in each stage the Nash equilibrium (D,D). �

The next proposition highlights that there is no Nash equilibrium that
results in the cooperation in each stage if player 1 is restricted to choosing
strategies which are implementable by a perceptron, whatever the duration
of the game, the number of classifiers in this perceptron and the number of
states in the opponent’s automaton.

Proposition 2 Let T ∈ N, k∗ ∈ N and m∗ ∈ N. There is no Nash

equilibrium of GT which induces the action pair (C,C) in each stage.

Proof. If m∗ ≥ T , the proof is immediate since the player 2 can construct
an automaton with T states that plays D in stage T , regardless of the per-
ceptron chosen by player 1. If m∗ < T , suppose by way of contradiction that
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there is a Nash equilibrium (ψ1,M2) of GT which induces the action pair
(C,C) in each stage. We distinguish two cases according to the value of k∗.

If k∗ = 0, the perceptron ψ1 has no classifier. The strategy induced by
ψ1 must consist in playing the same action in each stage, here the action C
by assumption, regardless of the opponent’s strategy. Player 2’s best reply
to this perceptron consists in playing D in each stage, and this strategy is
induced by a one-state automaton. In this context (ψ1,M2) cannot be a Nash
equilibrium.

If k∗ ≥ 1, the perceptron ψ1 is not player 1’s best reply toM2 whatever the
punishment released by M2 if player 1 does not comply with the sequence
of actions (C, . . . , C). In fact, for each k∗ ≥ 1, player 1 can construct a
perceptron ψ3

1 with a unique classifier K1 such that ψ3
1 plays action D in

stage T after the play of T − 1 actions C. The classifier K1 is defined by :

K1 : α1(C,C) = −1
α1(C,D) ∈ R

α1(D,C) ∈ R

α1(D,D) ∈ R

β1
1 = T − 2

The decision function specifies R(1) = C and R(0) = D. It is easy to
check that βt

1 ≥ 0 for each t = 1, . . . , T −1 which implies that ψ3
1 plays action

C in each stage t = 1, . . . , T − 1 against M2. Then, ψ3
1 plays action D in the

last stage since βT
1 < 0. Therefore, f1(ψ

3
1,M2) > f1(ψ1,M2) and the proof is

complete. �

Remark that a perceptron must have at least one classifier in order to
induce a strategy which does not consist in the constant play of an action.
An automaton must have at least two states to do likewise. Henceforth, let
k∗ = 1 and m∗ = 2 be the minimal complexity in the machine of each player
which allows for the play of non-constant strategies. Even if proposition 2
asserts that the players cannot cooperate in each stage of the game, the next
result establishes that a cooperation in almost all stages is an equilibrium
outcome provided that the machines have at most the minimal complexity
which allows for the play of non-constant strategies.

Proposition 3 Let k∗ = 1 and m∗ = 2. For each ε > 0, there exists Tε ∈ N

such that if T ≥ Tε, the machine game GT has a Nash equilibrium (ψ1,M2)
whose payoffs verify fi(ψ1,M2) ≥ 1 − ε for each player i.

11



Proof. Let k∗ = 1 and m∗ = 2. Assume that player 2 uses the two-state
automaton M1 represented in figure 1 which implements the grim trigger

strategy. The next step is the construction of the perceptron ψ4
1 for player

1. Its unique classifier is defined by :

K1 : α1(C,C) = −1
α1(D,C) = 0
α1(C,D) = −T
α1(D,D) = −T

β1
1 = T − 2

The decision function specifies R(1) = C and R(0) = D. The pair
(ψ4

1 ,M
1
2 ) yields the following average payoffs :

f1(ψ
4
1 ,M

1
2 ) =

T + c

T
, and f2(ψ

4
1,M

1
2 ) =

(T − 1) − b

T
.

Given any real number x, denote by ⌈x⌉ the smaller integer that is larger
of equal to x. For each ε > 0, let

Tε =

⌈

max

{
1 + b

ε
, 3 + c+ b

}⌉

.

We need to check that the induced payoffs verify fi(ψ
4
1,M

1
2 ) ≥ 1 − ε

for each player i = 1, 2, each ε > 0 and each T ≥ Tε. Observe that
f1(ψ

4
1,M

1
2 ) > f2(ψ

4
1,M

1
2 ) for each T . Therefore, it suffices to check that

f2(ψ
4
1,M

1
2 ) ≥ 1 − ε ⇐⇒ T ≥ (1 + b)/ε, which is ensured whenever T ≥ Tε.

