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Abstract

Continuous-time stochastic volatility models are becoming increasingly popular in finance be-

cause of their flexibility in accommodating most stylized facts of financial time series. However,

their estimation is difficult because the likelihood function does not have a closed-form expression.

In this paper we propose a characteristic function-based estimation method for non-Gaussian

Ornstein-Uhlenbeck-based stochastic volatility models. After deriving explicit expressions of the

characteristic functions for various cases of interest we analyze the asymptotic properties of the

estimators and evaluate their performance by means of a simulation experiment. Finally, a real-

data application shows that the superposition of two Ornstein-Uhlenbeck processes gives a good

approximation to the dependence structure of the process.

Keywords: Ornstein-Uhlenbeck process, Lévy process, stochastic volatility, characteristic function

estimation.

MSC : 62F10, 62F12, 62M05.

1 Introduction

Since the pioneering work by Black and Scholes (1973) and Merton (1973), continuous-time stochas-

tic models are the cornerstone of modern financial engineering. In the majority of cases, the be-

havior of financial variables is described by means of Geometric Brownian Motion (GBM). This
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solution is adopted mostly because of its mathematical tractability, but several empirical studies

have shown that the returns of certain security prices do not satisfy some of the properties implied

by GBM. In particular, if the continuous-time log-price were a GBM, the log-returns would be

normal, but at least for moderate to high-frequency data the normality assumption is typically re-

jected, because the data exhibit skewness, excess kurtosis, serial correlation, jumps and time-varying

volatility; see Cont (2001) for a review. Thus, a lot of research has focused on the problem of find-

ing continuous-time stochastic models that take into account one or more of the aforementioned

issues. Barndorff-Nielsen and Shephard (2001a) introduced stochastic volatility models based on

non-Gaussian Ornstein-Uhlenbeck (OU for short) processes; these models seem to be particularly

well-suited, due to their flexibility in accommodating many of these problems.

Consider the following asset return process with stochastic conditional volatility of the log-asset

price S(t)

dS(t) = {µ + βX(t)}dt +
√

X(t)dB(t), (1)

where B(t) is a standard Brownian motion independent of X(t), µ is a drift and β is a risk premium

parameter and {X(t), t ≥ 0} is a non-negative Ornstein-Uhlenbeck type process, i.e. the solution of

the stochastic differential equation

dX(t) = −λX(t)dt + dZ̀(λt). (2)

Here λ > 0 and Z̀(t) is a homogeneous Lévy process, commonly referred to as the Background

Driving Lévy Process (BDLP), for which E[log(1 + |Z̀(1)|)] < ∞. The specific timing adopted for

Z̀(λt) in (2) implies that the marginal distribution of X(t) remains the same no matter what the

value of λ is. The modelling via the use of general Lévy processes, other than Brownian motion,

allows to introduce specific non-Gaussian distributions for the marginal law of X(t) and has received

considerable attention in recent literature in an attempt to accommodate features such as jumps,
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semi-heavy tails and asymmetry. For further details on these models and the subsequent discussion

the reader is referred to Barndorff-Nielsen and Shephard (2001a, 2001b, 2003), Barndorff-Nielsen

and Leonenko (2005).

In the present context the OU process X(t) is positive, with no Gaussian component, moves

entirely by jumps and decays exponentially between two jumps while S(t) remains continuous.

Suppose we observe the process S(t) at fixed time instants t0 < t1 < · · · < tn and define

Sj = S(tj) − S(tj−1), then Sj |x∗j ∼ N(µ(tj − tj−1) + βx∗j , x
∗
j ) where X∗

j = X∗(tj) −X∗(tj−1) and

X∗(tj) =
∫ tj
0 X(s)ds is the integrated volatility; x∗j is termed actual volatility. The terms Sj |x∗j

j = 1, . . . , n are conditionally independent and we note that the distribution of Sj will be a location

scale mixture of normals. By an appropriate design of the stochastic process for X(t) one can allow

aggregate returns to be heavy tailed, skewed and exhibit volatility clustering. Typical choices for

the marginal distribution of X(t) are the Inverse Gaussian and Gamma distributions, alternatively

one may model directly the BDLP of X(t) obtaining a variety of models which can adapt very well

to practical situations.

The basic model can be extended in a number of ways in order to get a better fit to real

phenomena.

A leverage effect can be introduced by adding a term Z̄(t) = Z̀(t)− E[Z̀(t)] to (1) as discussed

in Barndorff -Nielsen and Shepard (2003), i.e.

dS(t) = {µ + βX(t)}dt +
√

X(t)dN(t) + ρdZ̄(λt) (3)

Note that Z̄(t) is the centered version of the BDLP driving the stochastic volatility process X(t)

and that S(t) can have jumps.

