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Abstract

A strategy profile of a game is called robustly stochastically stable if
it is stochastically stable for a given behavioral model independently of
the specification of revision opportunities and tie-breaking assumptions
in the dynamics. We provide a simple radius-coradius result for robust
stochastic stability and examine several applications. For the logit-
response dynamics, the selection of potential maximizers is robust for
the subclass of supermodular N -player binary-action games. For the
mistakes model, robust selection results obtain for best-reply dynamics
in the same class of games under the weaker condition of strategic com-
plementarity. Further, both the selection of risk-dominant strategies in
coordination games under best-reply and the selection of “Walrasian”
strategies in aggregative games under imitation are robust.
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1 Introduction

The concept of stochastic stability was introduced in Game Theory in a

series of seminal papers by Blume (1993), Kandori, Mailath, and Rob (1993),

Young (1993), and Ellison (1993). In the meantime, a large number of

applications have been developed, a series of theoretical improvements have

ensued, and several striking results have been proven relying on this concept.

Among the best known results, we single out three which have had a lasting

impact in the literature. First, the selection of risk-dominant equilibria (even

in the presence of alternative, Pareto-efficient ones) in coordination games

(Kandori, Mailath, and Rob, 1993; Kandori and Rob, 1995; Sandholm, 1998)

under best-reply or imitation dynamics. Second, the selection of potential

maximizers in exact potential games in logit-response dynamics (Blume,

1993, 1997). Third, the selection of Walrasian equilibria in oligopolies with

imitating firms (Vega-Redondo, 1997), which has been shown to generalize

to the class of aggregative games by Alós-Ferrer and Ania (2005). These are

all important insights which have shaped our understanding of equilibrium

(and non-equilibrium) selection and stability.

The literature has also made a number of weaknesses apparent, some of

which have the status of unwritten “folk wisdom”. The main weakness of

the stochastic stability literature as a whole is probably the fact that many

results might depend, or might be perceived to depend on modeling details,

thereby casting doubt on the main insights gained from this approach. A

number of failed robustness checks have demonstrated this issue. We would

like to argue that, while some of these checks are substantial and have further

sharpened our intuition, other have arisen due to a fundamental lack of

robustness in the very concept of stochastic stability.

Among the substantial results we count the analysis in Robson and Vega-

Redondo (1996), which showed that the selection of risk-dominant equilibria

under the imitation dynamics of Kandori, Mailath, and Rob (1993) depends

on the postulated interaction structure, with “round-robin” interaction lead-

ing to risk-dominant equilibria but true random matching favoring Pareto-

efficient ones (this distinction would not exist if myopic best-reply is as-

sumed). In our opinion, this result does not correspond to a weakness in

2



the general approach. On the contrary, it is a substantial contribution that

points at the importance of the interaction structure and should not be con-

sidered a robustness check. Indeed, the importance of both the interaction

structure and the behavioral rule for equilibrium selection has been made

apparent in the related literature on games in networks (see Weidenholzer,

2010 for a review). For instance, Morris (2000) shows that best-reply dynam-

ics lead to risk-dominant equilibria in quite general networks, while Alós-

Ferrer and Weidenholzer (2008) show that imitation favors Pareto-efficient

outcomes under comparatively mild conditions on the network.

Among the more worrying failed robustness tests we count the fact that

changing the specification of either revision opportunities or tie-breaking

assumptions might sometimes influence the long-run outcomes in a given

dynamic specification. This affects, for instance, the well-known result that

the original logit dynamics of Blume (1993, 1997) selects potential maxi-

mizers in exact potential games. Alós-Ferrer and Netzer (2010) have shown

that this result depends crucially on the assumption of asynchronous learn-

ing, that is, a dynamic specification in which every period one and only one

agent is selected and allowed to revise his or her strategy, while all other

players are required to stay put. If this assumption is dispensed with and

more general revision processes are allowed for, the result vanishes away.

Tie-breaking assumptions are also not always harmless. Suppose that a

behavioral rule specifies the set of strategies that a player might choose from,

e.g. the set of payoff maximizers given other players’ strategies (as in the case

of a myopic best-reply dynamics) or the set of strategies leading to currently

maximal, observed payoffs (as in the case of an imitation dynamics). Even

abstracting from revision opportunities, this still does not fully specify the

dynamics. One might for instance require that all maximizing strategies be

chosen with positive (maybe equal) probability; it might, however, be equally

reasonable to postulate that players who are already employing one of the

optimal strategies do not switch away. These are all reasonable choices,

which sometimes have consequences for the dynamic analysis (contrast e.g.

Oechssler, 1997 and Alós-Ferrer, 2003; see also Sandholm, 1998).

Both the specification of revision opportunities and tie-breaking assump-

tions might be argued to be orthogonal to the analysis of the long-run pre-
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dictions associated to a given behavioral rule and interaction structure. It

is precisely for this reason that the possible dependence of long-run predic-

tions on them is an important consideration. A result which depends on

such modeling details should not be considered to be on equal grounds with

a result which is immune to the specification thereof. In the present research,

we aim to provide and apply a simple result which helps establish when a

long-run prediction is robust to the specification of revision opportunities

and/or tie-breaking assumptions.

The remainder of the paper is structured as follows. Section 2 introduces

the general framework for the analysis. Section 3 introduces the robustness

concept and presents the main result. Section 4 presents a first application to

evolutionary stability and aggregate-taking behavior for perturbed imitation

dynamics. Section 5 analyzes N -player binary-action games both for the

logit-response dynamics and the popular best-reply mistakes model. Section

6 discusses the limits of the approach and Section 7 concludes.

2 Learning in Games: A General Framework

2.1 Stage Model

Consider a finite population of N agents who repeatedly interact in discrete

time t = 1, 2, . . . according to a pre-specified stage model, formalized as a

finite, normal-form game Γ = (I, (Si, ui)i∈I), where I = {1, 2, ..., N} is the

set of players, Si are the strategy sets, and ui : S → R are payoff functions,

where S =
∏

i∈I Si. We let S−i =
∏

j 6=i Sj be the set of pure strategy profiles

of all players except i, and we also write s = (si, s−i) and ui(si, s−i).

The strategies chosen and the stage model determine the payoffs agents

receive at the end of the period t. The stage model can simply be taken to be

an arbitrary, asymmetric N -player game, as in Blume (1993) or Alós-Ferrer

and Netzer (2010), or it can incorporate additional structure. For example,

it might specify that agents play a bilateral finite game sequentially against

each other agent in the population (round robin tournament), as in Kandori,

Mailath, and Rob (1993) (hereafter KMR), where the bilateral game is a

symmetric 2× 2 coordination game.
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2.2 Behavioral Rules and Correspondences

The game is played by boundedly rational players, whose behavior is sum-

marized by behavioral rules. At the beginning of each period, a certain

subset of agents is chosen to update their actions (we will further specify re-

vision opportunities below). Each player chooses a pure strategy according

to a pre-specified behavioral rule Bi : S 7→ ∆Si. That is, Bi(s)(s
′
i) is the

probability with which player i will choose strategy s′i ∈ Si after the profile

s ∈ S has been played.

A simple behavioral rule which has been extensively studied in the lit-

erature of learning in games is the myopic best-reply rule, where players are

assumed to be able to compute best-replies to the current profile of strate-

gies of their opponents, and choose one of them. In games with alternative

best-replies, the need for tie-breaking gives rise to a family of rules. That

is, a rule BBR
i is a best-reply rule if

BBR
i (s)(s′i) > 0 =⇒ ui(s

′
i, s−i) ≥ ui(s

′′
i , s−i) ∀ s′′i ∈ Si. (1)

Let us call Γ a symmetric game if Si = Sj = S0 for all i, j ∈ I and

payoffs are given by a symmetric mapping, i.e. the payoff of a player choosing

strategy si against the profile of strategies s−i is ui(si, s−i) = u(si|s−i),

where the latter is invariant to permutations of s−i. For symmetric games,

a second prominent example of behavioral rule (or, rather, family thereof),

is given by imitate-the-best rules as in KMR, Vega-Redondo, 1997, or Alós-

Ferrer and Ania, 2005, where players just adopt one of the strategies leading

to the highest, currently observed payoff. That is, again taking into account

the need for tie-breaking assumptions, a rule BIB
i is an imitate-the-best rule

if

BIB
i (s)(s′i) > 0 =⇒

s′i = sj for some j ∈ I with

uj(s) ≥ uk(s) ∀ k ∈ I.
(2)

Note that, formally, a rule might rely on the payoff functions in order

to specify the strategies to be chosen, but the interpretation on the actual

knowledge of the game that players have might be very different. In a best-

reply rule, the use of the payoff function amounts to assuming that players

do know the payoff function and can use it to (myopically) optimize their
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behavior. In the case of an imitation rule, the use of the payoff function is

just a modeling device capturing the informational assumption that players

observe realized payoffs, but do not necessarily know the game or are able

to perform optimizing computations.