Next, it remains to prove that (ψ4
1 ,M

1
2 ) is a Nash equilibrium of GT . We

proceed in two steps.

A) The perceptron ψ4
1 is a best reply to M1

2

Firstly, consider the possible deviations from the sequence of actions
played by ψ4

1 against M1
2 in any stage t ≤ T − 1. Since M1

2 releases a
minmax punishment in each stage following the deviation, player 1 obtains
at most 0 in each of these stages. The gain for player 1 of such a deviation
increases in t such that the best deviation occurs in stage T − 1. Thus, a
deviation in one of the first T − 1 stages yields player 1 at most the average
payoff

T − 1 + c− b

T

which is strictly less than f1(ψ
4
1 ,M

1
2 ). Secondly, player 1 cannot gain by de-

viating in stage T since he obtains the best stage payoff. We conclude that

12



ψ4
1 is a best reply to M1

2 .

B) The automaton M1
2 is a best reply to ψ4

1

Since m∗ = 2, player 2’s automaton can only deviate in the first two
stages from the sequence of actions played by M1

2 against ψ4
1. In addition,

the synaptic weights α1(C,D) = −T and α1(D,D) = −T in player 1’s
perceptron retaliate by a minmax punishment as soon as the opponent’s
deviation is observed, i.e. player 2 cannot obtain more than 0 in each stage
that follows his deviation. The best implementable deviation by player 2
consists in playing C in stage 1 and then D in all remaining stages. In such
a case, his average payoff is (2 + c)/T which is less than f2(ψ

4
1,M

1
2 ) when

T ≥ 3 + c + b. This condition is satisfied whenever T ≥ Tε. The automaton
M1

2 is a best reply to ψ4
1. We conclude that the pair (ψ4

1,M
1
2 ) is a Nash

equilibrium. �

The players can cooperate almost all the time if their strategies are limited
to the minimal complexity that allow for the play of non-constant strate-
gies. The next proposition shows that this result applies even if player 2
can choose automata with an arbitrarily large number of states. Recall that
when m∗ ≥ T , player 2’s automaton can induce any sequence of T actions. In
this context, player 2 can mimic the behavior of any repeated game strategy
against a given perceptron of player 1.

Proposition 4 Fix k∗ = 1, m∗ ≥ T and suppose that b ≤ min{1, c}. For

each ε > 0, there exists Tε ∈ N such that if T ≥ Tε, the machine game GT

has a Nash equilibrium (ψ1,M2) whose payoffs verify fi(ψ1,M2) ≥ 1 − ε for

each player i.

The proof of this result is given in appendix. The basic idea is to generate
a “complex” history up to stage T −1 in the sense that the action pair (C,C)
does not occur in each stage. The equilibrium automaton threatens any
deviation by player 1 from this desired sequence of actions by playing D
until the end of the game. Then, it is the interest of the perceptron to
conform to these plays and this task mobilizes most of the computational
ressources of the machine. As a consequence, although the perceptron of
player 1 is sometimes able to defect in stage T (see the proof of proposition 3
for instance), the history induced by the pair (ψ1,M2) in the first T−1 stages
is “complex” enough to prevent the perceptron from reverting to action D
in the last stage. The next result determine a structural property of Nash
equilibria in which the equilibrium perceptron of player 1 cooperate in the

13



last stage. For instance, the equilibrium perceptron constructed in the proof
of proposition 4 belongs to this category.

Proposition 5 Let k∗ ∈ N. Consider a Nash equilibrium (ψ1,M2) of GT

with ψ1 playing C in stage T . Then, ψ1 has exactly k = k∗ classifiers.

Proof. Let k∗ ∈ N and consider a Nash equilibrium (ψ1,M2) of GT in which
ψ1 dictates C in the last stage.5 Suppose by way of contradiction that ψ1

dictates C in stage T and has k < k∗ classifiers. Then, player 1 can construct
a perceptron ψ′

1 with the same k classifiers than ψ1 and a (k+ 1)th classifier
K ′ defined by a synaptic weight α′(a) = −1 for each a ∈ A and the initial
value β ′1 = T − 2. The decision function R′ of ψ′

1 is given by

R′(d1, . . . , dk, d
′) =

{
R(d1, . . . , dk) if d′ = 1,
D if d′ = 0.

