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Abstract

This paper is concerned with the analysis of zero-inflated count data when time of exposure

varies. It proposes a new zero-inflated count data model that is based on two homogeneous

Poisson processes and accounts for exposure time in a theory consistent way. The new model

is used in an application to the effect of insurance generosity on the number of absent days.
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1 Introduction

This paper is concerned with conditional probability models for count data when the proportion

of zeros in the empirical distribution exceeds that predicted by the two standard approaches, the

Poisson and the negative binomial regression models. Such “excess zeros” are frequently present in

health related research. The main recommendation in the literature (see e.g. Jones, 2007, Böhning

et al., 1997) is to use a class of modified count data models that is referred to as “zero-inflated”,

and indeed, applications of the zero inflated Poisson and negative binomial models are abundant

(Pizer and Prentice, 2011; Sari, 2009; Sarma and Simpson, 2006; Yen, Tang and Su, 2001; Chang

and Trivedi, 2003; Street, Jones and Furuta, 1999).

The key feature of these models is the presence of two types of zeros, “normal” zeros and “extra”

zeros. Lambert (1992), in the context of manufacturing defects, refers to the latter as resulting

from a “perfect state”, in contrast to the count process zeros that represent an “imperfect state”

where events occur without being inevitable. A related distinction is that between “strategic” and

“incidental” zeros. For example, when modelling the number of physician visits, a person might

have had zero visits during a given time period because (i) she is a follower of alternative medicines

and never visits a doctor, or because (ii) she visits doctors in principle but by chance did not do so

during the observed period.

The main objective of this paper is to study the effect of varying exposure in such zero inflated

count data models. For simplicity, we equate exposure with “period-at-risk”, i.e. time, although

other interpretations, for example a spatial one, are possible without altering the substantial argu-

ments and conclusions. Varying exposure can be of interest for two main reasons. First, it might be

the case that exposure-time is the same for all units of observation, but one would like to extrapolate
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to a different time frame. For example, a health survey may collect information on the number of

doctor visits during a 3-months reference period, whereas the real outcome of interest is the annual

number of visits. Second, exposure may differ between units of observation. In this case, ignoring

exposure effects in modelling and estimation will in general lead to spurious effect estimates.

In either case, a crucial issue is how exposure affects the extra zeros. At one end of the spectrum,

the probability of an extra zero does not depend on exposure time at all. This assumption leads to

proportionality between the expected number of counts and exposure, and it is implicitly made in

most existing applications of count data models with logit-type zero inflation. We argue that this

assumption is not very plausible. At a minimum, it should be tested. When the null-hypothesis of

no time-dependence of extra zeros is rejected, one requires, for estimation as well as extrapolation, a

model of time dependence. A natural benchmark model is one where the extra zeros are generated

from a homogeneous Poisson process and the expected number of events is therefore proportional

to exposure time. The probability of an extra zeros is then equal to the survivor function of the

exponential distribution, and the distribution model is a Bernoulli distribution with complementary

log-log link (cloglog). Thus, we propose a new zero-inflated count data model where the usual logit

assumption for the extra zeros is replaced by that of a cloglog function. This modification allows

us to account, and test, for time of exposure effects in a theory-consistent way.

The paper proceeds as follows. In the next section, we show that, within the context of a

zero-inflated model, increased exposure is in general not compatible with a proportional effect of

exposure on the expected number of counts. In section 3, we discuss the limitations of an existing

proposal to introduce varying exposure times into zero inflated count data models, and present a

new model that addresses these limitations. In section 4, the new approach is applied to the effect

of insurance scheme on a worker’s annual number of sick leave days. Section 5 concludes.
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2 Zero-inflated count models and exposure

The zero-inflated Poisson model with covariates but ignoring exposure can be written as (see e.g.

Böhning et al., 1997, Winkelmann, 2008)

Pr(y|x, z) =


ω(z) + (1− ω(z)) exp(−λ(x)) for y = 0

(1− ω(z))
exp(−λ(x))λ(x)y

y!
for y = 1, 2, 3, . . .

where y is a count-valued random variable and ω ∈ [0, 1] is a zero-inflation parameter. Typically,

λ(x) = exp(x′β) and ω(z) is specified as a logit, such that

ω(z) =
exp(z′γ)

1 + exp(z′γ)
(1)

where x and z can be disjunct, overlapping, or identical. It follows from this double index specifi-

cation that

E(y|x, z) = (1− ω)λ =
exp(x′β)

1 + exp(z′γ)
(2)

where ω and λ are defined for a given exposure t. The model parameters can either be estimated

by maximum likelihood, or by exploiting moment restrictions derived from (2) (e.g, using nonlinear

least squares or Poisson pseudo maximum likelihood, see Staub and Winkelmann, 2011).

