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Abstract

In equipment-intensive sectors — such as water utilities, power gen-
eration, gas — billions of dollars are spent in capital equipment. We
discuss and characterize the optimal policy of a profit-maximizing firm
and compare it with the optimal policy of a welfare-maximizing plan-
ner. When there is no technical progress, the duration of the plant
is longer for a private firm. With technical progress, we show that
duration tends to increase when the installed capacity increases over
time, while it tends to decrease when technical progress reduces oper-
ating costs. Under some conditions we also show that when capacity
expands over time the duration of the plant is shorter for a public firm
than for a private firm.
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1 Introduction

In equipment—intensive sectors — e.g. most utilities — large amounts are
spent each year in new capital. Investment is directed either at replacing
existing equipment or expanding capacity, benefiting at the same time from
the technological improvements embedded in new capital. When deciding
the level of investment at any moment in time the main trade-off is between
taking immediate advantage of the new capacity or postponing the invest-
ment, thus maintaining flexibility in order to exploit future technological
progress.

Many public utilities — traditionally in charge of operating service — have
been privatized. Incentives for a private firm are obviously different from the
ones of a public firm. It is reasonable, for example, to expect a more aggres-
sive use of the pricing policies!. Due to the extent of these privatizations, a
large empirical literature has analyzed utilities’ performance under private
ownership. The picture that emerges is mixed?. Firms moving from a public
to private ownership go from being highly unprofitable to meeting strong
efficiency requirements. A significant increase in output and service quality
has also been reported (see, among others, Andres et al. [1], Bortolotti et
al. [6], Brown et al. [7], Boubakri and Cosset [2]). The evidence on the
investment pattern in the maintenance and expansion of utility networks is
instead rather mixed, being mainly related to the institutional environment
where privatization takes place, utilities’ inefficiency under public owner-
ship and the chance to introduce new technologies (Cambini and Rondi [8],
Estache and Rossi [15], Gassner et al. [18]).

In the theoretical literature, a problem which partially resembles the
joint determination of investment and price over time has been considered
by inventory theory. Recent developments in this field have focussed on the
problem of coordinating price and inventory replenishment under various
assumptions (see e.g. Federgruen and Heching [16], Karakul [19], and Web-
ster and Weng [27]). Yano and Gilbert [26] and Elmaghraby and Keskinocak
[14] provide surveys on pricing and inventory control.

We analyze a similar problem under the assumption that the instan-

!See for example Chen and Simchi-Levi [10], McGill and van Ryzin [21], and Cook
[11].

?Privatizations were implemented in sectors and countries with vastly different insti-
tutional, political and economic environments. The procedures adopted have also been
quite diverse. Thus, it is not surprising that a mixed picture on utilities’ performance has
emerged. See Megginson and Netter [22] for a survey of empirical studies on privatization.
Further analysis can be found in in Bortolotti et al. [5] and Cambini and Rondi [9].



taneous demand function is stationary and that physical deterioration of
equipment reduces production capacity over time. We first determine the
optimal pricing and investment policy under the assumption that there is
no technical progress® and we next extend the analysis to the case in which
technical progress increases the productivity of capital over time. It is worth
noting that taking into account the impact of technological progress on pro-
duction capacity, this paper brings together the inventory problem literature
and the expansion capacity literature, initiated by Manne [20] and developed
afterward by D’Aspremont, Gabszewicz and Vial [12], Gabszewicz and Vial
[17], and more recently by Demichelis and Tarola [13] and Tarola [23].

In order to capture the lumpy nature of equipment investment, we as-
sume that firms are restricted to investments of fixed size. The optimal
investment policy can then be described as a countable sequence of points
at which the investments are made. Furthermore, the optimal price pat-
tern between two dates at which new plants are installed falls into two
categories: either the capacity constraint is not binding, so that the instan-
taneous monopoly price is used, or the capacity constraint is binding and
the price is higher than the monopoly price.

In the case in which there is no technical progress we show that a
profit-maximizing firm replaces its production capacity less frequently than
a welfare-maximizing firm would do. Even in the static case a welfare-
maximizing firm produces more than a profit-maximizing firm. In the dy-
namic case this effect is magnified, since the more frequent rate of plant
replacement implies that on average capacity constraints are less binding
for the welfare-maximizing firm than for the profit-maximizing firm. It is
also worth noting that, when the cost function is convex, this implies that in
general the marginal cost at which the firm produces is higher when welfare,
rather than profit, is maximized. This, it should be noticed, is an effect that
holds even when public firms achieve productive efficiency. Of course cost
will be even higher if there is productive inefficiency, which has been the
main focus of attention in the privatization process.