For all the strategies available to the opponent, the value of K ′ is positive
in all stages except in the last one. Therefore, by definition of R′, perceptron
ψ′

1 mimics in each of the T − 1 first stages the action played by ψ1 against
M2. In stage T , the decision function R′ specifies to play action D since
β ′T < 0. This contradicts the fact that (ψ1,M2) is a Nash equilibrium of
GT . We conclude that each Nash equilibrium of GT for which the perceptron
plays C in stage t has exactly k = k∗ classifiers. �

This result may be generalized to any two-player finitely repeated games
in the following way. If there is a Nash equilibrium in which the perceptron
does not play in stage T a best reply to the action chosen by the opponent,
then it has exactly k = k∗ classifiers. Remark also that a Nash equilibrium
(ψ1,M2) for which ψ1 plays C in stage T is not a Nash equilibrium if one
adds or removes a classifier from the number k∗ of classifiers allowed in player
1’s perceptron.

5 Perceptron versus perceptron

In this section, we consider a machine game in which both players are re-
stricted to choosing strategies which are implementable by perceptrons. The
next proposition shows that if players 1 and 2 are restricted to using per-
ceptrons with at most one and five classifiers respectively, there is a Nash
equilibrium in which they can approximate the cooperative average payoff.
Denote by k∗i the maximal number of classifiers in player i’s perceptron.

5Note that it must be the case that k∗ < T otherwise by proposition 1, player 1 can
construct a perceptron with T classifiers that mimics ψ1 against M2 up to stage T −1 and
defects in the last stage.
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Proposition 6 Fix k∗1 = 1, k∗2 = 5 and suppose that b ≤ min{1, c}. For

each ε > 0, there exists Tε ∈ N such that if T ≥ Tε, the machine game GT

has a Nash equilibrium (ψ1, ψ2) whose payoffs verify fi(ψ1, ψ2) ≥ 1 − ε for

each player i.

The proof of this proposition is also given in appendix since it rests on the
proof of proposition 4. It illustrates the difficulty of dealing with perceptrons
with many classifiers. The computation process which leads to the action
specified by the decision function of the perceptron becomes heavier as its
number of classifiers increases. In fact, it requires to handle with many
(simple) calculations which seem less practical than the task of transiting
from one state to other in an automaton with many states.

6 Conclusion

The most evident open question in the current setting is whether there exist
bounds on the complexity of the machines for which the set of achievable pay-
offs coincides with those of the folk theorem for infinitely repeated games. In
this paper, we have answered the question of whether cooperation is a possi-
ble equilibrium outcome in the finitely repeated prisoner’s dilemma in which
the players have non comparable bounds on the complexity of the strategies
they may choose. Each existence result has been proved using trigger strate-
gies. Folk theorems also often employ such “vengeful” strategies. However, in
our model, the equilibrium histories are rather simple since the cooperative
outcome is induced consecutively in most of the stages. Constructing per-
ceptrons which retaliate by a definitive minmax punishment to sustain more
elaborated histories raises additional difficulties. In particular, it points to
the need for constructing perceptrons with many classifiers and yet little is
known about the exact computational abilities of such machines. We hope
to provide findings about this question in a future work on finitely repeated
zero-sum machine games.

The preceding discussion addresses the question of extending the anal-
ysis to games with more than two actions available to the players and/or
more than two players. The former extension has been examinated for ma-
chine games played by automata (Neyman, 1998, and Neyman, Okada, 2000)
and for machine games played by perceptrons (Cho, 1996a). The latter ex-
tension has been studied by Neyman (1998) for machine games played by
automata but only for results regarding the complexity of various plays even
if the extension to n players of several theorems on the set of equilibrium
payoffs needs only minor modifications. The difficulty noted earlier however
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reappears for n-player machine games played by perceptrons : equilibrium
perceptrons should incorporate many classifiers in order to punish deviations
by the opponents.