More sophisticated correlation structures for X(t) can be introduced via the sum of p independent
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OU processes, i.e.

X(t) =
p∑

j=1

Xj(t), dXj(t) = −λjX
j(t)dt + dZ̀(λjt) (4)

where Z̀(λjt) are independent copies of the BDLP Z̀. In most cases of interest the distribution

of Xj is additive with respect to some of its parameter values obtaining that the distribution of

X belongs to the same class as Xj . Long-range dependence could be introduced by allowing p to

go to infinity. For examples and discussion see Leonenko and Taufer (2005). Leverage can also be

combined with superpositions by using
∑p

j=1 ρjdZ̄(λjt).

Estimating the parameters of these models is difficult because of the inability to compute the

appropriate likelihood function. Much work on estimation has been devoted to model-based esti-

mation approaches based on MCMC methods as in Roberts et al. (2004), Gander and Stephens

(2006, 2007), Griffin and Steel (2006); the idea of using MCMC methods was already set forth in

Barndorff-Nielsen and Shephard (2001a). These methods seem to work well in practice even though

simulation of OU and, more generally, Lévy processes, is difficult owing to their jump character and

one usually has to resort to approximated numerical procedures that may be very slow in some in-

stances. For further details and references on simulation of Lévy processes see Todorov and Tauchen

(2006), Taufer and Leonenko (2009).

Alternatively, as suggested by Barndorff-Nielsen and Shephard (2002), one might consider non-

model-based estimation approaches which exploits realized volatility, i.e. use the existence of high-

frequency intraday data to directly estimate moments of integrated volatility; for extensions of this

approach and further references to recent works one can consult Woerner (2007).

In this paper we consider estimation based on the empirical characteristic function (ch.f.). This

technique is well established; in particular, it has been shown that arbitrarily high levels of efficiency

can be obtained given its direct relation with the likelihood. In the present context this technique
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looks quite interesting and promising since it requires neither discretization nor simulation and

general forms of the ch.f. are available for Lévy processes. Building on existing results we will be

able to provide explicit general formulas for m- variate ch.f. for models of practical interest.

A seminal paper on the subject is that of Feuerverger and McDunnough (1981) which discusses

in detail the i.i.d. case and the extension to dependent observations. Other references that are

relevant here are Madan and Seneta (1987), Feuerverger (1990), Knight and Yu (2002), Jiang and

Knight (2002), Yu (2004) who discusses in more depth empirical ch.f. estimation in a non i.i.d.

setting.

Ch.f.-based estimation has been applied also in estimating the Lévy density for subordinators

by Jongbloed et al. (2005) in a non-parametric setting and and Jongbloed and Van der Meulen

(2006) in a parametric setting. Taufer and Leonenko (2009) consider ch.f. estimation of general

OU processes. The work of this paper generalizes and extends some of these ideas in the context of

stochastic volatility models.

2 Characteristic function estimation

2.1 Background

To enter the estimation problem, suppose that the law of S(t) is a member of a family of distributions

indexed by a vector of parameters θ ∈ Θ ⊂ Rq. In terms of model (1) this accounts to estimating α,

β, the autoregression parameter(s) λ and the parameters of the marginal distribution of the latent

OU process X(t).

Estimation will be based on equispaced observations S1, . . . , Sn with ∆ = tj− tj−1, j = 1, . . . , n.

Given stationarity of S1, . . . , Sn, estimation will be based on the joint ch.f. of blocks of m consecutive
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observations, hence define ζ = (ζ1, . . . , ζm)′ and let

ψθ(ζ) = E[exp{i[ζ1S1 + · · ·+ ζmSm]} (5)

with

ψn(ζ) =
1

n−m + 1

n−m+1∑

j=1

exp{iζ1Sj + iζ2Sj+1 + · · ·+ iζmSj+m−1}

the corresponding empirical estimator. The ch.f. estimator of θ, say θ̂, is the vector minimizing the

objective function

Qn(θ) =
∫
· · ·

∫

S
|ψn(ζ)− ψθ(ζ)|2dW (ζ), (6)

where S ⊂ Rm denotes the region of integration; in the one-dimensional case m = 1 we may restrict

attention to the case S ⊂ R+.

W (ζ) is to be considered a weighting function which may serve different purposes and characterize

the estimation procedure. If it is chosen to be a step function we turn into a discrete setup which

is much easier to implement from the computational point of view. Usually one chooses a grid of

points ζ at which the ch.f. are evaluated and then minimizes a sum instead of an integral. It is

known that the choice of the grid of points has effect on the efficiency of the estimation procedure;

Feuerverger and McDunnough (1981) show that, either in the i.i.d. or dependent case, using a

weight given by the Fourier transform of the score and a grid sufficiently fine and extended, the

ch.f.-based estimation procedure is asymptotically equivalent to maximum likelihood estimation. In

general the choice of an appropriate weight and grid may be impractical given that the required

quantities are seldom available explicitly and so one resorts to second best choices.