When there is technical progress the results depend on the particular
way in which the progress occurs. We show that when the installed capacity
expands over time, the duration of the plant increases and, under some
conditions (low installation cost and sufficiently large capacity), it remains
true that public firms have a shorter duration than private firms. The case in

3Qur problem is also related to the macroeconomic literature on models with vintage
capital. For recent developments see Van Hilten [25], Boucekkine, Germain and Licandro
[3], Boucekkine, del Rio and Licandro [4].



which technical progress leads to lower operating costs is more complicated,
although under some conditions it is possible to show that plant duration
decreases over time.

The rest of the paper is organized as follows. The basic model without
technical progress is described in section 2. Thus, the optimal policy is fully
characterized. The model with technical progress in analyzed in section 3.
Concluding remarks are in section 4, and an Appendix collects the proofs.

2 The Model without Technical Progress

A monopolist with an infinite horizon faces a continuous and strictly decreas-
ing inverse demand function p (q), where ¢ is the instantaneous quantity. At
each time ¢ the amount that can be produced is limited by the production
capacity z (t). Producing a quantity ¢ < z (¢) at time ¢ has an instantaneous
cost of ¢(q) and it is impossible to produce quantities larger than x (t).

After installation, capacity decreases continuously over time. The only
way to increase production capacity is to replace the old equipment, building
a new plant. In other words, the sequence of replacements may only consist
of lumpy investments whose size is constant and equal to . Installing a
new equipment of size T has a cost of k. For the moment we assume that
no technical progress takes place, so that both the quantity T and the cost
function ¢ (q) are fixed over time. If a new plant of size T is installed at time
t; and no further installation occurs, then the capacity at any time ¢t = ¢t;+s
is given by the function

x(t) =g (s), (1)
where the function g (s) is continuous, positive, strictly decreasing and it
satisfies ¢ (0) = 1 and lims_, 4 g (s) = 0. Let

m

¢" = argmax p(q)q—c(q)

be the monopoly quantity computed when no capacity constraints are present
(if there are multiple quantities let ¢"* be the lowest such quantity). We as-
sume T > ¢, i.e. a newly installed plant has a capacity which is sufficient
to produce the monopoly quantity.

The policy of the firm can be represented by a quantity policy q (t) which
specifies the quantity produced by the monopolist at each instant ¢, and by
an investment policy t = ({1, ta, ....t;...) specifying the dates at which a new



plant of size T is built. The present value of profits is given by
Vita®) = [ e wla)a® - cla)de—> ke,
0 =0

where t9 = 0. A policy is optimal if it maximizes V (t,q(¢)) under the
capacity constraint

q(t) <Tg(t—1t;) each t € [t;, tiy1) and i =0,1,2,...

In the next section we will discuss and compare the optimal policy for a
profit-maximizing firm and for a welfare-maximizing regulator.

2.1 The Optimal Policy
2.1.1 Optimal Policy for a Profit—Maximizing Firm

We start observing that, since there are no intertemporal links among the
quantities determined at different moments in time, at each instant ¢ €
[ti,ti+1) the quantity can be chosen to solve

max  p(q)q—c(q)
q

subject to
g<x(t—t;).

The solution to the problem is simple. If at time ¢ we have ¢ < z (t — ;)
then optimality requires ¢ (t) = ¢™. Thus, if we define s* as the solution to

i.e. s* is the amount of time that it takes for the capacity to shrink to the
level g™, then the quantity produced will remain constant over the interval
[ti,ti + s*]. After that, the capacity constraint becomes binding and the
optimal quantity has to decrease, which in turn implies that the price ends
up being higher than the monopoly price. The optimal policy takes a par-
ticularly simple form when the profit function is increasing in ¢ up to the
point ¢". In that case the quantity produced is ¢ until ¢; + s* and then
q (t) = x (t — t;) until replacement occurs.
Define ¢ (z) as the solution to

max p(q)q—-c(q)



subject to
q =<,

and let

m(x) =p(q(z))q(x) —c(q(x))
be the highest instantaneous profit achievable when the capacity is x. Since
the optimal quantity at each time ¢ depends only on the capacity constraint,
the maximization problem for the firm can be simplified by looking only at
the replacement times {¢;}:;°,. The problem of the firm can then be written

as - s
max Z et (/ e (Tg (t — 1)) dt — k> (2)
{32, =0 t;
with the initial condition ¢y = 0.
We will make the following assumption.