We do not consider mixed strategy equilibria because of the lack of a
modelisation of mixed strategies in machine games played by perceptrons.
Mixed strategies induced by automata are constructed in Neyman (1985,
1998). In these two papers, each player randomizes among his available
automata. Unfortunately, mixed strategies induced by perceptrons has not
been considered so far. Players may randomize among their available per-
ceptrons but one might also consider a perceptron which receives the mixed
history as input and which dictates the mixed action to be played as output.
Nevertheless, we do not now whether the results established in this paper
persist when the players are allowed to use such mixed strategies.

Appendix

Proof. [proposition 4] Fix k∗ = 1,m∗ ≥ T and suppose that b ≤ min{1, c}.
The proof is divided in three parts. Firstly, for each ε > 0, define Tε ∈ N by

Tε = max

{

7,

⌈
2 + 2b− c

ε

⌉}

.

Secondly, consider the following pair (ψ5
1,M

3
2 ) of machines. The percep-

tron ψ5
1 of player 1 has a single classifier K1 defined by

K1 : α1(C,C) = −1
α1(D,C) = 2
α1(C,D) = −3T
α1(D,D) = −3T

β1
1 = T − 6

C C C C C C D
D D C D D

C C C D C C C, D

C, D

T−5 states

︷ ︸︸ ︷

M3
2 :

Figure 3: The automaton M3 of player 2.

The decision function specifies once again R(1) = C and R(0) = D. The
automaton M3

2 of player 2 has T ≥ Tε ≥ 7 states and is represented in
figure 3. The history induced by the pair (ψ5

1 ,M
3
2 ), the current value of the
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classifier and the stage payoffs obtained by both players are indexed in table
2. Players 1 and 2 obtain the following average payoffs :

f1(ψ
5
1,M

3
2 ) =

T + 2c− b− 1

T
, and

f2(ψ
5
1,M

3
2 ) =

T + c− 2b− 2

T
.

t 1 2 . . . T − 6 T − 5 T − 4 T − 3 T − 2 T − 1 T

βt
1

T − 6 T − 7 . . .
1

T − 7
0

−1

T − 5

1

T − 4
0

−1

T − 2

1

T − 1

at
1

C C . . . C C D C C D C

at
2

C C . . . C C C C C C D

π1(a
t) 1 1 . . . 1 1 1 + c 1 1 1 + c −b

π2(a
t) 1 1 . . . 1 1 −b 1 1 −b 1 + c

Table 2: History, stage payoffs and values of the classifier.

Observe that for all T ≥ Tε, f1(ψ
5
i ,M

3
2 ) > f2(ψ

5
i ,M

3
2 ) since 1 + c > −b.

Therefore, it is easy to check that for each ε > 0 and each T ≥ Tε, the
pair of machines (ψ5

1,M
3
2 ) yields each player i = 1, 2 an average payoff of

fi(ψ
5
i ,M

3
2 ) ≥ 1 − ε. Thirdly, it remains to prove that (ψ5

1,M
3
2 ) is a Nash

equilibrium of GT . As in the proof of proposition 3, we proceed in two steps.

A) The perceptron ψ5
1 is a best reply to M3

2

We consider successively each possible deviation by player 1 from the se-
quence of actions played by ψ5

1 against M3
2 :

• Deviations in a stage t ≤ T − 5. Player 1 deviates in stage t by playing
action D, which implies thatM3

2 reacts by moving to the absorbing state that
plays D from stage t+1. Thus, player 1 cannot gain more than 0 in each stage
t+1, . . . , T . The average payoff he obtains from this deviation increases with
t. Deviating yields at most (T +c−5)/T which is no more than f1(ψ

5
1 ,M

3
2 ) if

c+4 ≥ b. This condition is guaranteed by the assumption that b ≤ min{1, c}.

• Deviations in stage T −4. Player 1’s optimal deviation consists in play-
ing C in stage T − 4 and then D in the remaining stages since M3

2 retaliates
by a definitive minmax punishment in response to the deviation. Acting like-
wise, player 1 obtains the average payoff (T − 4)/T which is no more than

17



f1(ψ
5
1,M

3
2 ) if 2c + 3 ≥ b. Once again, the assumption b ≤ min{1, c} ensures

that it is not the interest of player 1 to deviate.