If instead we adopt a continuous weight function, the choice is important either for computational

reasons, as it aims at damping out the persistent oscillations of the objective function as ζ →∞, and

for efficiency reasons. As pointed out by Singleton (2001), the estimator reaches the ML efficiency
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if the weight function W (Xt, r) is chosen as

w∗(Xt, ζ) =
1
2π

∫
exp(−iζXt+1)

∂ log fθ(Xt+1|Xt)
∂θ

dXt+1.

It can be seen that the optimal choice requires the computation of the conditional score function,

which is generally impractical in our setup. Knight and Yu (2002) propose an exponentially decreas-

ing function, Epps (2005) suggests using dW (ζ) = (|φθ(ζ)|2/ ∫ |φθ(v)|2dv)dζ and Jiang and Knight

(2002) use the the multivariate normal density. However, for non-Markovian processes, no general

solution is available.

2.2 General forms of the ch.f.

We need some more notation at this point. For the stationary OU process X(t) and the BDLP Z̀(t)

define the respective ch.f. and cumulant functions as

φ(ζ) = E(eiζX(t)), κ(ζ) = log φ(ζ),

φ̀(ζ) = E(eiζZ̀(t)), κ̀(ζ) = log φ̀(ζ).

Recall (see Barndorff-Nielsen and Shephard (2001b)) that we have the relation

κ̀(ζ) = ζκ′(ζ), with κ′(ζ) =
dκ(ζ)

dζ
. (7)

We will also need an expression for the cumulant generating functions which we will use in the form

k(ζ) = κ(iζ) and k̀(ζ) = κ̀(iζ).

In order to implement ch.f.-based estimation we need to have an explicit form for the ch.f. of

the above models to be used in (5) and (6). A fundamental result in this sense can be obtained

from Barndorff-Nielsen and Shephard (2001b), Theorem 10.1, which gives the general form of the

ch.f. of a function of S. For some integrable f denote f · S =
∫∞
0 f(t)dS(t). The integral f · S is
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well defined under some conditions (see, for example Anh et al. (2002)) which are satisfied in all

cases of interest here. For S(t) defined as in (3) it holds

log E(eiζf ·S) = λ

∫ ∞

0

[
k̀(Je−λs) + k̀(H(s))

]
ds + iζ(µ− λρξ)

∫ ∞

0
f(s)ds (8)

where ξ = EZ̀(t) is the expected value of Z̀(1), J = G(0), H(s) = G(s) + iζρf(s) with

G(s) =
∫ ∞

0

[
1
2
ζ2f2(s + u)− iζβf(s + u)

]
e−λudu.

It is easy to extend the result to the case of superpositions considered in (4) by using indepen-

dence. For S(t) defined in (1) with X(t) defined by (4) we have

C{ζ‡f · S} =
p∑

j=1

λj

∫ ∞

0

[
k̀(J (λj)e−λjs) + k̀(G(λj)(s))

]
ds + iζµ

∫ ∞

0
f(s)ds.

Note that dependence on λj of J and G(s) has been introduced in this case.

These formulas may be hard to implement, we need to develop general and tractable expressions

of (8) for functions f of interest in estimation. We do it in two steps. First by providing some

general forms which are useful in understanding the problems at hand; next by developing further

expressions ready for numerical implementation.

The following Theorem obtains the joint ch.f. of the increments of the stochastic volatility

process (1) in terms of the cumulant generating function of the BDLP Z̀(1) of X(t).

Theorem 1. Let S(t) be defined by (1), the joint ch.f. of S1, . . . , Sm is

exp



iµ

m∑

j=1

ζj(tj − tj−1)



 exp

{
λ

∫ ∞

0
k̀(Je−λs)ds

}
exp

{
λ

m∑

l=0

∫ tl

tl−1

k̀(Gl(s))ds

}
, (9)

where

J =
m∑

j=1

(
1
2
ζ2
j − iβζj

)
ελ(tj−1, tj), (10)

Gl(s) =
m∑

j=l+1

(
1
2
ζ2
j − iβζj

)
ελ(tj−1, tj)eλs + II(l>0)

(
1
2
ζ2
l − iβζl

)
ελ(0, tl − s). (11)

Here ελ(u, v) = 1
λ(e−λu − e−λv). Moreover, we use the conventions t−1 = 0 and

∑m
j=m+1 f(j) = 0.
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Proof of Theorem 1. To obtain our result, we need to apply formula (8) setting ζ = 1 and f(s) =

∑m
j=1 ζjII(tj−1,tj ](s). Note first of all that, since (tj−1, tj ] and (tj′−1, tj′ ] do not overlap, for j 6= j′,

then f2(s) =
∑m

j=1 ζ2
j II(tj−1,tj ](s), this allows to derive straightforwardly expression (10). To get the

expression for H(s) we write

II(tj−1,tj ](u + s) = II(tj−1−s,tj−s](u)II(0,tj−1](s) + II(0,tj−s](u)II(tj−1,tj ](s)

to obtain

H(s) =
m∑

j=1

(
1
2
ζ2
j − iβζj

)[
ελ(tj−1 − s, tj − s)II(0,tj−1](s) + ελ(0, tj − s)II(tj−1,tj ](s)

]
.