The description of both the best-reply and the imitation rule allows for

different tie-breaking assumptions. We will now provide a formal approach

to their specification. A behavioral correspondence for player i is a corre-

spondence B̂i : S ։ Si. That is, B̂i(s) is the set of strategies s′i ∈ Si which

player i might choose after the profile s ∈ S has been played. A behavioral

rule Bi is said to agree with a behavioral correspondence B̂i if

Bi(s)(s
′
i) > 0 =⇒ s′i ∈ B̂i(s) (3)

for all s′i ∈ Si and all s ∈ S. For instance, myopic best-reply rules as in (1)

are those agreeing with the best-reply correspondence

B̂BR
i (s) = {s′i ∈ Si | ui(s

′
i, s−i) ≥ ui(s

′′
i , s−i) ∀s

′′
i ∈ Si}.

Imitate-the-best rules as in (2) are those agreeing with the imitation corre-

spondence

B̂IB
i (s) = {s′i ∈ Si | s

′
i = sj for some j ∈ I with uj(s) ≥ uk(s) ∀k ∈ I}.

Given a behavioral correspondence B̂i, we say that a behavioral rule

Bi agreeing with B̂i is reasonable if Bi(s)(si) > 0 whenever si ∈ B̂i(s),

where si is player i’s strategy in the profile s, and Bi(s)(s
′
i) > 0 for all

s′i ∈ B̂i(s) whenever si /∈ B̂i(s). With a reasonable behavioral rule, players

who find their current behavior to be optimal according to the behavioral

correspondence will not abandon it for sure (although they might also not

stick to it for sure). Also, the rule respects anonymity of the strategies in

the sense that only the consequences of their use matter, as evaluated by

the correspondence.1 Let Ti denote the set of all reasonable behavioral rules

that agree with a given correspondence B̂i (we suppress dependency of Ti

on B̂i for notational convenience).

1Lexicographic conditions as e.g. choosing the most popular action in case of ties can

be built into the behavioral correspondence.
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Now consider two reasonable behavioral rulesB1
i andB2

i from Ti. We say

that B1
i is (weakly) more sluggish than B2

i , written B1
i � B2

i , if B
1
i (s)(s

′
i) > 0

implies B2
i (s)(s

′
i) > 0, for all s′i ∈ Si and all s ∈ S. That is, the support of

B2
i is always weakly larger than the support of B1

i . We say that the two rules

are equally sluggish, written B1
i ≃ B2

i , if B
1
i � B2

i and B2
i � B1

i , so that the

sets {s′i ∈ Si | B
1
i (s)(s

′
i) > 0} and {s′i ∈ Si | B

2
i (s)(s

′
i) > 0} always coincide.

By construction, the relation ≃ is a binary equivalence relation on Ti. In

the following, we will informally identify two behavioral rules if they are

equally sluggish, i.e. if they differ in specific (strictly positive) probabilities

assigned to strategies, but not in their support. Formally, we work in the

quotient set Ti/ ≃, on which the sluggishness-relation � becomes a partial

order.

Among all rules in Ti, we consider two distinguished rules (modulo equal

sluggishness). The cautious rule B0
i is the rule which specifies B0

i (s)(si) = 1

whenever si ∈ B̂i(s). That is, under the cautious rule a player will always

stick to his or her current action if this is one of the optimal ones according

to the behavioral correspondence B̂i. The random tie-breaking rule BX
i is

the rule given by BX
i (s)(s′i) > 0 for all s′i ∈ B̂i(s), that is, all strategies

that are optimal according to B̂i are always chosen with strictly positive

probability. The following observation is now immediate.

Lemma 1. Any reasonable behavioral rule Bi satisfies B0
i � Bi � BX

i .

That is, the poset Ti/ ≃ has a top and a bottom element. It is straight-

forward to show that it is actually a complete lattice.

Finally, we denote profiles of reasonable behavioral rules for all players

by B = (Bi)i∈I ∈ T :=
∏

i∈I Ti. Consider the product order on T , i.e.

B1 � B2 if and only if B1
i is weakly more sluggish than B2

i for all i ∈ I.

Then we also obtain B0 � B � BX for any reasonable profile B ∈ T and

the two extreme profiles B0 = (B0
i )i∈I and BX = (BX

i )i∈I .

2.3 Revision opportunities

A learning dynamics for a game Γ is made of a behavioral rule for each player,

which includes tie-breaking assumptions, and a specification of revision op-

portunities, i.e. a way of determining which players receive the opportunity
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to update their actions in a given period. Intuitively, revision opportunities

are closely related to the speed of the dynamics. A dynamics where only

one agent is allowed to revise per period is more gradual than one where the

whole population might switch away simultaneously, enabling abrupt tran-

sition phenomena. We consider a general class of revision processes which

encompasses a wide range of possibilities.

Definition 1. A revision process is a probability measure q on the set of

subsets of I, P(I), such that

∀ i ∈ I, ∃J ⊆ I such that i ∈ J and qJ > 0 (4)

where, for each J ⊆ I, qJ = q(J) is interpreted as the probability that exactly

players in J receive revision opportunities (independently across periods).

This definition is taken from Alós-Ferrer and Netzer (2010). Condition

(4) implies that each player gets the opportunity to revise with strictly

positive probability. A revision process is called regular if qi = q{i} > 0 for

all i ∈ I, so that for each player there is a strictly positive probability of

being the only player who is allowed to revise. Let Q denote the set of all

regular revision processes.

Analogously to the previous section, we can define a binary relation �

on Q as follows.2 For any q, q′ ∈ Q we say that q′ is (weakly) quicker than

q, written q � q′, if qJ > 0 implies q′J > 0 for any J ⊆ I. That is, the

revision process q′ includes more possibilities than q. Say that q and q′ have

the same speed, written q ≃ q′, if q � q′ and q′ � q. By construction, the

relation ≃ is a binary equivalence relation. Consider again the quotient set

Q/ ≃, where two revision processes belong to the same class if and only if

they have the same speed, i.e. they differ in specific probabilities assigned

to player subsets J ⊆ I, but not in their support. We will again identify

two processes that have the same speed and treat � as a partial order.

Among all processes in Q, we again consider two distinguished elements

(modulo equal speed). The asynchronous learning process qAL satisfies

qAL
J = 0 whenever |J | ≥ 2. The independent learning process qIL, on the

2We use the same symbols for the binary relations on T and on Q for convenience.

8



other hand, satisfies qILJ > 0 for all J ⊆ I.3 The following observation is

now again immediate.

Lemma 2. Any regular revision process q satisfies qAL � q � qIL.

Therefore the poset Q/ ≃ has a top and a bottom element as well. It is

again a simple exercise to show that it is actually a complete lattice.

2.4 Stochastic Stability

Starting from a profile of behavioral rules B, we can apply a noise process to

derive associated profiles of behavioral rules with noise Bε = (Bε
i )i∈I , where

ε ∈ (0, 1) measures how strongly players’ behavior is perturbed from B.4

For the first noise process that we consider, the mistakes model, we fix a

noise ruleEi : S 7→ ∆Si for every player i ∈ I, whereEi(s)(s
′
i) is independent

of s and satisfies Ei(s)(s
′
i) > 0 for all s′i ∈ Si. Then each player’s behavioral

rule Bi is perturbed to BM,ε
i by

BM,ε
i (s)(s′i) = (1− ε)Bi(s)(s

′
i) + εEi(s)(s

′
i). (5)

For instance, the best-reply version of the well-known KMR model, first

studied in Kandori and Rob (1995), proceeds exactly like this to derive

the best-reply with mistakes BBR,M,ε
i from an unperturbed best-reply rule

BBR
i . As ε → 0, behavior converges to the best-reply rule. The noisy version

BIB,M,ε
i of an imitate-the-best rule BIB

i can be constructed analogously.5

Importantly, the tie-breaking assumptions implicit in BBR
i or BIB

i carry over

to the noisy rules when the mistakes approach is used. When we start from

3These concepts are again taken from Alós-Ferrer and Netzer (2010). The model of

Blume (1993) postulates qi = 1/N and is therefore an instance of asynchronous learning.

Independent inertia as in Sandholm (1998), where qJ = p|J| (1− p)N−|J| for some p > 0,

is an instance of independent learning. The simultaneous learning process, where qI = 1,

is the simplest example of a process which is not regular.
4See Bergin and Lipman (1996) for a general treatment of (state-dependent) noise

processes and their selection properties.
5The original KMR model can be readily interpreted as a model of imitation (see KMR

p.31, Rhode and Stegeman, 1996, and Sandholm, 1998) where agents mimic the actions

which led to highest payoffs in the last period. In a celebrated result, KMR show that

their dynamics select risk-dominant equilibria, rather than payoff-dominant ones, in 2× 2

symmetric coordination games.
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a behavioral correspondence such as B̂BR
i or B̂IB

i , for instance, the mistakes

model associates to every behavioral rule Bi ∈ Ti a distinct behavioral rule

with noise Bε
i , which converges to Bi as ε → 0. We say that noise processes

with this property respect tie-breaking.

The second noise process that we will consider is the logit choice func-

tion, which has been used in the literature to obtain noisy versions of the

best-reply dynamics (see e.g. Blume, 1993 or Alós-Ferrer and Netzer, 2010).