• Deviations in a stage t ∈ {T − 3, T − 2}. Player 1 deviates in stage
t by playing action D and his interest is to play D in each remaining stage
because of M3

2 ’s punishment. This deviation yields player 1 at most the av-
erage payoff (T + 2c − 2)/T which is no more than f1(ψ

5
1 ,M

3
2 ) if b ≤ 1, a

condition guaranteed by the assumption b ≤ min{1, c}.

• Deviations in stage T − 1. Player 1’s deviation consists in playing C in
stage T − 1 and M3

2 punishes this move by the play of D in the last stage.
Player 1 cannot do best than playing D in stage T . Deviating yields him
the average payoff of (T − 1 + c)/T which is no more than f1(ψ

5
1 ,M

3
2 ) since

b ≤ min{1, c} by assumption.

• Deviation in stage T . Of course, it is optimal for an “unrestricted” player
to implement the sequence of actions played by ψ5

1 against M3
2 in the first

T − 1 stages and then to play D in stage T . We show than such a strategy
cannot be induced by a perceptron with at most one classifier. By way of
contradiction, assume that there is a perceptron ψ6

1 with a single classifier K2

which implements the optimal sequence of actions (C, . . . , C,D,C, C,D,D)
against M3

2 .6 We describe the necessary conditions on the initial value β1
2 and

on the synaptic weights of classifier K2 in ψ6
1. Remark that ψ6

1 cannot induce
a sequence of actions that contains actions C and D if R(1) = R(0). Thus,
it must be the case that R(1) 6= R(0) and without any loss of generality,
we can suppose that R(1) = C and R(0) = D. It follows that player 1
has to fix β1

2 ≥ 0 since ψ6
1 must play C in the first stage against M3

2 . By
definition of the value βt

2 of classifier K2 in each stage t = 1, . . . , T , the
system of inequalities (L1), . . . , (LT ) below must have a solution to construct
the desired perceptron ψ6

1 with a unique classifier.

6Perceptron ψ6

1
must have at least one classifier since the desired sequence of T actions

contains both actions C and D.
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β1
2 ≥ 0 (L1)

β1
2 + α2(C,C) ≥ 0 (L2)

β1
2 + 2α2(C,C) ≥ 0 (L3)

...
...

β1
2 + (T − 6)α2(C,C) ≥ 0 (LT−5)

β1
2 + (T − 5)α2(C,C) < 0 (LT−4)

β1
2 + (T − 5)α2(C,C) + α2(D,C) ≥ 0 (LT−3)

β1
2 + (T − 4)α2(C,C) + α2(D,C) ≥ 0 (LT−2)

β1
2 + (T − 3)α2(C,C) + α2(D,C) < 0 (LT−1)

β1
2 + (T − 3)α2(C,C) + 2α2(D,C) < 0 (LT )

Since Tε ≥ 7, it is guaranteed that the history induced by ψ6
1 against M3

2

begins with two action pairs (C,C). Therefore, we deduce from lines (L1) to
(LT−4) that β1

2 > 0 and α2(C,C) < 0. Then, it follows from lines (LT−3) and
(LT−3) that α2(D,C) > 0. Next, from lines (LT−2) and (LT ) we can write
the restriction

−β1
2 − (T − 4)α2(C,C) ≤ α2(D,C) < −

β1
2

2
−

(T − 3)

2
α2(C,C).

As a consequence, it must be the case that

−β1
2 − (T − 4)α2(C,C) < −

β1
2

2
−

(T − 3)

2
α2(C,C)

⇐⇒ β1
2 + (T − 5)α2(C,C) > 0. (2)

However, equation (2) contradicts line (LT−4). The system of inequalities
(L1), . . . , (LT ) has no solution. In other words, there is no perceptron with
at most one classifier which implements the optimal sequence of T actions
(C, . . . , C,D,C, C,D,D) against M3

2 . We conclude that the perceptron ψ5
1

is a best reply to M3
2 .

B) The automaton M3
2 is a best reply to ψ5

1

Firstly, since M3
2 plays C in each stage t = 1, . . . , T − 1, any deviation

by player 2 in stage t induces the play of D. By construction, the synaptic
weights α1(C,D) = α1(D,D) = −3T of classifier K1 of perceptron ψ5

1 are
such that any play of D by player 2 in any stage t < T implies βτ

1 < 0 for each
τ = t+ 1, . . . , T , regardless of the action pairs played after the deviation. In
other words, ψ5

1 retaliates by a definitive minmax punishment in reaction to
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any deviation prior to stage T . Secondly, we consider each possible deviation
by player 2.