In order to compute
∫

k(G(s))ds it is convenient to separate the components of G(s) over the disjoint

intervals (tj−1, tj ] and proceed to integrate over separate regions. To this end, write II(0,tj−1](s) =

∑j−1
l=0 II(tl−1,tl](s) with the convention that t−1 = 0 and rearrange terms around common factors to

obtain (11).

In the case of leverage we state it as follows:

Theorem 2. Let S(t) be defined by (3), the joint ch.f. of S1, . . . , Sm is

exp



i(µ− λξρ)

m∑

j=1

ζj(tj − tj−1)



 exp

{
λ

∫ ∞

0
k̀(Je−λs)ds

}
exp

{
λ

m∑

l=0

∫ tl

tl−1

k̀(Hl(s))ds

}
, (12)

where

Hl(s) = Gl(s) + ρζlII(tl−1,tl)(s), l = 0, . . . , m, ζ0 = 0,

and the quantities J , Gl(s) and ελ(u, v) are defined as in Theorem 1.

Finally, when the process X(t) is the sum of p independent components, the ch.f. of the stochastic

volatility model is easily obtained by composing the different contributions. The following theorem

gives the form of the ch.f. of the process.
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Theorem 3. Let S(t) be defined by (1) with X(t) as in (4), the joint ch.f. of S1, . . . , Sm is

exp





p∑

j=1

λj

[∫ ∞

0
k̀j(J (λj)e−λjs)ds +

m∑

l=0

∫ tl

tl−1

k̀j(G(λj)(s))ds

]
+ iµ

m∑

j=0

∫ ∞

0
ζjII(tj−1,tj ](s)ds



 =

(13)

= exp





p∑

j=1

λj

[∫ ∞

0
k̀j(J (λj)e−λjs)ds +

m∑

l=0

∫ tl

tl−1

k̀j(G(λj)(s))ds

]
+ iµ

m∑

j=0

∫ tj

tj−1

ζjds



 .

2.3 Consistency and asymptotic distribution

Consistency and asymptoptic normality of the estimators presented here follow from Knight and Yu

(2002), who discuss ch.f. estimation-based methods for dependent observations, if their conditions

A1-A8 are satisfied. These assumptions concern identifiability and regularity issues as well as specific

convergence conditions on the process that generated the sequence of observations; the reader is

referred to the aforementioned paper for a detailed listing and for the formulas of the asymptotic

variance of the estimators.

Turning to our case, identifiability and regularity conditions will generally hold for the estimators

because of linear independence of the functions eiζjx.

Among the remaining assumptions, the hardest one to verify is condition A7, which postulates

mean square convergence of a sequence of zero-mean martingale differences constructed on the

process. However, according to the remark of Knight and Yu (2002, p. 696), A7 holds under

suitable mixing conditions which are satisfied in our case.

In fact, for the stochastic volatility model (1) α-mixing of the volatility process X implies α-

mixing of the observed return process S, and this is actually true for models (3) and (4) as well. To

see this, one needs to consider the σ-algebra Ft generated by the background driving Lévy process

Z̀ and then, by previous conditioning on Ft, to follow the same way of reasoning as in Lemma 6.3

in Sørensen (2000). That X is α-mixing follows form Jongbloed et al. (2005), who proved that the
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OU process is β-mixing (and hence also α-mixing) under the condition

∫ ∞

2
log(x)ν(dx) < ∞,

where ν is the Lévy measure of X. Note that we have β-mixing with exponential rate either for OU

processes and their superpositions since σ- algebras are equivalent. Conditions for β-mixing holds

for the Tempered Stable and Gamma cases discussed here.

2.4 Computational issues

If we define the quantities

c(l, m) =
m∑

j=l

(
1
2
ζ2
j − iβζj

)
ελ(tj−1, tj) and c(l) =

1
2
ζ2
l − iβζl,

the functions Gl(s) defined in Theorems 1 to 3, can be written in a form more suitable for compu-

tations by rearranging terms not involving the variable of integration s, i.e.