Formally, the probability of player i choosing s′i given s only depends on the

profile s−i of actions of the opponents and is given by

BBR,L,ε
i (s)(s′i) =

e(1/ε)ui(s
′
i,s−i)

∑
s′′i ∈Si

e(1/ε)ui(s′′i ,s−i)
. (6)

Again, all actions are chosen with strictly positive probability whenever

ε > 0, and choice concentrates on myopic best-replies as ε → 0. The logit

perturbation, however, leaves no freedom in tie-breaking assumptions. As

ε → 0, the behavioral rule BBR,L,ε
i converges to the specific best-reply rule

that breaks ties with equal probabilities. The logit approach is therefore

not suited to associate a distinct noisy rule to every Bi ∈ Ti for a given

behavioral correspondence B̂i. By using logit choice, we rather select a

specific Bi ∈ Ti (the one with equal tie-breaking).6 We say that noise

processes with this property impose tie-breaking.

Other particular examples of noise processes could also be considered.

For instance, Myatt andWallace (2003) and Dokumaci and Sandholm (2008)

consider dynamics based on a probit choice function, which, as in the case

of logit, impose tie-breaking. Sandholm (2010) considers general “noisy

revision protocols” (where the word revision is used in a different sense as in

this paper) including the mistakes model and logit and probit choice. The

two prominent examples presented above are those for which we develop

specific applications later in this paper.

Now consider any perturbed learning dynamics (Bε, q) derived from an

unperturbed dynamics (B, q) according to some noise process. Suppose that

all Bε
i have full support whenever 0 < ε < 1, as in the examples above. Then,

6One could also study the logit perturbation BIB,L,ε
i of an imitate-the-best dynamics

BIB
i , which would converge to the equal tie-breaking imitation rule as noise vanishes.
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the perturbed dynamics becomes an irreducible and aperiodic Markov chain

on the state space S with transition probabilities

P ε
s,s′ =

∑

J⊆I

qJ
∏

i∈J

Bε
i (s)(s

′
i), (7)

and it has a unique invariant distribution, denoted µε. A strategy profile

s ∈ S is stochastically stable if limε→0 µ
ε(s) > 0. Stochastic stability for

the mistakes model can be characterized along the lines introduced in KMR

or Young (1993), with a useful “radius-coradius” sufficient condition devel-

oped by Ellison (2000). Alós-Ferrer and Netzer (2010) provide an analo-

gous, general characterization for the logit-response dynamics, and a similar

radius-coradius result.7

3 Robustness

We are interested in the following two concepts of robustness. First, suppose

we consider a given profile of behavioral rules with noise Bε, based on some

underlying profile of unperturbed behavioral rules B. Hence we treat as fixed

a specification of tie-breaking assumptions. This is always the case when the

noise process imposes tie-breaking, as with the logit-response dynamics, but

it can be done for any behavioral rule and noise process as detailed above.

Robustness now refers to the specification of revision opportunities alone.

Definition 2. Fix a profile of behavioral rules with noise Bε. A state s ∈ S

is robustly stochastically stable for Bε if it is stochastically stable for any

regular revision process q ∈ Q.

Second, suppose we consider a profile of behavioral correspondences B̂ =

(B̂i)i∈I , with T being the set of profiles of reasonable behavioral rules that

agree player-wise with B̂. For each B ∈ T we then apply a noise process that

respects tie-breaking to associate a distinct profile with noise Bε. The prime

example is the mistakes model. Robustness then refers to the specification

of both tie-breaking assumptions and revision opportunities.

7Several earlier contributions have studied logit behavior for special classes of games

or dynamics (e.g. Blume, 1993, 1997; Maruta, 2002; Myatt and Wallace, 2008a,b).
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Definition 3. Fix a profile of behavioral correspondences B̂ and a noise

process that respects tie-breaking. A state s ∈ S is robustly stochastically

stable for B̂ and the noise process if it is robustly stochastically stable for

all Bε that the noise process associates to the elements of T .

We will now provide a method that allows us to identify robustly stochas-

tically stable states. We first introduce the following auxiliary concepts.

Definition 4. A monotone operator on revision processes is a mapping

T : Q × S 7→ R

(q, s) 7→ T q(s)

such that T q(s) ≥ T q′(s) for all s ∈ S whenever q � q′.

Analogously, we can define monotone operators with respect to both

revision opportunities and tie-breaking rules as follows. Fix a profile of be-

havioral correspondences B̂, which induces the set T . Consider the product

order on T × Q, i.e. (B, q) � (B′, q′) if and only if B � B′ and q � q′.

Definition 5. A monotone operator on revision processes and tie-breaking

rules is a mapping

T : T × Q × S 7→ R

(B, q, s) 7→ TB,q(s)

such that TB,q(s) ≥ TB′,q′(s) for all s ∈ S whenever (B, q) � (B′, q′).

In contrast to the usual approach, we will not define radius and coradius

from a primitive such as cost (Ellison, 2000) or waste (Alós-Ferrer and Net-

zer, 2010). The only property of the different radius and coradius concepts

that we need in the following is that they are monotone operators that yield

sufficient conditions for stochastic stability.

Definition 6. Fix a profile of behavioral rules with noise Bε. A radius-

coradius pair (R,CR) for Bε is a pair of monotone operators on revision

processes such that, whenever Rq(s) > CRq(s) for some s ∈ S, it follows

that s is the only stochastically stable state for revision process q and Bε.
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It is easy to see that the existing radius and coradius concepts are in fact

radius-coradius pairs in the sense of this definition. For instance, the radius

of Ellison (2000) for the mistakes model is essentially the minimal number

of mistakes needed to leave the basin of attraction (under the unperturbed

dynamics) of a state. If one considers a revision process that enables more

transitions, the transitions which realize the minimum under the previous

dynamics are still feasible. Hence the minimum can only become weakly

smaller. Similarly, the coradius of Ellison (2000) is the maximum across

states s′ outside the basin of attraction of s, of all the minimum number

of mistakes required for transitions from s′ to the basin of attraction of

s. Again, if a revision process allows for more transitions, the minima can

only weakly decrease and the maximum among all the minima can only be

weakly smaller than before. The reasoning for logit-response is analogous,

with the number of mistakes replaced by the utility differences between

the chosen actions and the myopically optimal ones. Once monotonicity

is established, the fact that the property embodied in the definition above

is fulfilled follows from the radius-coradius theorems in Ellison (2000) and

Alós-Ferrer and Netzer (2010).

When we start from behavioral correspondences B̂ and a noise process

that respects tie-breaking, we can define analogous concepts.

Definition 7. Fix a profile of behavioral correspondences B̂ and a noise

process that respects tie-breaking. A radius-coradius pair (R,CR) for B̂

and the noise process is a pair of monotone operators on revision processes

and tie-breaking rules such that, whenever RB,q(s) > CRB,q(s) for some

s ∈ S, it follows that s is the only stochastically stable state for revision

process q and the profile Bε associated to B by the noise process.

Again, the radius and coradius due to Ellison (2000) satisfy these re-

quirements when the noise process is the mistakes model. The intuition for

monotonicity provided for Definition 6 also applies here, because we enable

more transitions when we make tie-breaking less sluggish.

The following proposition embodies the main idea behind our results.
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Proposition 1. (i) Fix a profile of behavioral rules with noise Bε. Let

(R,CR) be a radius-coradius pair for Bε. Let q1, q2 ∈ Q with q1 � q2. If

there exists s ∈ S such that

Rq2(s) > CRq1(s),

then for any q with q1 � q � q2, s is the unique stochastically stable state.

(ii) Fix a profile of behavioral correspondences B̂ and a noise process

that respects tie-breaking. Let (R,CR) be a radius-coradius pair for B̂ and

the noise process. Let (B1, q1), (B2, q2) ∈ T × Q with (B1, q1) � (B2, q2).

If there exists s ∈ S such that

RB2,q2(s) > CRB1,q1(s),

then for any (B, q) ∈ T × Q with (B1, q1) � (B, q) � (B2, q2), s is the

unique stochastically stable state (for the profile Bε associated to B).

Proof. We prove statement (ii). Statement (i) is proven analogously. Con-

sider an arbitrary (B, q) ∈ T × Q with (B1, q1) � (B, q) � (B2, q2). It

suffices to notice that, by monotonicity,

RB,q(s) ≥ RB2,q2(s) > CRB1,q1(s) ≥ CRB,q(s),

which implies the statement by definition of radius-coradius pair.

Using part (i) of this result and Lemma 2, we obtain an immediate

corollary which delivers a simple condition for robust stochastic stability

given a behavioral rule with noise.

Corollary 3. Fix a profile of behavioral rules with noise Bε. Let (R,CR)

be a radius-coradius pair for Bε. If there exists s ∈ S such that

RqIL(s) > CRqAL

(s),

then s is the unique robustly stochastically stable state for Bε.

This corollary applies directly to the logit-response dynamics or to any

mistakes model for pre-specified tie-breaking assumptions. The result states

that establishing robust stochastic stability is just as simple (or just as com-

plex) as establishing stochastic stability with the help of a radius-coradius
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result. The only difference is that one must focus on asynchronous learning

for computing the coradius and on independent learning for computing the

radius.