It is straightforward to modify the zero-inflated Poisson model in order to allow for overdispersion

in addition to zero-inflation. Suppose that there is unobserved heterogeneity such that λ(x, u) =

λ(x)u. If u follows a gamma distribution with E(u|x) = 1 and Var(u|x) = 1/α, and if y conditional

on x and u is Poisson distributed with expectation λ(x)u, then the distribution of y, conditional on

x but unconditional on u, is negative binomial with parameters λ(x) and α.

Lee et al. (2001) propose an extension of the model to account for varying exposure. Suppose

that

λ(x, t) = exp(x′β + log t). (3)
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but that the probability of an extra zero is unaffected by exposure time. In this case, (2) can be

re-written as

E(y|x, z, t) = t
exp(x′β)

1 + exp(z′γ)

and the conditional expectation is proportional to exposure time by construction. Alternatively,

one can let λ(x, t) = exp(x′β + α log t) = tα exp(x′β) and test whether α = 1. Clearly, neither of

the two approaches is entirely satisfactory because both are based on the assumption that only the

parent process is affected by exposure time, whereas the proportion of extra zeros is time-invariant.

3 A new zero-inflation model with varying exposure

Suppose that both ω = ω(t) and λ = λ(t) are functions of time. In general, we would expect that

the probability of an extra zero decreases with the amount of exposure, and that ω′(t) < 0. From

E(y(t)) = (1− ω(t))λ(t),

(where the dependence on x and z is suppressed for simplicity) it follows that

dE(y(t))

dt
= −ω′(t)λ(t) + (1− ω(t))λ′(t)

Even if the effect in the parent model is proportional to time of exposure (λ(t) = λt and

λ′(t) = λ), the overall effect is not proportional since

dE(y(t))

dt
= −ω′(t)λt+ (1− ω(t))λ

The expected value of a zero-inflated count model increases proportionally with exposure only

if the proportion of excess-zeros is time invariant (ω′(t) = 0). If by contrast excess zeros decrease
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with increasing exposure, then ω′(t)λt ≤ 0 and the expected value of such a zero-inflated count

model increases overproportionally as a function of exposure.

This has practical consequences. Returning to our initial example, it is not possible to use

results regarding the mean number of quarterly doctor visits and extrapolate to an annual rate,

as this would require a proportionality assumption that may be invalid. If, instead, ω′(t) < 0,

this kind of extrapolation based on proportionality underestimates the annual rate. There is an-

other consequence of assuming ω′(t) = 0 when in fact it is not. Suppose, a log-linear conditional

expectation function λ(x) = exp(x′β) has been specified, and the interest is in estimating β, the

semi-elasticities. Without proportionality, the estimates are not invariant to exposure time: a re-

searcher using observations from a longer observation period will obtain estimates that differ from

a researcher using a shorter period. Clearly, this is unwanted.

A meaningful modelling approach should account for these problems and estimate ω′(t) from

data, rather than imposing a value and sign a-priori. For such an estimation-based approach,

there are two requirements. First, one needs to observe variation in exposure time across units of

observation. Without such variation, the effect of exposure cannot be identified. Second, one needs

to specify a meaningful model for ω(t).

In principle, one could include some arbitrary function of t as a regressor in the logit model (1).

Alternatively, and in our view preferably, one should introduce exposure effects on extra zeros in a

theory driven way, based on a stochastic process that generates these additional zeros. Suppose that

this process is a Poisson process with rate µ. Then an extra zero for exposure period t is obtained

if the duration until the first event exceeds t. In a Poisson process, the duration is exponentially

distributed with survivor function Pr(extra zero) = ω = exp(−µt). We can let µ = exp(z′γ) and
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thereby obtain the complementary log-log (cloglog) model with exposure:

ω(z, t) = exp(− exp(z′γ + log t)) (4)

Using ω̃ = exp(− exp(z′γ+δ log t)) instead, we can test for proportionality in the underlying Poisson

process (i.e., δ = 1), just as was the case for the Poisson part of the model. If δ = 0, the extra zeros

are time-invariant and hence truly “strategic”. The parameters γ measure the effect of a regressor

on the underlying hazard function. A positive γ means that an increase in the associated variable

increases the hazard rate and therefore reduces the probability of an extra zero.

The log-likelihood function of the Poisson-cloglog model for zero inflated count data, based on

a sample of n independent observations on yi, xi and zi, can be written as

∑
yi=0

ln[exp(−µi) + exp(−λi)− exp(−µi − λi)] +
∑
yi>0

ln[1− exp(−µi)]− λi + yi lnλi

where λi and µi are defined as in (3) and (4), respectively. The EM algorithm has been shown to

work well in this kind of problem, but straight Newton-Raphson maximization is possible as well.