Gl(s) = c(l + 1,m)eλs + c(l)II(l>0)ελ(0, tl − s) =

=
1
λ

c(l)II(l>0) +
[
c(l + 1,m)− 1

λ
c(l)II(l>0)e

−λtl

]
eλs =

say
= c1(l) + c2(l, m)eλs, l = 0, . . . , m.

If a leverage term is present, then, see Theorem 2, it can be simply incorporated into the term c1(l)

and will not change the discussion below. Therefore, overall computation of the ch.f. of S1, . . . , Sm,

for tj − tj−1 = ∆, j = 1, . . . , m can be reduced to the following form

φµ,λ,ξ,ρ(ζ1, . . . , ζm) = exp



i(µ− λξρ)∆

m∑

j=1

ζj



 exp

{
A +

m∑

l=0

Bl

}
, (14)

where the terms A and Bl, l = 0, . . . , m can be computed by integrals of the form

A = λ

∫ ∞

0
k̀(c2(0,m)e−λs)ds and Bl = λ

∫ tl

tl−1

k̀
(
c1(l) + c2(l, m)eλs

)
ds.
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Note that exploiting (7) we have k̀(ζ) = ζk′(ζ); hence for A we have the estimate

A = λ

∫ ∞

0
c2(0, m)e−λsk′(c2(0, m)e−λs)ds = −k(c2(0, m)e−λs)

∣∣∣∣
∞

0

= k(c2(0,m)). (15)

Similarly for the terms Bl, using the same devices, we have the estimate

Bl = λ

∫ tl

tl−1

c1(l)k′
(
c1(l) + c2(l, m)eλs

)
ds + λ

∫ tl

tl−1

c2(l, m)eλsk′
(
c1(l) + c2(l, m)eλs

)
ds =

= λ

∫ tl

tl−1

c1(l)k′
(
c1(l) + c2(l, m)eλs

)
ds + k

(
c1(l) + c2(l, m)eλtl

)
− k

(
c1(l) + c2(l, m)eλtl−1

)
.

Overall, by noting that c1(0) = 0, some further simplifications can be done when l = 0. Finally, one

obtains the following expression to be substituted for A +
∑m

l=0 Bl in (14):

A +
m∑

l=0

Bl = k
(
c2(0, m)eλt0

)
+

m∑

l=1

[
k

(
c1(l) + c2(l, m)eλtl

)
− k

(
c1(l) + c2(l, m)eλtl−1

)]
+

+
m∑

l=1

λ

∫ tl

tl−1

c1(l)k′
(
c1(l) + c2(l,m)eλs

)
ds. (16)

As we see, to completely explicit the formula we need to perform one last integration which depends

on the functional form of k′(·); the above forms imply that the computational complexity of the

ch.f. of Theorems 1 to 3 is the same for any given m-value. Overall, the given formula is well apt

for numerical integration if necessary.

3 Applications

3.1 Marginal models for X(t)

To get more specific into our modelling framework we present two important models for the marginal

distribution of the volatility process which allow to obtain a variety of behaviours for the process

S(t). A general reference for the material of this section is Schoutens (2003).

We have provided expressions for the ch.f. of S1, . . . , Sm in terms of k̀(ζ) or k(ζ), hence one

can model directly from the BDLP or alternatively, if it is preferable, directly by the marginal

distribution for the process X(t). The two approaches are linked by the relation (7).
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A first important model for X is the so-called Tempered Stable which we denote by X ∼

TS(ν, δ, γ), for 0 < ν < 1 and δ, γ > 0. The ch.f. takes the form

φTS(ν,δ,γ)(ζ) = exp
{

δγ − δ(γ1/ν − 2iζ)ν
}

.

When ν = 1/2 we have the important sub-case of the Inverse Gaussian distribution which we denote

by X ∼ IG(δ, γ). For the TS case, exploiting (7) we obtain

k̀(ζ) = −2ζνδ2ν(γ1/ν + 2ζ)ν−1. (17)

Another important case is the Generalized Inverse Gaussian (GIG) model, which we denote by

X ∼ GIG(ν, δ, γ), with δ ≥ 0, γ > 0 if ν > 0, δ > 0, γ > 0 if ν = 0 and δ > 0, γ ≥ 0 if ν < 0. This

model has ch.f.

φ(ζ)GIG(ν,δ,γ) =
(

γ2

γ2 − 2iζ

)ν/2
Kν(δ

√
γ2 − 2iζ)

Kν(δγ)
,

where Kν(x) denotes the modified Bessel function of the third kind. The appropriate form of k̀(ζ)

or k′(ζ) for the GIG model, not shown here, can be recovered by (7). Note that

∂Kν(x)
∂x

= −1
2
(Kν−1(x) + Kν+1(x)).

In the limiting case ν > 0, δ = 0 it reduces to the density of a Gamma distribution Γ(γ2, ν/2);

for ν < 0, γ = 0 one gets those of a reciprocal Gamma distribution. For the Gamma case we have

the simple form

k(ζ) =
νζ

2(γ2 + ζ)
.