Assumption 1 ["* e "'n (Tg (t)) dt > k.

This is an extremely weak feasibility assumption. It says that a monopolistic
firm is able to obtain strictly positive profits, once installment costs are taken
into account. The assumption implies the following lemma.

Lemma 1 Under Assumption 1 the optimal policy requires that replacement
occurs in finite time.

The logic of the result is simple. Since capacity goes to zero as t goes to
infinity, if it is profitable to build a plant at time 0 then it must be profitable
to build a new plant when the capacity is sufficiently depleted.

To understand the solution to problem (2) we start observing that, ab-
sent technological progress, the problem is stationary. At each time t; at
which a new plant is installed, the problem is identical to the one faced by
the firm at time 0. This implies that we can restrict attention to policies in
which the optimal duration A of a plant is constant. The next proposition
further characterizes the solution.

Proposition 1 There is a solution to problem (2) such that replacement
occurs at a constant finite interval A, i.e. t;11 —t; = A for each i. The
optimal duration of a cycle is given by the lowest solution to

Aersn(x(s)) ds —
w(x:A)) :fo e 1_(6(71)A)d k’ )

and the solution is such that x (A) < ¢™.



Notice that the RHS of equation (3) is the present value of profits when
the plant is replaced at intervals of length A. This implies that the present
value of profits is equal to the one that would be obtained with a constant
stream of value 7 (z (A)).

How does A depends on the parameters of the model? It turns out that
the optimal length increases with the cost of installation. The impact of
changes in the initial capacity T turns out to be more difficult to establish,
as it depends on the rate at which the profit = (ZTg (¢)) changes over time.
dn( xg(t))g (t) is
decreasing in t then the optimal length is non-increasing in . Ifmg (t) is
increasing in t then the optimal length is non-decreasing in T.

Proposition 2 The optimal length A is increasing in k. If

The intuition is very simple for the cost of installation. If k increases then
new plants become more costly. At any given moment in time the trade-off is
between obtaining the profit 7 (Zg (¢)) at no additional cost or starting a new
cycle at a cost k. If the cost of starting a new cycle goes up, then avoiding
replacement becomes more attractive. Thus replacement will occur only
when the instantaneous profit is lower. Since instantaneous profit decreases
over time, this requires a longer length.

The intuition with respect to T goes as follows. First observe that
dﬁ—gt)) (t) is the derivative of m with respect to T. A marginal increase
in T increases capacity, and therefore weakly increases profits, at each point
at which the plant is in place. If M g (t) is increasing, this means that
the marginal increase is larger when t is large. Thus, while both the current
profit 7 (ZTg (t)) and the present value of profits obtained installing a new
plant increase, the former increases more than the latter. This makes it
optimal to wait a little bit longer to replace the plant. The opposite occurs
when ﬂ% g (t) is decreasing. Observe that
d [dﬂ (Tg (1)) g(t)} _ &r(Tg (1)) dr (Tg (¢))

Tg® (t) + -

/
i da Pz g

Since 2Z > 0 and ¢ (t) < 0, a sufficient condition for m g (t) to be

decreasing is izﬂ < 0. This is the case, for example, When the revenue

function p (q) ¢ is concave and the cost function is convex. In that case the

optimal policy is to set ¢ = x when x < ¢™ and ¢ = ¢ otherwise, and it is
d*n

easy to check that <% < 0 for each z.



2.1.2 Optimal Policy for a Welfare-Maximizing Regulator

Suppose now that the firm is controlled by a regulator whose goal is to
maximize social welfare. At each instant ¢ the regulator solves

max /qp(y) dy —c(q)
0

st. ¢g<z(t).

Let g% be the quantity that maximizes social welfare when there is no ca-
pacity constraint. As in the previous case, if x (t) > ¢" then clearly the
optimal policy is to set the quantity at ¢*, attaining the maximum welfare
level. If = (t) < ¢ then let w(x (¢)) be the welfare attainable. The same
analysis performed for the profit maximizing case can now be applied, with
the only difference that instead of 7 (x (t)) we should use w (x (t)). We state
this result without proof.

Proposition 3 Social welfare is mazimized by renewing the plant at a con-
stant interval A, where A is the lowest solution to

A _rs
w(x(d) Jo e w(x(s))ds—k. n

r 1—e A

The optimal interval A increases in k. It increases in T if %g (t) is

increasing, while it decreases in T if % g (t) is decreasing.