The log-likelihood function for the negative binomial-cloglog model can be obtained accordingly. For

testing, it should be noted that neither do zero-inflated models nest their standard parent models,

nor have the logit and cloglog specifications for the extra zeros a nested structure. Thus testing

therefore needs to follow procedures developed for non-nested models, as discussed for example in

Vuong (1989).

4 Application

We re-analyze the dataset and model of Barmby, Nolan and Winkelmann (2001). They studied

the effect of insurance scheme on the number of absent days using standard Poisson and negative
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binomial regression models without accounting for extra zeros. The data stem from a manufacturing

firm operating a production line. Employees are contracted to work either 4 or 5 days a week, where

4 day workers do not necessarily work fewer weekly hours. Thus it is possible to estimate the effect

of an additional weekly work day on absence, keeping overall working hours constant. Workers

are entitled to company sickpay. There is some experience rating, as the sickpay depends on the

average number of yearly absent days, calculated over the last two years. Workers with less then 10

days of absence are graded with an A and are entitled to replacement of basic earnings plus bonus.

Workers with a grade B (between 10 and 20 absent days) are entitled to replacement of basic pay,

while employees with grade C (more than 20 absent days) receive only the statutory sickpay level.

A detailed discussion of economic models of absence behavior can be found in Treble and Barmby

(2011).

The number of weekly working days is proportional to exposure-time, since period-at-risk is

equal to the number of weekly working days times number of weeks in the observation period (52

weeks minus vacation periods). Thus, exposure of workers with a 5 days contract is 25 percent

higher than that of 4 days workers. If nothing else was going on, one would therefore expect that

5 day workers have 25 percent more absent days than 4 day workers. If λ(x, t) is specified as

exp(x′β + γlog(days)) and if the absentee counts are proportional to exposure-time, the estimated

effect of log(days), γ̂ should not statistically differ from 1. Of course, the number of contracted

workdays might have other effects on absenteeism. First, it is important to realize that the insurance

scheme awards grades based on the absolute number of days absent rather than the rate. Thus the

system is relatively more generous for people contracted for 4 days a week: they can have a higher

absenteeism rate than 5 day workers, but still keep the same or a higher grade. Second, it is

possible that different types of workers self-select into 4 or 5 day contracts based on individual
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preferences, and that the two types differ in their inherent absence rates. Both factors can mean

that the exposure effect departs from proportionality, something that can be tested in the present

application.

Barmby, Nolan and Winkelmann (2001) discussed this issue in the context of a negative binomial

(negbin) model. Here, we generalize their analysis by considering a zero inflated negative binomial

model (which results from the assumption of a Poisson process gamma distributed heterogeneity for

the parent distribution). The motivation of using a zero inflated count data instead of an ordinary

negbin model in this application is the high proportion of people without any absent days (15%

of the sample), whereas the mean of the variable is equal to 7.8 and the variance is 67. Hence, in

addition to an ordinary negbin model, a zero inflated Poisson and a zero inflated negative binomial

model are estimated and tested against each other. As described in the previous part, a cloglog link

is used to model excess zeros, and the logarithm of contracted workdays is included as a regressor in

both parts of the model. Thus, if work day status does not affect the rate of the excess zero process,

the parameter of log(days) should also be 1 in the inflated part of the model. Beside log(days) and

dummies for grade B and C, the model includes a female dummy, the wage rate, and the average

daily working hours. These are the same variables as in Barmby, Nolan and Winkelmann (2001).

−−−− Table 1 about here−−−−

Results of the three models are shown in Table 1. The value of the Vuong-test-statistic of

the inflated negbin against the negbin model without excess zeros is 3.04 (p-value < 0.01) and

hence suggests the existence of additional zeros. A likelihood ratio test of the two processes with

excess zeros clearly prefers the zero-inflated negbin model over the zero-inflated Poisson model (test

statistic of 1494.21). We also compared zero-inflated models with different link functions for the
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excess zero process (results are available upon request). Although the model with cloglog link has

the largest log likelihood value compared to the models with logit or probit link, the differences

are minor. In the following, we concentrate our discussion on the zero inflated negbin model with

cloglog link (ZINB in Table 1).

The way the models are specified, a positive coefficient means that an increase in the associated

regressor shifts the incidence rate of the underlying Poisson processes upward. Such a shift increases

the expected number of absent days in the count part, and it decreases the number of excess zeros.

Thus, if the coefficients in the two parts of the model have the same sign, the effects go in the same

direction, indicating, for instance, that the overall conditional expectation (2) is moved in the same

direction. In this application, with two exceptions, coefficients in the inflated model have the same

sign as in the parent process.

As in Barmby, Nolan and Winkelmann (2001), a strong effect of sickpay status is present in the

parent model. In addition, we find a similar effect for the inflated part. People with a grade B or C

have thus not only a higher expected number of absent days, but they also have fewer excess zeros

(compared to similar people with grade A).