Notably the IG distribution is common either to the TS and to the GIG distribution, being

IG(δ, γ) ∼ TS(1/2.δ, γ) ∼ GIG(−1/2, δ, γ).

In general the GIG is not closed under convolution and so, apart from some special cases, cannot

be used to model superpositions of OU processes.
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3.2 Example: the Tempered Stable scenario
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Figure 1: Contour plots of the objective function (6) for model (1) with X(t) following an IG−OU

process with δ = 2, γ = 1, λ = 0.1. Length of series n = 1000. Row 1: univariate ch.f’s are used;

Row 2: bivariate; Row 3: trivariate. Column 1: contour plots for (δ, γ); Column 2: contour plots for

(δ, λ); Column 3: contour plots for (γ, λ). In all cases, the third parameter is set to its true value.
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In this section we provide computational formulas and some simulation results on the important

case of the Tempered Stable scenario for X(t).

From (17) we get

k′(ζ) =
k̀(ζ)
ζ

= −2νδ2ν(γ2 + 2ζ)ν−1. (18)

Using (18) in the last addend of (16), we note that the integral to be computed is of the form

∫
(1 + ceλs))ν−1ds; by appropriate transformations it can be given explicit form in terms of the

hypergeometric function

F (a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∞∑

n=0

Γ(a + n)Γ(b + n)
Γ(c + n)

zn

n!
.

For details about convergence conditions and integral representations of this function we refer the

reader to Abramowitz and Stegun (1972), pp. 556-558. In more detail for our case a solution can

be obtained by

∫
(1 + ceλs)ν−1ds =

1
(ν − 1)λ

(
1 + e−λs/c

1 + ceλs

)1−ν

F (1− ν, 1− ν, 2− ν,−e−λs/c).

When ν = 1/2 one obtains the IG stochastic volatility model. This case can be considerably

simplified; in particular, we report below the cumulant function of S1, . . . , Sm for m = 1. Letting

AT denote the ArcTanh function and tj − tj−1 = ∆, we have

log(E(eiζSj )) =
2δ

(
ζ2

2 − iζβ
)[

AT

(
(B−1)

√
1 + 2(1−e−λ∆)(ζ2/2−iζβ)

γ2λ

)
−AT (B−1)

]

λγB
,

where B =
√

1 + 2(ζ2/2−iζβ)
γ2λ

. As we see, although cumbersome, the above function is straightfor-

wardly applicable in numerical procedures.

When m > 1, the ch.f. of S1, . . . , Sm can be obtained by means of (14). Note that the last

integral in (16) is given by

∫ tl

tl−1

c1(l)k′
(
c1(l) + c2(l, m)eλs

)
ds = −δc1(l)

∫ tl

tl−1

(γ2 + 2(c1(l) + c2(l, m)eλs))−1/2ds,
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whose explicit solution is equal to

−δc1(l)

(
−2AT

(
(γ2 + 2c1(l) + 2c2(l, m)eλs)1/2

(γ2 + 2c1(l))1/2

)/
λ(γ2 + 2c1(l))1/2

∣∣∣∣
tl

tl−1

)
.

Here we give a brief report on some results with simulated data by estimating the parameters

for model (1) with µ = β = 0 and where X(t) follows an IG(δ, γ) OU process with δ = 2, γ = 1

and auto-regression parameter λ = 0.1. We generated a series of observations of length 1000 of

the volatility process X(t) as described in Taufer and Leonenko (2009) and successively used it in

a Euler scheme to generate S. Figure 1 depicts the contour plots of the objective function. Each

row indicates use of the m-variate ch.f., m = 1, 2, 3; each colums shows a possible pair of the three

target parameters.

Although this example is based on a single series, the results are quite promising, also in the

light of the little time used in the minimizing procedure. Inspection of the contour plots reveals

quite a regular behavior of the objective function, with very low values in the neighborhood of the

true parameter values.

4 Numerical results

The preceding sections provide an analysis of the most relevant results and open problems concerning

ch.f.-based estimation of non-Gaussian OU processes. There is in particular one issue that requires

further investigation. We have discussed consistency and asymptotic normality of the estimators;

however, no information is available about the rate of convergence of the estimators, so that the

actual validity of these results in finite samples has to be investigated numerically. In this and the

next section we limit ourselves to the case of the Inverse Gaussian distribution. We first consider

the case m = 2, p = 1 (no superposition) and then extend the analysis to the case m = 2, p = 2,

corresponding to the superposition of two OU processes.
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As pointed out in section 2.1, finding the optimal weighting function W (·) in (6) is not trivial

in a framework like the present one, where the observations are not i.i.d. As no general solution

is available (Jiang and Knight 2002, pag. 206), we will adopt a strategy that has frequently been

used in applications and has proved to have reasonable properties in similar frameworks, namely an

exponentially decreasing weight function.