Using part (ii) of Proposition 1 and Lemmas 1 and 2, we also obtain an

immediate corollary about robustness with respect to tie-breaking rules in

addition to revision processes.

Corollary 4. Fix a profile of behavioral correspondences B̂ and a noise

process that respects tie-breaking. Let (R,CR) be a radius-coradius pair for

B̂ and the noise process. If there exists s ∈ S such that

RBX ,qIL(s) > CRB0,qAL

(s),

then s is the unique robustly stochastically stable state for B̂ and the noise

process.

Hence, even when we require robustness to cover both revision processes

and tie-breaking assumptions, a radius-coradius result applies. Again we

need to focus on two different, focal dynamic specifications only.

4 Symmetric Games and ESS

Consider a symmetric game Γ as defined above. Relevant examples include

Cournot oligopolies, rent-seeking games, and other classes of games (see

Alós-Ferrer and Ania, 2005 for further details). Following Schaffer (1988,

1989), a strategy s∗ ∈ S0 is a strict, globally stable ESS (where ESS stands

for “Evolutionarily Stable Strategy”) if for all s′ ∈ S0, s
′ 6= s∗,

u(s∗|s′, m. . ., s′, s∗, . . . , s∗) > u(s′|s′,m−1. . . , s′, s∗, . . . , s∗) (8)

for all m ∈ {1, . . . , N − 1} . In words, a globally stable strategy earns larger

payoffs than any alternative strategy in any profile where only those two

strategies are present. In the case of a Cournot oligopoly, the Walrasian

quantity has been shown by Vega-Redondo (1997) to be strictly, globally

stable, and stochastically stable in imitation-based dynamics with mistakes.

This result has been extended by Alós-Ferrer and Ania (2005) as follows.

First, any strict, globally stable ESS in a symmetric game is stochastically
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stable in a mistakes dynamics with imitate-the-best and independent inertia;

Alós-Ferrer and Schlag (2009) observe that this result holds for an even

broader class of imitation rules. Second, strict global stability, which might

seem a restrictive concept, includes a family of outcomes of special interest.

Informally, an aggregative game is a symmetric game such that players’

payoffs depend only on the own strategy and an aggregate of all strategies. It

is quasi-submodular if the own strategy and the aggregate exhibit an ordinal

substitutability (see Alós-Ferrer and Ania, 2005 for details). In every quasi-

submodular, aggregative game (which again includes Cournot oligopolies,

rent-seeking games, and other examples), strict global stability follows from

a more economic concept, Aggregate-Taking-Strategy, i.e. the generalization

of Walrasian equilibrium where each player maximizes payoffs taking the

aggregate of all strategies as given.

Here we show that strict, globally stable ESS (and hence aggregate-

taking strategies in quasi-submodular, aggregative games) are actually ro-

bustly stochastically stable for imitation dynamics and the mistakes model.

In other words, the associated selection result is robust to the specification

of both revision opportunities and tie-breaking rules.

Proposition 2. Let s∗ be a strict, globally stable ESS of a symmetric game.

Consider the profile of imitation correspondences B̂IB = (B̂IB
i )i∈I . Then

(s∗, . . . , s∗) is robustly stochastically stable for B̂IB and the mistakes model.

Proof. We will rely on Corollary 4 and radius-coradius from Ellison (2000).

Consider the dynamics with independent learning and random tie-breaking.

If one mutant appears at the state (s∗, . . . , s∗), inequality (8) with m = 1

indicates that s∗-players earn strictly more than the mutant. Hence, tie-

breaking is irrelevant and one mutation is not enough to leave the basin of

attraction of (s∗, . . . , s∗). We conclude that RBX ,qIL(s∗, . . . , s∗) > 1.

Consider now the dynamics with asynchronous learning and cautious tie-

breaking. It is easy to see that it suffices to consider monomorphic states

(s, . . . , s) for the calculation of coradius. For any such state with s 6= s∗,

if a single mutation to s∗ occurs, by inequality (8) with m = N − 1, we

obtain that the mutant earns strictly more than the incumbents. In the

asynchronous learning dynamics, if the mutant is selected to revise, the
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state will remain unchanged. Eventually, an incumbent will be selected and

switch to s∗. By (8) with m = N −2, the next incumbent to be selected will

also switch to s∗. Iterating, the dynamics will reach the state (s∗, . . . , s∗)

and we conclude that CRB0,qAL
(s∗, . . . , s∗) = 1. The conclusion follows from

Corollary 4.

This results strengthens the ones in Vega-Redondo (1997) and Alós-

Ferrer and Ania (2005) and shows that the relevance of the concept of strictly

globally stable ESS due to Schaffer (1988, 1989) for imitation models goes

beyond particular modeling assumptions.

5 Symmetric Binary Action Games

5.1 Notation and Definitions

Now let Γ be a symmetric binary action game (see e.g. Kim, 1996; Maruta,

2002; Blume, 2003), where the players’ strategy sets are given by Si =

{A,B}. Symmetry implies that each player’s payoff depends only on the

own action and on the number of opponents choosing each action.8 Thus,

given a strategy profile s ∈ S, denote by m(s) ∈ {0, ..., N} the number of

players choosing action A in s. Let πA(n) be the payoff of an A-player given

that n players choose action A altogether (including the respective player

herself), and let πB(n) be the payoff of a B-player if n players are choosing

A. We can then write the payoff functions as

ui(A, s−i) = πA(m(A, s−i)) (9)

and

ui(B, s−i) = πB(m(B, s−i)). (10)

Furthermore, we define ∆(n) := πA(n)−πB(n−1) for 1 ≤ n ≤ N as the

payoff change of a player who switches from action B to action A, given that

n − 1 of the opponents choose action A, so that the overall number of A-

players is n after the switch. Throughout, we assume that ∆(n) 6= 0 for some

8Sandholm (2010) also considers symmetric binary action games, concentrating on the

asymptotics as noise vanishes and population size goes to infinity. Staudigl (forthcoming)

follows the same approach for asymmetric binary action games.
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n, i.e. we exclude the trivial case where the players’ payoffs are completely

unaffected by their own choice of action. We consider two examples.

Example 1. Consider a unanimity game (e.g. Young, 1998a, Section 9) where

πB(0) > 0 and πA(N) > 0, but πA(n) = 0 if n < N and πB(n) = 0

if n > 0. The game has two strict Nash equilibria, ~A = (A, . . . , A) and

~B = (B, . . . , B). In addition, every state s ∈ S with 2 ≤ m(s) ≤ N − 2 is a

non-strict Nash equilibrium. The difference function ∆(n) of the unanimity

game is given by ∆(1) = −πB(0), ∆(n) = 0 for all 2 ≤ n ≤ N − 1, and

∆(N) = πA(N).

Example 2. The unanimity game can be generalized in different ways. As

a particularly interesting example for our purpose, consider a team project

game with two projects, A and B, where each of the N players must partici-

pate in exactly one of the projects. Participation is costless, but the success

of project A requires the participation of at least nA ≤ N players, while

project B is successful if and only if at least nB ≤ N players participate.

Assume further that nA + nB > N + 1, which implies that the two projects

cannot be realized jointly, and that there is the possibility that none of them

is successful. If project A (B) is successful, it generates an overall benefit of

size a > 0 (b > 0), which is distributed equally among all participating play-

ers. Players who do not participate in a successful project obtain a payoff

of zero. Hence the payoffs are given by

πA(n) =

{
a/n if n ≥ nA,

0 if n < nA,
πB(n) =

{
0 if n > N − nB,

b/(N − n) if n ≤ N − nB.

The two profiles ~A = (A, . . . , A) and ~B = (B, . . . , B) are again strict Nash

equilibria, and states s ∈ S with N −nB +2 ≤ m(s) ≤ nA− 2 are non-strict

Nash equilibria. We obtain the difference function

∆(n) =





a/n if nA ≤ n ≤ N,

0 if N − nB + 2 ≤ n ≤ nA − 1,

−b/(N − n+ 1) if 1 ≤ n ≤ N − nB + 1.

The team project game becomes the unanimity game if nA = nB = N .9

9Maruta (2002) and Maruta and Okada (2009) generalize unanimity games to the
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We believe it to be commonly known that every symmetric binary action

game is an exact potential game in the sense of Monderer and Shapley

(1996). However, we are not aware of a formal statement of this fact in the

literature, so we present the result in the following lemma, together with a

straightforward potential function.10

Lemma 5. Any symmetric binary action game is a potential game with

potential function

ρ(s) =





m(s)∑

j=1

∆(j) if m(s) ≥ 1,

0 if m(s) = 0.

(11)

Proof. See Appendix.

Exact potential games are relevant for the logit-response dynamics, which,

as mentioned in the introduction, selects the potential-maximizing states as

stochastically stable under certain assumptions. We will now introduce two

additional properties that will become crucial for the analysis of robust

stochastic stability: supermodularity and strategic complementarity (Top-

kis, 1998). To define supermodularity, we first impose an order ≤ on the

strategy set {A,B} by defining the convention B ≤ A. We then obtain a

partial order (also denoted ≤) on each of the sets S−i, by using the product

order derived from ≤.