Let A™ be the lowest solution to equation (3) and A" the lowest solution to
(4). What is the relation between the two optimal durations? Will a profit-
maximizing firm renew plants more or less often than a welfare-maximizing
regulator? The next proposition establishes that the optimal duration is
shorter for a regulator.

Proposition 4 AY < A™, i.e. the welfare-mazximizing requlator invests in
new plants more frequently than a profit-mazximizing firm.

The intuition is that the relevant objective function decreases faster over
time (i.e. as capacity shrinks) for the regulator, since consumer surplus is
taken into account. If a profit-maximizing firm wants to renew the plant
when capacity reaches the value z (A"), it must be that the instantaneous
value of the profit equals the value of the profit stream (net of investment



cost) obtained by changing the plant. Since this ignores the change in con-
sumer surplus, the point of indifference must be reached by the regulator at
a higher level of capacity, which in turn implies a shorter time for renewal.

What does this imply in terms of productive efficiency? If we consider
a static model, the welfare-maximing firm produces more than the profit-
maximizing firm. If the cost function c¢(g) is convex this implies that in
general the marginal cost at which the public firm produces is higher. Since
we assume that the only thing that deteriorates over time is the capacity,
while ¢(g) does not change, Proposition (4) implies that this effect will be
amplified in a dynamic model in which the time of replacement is optimally
chosen. Since the welfare maximizing regulator renews the plant more of-
ten, capacity will on average be larger than for a profit maximizing firm.
This increases the difference between the quantities produced by a regulator
and a profit maximizer, which in turn increases the difference between mar-
ginal costs. Of course the opposite will occur when the cost function ¢ (q)
is concave: in that case it is the welfare-maximizing firm which ends up
producing at a lower marginal cost, and the effect is enhanced by dynamic
consideration.

Here it is important to understand that we are ignoring the possibility
that over time a plant becomes more inefficient (unit costs are higher for
older plants) and that a public firm may not achieve productive efficiency.
Both features are likely to be relevant in practice.

3 The Model with Technical Progress

Up to now we have assumed that technical progress is absent. This is clearly
not a realistic assumption and it is therefore interesting to explore what
happens when there is an expectation that the technology will improve over
time.

There are many ways in which technical progress can affect the produc-
tion function of the firm. Over time, plants can get better either because
the cost of installation goes down, because the operating cost goes down or
because the capacity goes up. The first aspect can be modeled by indexing
to t the replacement cost, so that now k (¢;) is the cost paid for replacing a
plant at time ¢; and k () is a decreasing function. Similarly, improvements
in technology leading to a decrease in the cost of production can be mod-
elled making the cost function dependent on the time of installation, so that
¢(q,t;) is the cost of producing quantity ¢ when the plant has been installed
at time ¢;. Since over time the technology gets better, the function ¢ is (at



least weakly) decreasing in the second variable for any given ¢. At last, if
technical progress expands the capacity at the time of installation, this can
be modeled assuming that the newly installed capacity depends on the time
of installation according to a function T (¢;). Thus the capacity available at
time ¢ > t; when a plant has been installed at ¢; is T (¢;) g (t — t;), where
T (t;) is increasing. Notice that the presence of technical progress does not
change the basic fact that at each instant ¢ the firm (or the regulator) can
choose the quantity ¢ (¢) to maximize the instantaneous objective function,
since quantities have no intertemporal links across periods.

3.1 Profit Maximization

For a profit maximizing firm, define = (s,¢;) as the value of the objective
function obtained solving

max  p (@) q—c(q,t;)

subject to
q<7T(t)g(s)

where s = t—t; is the time passed since the current plant was installed. Given
our assumptions, the function 7 is non-increasing in s and non-decreasing in
t;. We will maintain the assumption that at each date t; the new installed
capacity T (¢;) allows the firm to attain the monopoly profit 7" (¢;) (the
monopoly profit may depend on t; if the cost function ¢ depends on ¢;).

The maximization problem now becomes

p 2

1=0

tit1
/ e "t (t —ti, ;) dt —e ik (ti))
t

%

with the initial condition g = 0. A more general way to write the problem,
which will turn out to be useful, is to write the objective function at any
given arbitrary point ¢; as

~

Vv (tia A) =

oo

Z T 0 A /

q=1 0

Aq

q—1 q—1
e " s,t,-—I—ZAj ds — k ti—i—ZAj
j=0 Jj=0

where A = {A; j:og and A; is the planned duration of a plant installed at
time ¢;4;—1 (we adopt the convention Ay = 0). More in general, define

V(t)=sup V(t;,A)
A

10



as the present discounted value that can be achieved when a new plant is
installed with the technology available at time ¢;. Notice that the following
relationship

A
V()= max e "5 (s, ) ds — k() + e AV (t 4+ A) (5)
Z 0
must hold at any time ¢; at which an installation occurs. We will make the
following assumption on the evolution over time of the technology.