• Deviations in a stage t ≤ T − 5. Deviating yields player 2 an average
payoff bounded above by (T + c− 5)/T which is no more than f1(ψ

5
1,M

3
2 ) if

b ≤ 3/2. This condition is fullfilled by the assumption b ≤ min{1, c}. Player
2 won’t deviate in a stage t ≤ T − 5.

• Deviation in stage T − 4. Acting for the best within such a devia-
tion, player 2 obtains the average payoff (T − 5)/T which is no more than
f1(ψ

5
1,M

3
2 ) if c+3 ≥ 2b. By assumption c > 0 =⇒ c+3 > 2 and b ≤ min{1, c}

such that it follows that c+ 3 > 2 ≥ 2b as desired.

• Deviations in a stage t ∈ {T − 3, T − 2}. Player 2 obtains at most

(T − 4)a+ b+ c+ 2d

T

from deviating in one of these stages. Not deviating yields a greater average
payoff whenever b ≤ 1, a condition satisfied by assumption.

• Deviations in stage T − 1. Deviating yields player 2 an average payoff
bounded above by

(T − 3)a+ b+ 2d

T
which is no more than f1(ψ

5
1 ,M

3
2 ) if c + 1 ≥ b. This condition is guaranteed

by the assumption b ≤ min{1, c}.

• Deviation in stage T . In this stage, player 2 obtains the best stage
payoff from using M3

2 . Therefore, he cannot gain from switching towards
action C.

Thus, M3
2 is a best reply to ψ5

1 which implies that (ψ5
1 ,M

3
2 ) is a Nash

equilibrium of GT . This completes the proof. �

Proof. [proposition 6] Assume k∗1 = 1, k∗2 = 5 and b ≤ min{1, c}. For
each ε > 0, define Tε ∈ N by

Tε = max

{

7,

⌈
2 + 2b− c

ε

⌉}

.

Let player 1 use the perceptron ψ5
1 with a single classifier constructed

page 16. Player 2’s perceptron, denoted by ψ7
2, has 5 classifiers K2, K3, K4,

K5 and K6 defined by :

20



K2 : α2(C,C) = 1 K3 : α3(C,C) = 0
α2(D,C) = 1 α3(D,C) = 1
α2(C,D) = 1 α3(C,D) = 1
α2(D,D) = 1 α3(D,D) = 1

β1
2 = −T + 1 β1

3 = −1

K4 : α4(C,C) = −1 K5 : α5(C,C) = 0
α4(D,C) = −1 α5(D,C) = 1
α4(C,D) = T α5(C,D) = 1
α4(D,D) = T α5(D,D) = 1

β1
4 = T − 5 β1

5 = −2

K6 : α6(C,C) = −1
α6(D,C) = −1
α6(C,D) = T
α6(D,D) = T

β1
6 = T − 2

The decision function R : {0, 1}5 −→ {C,D} of perceptron ψ7
2 is given by

R(d2, d3, d4, d5, d6) =







C si

6∑

l=2

dl = 2

D sinon

Table 3 indexes the dynamics induced by the pair of perceptrons (ψ5
1, ψ

7
2).

By proposition 4, each player obtains at least 1−ε from (ψ5
1, ψ

7
2) for each ε > 0

and each T ≥ Tε. It remains to show that (ψ5
1 , ψ

7
2) is a Nash equilibrium.

Also, by proposition 4, it suffices to prove that ψ7
2 induces the same strategy

than M3
2 . Moreover, since one can easily verify from table 3 that ψ7

2 generates
the same T -period history against ψ5

1 than M3
2 , it is enough to check that ψ7

2

releases a definitive and minmax punishment in case of a deviation by player
1 from the play induced by M3

2 . We consider successively each possible
deviation by player 1.