Definition 8. Γ is supermodular if for each i ∈ I and all s−i, s
′
−i ∈ S−i

with s−i ≤ s′−i, it holds that

ui(A, s−i)− ui(B, s−i) ≤ ui(A, s
′
−i)− ui(B, s′−i). (12)

different class of “binary coordination games” (see our discussion of Definition 8 below).

Our team project game is also related to the collective-action games studied by Myatt

and Wallace (2008a,b) for general quantal response dynamics under asynchronous learning

(and also simultaneous learning in Myatt and Wallace, 2008b). The games in Myatt and

Wallace (2008a,b) are not necessarily symmetric, they exhibit a single project only, and

all players obtain a positive payoff if the project is successful.
10Maruta (2002) shows that symmetric binary coordination games are exact potential

games, with a potential function as given in (11). Myatt and Wallace (2008b) show that

their collective-action games are potential games under a symmetry condition, again with

a potential function similar to (11).
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Definition 8 is the standard definition that requires the individuals’ pay-

off functions to have increasing differences in (si, s−i). For symmetric binary

action games, it is easy to show that property (12) is equivalent to the dif-

ference function ∆(n) being weakly increasing in n (see Lemma 7 in the

Appendix). Such games are called binary coordination games by Maruta

(2002) and Maruta and Okada (2009).11 The unanimity game (Example 1)

is supermodular. Another example would be a population game where N

players are matched pairwise in a round-robin tournament to play a symmet-

ric 2×2 coordination game (see Section 5.3). Figure 1 depicts an exemplary

difference function ∆ of a supermodular game. As indicated in the figure,

we will denote by n the smallest value such that ∆(n) ≥ 0 for all n > n (and

hence ∆(n) < 0 for all n ≤ n). Analogously, we denote by n the largest

value such that ∆(n) ≤ 0 for all n ≤ n (and hence ∆(n) > 0 for all n > n).

If Γ is supermodular, only the monomorphic states ~A = (A, ..., A) or

~B = (B, ..., B) can maximize the potential ρ. This is because the potential

of a state s is the sum of weakly increasing elements ∆(n) up to m(s), so

that only the states with m(s) = 0 or m(s) = N can be maximizers of ρ.12

Figure 1: Supermodularity

11Technically speaking, Maruta (2002) requires the difference function ∆ to be strictly

increasing. Maruta and Okada (2009) allow for games that are not necessarily symmetric.
12The case where ∆(n) = 0 for all 0 ≤ n ≤ N has been excluded by assumption.
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The team project game from Example 2 is not supermodular (except if

nA = nB = N so that it becomes the unanimity game), because ∆(n) is

decreasing from 1 to N −nB+1, and from nA to N . Still, the game satisfies

the weaker condition of strategic complementarity (see Vives, 2005).

Definition 9. Γ exhibits strategic complementarity if for each i ∈ I and

s−i ∈ S−i,

ui(A, s−i) ≥ ui(B, s−i) implies ui(A, s
′
−i) ≥ ui(B, s′−i) (13)

for all s′−i ∈ S−i with s−i ≤ s′−i.

The definition is again standard, requiring best-responses to be weakly

increasing: if A is a best-response against s−i, then the same holds for any

s′−i with s−i ≤ s′−i. Conversely, condition (13) also implies that if B is a

best-response against s−i, it remains a best-response against any s′−i ≤ s−i.

We can again give a characterization of strategic complementarity in terms

of the difference function: a symmetric binary action game exhibits strategic

complementarity if and only if two values n and n as described above do

exist, i.e. ∆(n) < 0 for all n ≤ n, ∆(n) ≥ 0 for all n > n, ∆(n) ≤ 0

for all n ≤ n and ∆(n) > 0 for all n > n. Thus any supermodular game

exhibits strategic complementarity, but the converse is not true. Figure 2

illustrates the case of a game that exhibits strategic complementarity but is

not supermodular.

Figure 2: Strategic Complementarity
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As before, observe that only the states ~A = (A, ..., A) or ~B = (B, ..., B)

can maximize the potential of a symmetric binary action game with strategic

complementarities.

5.2 Logit-Response

We now turn to the (best-reply based) logit-response dynamics for sym-

metric binary action games. An earlier result by Blume (1993, 1997) for the

class of exact potential games implies that the potential maximizing strategy

profile will be stochastically stable under asynchronous learning. With the

potential function from Lemma 5, the difference in potential between two

states s and s′ corresponds to the accumulated utility changes of moving

asynchronously from s to s′. Moving towards a profile with larger potential

is thus always easier under logit response, if only one player can update at

a time.

Consider the unanimity game in Example 1. We only need to compare

the value of the potential for ~A and ~B. Straightforward calculations reveal

that ρ( ~B) = 0 and ρ( ~A) = (a − b)/N , so that a project is stochastically

stable with asynchronous logit response if and only if it is Pareto efficient.

We now want to examine under which conditions the selection of the

potential maximizer is robust. We apply Corollary 3 to obtain the following

result.

Theorem 1. Let Γ be a supermodular symmetric binary action game. Then,

the potential maximizing states are robustly stochastically stable for the logit-

response dynamics.

Proof. See Appendix.

This result is interesting in itself. The selection of potential maximizers

in exact potential games (Blume, 1993, 1997) has been shown to be knife-

edge by Alós-Ferrer and Netzer (2010), in the sense that it neither holds

for general revision processes beyond asynchronous learning even for exact

potential games, nor for generalized potential games even for asynchronous

learning.13 For the particular class of N -player binary action games, The-

13Interestingly, however, Okada and Tercieux (2008) show that, under supermodularity,
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orem 1 shows that, if one additionally assumes supermodularity, potential

maximizers do become a robust prediction. Hence, the relevance of poten-

tial maximizers does extend beyond asynchronous learning, and the result

becomes a generalization of the original result by Blume (1993, 1997), at

the price of considering a smaller class of games.

Theorem 1 has a straightforward intuition. In supermodular games, the

waste of a non-best-reply, i.e. the absolute value of the difference between

its associated payoff and that of the best-reply (see Alós-Ferrer and Netzer,

2010), is decreasing in the number of opponents already choosing that non-

optimal action. Hence, with a logit choice rule, a player’s mistake becomes

more likely the more players have already made that mistake before. Mini-

mal waste paths in and out of the basin of attraction of an absorbing state are

therefore constructed by letting players switch sequentially, as under asyn-

chronous learning, so that stochastically stable states under asynchronous

learning are stochastically stable for any regular revision process.

The above mentioned selection of the Pareto efficient equilibrium in the

unanimity game is therefore robust by its supermodularity property. The

result that the risk-dominant equilibrium of a symmetric 2 × 2 coordina-

tion game played in a round-robin tournament or on a (weighted) network

(Young, 1998b) will be selected by the logit dynamics is also robust due to

supermodularity. The same is true for the results that Maruta (2002) obtains

for binary coordination and hence supermodular games under asynchronous

logit response.

To investigate the case where supermodularity is not satisfied, we will

now analyze the team project game. Theorem 1 relies on the fact that, in

supermodular games, the basins of attraction become shallower with dis-

tance to the absorbing state, as illustrated in Figure 1. The opposite holds

in the team project game, where the basins do become deeper: leaving a

successful project is more damaging if there are fewer people active in the

project, and the benefit has to be shared among a smaller number of people.

The property of deepening basins is illustrated in Figure 3, for a case with

N = 7, nA = 6, nB = 5 and a > b.

the asynchronous version of the logit-response dynamics selects local potential maximizers,

a generalization of potential maximizers.
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Figure 3: Team Project Game

First, the size of the basins does not depend on the specific (regular)

revision process. We can construct a zero waste path from state s to ~B (to

~A) if and only if m(s) ≤ nA − 1 (respectively m(s) ≥ N − nB + 1), so that

B( ~A) = {s ∈ S|m(s) ≥ N − nB + 1}

and

B( ~B) = {s ∈ S|m(s) ≤ nA − 1}.

Consider asynchronous learning first. We immediately obtain RqAL

( ~A) =

CRqAL

( ~B) = a
∑N

j=nA
1/j and RqAL

( ~B) = CRqAL

( ~A) = b
∑N

j=nB
1/j, by

adding the utility losses of moving through the basins one step at a time.

With independent learning, the waste of a transition that involves several

players changing their action simultaneously is the sum of individual myopic

utility losses. Thus whenever a basin of attraction becomes deeper as we

move away from the absorbing state, jumping directly out of the basin by

letting a sufficient number of players mutate simultaneously will cause a

smaller waste than a path of sequential mutations, where each step makes

the next one less likely. Leaving B( ~A) like this requires N − nA − 1 players

to change actions simultaneously, each at a waste of a/N , so that we obtain

RqIL( ~A) = CRqIL( ~B) = (a/N)(N − nA + 1), and RqIL( ~B) = CRqIL( ~A) =

(b/N)(N − nB + 1) analogously. Based on these calculations, we can now

provide the following result.
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Proposition 3. Consider the team project game and the logit-response dy-

namics. Assume w.l.o.g. that nB ≤ nA. Then there exist critical values

ΛR,B ≤ ΛIL ≤ ΛAL ≤ ΛR,A (14)

such that state ~A ( ~B, respectively) is

(i) stochastically stable with asynchronous learning iff a/b ≥ (≤)ΛAL,

(ii) stochastically stable with independent learning iff a/b ≥ (≤)ΛIL,

(iii) robustly stochastically stable if a/b > ΛR,A (a/b < ΛR,B).