Assumption 2 For each s, the function 7 (s,t;) is non-decreasing and con-
cave in t; and bounded above by a real number T and below by 0. The function
k (t;) is decreasing and convez in t; and limy_,o k (t) = k > 0.

The assumption states that, for any given duration of the plant, the firm
can achieve (weakly) higher profits if the plant has been installed at a later
date. This is uncontroversial, as it is basically the same as saying that
there is technical progress over time (remember that demand is stationary);
boundedness is also uncontroversial. The assumption that 7 (s, ¢;) is concave
in t; is more substantive, as it says that the rate of technical progress slows
down over time. Similar considerations apply to the function k (¢;).

Using boundedness of the profit function and the assumption on the long
run behavior of the replacement cost we have the following Lemma.

Lemma 5 Under assumption 2, there exists a value A* such that each in-
stalled plant has a duration of at least A*, i.e. under the optimal policy
tiz1 —t; > A* for each i.

Since the installation cost is bounded below by k£ > 0, it cannot be optimal
to let the time between two installation go to zero, since the value of the
profit earned between the two periods would inevitably be lower than the
installation cost. The Lemma allows us to use standard results in dynamic
programming to obtain the following result.

Proposition 6 The function V (t;) is increasing, differentiable and con-
cave.

The proposition implies that the optimal length of the plant at time ¢; can
be obtained from the first order condition of problem (5) i.e.:

s (A, ti) +V’ (tl' + A) =rVv (ti + A) . (6)

11



The concavity of V' implies that the LHS is decreasing, while the RHS is
increasing, so that the equation has a unique solution.

Without further information on the profit function, it is difficult to say
anything on how the duration of the plant varies over time. If we differentiate

both sides of (6) with respect to t;, we obtain the following expression for
dA .
d_ti'

A TV’(ti—l—A)_V//(ti-FA)_%ivti)
dt; % + V" (t; + A) =1V (t; + A)

(7)

The denominator of the RHS in (7) is negative but the sign of the numerator
is undetermined.
To better understand the circumstances under which plant duration in-
creases or decreases, suppose k (t) = k (installation cost is constant), so that
oo

E'(t) =0. Let {A;‘} ~ be the optimal policy at time ¢; and observe:

oo *

V(tl) _ Ze—rzq IA* / qe_rsﬂ_ N tz"‘ZA ds — k

g=1 0

The envelope theorem implies

o0 . Al 8yt + Y- LA
Vi) = Ze DI /()qu < 5. >ds
(A

g=1

%) Af )
= Z e_r(tiJﬁq_ti) / e_TS 87T (s’ tlth]) dS (8)
0 Otitq

q=0

A sufficient condition for & dt <0isrV’ (tix1) > M As it can be seen
from (8), rV' (t;11) is a weighted average of the future values of 2 ot L.e. the
sensitivity of profit to technical progress. Thus, how the optimal plant du-
ration evolves depends on the future impact of technical progress compared
to the current impact. To better understand the issue, let’s consider two
special subcases.

3.1.1 Technical Progress in Capacity Only

Suppose first that ¢(q,t;) = c¢(q) and k (t;) = k, so that the only effect of
technical progress is to expand the capacity installed. This means that the
monopoly quantity ¢"”* remains the same. In this case the duration of a

12



plant is bounded below by the length of time needed for capacity to reach
g™, the monopoly quantity. The lower bound increases over time, providing
a reason for a longer duration of the plant. Suppose that x (¢;) becomes very
large with respect to ¢ as time increases. In that case most of the time

or _
will be spent producing ¢™. When production is constant we have 37 = 0,

which in turn implies that fo e s Mds will be close to zero. On

the other hand M is strictly posmve since at time t;11, write before
substituting the plant the firm is capacity constrained. We conclude that
in this case it is likely that rV’ (ti11) < M If the Concav1ty of V' is

not too pronounced, so that V" is close to zero, then we have 4 dt > 0.

3.1.2 Technical Progress in Operating Cost Only

Suppose now that T is constant over time, while technical progress decreases
the cost of production ¢ (q,t). In that case the reduction in cost increases
over time the monopoly quantity ¢" (¢), thus shortening the amount of time
necessary for the capacity constraint to become binding. This implies that
%Z—m becomes larger for higher values of ¢;, as the firm bumps more quickly
in the capacity constraints. We conclude that in this case it is likely that
V' (tig1) > %, a sufficient condition for a reduction of the plant
duration over time.