• Deviation in a period t ∈ {1, . . . , T − 5}. The deviation from the se-
quence of actions played by ψ7

2 against ψ5
1 consists in playing action D in

stage t. The action pair (D,C) is induced in stage t such that at the begin-
ning of stage t+1, βt+1

4 and βt+1
6 are still positive and βt+1

3 becomes positive.
It follows that

∑6
l=2 dl ≥ 3 with the consequence that ψ7

2 reacts to the devia-
tion by playing action D in stage t+ 1. Next, consider the situation in stage
t+ 2. The action pair (·, D) played in stage t+ 1 implies that βt+2

5 becomes
positive. This value remains positive until the end of the game since this
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t 1 2 . . . T − 6 T − 5 T − 4 T − 3 T − 2 T − 1 T

βt

1
T − 6 T − 7 . . .

1

T − 7
0

−1

T − 5

1

T − 4
0

−1

T − 2

1

T − 1

βt

2
−T + 1 −T + 2 . . .

−6

T − 7

−5

T − 6

−4

T − 5

−3

T − 4

−2

T − 3

−1

T − 2
0

βt

3
−1 −1 . . .

−1

T − 7

−1

T − 6

−1

T − 5
0 0 0

1

T − 1

βt

4
T − 5 T − 6 . . .

2

T − 7

1

T − 6
0

−1

T − 4

−2

T − 2

−3

T − 2

−4

T − 1

βt

5
−2 −2 . . .

−2

T − 7

−2

T − 6

−2

T − 5

−1

T − 4

−1

T − 2

−1

T − 2
0

βt

6
T − 2 T − 3 . . .

5

T − 7

4

T − 6

3

T − 5

2

T − 4

1

T − 2
0

−1

T − 1

6
X

l=2

dl 2 2 . . . 2 2 2 2 2 2 3

at

1
C C . . . C C D C C D C

at

2
C C . . . C C C C C C D

π1(at) 1 1 . . . 1 1 1 + c 1 1 1 + c −b

π2(at) 1 1 . . . 1 1 −b 1 1 −b 1 + c

Table 3: History induced by (ψ5
1, ψ

7
2).

classifier has no negative synaptic weight associated to an action pair of the
stage game. It is also the case of the value associated by K3 to any history
induced by player 1’s deviation. Furthermore, the synaptic weights associ-
ated to the action pairs (·, D) by classifiers K4 and K6 are large enough to
ensure that no sequence of action pairs could imply βτ

4 < 0 or βτ
6 < 0 for any

τ ∈ {t+ 2, . . . , T}. Therefore, it must be the case that
∑6

l=2 dl ≥ 4 in stages
t+ 2, . . . , T which means that ψ7

2 plays action D until the end of the game.
We conclude that a deviation by player 1 in stage t releases a definitive and
minmax punishment.

• Deviations in stage T − 4. Player 1’s deviation consists in playing C in
stage T −4. Since (C,C) is induced in stage T −4, only the value associated
to the history at stage T − 4 by K6 is positive at the beginning of stage
T − 3. According to the decision function R, ψ7

2 plays D in stage T − 3. The
action pair (·, D) which is induced at stage T − 3 implies that βT−2

3 ≥ 0,
βT−2

4 ≥ 0 and βT−2
6 ≥ 0. The play of D by ψ7

2 in stage T − 2 follows from
the fact that

∑6
l=2 dl ≥ 3. Exactly as in the previous case, these three values

remain positive until the end of the machine game, i.e. ψ7
2 punishes player

1’s deviation by the play of action D until the end of the game.

22



• Deviations in a stage t ∈ {T − 3, T − 2}. Player 1’s deviation is similar
to that considered in the first case. The consequences on the values associ-
ated to the history by the six classifiers of ψ7

2 are identical. Therefore, the
punishments induced by this deviation consist in playing D in each of the
remaining stages as desired.

• Deviations in stage T −1. Player 1’s deviation is similar to that consid-
ered in the second case such that we can conclude that ψ7

2 reacts by playing
D in stage T .

• Deviation in stage T . From proposition 4, player 1 cannot construct a
perceptron with one classifier which mimics the behavior of ψ5

1 up to stage
T − 1 and then defects in stage T .

We conclude that for each ε > 0 and each T ≥ Tε, the pair of perceptrons
(ψ5

1 , ψ
7
2) defines a Nash equilibrium whose payoffs satisfy fi(ψ1, ψ2) ≥ 1 − ε

for each player i = 1, 2. �
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