
 
 

Algorithmic Social Sciences Research Unit 
ASSRU 

 
 

Department of Economics 
University of Trento 

Via Inama 5 
381 22 Trento Italy 

 
 
 

Discussion Paper Series 
 

1 – 2011/II 
 
 
 

THE COMPUTABILITY – THEORETIC 
CONTENT OF EMERGENCE♠ 

 
S. Barry Cooper 

 
 
 

May 2011 

                                                            
♠ Text of the talk given at the ASSRU/Department of Economics Seminar, University of 
Trento, 11 May, 2011. Professor Cooper is a Founding Honorary Associate of ASSRU. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6575307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Computability-Theoretic
Content of Emergence

S. Barry Cooper
Department of Pure Mathematics

University of Leeds, Leeds LS2 9JT, U.K.

Abstract

In dealing with emergent phenomena, a common task is to identify
useful descriptions of them in terms of the underlying atomic processes,
and to extract enough computational content from these descriptions to
enable predictions to be made. Generally, the underlying atomic processes
are quite well understood, and (with important exceptions) captured by
mathematics from which it is relatively easy to extract algorithmic con-
tent.

A widespread view is that the difficulty in describing transitions from
algorithmic activity to the emergence associated with chaotic situations
is a simple case of complexity outstripping computational resources and
human ingenuity. Or, on the other hand, that phenomena transcending
the standard Turing model of computation, if they exist, must necessarily
lie outside the domain of classical computability theory.

In this article we suggest that much of the current confusion arises
from conceptual gaps and the lack of a suitably fundamental model within
which to situate emergence. We examine the potential for placing emer-
gent relations in a familiar context based on Turing’s 1939 model for
interactive computation over structures described in terms of reals. The
explanatory power of this model is explored, formalising informal descrip-
tions in terms of mathematical definability and invariance, and relating
a range of basic scientific puzzles to results and intractable problems in
computability theory.

1 Computability and Emergence

Since the time of Turing, computability as a concept has hardened, become
hedged around by its impressive technical development and its history, until its
role from almost any viewpoint has become tangential to the very real myster-
ies of how one models the real universe. This turn of events has had an air
of inevitability, in that even Turing, with his remarkable ability for clarifying
concepts and basic questions, was unable to fully import his concerns about the

1



nature of computability into the burgeoning formal framework of recursion the-
ory. And many of those who took up the technical development of the subject
not only lacked Turing’s vision, but became diverted by the pure excitement
and mathematical beauty of the new academic field. Thomas Kuhn’s ‘normal
science’ contains its own excitements and its minor paradigm shifts, as well as
delivering safe research careers.

From the point of view of the logician, recursion theory concerns on the one
hand a computable universe whose theory derives its significance from computer-
scientific concerns, with a technical content owing only a very basic and vestigial
debt to its logical origins. And on the other hand, exhibits an arcane preoc-
cupation with the development of a theory of incomputability, for which its
practitioners have no explanation or evidence for its existence in the material
world. One may be uneasy about the public criticisms by Martin Davis, Stephen
Simpson, and others (see [12]), but their views are widely respected.

This leaves many, with eyes wide enough open to see the accumulated evi-
dence of real-world misbehaviour, looking elsewhere for models. Presented with
phenomena with seemingly no hope of ever being reduced to a simple classi-
cal computational model, the natural alternative has been to develop models
with direct links to quite particular instances of apparent incomputability in
a physical setting. Much of this work, giving rise to a wide range of so-called
‘new computational paradigms’, has taken on a distinctly ad hoc aspect. Even
though the theoretical underpinnings of this newness are absent — even the
standard model of quantum computation is not free from continued scrutiny —
the delivery of computational outcomes sufficiently separated from the model’s
real-world template is taken as a pointer to useful applications.

One can highlight three key challenges to a reductionist view of the compu-
tational content of the universe, and to the explanational potentialities of the
computability framework. All three are familiar to the informed non-specialist,
are strikingly hard for the specialist to deal with, and are associated with con-
troversies, speculations, and a missing clarity which suggests a corresponding
missing conceptual ingredient. Quantum phenomena, and the human brain,
present the two most unavoidable challenges to the reductionist agenda. There
are other relatively specific examples, such as the puzzle of the origins of life.
But these are less dramatic, and less in the public domain. The third challenge
— emergence — is at first sight less obviously disturbing, but is more prevalent,
more protean in its manifestations, more theoretically deconstructable, and —
ultimately — more likely to give rise to a basic theoretical model of wide ap-
plication. And potentially of wide enough relevance to throw light on the two
first and more immediate challenges to our understanding of the world.

Emergence lies at the core of a number of controversies in science, often used
in a descriptive and speculative way to challenge more mechanistic and reductive
attempts to interpret the universe. Out of this dichotomy arises a less-than-
illuminating polarisation into a relative faithfulness to the simpler Laplacian
constructs of the scientific age, and a contemporary counter-culture insistent on
the essential mystery and predominance of emergent phenomena. The purpose
of this article is to point to some sort of reconciliation, mediated by classical
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computability concepts going back to Turing — the unifying personality both in
his overall concerns with computability, and in his breadth of interests, taking
in his seminal work on emergence, in the form of his work on morphogenesis,
and specifically phyllotaxis.

2 What is Emergence?

The term emergence is increasingly used in all sorts of contexts, often to de-
scribe any situation in which there appears to be a breakdown in reductionist
explanation, or where there appears to be a global rather than purely local
causal dynamic at work. This is how Stuart Kauffman [26] argues in his recent
book on Reinventing the Sacred: A New View of Science, Reason and Religion
(p.281):

We are beyond reductionism: life, agency, meaning, value, and even
consciousness and morality almost certainly arose naturally, and the
evolution of the biosphere, economy, and human culture are stun-
ningly creative often in ways that cannot be foretold, indeed in ways
that appear to be partially lawless. The latter challenge to current
science is radical. It runs starkly counter to almost four hundred
years of belief that natural laws will be sufficient to explain what is
real anywhere in the universe, a view I have called the Galilean spell.
The new view of emergence and ceaseless creativity partially beyond
natural law is a truly new scientific worldview in which science itself
has limits. [My emphasis.]