3.2 The Welfare-Maximizing Firm

As in the previous section, the analysis can be applied with little modifica-
tion to the case of a welfare-maximizing planner. For this case let w (s, ;)
be the value of the objective function obtained solving

q
max /0 p(y)dy — c(q, t:)
subject to
q<T(ti)g(s).

The function w is non-increasing in s and non-decreasing in ¢;. The maxi-
mization problem now becomes

= - ¢
max e "w(t —t;,t;)dt — e "M E (¢
{12 go </t (bt ( 1))

13



with the initial condition ¢y = 0. Let W (¢;) be the value function when a
new plant is installed at ¢;. The relationship

A
W (t;) = max ; e "Sw (s, t)ds — k(t;) +e AW (L +A) (9)
must still hold. If we assume, similarly to what done for 7 (s, ¢;) in Assump-
tion 2, that w (s, t;) is concave in t;, then we can show (similarly to what
done in Proposition 6) that W (¢;) is increasing, differentiable and concave,
so that the optimal length of the plant at time ¢; can be obtained from the
condition

w(AG)+ W (G +A) =W (t; +A). (10)

As in the case of the profit-maximizing firm, we can’t establish how the
optimal duration of a plant varies over time without further assumptions.
We have (A
dA W (1 D) = W (1 + A) — 20l
dti  QWBE) Ly (14 A) — W (8 + A)
The denominator is negative but sign of the numerator is undetermined.

Following the same reasoning as for the case of a profit-maximizing firm,
when k (t) = k we have

.- Aq Ow (8, titq)
W' (t;) = e*T(tH—q*ti) / qefrs s Li4-q ds
(t) =" B

q=0

(11)

and considerations similar to the one discussed for the previous case apply.

3.3 Comparing Plant Duration

For the case in which there is no technical progress we have shown that the
optimal plant duration is shorter for the welfare-maximizing firm. The basic
force driving this result is that expanding production yields more benefits
when social welfare, rather than profit maximization, is the objective. When
technical progress is present it becomes difficult to provide analytical results,
but the same insights apply, at least when capacity expansion is the main
result of technical progress.

To better grasp the point, consider the case in which operating costs
remain the same over time, i.e. ¢(q) does not change, and the only technical
progress is that installed capacity T (¢;) expands over time. Let ¢™ and
q" be the profit-maximizing and the welfare-maximizing quantities; observe
that they are constant over time and we typically have ¢ > ¢™. A profit
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maximizing firm will never renew a plant if x () > ¢™ and the welfare-
maximizing firm will not renew the plant if z (¢) > ¢*. Thus, if a plant has
been installed at a given time t;, the optimal duration A™ (¢;) for the profit
maximizing firm is such that x (A™ (¢;)) < ¢"™ while the optimal duration for
the profit maximizing firm A" (¢;) satisfies x (A" (¢;)) < ¢*. This implies
that x (A" (t;)) > ¢™ is a sufficient conditions for A¥ < A™. This will
surely be the case when the installed capacity T is sufficiently large and the
installation cost is sufficiently low. To see this point, consider the limit case
in which, after ¢;, the next plant to be installed has infinite capacity, so
that no new installations will be necessary. Thus, the instantaneous social
welfare after installation is w* = foqw p(s)ds—c(q™) at each time. Dynamic
maximization of social welfare requires solving

*

A w
/ e w(s, t;)ds — e TRk + e A —
0 r

and the first order condition is
w (A ) + 1k =w*.

As k converges to zero the solution converges to a value AY such that
x (A"Y) = ¢, which implies A" < A™.

The general case is more complicated. For example, when ¢ (g, t) changes
a profit-maximizing firm may decide to renew the plant even if capacity
exceeds the current monopoly quantity. The point is that the cost function
of the lastly installed plant, ¢ (g, t;—1), may be much higher that what can be
obtained with a new plant, say c(q,t;), and as a consequence the monopoly
quantity ¢ (t;—1) can be much lower that the monopoly quantity ¢ (¢;). Thus,
in the same way that without further assumptions it was impossible to say
whether plant duration increases or decreases over time, it is impossible to
establish whether plant duration is higher for a public or a private firm.