4.1 Simulation experiment 1: no-superposition

The results of the no-superposition case are shown in Table 1 and Figure 2. At each replication we

simulate the process with T = 1500 and discard the first 500 observations, in order to eliminate the

effect of the starting point. Then we minimize the objective function (6); the integral is computed

numerically by means of the R function adapt, based on the algorithm developed by Berntsen et

al. (1991). The minimization is performed by the R function constrOptim, which employs the

Nelder-Mead simplex method. Because of the heavy computational burden we limit ourselves to

the simulation of B = 100 replications of the process (1) with X(t) given by (2). The values of the

parameters used to simulate the process are δ = 2, γ = 1, λ = 0.1 and β = 0.03. Table 1 shows

the sample mean, standard deviation, skewness and kurtosis computed across the 100 replications.

Figure 2 displays the simulated distributions of the estimators.

Table 1: Simulation results with p = 1 (true values: δ = 2, γ = 1, λ = 0.1, β = 0.03).

Mean Standard deviation Skewness Kurtosis

δ 1.96 0.259 0.810 4.551

γ 1.060 0.172 0.390 4.484

λ 0.177 0.093 1.176 5.746

β 0.030 0.030 -0.434 3.881

Despite the small number of replications, the results are quite interesting. In particular, the

estimators seem to be approximately unbiased and the simulated distributions are bell-shaped.

17



Simulated distribution of δ̂

δ̂

F
re

qu
en

cy

1.5 2.0 2.5 3.0

0
5

10
15

20

Simulated distribution of γ̂

γ̂

F
re

qu
en

cy

0.8 1.0 1.2 1.4 1.6

0
5

10
15

20
25

30

Simulated distribution of λ̂

λ̂

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20
25

Simulated distribution of β̂

β̂

F
re

qu
en

cy

−0.05 0.00 0.05 0.10 0.15

0
5

10
15

Figure 2: Simulation results with p = 1
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4.2 Simulation experiment 2: superposition of two OU processes

The simulation performed in the preceding subsection is repeated here when X(t) is the sum of

2 independent OU processes (see (4)). The remaining settings of the experiment are the same as

before, with the exception of the parameter β, which is now set to zero. Results are shown in Table

2 and Figure 3.

Table 2: Simulation results with p = 2 (true values: δ1 = 1.5, δ1 = 0.5, γ = 1, λ1 = 1.5, λ2 = 0.5).

Mean Standard deviation Skewness Kurtosis

δ1 1.48 0.24 0.15 5.39

δ2 0.35 0.19 1.19 7.31

γ 0.93 0.13 -0.23 3.01

λ1 1.76 0.51 1.80 10.42

λ2 0.6 0.33 1.61 6.78

The results are comparable to the case p = 1, with just a small loss of precision due to the larger

number of parameters. Only the estimators of λ1 and λ2 seem to be less stable than the estimator

of λ in the no-superposition setup: the standard deviation of λ̂1 is more than five times larger than

the standard deviation when p = 1.

4.3 A real-data application: the S&P’s 500 volatility

In this subsection we fit model (1) to the daily log-prices of the Standard & Poor’s index over the

5-years period from December 1, 2003 to December 1, 2008. We consider either the case where the

volatility process X(t) is a single Inverse-Gaussian OU process (p = 1) and the case where it is the

superposition of two indepedent Inverse-Gaussian OU processes (p = 2). The first two panels of

figure 4 display respectively the time series of levels and of log-returns; the remaining two panels

show the autocorrelation function of the returns and of the squared returns.
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Figure 4: Some descriptive statistics about the S&P’s 500 index
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Table 3 reports some basic descriptive statistics. Most well-known stylized facts typically ob-

served in financial data are evident: in particular, there are clusters of volatility and the data are

strongly leptokurtic. Some other features of the data are strictly related to the downward trend

of the last three months, caused by the financial crisis that took place in the second half of the

year 2008. There is little evidence of autocorrelation of the log-returns series, with a couple of

negative values at lags 1 and 2; on the contrary, the squared log-returns are strongly correlated,

with significant values approximately up to lag 40. In addition, the negative skewness is probably

a consequence of the large negative returns often observed in the last three months of the series.

Table 3: Basic descriptive statistics

Mean Standard deviation Skewness Kurtosis

-0.0002 0.0129 -0.4672 20.8052

Estimation of parameters was performed as in sections 4.1 and 4.2 with bivariate ch.fs and an

exponentially decreasing weight function. Table 4 shows the estimates and the value of the objective

function (6) at convergence obtained when implementing model (1) respectively with p = 1 and p = 2

superpositions.