The first and third inequalities in (14) are strict if and only if nA < N .

The second inequality in (14) is strict if and only if nB < nA.

Proof. See Appendix.

Figure 4: Illustration of Proposition 3

The proposition is illustrated in Figure 4, for the case where nB < nA <

N , so that all inequalities in (14) are strict.

To make statements about stochastic stability, we need to compare the

ratio of project payoffs a/b to the respective critical values, which in turn

are the ratio of the appropriate radius and coradius terms. For instance, the

critical values ΛIL and ΛAL are given by

ΛIL =
N − nB + 1

N − nA + 1
, ΛAL =

∑N
j=nB

1/j
∑N

j=nA
1/j

,

as shown in the proof of the proposition. Hence the conditions for stochastic

stability under independent and asynchronous learning both reflect a trade-

off between a project’s payoff and its participation requirement: larger pay-

offs favor stochastic stability, and a large minimum number of participants

25



works against it. If, for instance, the less resource intensive project B also

exhibits the larger payoff (b > a), then we immediately obtain that ~B is

stochastically stable for both qIL and qAL (because a/b < 1 ≤ ΛIL ≤ ΛAL).

The more interesting case arises if project A has a strict payoff advan-

tage (a > b) while project B requires strictly fewer participants for suc-

cess (nA > nB). Then we have ΛIL < ΛAL, which implies that indepen-

dent learning is more likely to select the payoff dominant project: whenever

ΛIL < a/b < ΛAL, the payoff dominant state ~A is already stochastically

stable with independent learning, but still ~B under asynchronicity.14 Most

importantly, we do not have a robustly stochastically stable state in this

situation. Hence the team project game shows that Theorem 1 cannot be

generalized from supermodular games to the broader class of games with

strategic complements.

Proposition 3 still delivers sufficient conditions for robustness: the ad-

vantage of one project over the other has to be sufficiently pronounced. State

~A, for example, is robustly stable if a/b > ΛR,A, which is illustrated by a

shaded gray area in Figure 4. The critical values for robustness are given by

ΛR,B =
N − nB + 1

N
∑N

j=nA
1/j

, ΛR,A =

∑N
j=nB

1/j

N − nA + 1
,

which follows immediately from applying our robust radius-coradius result

from Corollary 3.

5.3 Mistakes Model

In this section, we examine robust stochastic stability for the mistakes model

based on a myopic best-reply dynamics. Hence we proceed in parallel to the

previous section for the logit-response dynamics, but, since the mistakes

model is a noise process that respects tie-breaking, we will also investigate

robustness with respect to tie-breaking assumptions, using Corollary 4.

Analyzing the team project game under asynchronous learning and cau-

tious tie-breaking is in fact straightforward. First, the size of the basins

14The reason is that the radius is linearly decreasing in the participation requirement

if learning is independent, but convex if learning is asynchronous. The relative advantage

of a smaller participation requirement is thus greater under asynchronous learning.
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of attraction remains exactly as before. To move out of B( ~B) we need

N − nB + 1 consecutive costly mutations towards any state s with m(s) =

N −nB +1, which can then be connected to ~A at zero cost. Hence we have

RB0,qAL
( ~B) = CRB0,qAL

( ~A) = N − nB + 1. Analogously, RB0,qAL
( ~A) =

CRB0,qAL
( ~B) = N − nA + 1. This implies that the project with smaller

participation requirement will be stochastically stable. Specifically, both A

and B are stochastically stable in the unanimity game, as already pointed

out by Young (1998a), so that the asynchronous mistakes model cannot

distinguish between the two projects.15 As it turns out, these findings for

the team project game are robust due to the fact that the game exhibits

strategic complementarity.

Theorem 2. Let Γ be a symmetric binary action game with strategic com-

plementarity. Consider the profile of best-reply correspondences B̂BR =

(B̂BR
i )i∈I . Then, ~A is robustly stochastically stable for B̂BR and the mis-

takes model if and only if n+ n ≤ N , and ~B is robustly stochastically stable

if and only if n+ n ≥ N .

Proof. See Appendix.

Compared to the logit-response dynamics, the mistakes model requires

only the weaker property of strategic complementarity for robustness of its

selection result in symmetric binary action games. Strategic complementar-

ity implies that the basin of attraction of each monomorphic state contains

in its interior no area where the unperturbed dynamics would lead away

from the monomorphic state, and thus it suffices to compare the size of the

basins, irrespective of the specific regular revision process and tie-breaking

assumptions. In this sense, the mistakes model is more robust than the

logit-response dynamics, delivering robust selection results for a larger class

of games. The reason is, of course, that it makes use of the payoff structure

of the game to a lesser extent.

As an immediate application, we obtain the robustness of a classical

selection result.

15See Maruta and Okada (2009) for a treatment of generalized, asymmetric unanimity

games under perturbed adaptive play as in Young (1993).
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Corollary 6. Consider a symmetric 2 × 2 coordination game played in a

round-robin tournament. For myopic best-reply and the mistakes model, co-

ordination on the risk-dominant equilibrium is robustly stochastically stable.

Similarly, the comparable results of Maruta and Okada (2009) for the sym-

metric case are robust due to strategic complementarity of their binary co-

ordination games.

We want to conclude this section by presenting an example without

strategic complementarity, in which the mistakes model’s selection is in fact

not robust. Consider a game with difference function as displayed in Figure

5. Clearly, strategic complementarity fails, because we have ui(A, s−i) <

ui(B, s−i) for s−i such that m(A, s−i) = 1, but ui(A, s
′
−i) = ui(B, s′−i) for

any s′−i with m(A, s−i) = 2 and hence s−i ≤ s′−i.

Figure 5: Non-Complementarity

With asynchronous learning, leaving ~B requires 3 mutations. After an

initial mutation, a second player can switch to A at zero cost, but two addi-

tional mutations become necessary afterwards. ~A can be left with only two

mutations, so that ~B is stochastically stable. With independent learning,

however, ~B can be left with only one mutation. After reaching a state s

with m(s) = 1, all remaining B-players are (myopically) indifferent between

A and B, and the basin of attraction of ~B can be left without additional

cost whenever at least 3 of them switch actions simultaneously. Hence ~A

is stochastically stable. The difference between the two revision processes

arises because the basin of attraction of ~B contains states in its interior
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where the unperturbed dynamics no longer gravitates back to ~B. Simulta-

neous mutations then allow for direct and costless jumps out of the basin.

6 Limitations of the Approach

Radius-coradius results are sufficient conditions. Our approach shares this

limitation with previous results. In some cases, this is not an issue. For

instance, in the team project game, standard radius-coradius approaches

are always able to identify the stochastically stable state (except for the

non-generic case where both ~A and ~B are stable). However, in general there

might be cases where robustly stochastically states cannot be identified by

applying Corollaries 3 or 4.

Corollary 3 asserts that a state is robustly stochastically stable for some

noisy behavioral rule profile Bε if its radius under independent learning is

larger than its coradius under asynchronous learning, RqIL(s) > CRqAL

(s).

This is not the same as being stochastically stable for both independent and

asynchronous learning, or RqIL(s) > CRqIL(s) and RqAL
(s) > CRqAL

(s).

Robustness is stronger as it requires stochastic stability also for all inter-

mediate regular revision processes. In the following example we want to

illustrate that a state can be stochastically stable for both independent and

asynchronous learning, but fail to be stochastically stable for all regular re-

vision processes. For this purpose, we again use the logit-response dynamics.

Figure 6: Example 3
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Example 3. Consider a symmetric binary action game with N = 7 and

difference function ∆(n) as given in Figure 6. If learning is asynchronous

and −[∆(1)+∆(2)+∆(3)] < [∆(5)+∆(6)+∆(7)], then ~A is stochastically

stable because the utility losses of moving out of B( ~B) are strictly smaller

than those of leaving B( ~A). If learning is independent and −∆(1) < ∆(7),

the same is true because leaving B( ~A) causes a waste of 3∆(7) while leaving

B( ~B) causes only −3∆(1).

But now consider a regular revision process q ∈ Q where q{1,2} > 0

and qJ = 0 for all other J ⊆ I with |J | ≥ 2. Under the assumption

that −∆(2) < −[∆(1) + ∆(3)]/2, a minimal waste path out of B( ~B) is

constructed by letting a single player, say player 3, switch to A first, followed

by a simultaneous switch of players 1 and 2.16 The waste associated to this

path is Rq( ~B) = CRq( ~A) = −[∆(1) + 2∆(2)]. If ∆(6) < [∆(5) + ∆(7)]/2,

the minimal waste path out of B( ~A) has the analogous updating structure,

leading to Rq( ~A) = CRq( ~B) = [∆(7) + 2∆(6)]. Now consider a game where

∆(1) = −1,∆(2) = −10,∆(3) = −20,∆(5) = 20,∆(6) = 7,∆(7) = 5,

which satisfies all above assumptions. Then Rq( ~B) = 21 > 19 = CRq( ~B).