4 Conclusions

In this paper, we have considered the optimal investment timing and pricing
policies of a privatized utility and have compared it with that of a welfare-
maximizing regulator, both with and without technical progress. For the
case in which technical progress is absent we show that the optimal plant
duration for a public firm is shorter than for a private firm. When technical
progress is introduced the results depend on the particular form taken by
technical progress.
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Our model is deterministic. Incorporating uncertainty, both on demand
and on the evolution of the technology, seems to be an interesting exten-
sion. Another useful extension is relaxing the assumption of stationarity
of demand; at least in certain industries there are commonly held expec-
tations of expansion or contraction of demand over time and the interplay
of demand change with technical progress may yield interesting results. Fi-
nally, it would be interesting to analyze the case in which the public firm is
not welfare-maximizing, for example because it does not achieve productive
efficiency.
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Appendix

Proof of Lemma 1. Define

+0o0
M:/o e " (x(t)dt — k.

By Assumption 1, M > 0. We first show that it cannot be optimal never to
replace the plant. In fact, suppose that the plant is replaced only once at
time T'. The value of the objective function under this policy is

o /OT e (/Tm e (3 (¢~ T)) dt — k)
— /OT e (z(t)dt—k+e"TM

Thus, the difference between the policy of replacing the equipment at T" only
and the policy of never replacing the equipment is

V(T)—M=e¢"T (M - /TJFOO e "D ( (t)) dt> .

Since limy—,0o 7 (2 (t)) = 0, there is a value T such that

“+o00
/ e =) 1 (o (1)) dt < M,
T

thus implying that never substituting the plant is suboptimal. [

Proof of Proposition 1. To see that the maximum value of the objective
function V* can be attained with a policy such that the plant is replaced at
a constant interval A*, observe that for the optimal policy {tz};“:og it must
be true that

t1
V= / e (z(t)dt —k+e TV
0

This follows from the fact that, once the plant is dismissed at t1 the situation
is exactly the same as at time zero. Letting t; = A* this implies

I et (x (8)) dt — k
1—e A '

V= (12)
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Now notice that when the plant is replaced at a constant interval A, the
value of the objective function is

o (n+1)A
V(A) = Z/A e "' (x(t —nA))dt
n=0v"

Since

(n+1)A A
/ e " (z(t —nA))dt = emA/ et (x (1)) dt
nA 0

for each n, it follows

A

V(A) = Jo € m (x () dt — k.

l—e 2

(13)

Thus, in order to achieve the maximum value V* given in (12) it is sufficient
to replace the plant at constant intervals of length A*.

Since we can restrict attention to policies in which the plant is replaced
at a constant interval A, the problem boils down to

max V (A)
A>0

where V (A) is given by (13). The function V is continuous and differen-
tiable, and we can write

—r A _rg .
V' (A) = re A (w(x(A)) _fo e " (x(s))ds k:) (14)

(1 —eTA) r 1—e A

Since lima_o+ V (A) = —00, ima_ 400 V (A) = M and from Lemma 1 we
know that some replacement must occur, V' (A) must be maximized at some
finite value A. At the optimal point it must be V' (A) = 0. From (14) this
is equivalent to

JANg—— _
Jo e 17r_(a;Ei)A)ds k:w(:cr(A))' (15)

Notice that this implies that at all points such that V/(A) = 0 we have
V(A) = w. Since 7* (z (A)) is decreasing in A, the highest value of
V' (A) is obtained at the lowest value of A such that (15) is satisfied.
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At last, notice that x (A) > ¢™ implies 7 (z (A)) = 7", making it im-
possible to have equation (15) satisfied. Thus, it must be the case that
x(A) < g™ [ ]

Proof of Proposition 2. Using the expression of V' (A) given in (13) we

have
Vv re "8

OADk — (1 — e—rA)>2
Thus, V satisfies increasing differences in A and k, which in turn implies

that the optimal value of A is increasing in k.
Similarly, notice that, writing

> 0.

A _rs (=
V(A < Jo o (@ (s))ds —k

1—e A
we have
aV (A, z)
ONOT
re ™ 8 e (dr(Tg (D)) dm (g (s))
— 9 (A) - ————= d
(1 _efrA)Q (/0 © < dx 9(8) dz g(s)> 8)
Thus, if ﬂ%ﬁﬁg (s) is increasing in s we have %2 > 0. On the other

hand, if ﬂ%ﬁlg (s) is decreasing in s we have %%2 < 0. In the first
case the optimal length A is increasing in Z, while in the second case it is
decreasing. [

Proof of Proposition 4. Define

y(z) =w(z) —m(x).