Table 4: Estimation results

δ1 δ2 γ λ1 λ2 β obj. function

p = 1 0.657 - 0.615 0.278 - 0.055 0.0017

p = 2 0.327 0.309 0.589 0.065 0.801 0.056 0.0011

The most relevant difference observed when moving from p = 1 to p = 2 concerns the parameters

of the volatility processes, namely λ1 and λ2. It can indeed be seen that λ2 is much larger than

λ, whereas λ1 is very small. A plausible interpretation is that the two processes of the case p = 2

roughly correspond respectively to small, frequent and fast-moving shocks (the process with larger
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λ) and to large, rare and persistent shocks (the process with smaller λ). Analogous results about

these parameters were obtained by Griffin and Steel (2006, p. 627). When p = 1, an intermediate

value of λ is obtained because a single process has to account for all the movements. Note that

since the sum of δ1 and δ2 in the case p = 2 is approximately equal to δ1 when p = 1 and γ is

nearly unchanged, the marginal distribution of the volatility remains essentially the same for the

two models. The risk-premium coefficient β is positive in both cases, as expected from financial

theory; its relatively large value is in line with the high level of risk in the period considered in the

present application.

With the aim of evaluating the goodness-of-fit in the cases p = 1 and p = 2, we now compare

the theoretical ch.fs and autocorrelation functions of the estimated processes with their empirical

counterparties.

Consider first the ch.fs. Figure 5 shows three functions: each of them is the sum of the squares

of the real and imaginary parts of a ch.f.. The first one (solid line) is the empirical ch.f.; the second

one (dashed line) is the estimated ch.f. with p = 1; the third one (dotted line) is the same function

with p = 2. In all of these cases we let ζ1 vary in the interval [0, 5] and fix ζ2 = 0. The two estimated

functions are virtually indistinguishable and in good agreement with the empirical ch.f. This seems

to suggest that the marginal distribution is estimated quite precisely and that the approach works

well for either value of p.

Next we turn to the dependence structure of the processes: especially when the squared log-

returns exhibit a strong autocorrelation, the analysis of the autocorrelation of the observed and

estimated processes is an important measure of goodness-of-fit. Notice that the theoretical autocor-

relation function of the squared log-returns can be obtained using the results in Barndorff-Nielsen

and Shephard (2001a, sect. 4.2). In this case the evidence is quite different. Figure 6 shows the
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theoretical autocorrelation functions of the estimated processes for p = 1 and p = 2: for comparison

purposes, we also reported the empirical autocorrelation function of the observed squared returns.

It is clear that with p = 2 the autocorrelation function decreases much more slowly and therefore

captures more precisely the autocorrelation in the data. This allows to conclude that adding a

second component improves considerably the fit to the dependence structure of the returns, while,

as seen above, the marginal distribution is estimated approximately in the same way by the two

models.

5 Conclusions

In this paper we have considered the problem of estimating the parameters of a continuous-time

stochastic volatility model where the latent volatility follows an OU process. These processes are

well suited for modelling some typical stylized facts observed in financial data. However, their

estimation is quite difficult because usually the likelihood function cannot be written in closed form.

Here we have developed an estimation method that makes use of the ch.f.; this technique is quite

appealing because it is aymptotically equivalent to maximum likelihood.

The main contribution of the paper consists in extending some results first given by Barndorff-

Nielsen and Shephard (2001a) in order to obtain the explicit expression of the ch.f. for various

choices of the marginal distribution of the volatility process. We have investigated, by means of

some simulation experiments, the small sample behavior of the estimators. Finally the method has

been applied to the estimation of the volatility process of the daily time series of the S&P’s 500

equity index over the period 2003-2008.

From a theoretical point of view the method proposed in this article is convenient because it

avoids both discretization and simulation. The results of the Monte Carlo experiments confirmed
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the validity of the approach. As for the real-data analysis, the autocorrelation function of the

squared log-returns decays very slowly. In accordance to other previous studies, in this case the

superposition of two OU processes provides a better fit than a single OU process, allowing to estimate

more precisely the dependence structure of the process.

A possible extension of these models is via the use of continuous superpositions where one could

also introduce long-memory in the volatility process (see Barndorrf-Nielsen and Lenenko (2005) for

details). The technique of estimation adopted here seems feasible in these cases even though it may

be difficult to obtain explicit expressions; instead one would be able to get expressions for cumulants

and the approach the problem of estimation by means of GMM.
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by Lévy noise. J. Appl. Probab. 39, 730–747.

Barndorff-Nielsen, O.E. and Shephard, N. (2001a). Non-Gaussian Ornstein-Uhlenbeck-based models

and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63, 167-241.

Barndorff-Nielsen, O.E. and Shephard, N. (2001b). Modelling by Lévy processes for financial econo-
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