Regarding work day status, the effects are opposite to what one would expect: not only are five

day workers no more absent than four day workers, despite their higher exposure, but they are even

less so, based on point estimates at least. The point estimates associated with log(days) can be

interpreted as elasticities: a one percent increase in exposure (the number of contracted workdays)

is predicted to lower the number of absent days in the parent process by 1.1 percent, and to lower

the rate in the strategic zero process by 1.75 percent. For example, with a 10% probability of an

extra zero, the rate would fall from 2.3 = − ln 0.1 to 2.26, which translates into a .4 percentage

point increased probability of such a zero. While we would need a larger sample to actually reject
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the null hypothesis of no effect (i.e., that these zeros are truly “strategic” and do not depend on

exposure), we find these point estimates telling per-se.

Our methodology suggests an alternative test, namely one of the natural benchmark under

varying exposure, that of proportionality. Under that scenario, the rates for workers with 5 day

contracts should lie 25% above those of workers with 4 day contracts, since the period-at-risk is

correspondingly higher. In our model, this means a coefficient of 1 for log(days) in both processes.

Note that such a direct benchmarking is not possible in any of the other standard zero-inflated

count data models. Individually, the hypothesis that the log(days) coefficient is equal to 1 can be

rejected in the parent part but not so in the excess zero part. However, if we test the proportionality

hypothesis jointly, it is rejected (at the 1% level of significance).

This somewhat counterintuitive finding calls for an explanation. Part of the higher absenteeism

rate of 4 day workers can be explained by the relative generosity of the sickpay scheme, since the

thresholds are formulated as absolute number of days, not in relative terms. While the relatively

generous treatment of 4 day workers can explain a higher rate, it still remains a puzzle why they even

have a higher total absence count. Most likely, work day status is correlated with other unobserved

characteristics, which by themselves affect the absenteeism rate.

5 Conclusions

The paper shows how to extend zero inflated count data models if exposure-time varies and affects

the parent as well as the inflated part of the model. This generalizes an approach by Lee et al.

(2001) where exposure time was only allowed to affect the parent process. Under the assumption

that the excess zeros are generated by a separate Poisson like process, one should use a cloglog link
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to parameterize the excess zeros. As in the Poisson process, this allows to adjust for varying period-

at-risk in a theory consistent way, by including the logarithm of exposure-time as an additional

control variable in the inflated part of the model. A constant shrinking rate of excess zeros then

implies a coefficient of 1 for the effect of log(exposure-time), which can be tested.

A re-examination of Barmby, Nolan and Winkelmann (2001) about the effect of insurance scheme

on sick leave days reveals the presence of excess zeros depending on period-at-risk. Thus five day

workershave not only a lower absenteeism rate than four day workers, they have also an increased

probability of having no absent days. Further, their lower absenteeism rate more than offsets the

extended period-at-risk. Therefore, the number of counts in the observation period is even lower for

five day workers. Work day status is thus probably correlated with other unobserved characteristics

affecting the two rates. In addition, we find that sickpay status has a strong effect in the parent

as well as in the inflated model and in general, variables seem to affect both rates in the same

direction. The application shows that the zero inflated negative binomial model can be adapted for

varying exposure-time in the same way as the zero inflated Poisson model.
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Table 1: Effect of insurance scheme on absent days

NegBin ZIP ZINB

Variable ZI Parent ZI Parent

Female 0.27* -0.04 0.30** -0.13 0.31**

(0.11) (0.13) (0.04) (0.26) (0.10)

Grade B 0.56** 0.67** 0.34** 0.80* 0.38**

(0.09) (0.12) (0.04) (0.28) (0.09)

Grade C 0.72** 0.67** 0.50** 0.84 0.53**

(0.12) (0.16) (0.04) (0.64) (0.11)

Wage -0.41 -0.79* -0.07 -0.97* -0.06

(0.27) (0.34) (0.11) (0.49) (0.28)

Daily hours -0.01 -0.02 0.01 -0.09 0.01

(0.04) (0.05) (0.01) (0.15) (0.03)

log(days) -1.43* -1.20 -0.74** -1.75 -1.08

(0.68) (0.96) (0.23) (1.81) (0.62)

Constant 5.00** 4.78* 3.07** 6.94* 3.44*

(1.41) (1.95) (0.52) (3.52) (1.34)

α 0.90** 0.63**

(0.06) (0.06)

Log-likelihood -1,845.77 -2,572.52 -1,825.57

Notes: Dependent variable: absent days. 604 observations. Number of Zeros: 90.
Standard errors in parentheses. **, * denote statistical significance at the 1%, 5%,
significance levels, respectively. α indicates the overdispersion parameter of the neg-
ative binomial type II distribution. Vuong test of ZINB against NegBin: z = 3.04,
p-value: 0.001. The zero-inflated model (ZI) is parameterized with a cloglog link.
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