Hence ~B is stochastically stable under q, so that ~A is not robustly stochas-

tically stable, despite being stochastically stable under both asynchronous

and independent learning.

In view of the last example, we want to conclude this section by dis-

cussing the tightness of our sufficient conditions for robustness. Recall the

analysis of team project games in Proposition 3. We are not allowed to con-

clude that, for instance, the bound ΛR,A is not tight because ΛAL < ΛR,A

when nA < N . In fact, conditions that are both sufficient and necessary for

robust stochastic stability are out of reach already in this rather simple class

of games. Instead, we will show that our sufficient radius-coradius condition

16Since the basin of attraction is deepening with distance to ~B, the simultaneous switch

of players 1 and 2 must clearly be used in a minimal waste path that leaves B( ~B). The

only question is whether the two simultaneous strategy changes should occur right in

the beginning, leading to overall waste −[2∆(1) + ∆(3)], or in step 2, leading to waste

−[∆(1) + 2∆(2)]. The latter expression is smaller whenever −∆(2) < −[∆(1) +∆(3)]/2.
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is tight in some but not in other cases. First, when nA = N , then the suffi-

cient condition is tight, because ΛR,B = ΛIL and ΛAL = ΛR,A according to

Proposition 3. State ~A, for instance, is then robustly stable if a/b > ΛR,A,

but not if a/b < ΛR,A. On the other hand, our condition will not be tight

if nB = nA < N and a > b. For this specific parameter constellation, it

is straightforward to verify (see Lemma 8 in the Appendix) that ~A is not

only stochastically stable under asynchronous and independent learning but

in fact robustly stochastically stable. However, we have ΛAL = 1 < ΛR,A

according to Proposition 3. Then, when ΛAL ≤ a/b ≤ ΛR,A, we are in a sit-

uation where our approach is not able to identify the robustly stochastically

stable state, although it exists.

7 Conclusion

Stochastic stability is and remains an important concept in Game Theory.

Unfortunately, it is sometimes too flexible a concept, and different assump-

tions might lead to different results. In our view, stochastic stability is

well suited to analyze questions of outcome selection in noisy environments,

as long as the different ingredients of the model are clearly differentiated.

Ideally, a strong, clearcut result is one linking a particular behavioral as-

sumption (captured by a behavioral rule or correspondence) under a partic-

ular interaction structure (as a proxy for the socioeconomic setting, e.g. the

network structure) to the selection of a particular outcome.

Failing that, of course more subtle elements of the model might have an

influence on long-run outcomes, and it is still important to understand the

reasons behind this influence. However, we should be careful with results

which depend crucially on modeling assumptions such as revision opportuni-

ties or tie-breaking assumptions, unless there is a clear interpretation thereof

in the problem at hand. Our concept of robust stochastic stability aims to

differentiate clearcut predictions from more subtle ones. For noisy behav-

ioral rules where specific tie-breaking assumptions are built into the rule,

as in the case of logit choice, robust stochastic stability requires robustness

with respect to the speed of the dynamics, as captured by the specification

of revision opportunities. For noisy behavioral rules which remain silent
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(or are less vocal) on the issue of tie-breaking, as e.g. those based on the

mistakes model, robustness should also include the latter.

We have provided an easy-to-use sufficient condition for robust stochas-

tic stability, and have illustrated its application for different games and

dynamics. The condition makes use of an order structure of the space of

dynamics, by observing that the radius and coradius concepts introduced in

the literature are monotone operators in this space. Our result itself reduces

to a radius-coradius approach, with the difference that the radius is taken

with respect to the “quickest” dynamics (independent learning and random

tie-breaking) and the coradius is taken with respect to the “slowest” one

(asynchronous learning and cautious tie-breaking). It is interesting to ob-

serve that, in the quest to obtain results which are independent of certain

parts of the specification of the dynamics, we are led to concentrate on these

two particular, extreme dynamics.

In our applications, we have found that both the celebrated selection

of risk-dominant strategies in coordination games under noisy best-reply

(Kandori and Rob, 1995; Sandholm, 1998) and the selection of “Walrasian”

strategies in aggregative games under noisy imitation (Vega-Redondo, 1997;

Alós-Ferrer and Ania, 2005) turn out to be robust. The selection of poten-

tial maximizers in exact potential games under the logit-response dynamics

(Blume, 1993, 1997), shown to be generally non-robust by Alós-Ferrer and

Netzer (2010), turns out to be robust for the subclass of supermodular,

N -player binary-action games. Best-reply with mistakes delivers robust se-

lection results in the same class of games under the weaker condition of

strategic complementarity. These results, which illustrate the usefulness of

our main result, are also of independent interest for the literature of learning

in games.
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Appendix

Proof of Lemma 5. We verify that ρ is a potential for Γ. From (9) and (10)

we obtain that for each i ∈ I and s−i ∈ S−i,

πi(A, s−i)− πi(B, s−i) = πA(m(A, s−i))− πB(m(B, s−i)) = ∆(m(A, s−i)),

because m(B, s−i) = m(A, s−i) − 1. For the same reason, it follows from

(11) that

ρ(A, s−i)− ρ(B, s−i) = ∆(m(A, s−i)),

which verifies that ρ is a potential.

Lemma 7. For symmetric binary action games, property (12) holds if and

only if the difference function ∆(n) is weakly increasing in n.

Proof. Assume first that ∆ is weakly increasing. Consider any player i ∈ I

and profiles s−i, s
′
−i ∈ S−i with s−i ≤ s′−i. From the definition of the product

order on S−i it follows that m(A, s−i) ≤ m(A, s′−i). Thus ∆(m(A, s−i)) ≤

∆(m(A, s′−i)), which is equivalent to condition (12), implying that Γ is su-

permodular.

Next assume that ∆ is not weakly increasing, i.e. there exist values

1 ≤ n < n′ ≤ N such that ∆(n) > ∆(n′). Fix any player i ∈ I and consider

the profiles s−i = (A, n−1. . . , A,B,N−n. . . , B) and s′−i = (A, n
′−1. . . , A,B,N−n′

. . . , B).

By construction, s−i ≤ s′−i and m(A, s−i) = n < n′ = m(A, s′−i). Then,

∆(m(A, s−i)) > ∆(m(A, s′−i)), which contradicts (12) and implies that Γ is

not supermodular.

Proof of Theorem 1. We will rely on Corollary 3 and radius-coradius from

Alós-Ferrer and Netzer (2010). Let n and n be as given in the text. Since

∆(n) is weakly increasing in n (supermodularity), n and n do exist and

n ≤ n holds.

Fix an arbitrary regular revision process q ∈ Q. The waste caused by a

single player switching from B to A in the presence of n other A-players is

max{−∆(n + 1), 0} and hence zero if and only if n ≥ n. Analogously, the

waste that is generated if one of n A-players switches to B is max{∆(n), 0}
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and zero if and only if n ≤ n. We can thus construct zero waste paths

from any s to ~B (to ~A) if m(s) ≤ n (or m(s) ≥ n, respectively), letting

one player switch at a time. On the other hand, for any s with m(s) > n

(with m(s) < n), any switch to B (to A) causes strictly positive waste,

irrespective of the specific revising set chosen. The basins of attraction (of

the unperturbed best-reply dynamics) are thus B( ~B) = {s ∈ S|m(s) ≤ n}

and B( ~A) = {s ∈ S|m(s) ≥ n}, for any regular process q ∈ Q.

Now consider asynchronous learning and fix some s′ /∈ B( ~B). Construct

a minimal waste path P = (s′, ..., ~B) by letting A-players switch toB sequen-

tially. We obtain the waste W (P ) =
∑m(s′)

j=n+1∆(j). Since ∆(n) is positive

for all n ≥ n + 1, this expression is maximal if s′ = ~A so that m(s′) = N ,

which yields CRqAL

( ~B) =
∑N

j=n+1∆(j). From analogous arguments we

obtain CRqAL
( ~A) = −

∑n
j=1∆(j).

Now consider independent learning. Since ∆(n) is increasing in n due

to supermodularity, the waste caused by a B-player switching to A in the

presence of n A-players (max{−∆(n+1), 0}) is decreasing in n. Analogously,

the waste of an A-player switching to B (max{∆(n), 0}) is increasing. Hence

the waste caused by several players switching simultaneously is weakly larger

than the waste caused by sequential switching, so that among minimal waste

paths out of B( ~B) and B( ~A), there are always paths that make use of

sequential revisions only. This immediately implies

RqIL( ~B) =
n+1∑

j=1

max{−∆(j), 0} = −

n∑

j=1

∆(j)

and

RqIL( ~A) =
N∑

j=n

max{∆(j), 0} =
N∑

j=n+1

∆(j).