Notice that in general y (z) is not immediately interpretable as consumer
surplus, since at some values of z the quantities ¢ (z) and ¢* (x) may
differ. We now show that at = z (A™) we have

w(z(A™) I3 et (x (£)) dt — k

r 1—e A" ’

(16)

thus implying x (A"Y) > 2 (A™) and therefore A" < A™.
Observe that, by definition of the function y (x):

w(z(t)  ylz@) n T (z (1)) (17)

T T T
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rt

Multiplying both sides by e™", integrating over [0, A™] and dividing by

1 —e ™™ we obtain
A™ _
2 et e @)t~k " e @)t~k " ey @ (o) de
1—erA™ 1—e A" 1—e A" ’

and evaluating (17) at t = A™ we obtain

w(z iﬁm)) _yl= (TAm)) LT (TAm))'
Thus, inequality (16) is equivalent to
m m A™ —rt _
y(z (TA ) (= (TA ) _Jo e - e(_T(M ) dt fo - e_mmt))dt7

Since at A™ we have

w(x(A™)  fo e Tm (w () dt —

r N 1—eTA™ ’

the inequality is equivalent to

y(@(Am) _ Jo ey (e @) dt

T 1 — e TA™

-
— o< /0 e [y (a (8)) — y (= (A™)] dt.

The inequality is satisfied if y () is an increasing function of x, and therefore
a decreasing function of A. Now observe that y (x) can be written as

q* ()
y(z) = /0 p(s)ds — c(q” (@) —p(@" (@) + (@™ (@),  (18)

where ¢% (z) is the optimal instantaneous quantity of a welfare-maximizing
regulator facing a capacity constraint x and ¢ (x) is the optimal quantity
of a profit-maximizing firm. Thus:

V) = (p(a” @) — ¢ @ @) 2L~ (3 " ()~ ¢ (g™ (@) UL

It has to be % > 0 and % > 0. Furthermore notice that whenever
dg™ . dg™ dav
=~ > 0 it has to be the case that &~ = < =1 and ¢* (z) = ¢ (z) = 2.
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This is because in that case the capacity constraint is binding for the profit-
maximizing firm, which implies % = 1. Furthermore, if it is binding for
the profit-maximizing firm it must be the case that the marginal revenue
is higher than the marginal cost. But this implies that the price is higher
than the marginal cost, so the capacity constraint is binding for the welfare-
maximizing regulator as well.

At the surplus-maximizing point we must have p (¢* (x)) > ¢ (¢* (x)).
Thus, if % = 0 we have ¢ (x) > 0. Otherwise, using C‘l]—;n = % =1 and
q¥ (x) = ¢™ (z) = x we can write ¢/ (x) as

Y (x) =p(x) -7 (2)

which is always positive. ]

Proof of Lemma 5. Let {t;}:°, be the optimal policy and choose ¢ so that
em < k. By contradiction, if there is no minimum duration then there must
be i such that t;41 —t; < €. Consider now the present value of the profit
obtained between time ¢;_; and time ¢;1,. This is given by

ti

tit1
A= e "5 (s, tim1) ds—e "1k (ti_l)—l—/ e "5 (s, ) ds—e "k () .
t;

ti—1
Consider now the alternative policy in which no investment occurs at period
t;. In that case the present value of the profit obtained between ¢;_; and
Lit1 18
tit1
B = / e " (S, ti—l) ds — e "1 (ti—l) .
ti—1

Thus

tit1
B A= / e [ (s, 1) — 7 (s, £)] ds + e "k (1) >
t.

e i (—em+ k) >0
where the first inequality comes from that fact that, given assumption 2,
7 (s,ti—1) — 7w (s,t;) > —7 and k (t;) > k, while the second inequality comes
from the definition of €. We have therefore a contradiction and we conclude
that there is a minimum duration A* such that ¢;11 —¢; > A* for each i. m

Proof of Proposition 6. Let A* be the minimum plant duration identified
in Lemma 5. Let V be the set of real-valued functions with domain [0, +00).
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Define the mapping 7' : V — V as

A
V)0 = /0 e o (5, 8) ds — k (1) + ¢ AV (¢ + A)

rA

Mapping T is a contraction mapping with modulus e ™", since

A
TV +a)(t) = snd /0 e " (s,t)ds — k(t) + e "RV (t+ A) + 4]

<

A
max / e (s,t)ds —k(t) +e AV (t+A)| e a
AZA* o

Under assumption 2 the value function is a fixed point of the mapping T
and it is increasing, differentiable and concave. ]
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