Now suppose ~B is the unique potential maximizer, i.e.
∑N

j=1∆(j) < 0.

This can be rearranged to −
∑n

j=1∆(j) >
∑N

j=n+1∆(j), because ∆(n) = 0

for all n < n ≤ n. This is equivalent to RqIL( ~B) > CRqAL
( ~B) and implies

that ~B is the unique robustly stochastically stable state by Corollary 3. The

argument for ~A is analogous.

If both ~A and ~B maximize the potential (
∑N

j=1∆(j) = 0), our robust

radius-coradius result is not applicable. From the previous arguments about
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supermodularity it is still true that minimal waste revision trees can be con-

structed using singleton revising sets only. Hence the stochastically stable

states for any regular revision process must be the same as for asynchronous

learning, and thus the potential maximizers.

Proof of Proposition 3. (i) Asynchronous Learning. RqAL

( ~A) > CRqAL

L ( ~A)

can be rearranged to a/b > (
∑N

j=nB
1/j)/(

∑N
j=nA

1/j) =: ΛAL, so that ~A

is stochastically stable under asynchronous learning if a/b > ΛAL. Analo-

gously, ~B is stochastically stable if a/b < ΛAL. If RqAL
( ~A) = CRqAL

L ( ~A),

so a/b = ΛAL, it follows immediately that the stochastic potential (again,

see Alós-Ferrer and Netzer, 2010) of both ~A and ~B is identical and both are

stochastically stable.

(ii) Independent Learning. The proof is analogous, usingRqIL and CRqIL

instead, which yields the critical value ΛIL := (N − nB + 1)/(N − nA + 1).

(iii) Robust Stochastic Stability. Corollary 3 implies that ~A is robustly

stochastically stable if RqIL( ~A) > CRqAL

( ~A), which can be rearranged to

a/b > (N
∑N

j=nB
1/j)/(N − nA + 1) =: ΛR,A. Analogously, ~B is robustly

stochastically stable if a/b < (N − nB + 1)/(N
∑N

j=nA
1/j) =: ΛR,B .

Ranking of ΛIL and ΛAL. If nA = nB, then ΛAL = ΛIL = 1 holds.

Suppose then that nB < nA. Condition ΛAL > ΛIL can be rearranged to

γ(nA, nB) := (N − nA + 1)
N∑

j=nB

1

j
− (N − nB + 1)

N∑

j=nA

1

j
> 0. (A1)

Define δ(nA, nB) := γ(nA + 1, nB) − γ(nA, nB) as the change of γ if nA is

increased by 1. We obtain

δ(nA, nB) =
1

nA
(N−nB+1)−

N∑

j=nB

1

j
=

1

nA

N∑

j=nB

1−
N∑

j=nB

1

j
=

N∑

j=nB

(
1

nA
−

1

j

)
.

(A2)

Since γ(n, n) = 0 holds, and nA > nB by assumption, we can write nA =

nB + x, x > 0, and

γ(nA, nB) = γ(nB + x, nB) =

x−1∑

i=0

δ(nB + i, nB) =

x−1∑

i=0

N∑

j=nB

(
1

nB + i
−

1

j

)
,
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where the second equality follows from iterating the differences δ, and the

third from substitution of (A2). This expression can be transformed to

γ(nA, nB)=

x−1∑

i=0

N∑

j=nB

1

nB + i
−

x−1∑

i=0

N∑

j=nB

1

j

=

x−1∑

i=0

nB+x−1∑

j=nB

1

nB + i
+

x−1∑

i=0

N∑

j=nB+x

1

nB + i
−

x−1∑

i=0

nB+x−1∑

j=nB

1

j
−

x−1∑

i=0

N∑

j=nB+x

1

j

=

x−1∑

i=0

x−1∑

j=0

1

nB + i
+

x−1∑

i=0

N−x∑

j=nB

1

nB + i
−

x−1∑

i=0

x−1∑

j=0

1

j + nB
−

x−1∑

i=0

N−x∑

j=nB

1

j + x
,

where the first equality follows after separating the summands, the second

equality follows by breaking the sums with index j into two partial sums

each, and the third equality follows from redefining indices. Now observe

that, in the resulting expression, the first and the third double-sum are

identical and cancel out. This leaves us with

γ(nA, nB) =

x−1∑

i=0

N−x∑

j=nB

(
1

nB + i
−

1

j + x

)
. (A3)

First, the sums in (A3) are not empty, because x ≥ 1 and nB+x = nA ≤ N .

But then (A3) is strictly positive, because in each summand i < x and

nB ≤ j holds, so that each summand is strictly positive. Hence ΛAL > ΛIL.

Ranking of ΛR,B and ΛR,A. Consider ΛR,A first. Observe thatN
∑N

j=nA
1/j =

∑N
j=nA

N/j ≥
∑N

j=nA
N/N = N − nA +1, with strict inequality if and only

if nA < N . This implies

ΛR,A =
N

∑N
j=nB

1/j

N − nA + 1
≥

N
∑N

j=nB
1/j

N
∑N

j=nA
1/j

= ΛAL,

with strict inequality if and only if nA < N . By the same argument, ΛR,B ≤

ΛIL, again with strict inequality if and only if nA < N .

Proof of Theorem 2. We will rely on Corollary 4 and radius-coradius from

Ellison (2000). Arguing as in the proof of Theorem 1, the basins of attraction

for a symmetric binary action game with strategic complementarity and

hence well-defined values n and n, are given by B( ~B) = {s ∈ S|m(s) ≤ n}

and B( ~A) = {s ∈ S|m(s) ≥ n}, for any regular process q ∈ Q.
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Consider asynchronous learning, fix any s′ /∈ B( ~B), and construct a min-

imal cost path P = (s′, ..., ~B) by letting A-players switch to B sequentially.

Note that this transition path is unaffected by tie-breaking considerations.

The cost of this path is C(P ) = m(s′) − n, which is maximal if s′ = ~A so

that m(s′) = N , and we thus have CRB0,qAL
( ~B) = N − n. We analogously

obtain CRB0,qAL

( ~A) = n.

Now consider independent learning. The fact that n players have to

mutate to eventually leave B( ~B) is unaffected by the possibility that some

mutations could occur simultaneously (and analogously for B( ~A), where

N−nmutations need to occur). Again, note that tie-breaking considerations

are not relevant for this argument. Hence we obtain RBX ,qIL( ~B) = n and

RBX ,qIL( ~A) = N − n.

Now suppose n+n > N . This is identical to RBX ,qIL( ~B) > CRB0,qAL
( ~B)

and implies that ~B is the unique robustly stochastically stable state by

Corollary 4. The same holds for ~A if n+ n < N .

If n+ n = N , our approach is again not applicable. The previous argu-

ments, however, imply that both ~A and ~B have minimal stochastic potential

in this case (see Kandori and Rob, 1995), under any regular revision process

und tie-breaking assumption, so that both are robustly stable.

Lemma 8. Consider the team project game and the logit-response dynamics.

If nB = nA < N and a > b, ~A is robustly stochastically stable.

Proof. Following the general approach from Alós-Ferrer and Netzer (2010)

for finding stochastically stable states of the logit-response dynamics, let

q ∈ Q be an arbitrary regular revision process and (T, γ) a minimum waste

~B revision-tree under q. Then the tree T contains a path P = (s1, ..., sn)

where s1 = ~A and sn = ~B, and which satisfies that W (P, γ|P ) = W (T, γ).

Here, γ|P denotes the restriction of γ to P . Clearly W (P, γ|P ) ≤ W (T, γ)

must hold, since the revision path (P, γ|P ) is a part of (T, γ). Since any state

s that is not on P can be connected to either ~A or ~B at zero waste, with the

help of singleton revising sets, and (T, γ) is a minimal waste revision-tree by

assumption, we must have W (P, γ|P ) = W (T, γ).

We can now construct an inverted path P ′ = (s′1, ..., s
′
n) where s′1 = ~B

37



and s′n = ~A, together with a revision selection γ′|P ′ by using the same re-

vising sets in the same order as before, i.e. γ′|P ′(s′j, s
′
j+1) = γ|P (sj , sj+1)

for all j = 1, ..., n − 1, and by letting the same players switch to the op-

posite action. Then, whenever W ((sj , sj+1), γ|P (sj , sj+1)) > 0 we obtain

W ((s′j, s
′
j+1), γ

′|P ′(s′j , s
′
j+1)) < W ((sj, sj+1), γ|P (sj, sj+1)) because b < a,

and W ((s′j, s
′
j+1), γ

′|P ′(s′j, s
′
j+1)) = W ((sj, sj+1), γ|P (sj, sj+1)) = 0 other-

wise, because nA = nB. Hence W (P ′, γ′|P ′) < W (P, γ|P ). Connecting all

states which are not on P ′ to either ~A or ~B within singleton revising sets at

zero waste yields a revision ~A-tree (T ′, γ′) with W (T ′, γ′) < W (T, γ), which

implies that ~A is stochastically stable under (any) q ∈ Q.
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