If one is going to give emergence such a key role in restructuring the Lapla-
cian model of science, and to come up with a suitably basic explanatory model,
one needs to be more clear about what are the defining characteristics of emer-
gent phenomena. Ronald, Sipper and Capcarrère [37] draw a parallel with
the development of the Turing Test for intelligent machines, and use Turing’s
observer-based approach to formulate an emergence test. They comment that
“overly facile use of the term emergence has made it controversial”, and quote
Arkin [2, p.105]:

Emergence is often invoked in an almost mystical sense regarding the
capabilities of behavior-based systems. Emergent behavior implies
a holistic capability where the sum is considerably greater than its
parts. It is true that what occurs in a behavior-based system is
often a surprise to the system’s designer, but does the surprise come
because of a shortcoming of the analysis of the constituent behavioral
building blocks and their coordination, or because of something else?

Ronald, Sipper and Capcarrère’s emergence test “centers on an observer’s
avowed incapacity (amazement) to reconcile his perception of an experiment in
terms of a global world view with his awareness of the atomic nature of the
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elementary interactions”. As well as an observer, there is a ‘designer’ in the
picture, whose existence is used to assist the description of certain qualifying
features of the atomic interactions of the system to be tested. The test is
comprised of three criteria:

1. Design: The system has been constructed by the designer, by describing
local elementary interactions between components (e.g., artificial creatures
and elements of the environment) in a language L1.

2. Observation: The observer is fully aware of the design, but describes global
behaviors and properties of the running system, over a period of time,
using a language L2.

3. Surprise: The language of design L1 and the language of observation
L2 are distinct, and the causal link between the elementary interactions
programmed in L1 and the behaviors observed in L2 is non-obvious to the
observer — who therefore experiences surprise. In other words, there is a
cognitive dissonance between the observer’s mental image of the system’s
design stated in L1 and his contemporaneous observation of the system’s
behavior stated in L2.

Ronald, Sipper and Capcarrère elaborate on this third condition to eliminate
evanescent instances of surprise. Notice that one can apply versions of these
criteria to a wide range of situations in which one is effectively capable of ‘looking
over the shoulder’ of a putative designer — say one in which the local science is
handed down to us by Nature, and is though to be well-understood, e.g., self-
contained systems implementing Newtonian laws. The early history of chaos
theory is replete with examples exhibiting the right quality of surprisingness,
nicely communicated by the term ‘strange attractor’ coined [38] by David Ruelle
and Floris Takens in 1971.

Of course, there is now quite a long history (see for example [1]) aimed at
describing and improving our understanding of emergence, and as time goes
on the observer ‘surprise’ criterion may not be as robust as the corresponding
element of the Turing test. Turing himself played an innovative role in develop-
ing demystifying mathematics related to morphogenesis, and more particularly
phyllotaxis, both in his seminal published paper [44] on the mathematical theory
of biological pattern formation, and in his more opaque and incomplete writings
contained in the posthumous collected works [45].

What is important though is not just the demystifying role of descriptions
of emergent phenomena, but the representational functionality they point to. It
is this latter aspect that takes us beyond emergence to a view of complexity in
Nature in which emergence plays a key inductive role. And it is the first two of
Ronald, Sipper and Capcarrère’s conditions which make us look for something
else within particular highly complex situations in which emergence clearly plays
a role, though not a definitive one. These first two conditions also point to the a
route to isolating the computational content of aspects of the physical universe
which appear on the one hand to transcend standard computability-theoretic
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frameworks, and on the other entice reductionist explanations of increasing im-
plausibility.

3 Representations, Recursions, Memetic Trans-
mission

In [9] we considered the computational content of features of the real world, and
more particularly, of developing computational practice. We looked at instances
in which there appeared to be a fairly basic transgression of the ‘Turing barrier’
(defined by the limit of what is computable by an ideal computer as captured
theoretically by a universal Turing machine), and more complex examples such
as human intelligence and quantum uncertainty. In the former case one finds the
emergence test broadly applicable, and in so doing can get a more informative
theoretical grasp of what emergence is as a computational process.

For instance, going back to the influential 1988 paper of Paul Smolensky
in Behavioral and Brain Sciences, we find [39, p.3] him examining a model
qualifying under criteria one and two of the emergence test, along with an
indication of an outcome which is surprising, judged according to computability-
theoretic expectations:

There is a reasonable chance that connectionist models will lead to
the development of new somewhat-general-purpose self-programming,
massively parallel analog computers, and a new theory of analog par-
allel computation: they may possibly even challenge the strong con-
strual of Church’s Thesis as the claim that the class of well-defined
computations is exhausted by those of Turing machines.

Computational parallelism is an obviously important aspect of connectionist
models and many others, but one needs to be careful about claiming that this
is not simulated by a Turing machine. As is well-known (see, for example,
David Deutsch [19, p.210]), the parallelism delivered by the standard model of
quantum computation can be explained within the classical sequential model. A
key ingredient, the addition of which does seem to stretch the classical Turing
model, is that of internal connectivity. Goldin and Wegner [23] quote from
Robin Milner’s 1991 Turing Award lecture [30, p.80]:

Through the seventies, I became convinced that a theory of concur-
rency and interaction requires a new conceptual framework, not just
a refinement of what we find natural for sequential computing.

At the same time, parallelism and interactivity do seem to be basic features
of situations exhibiting emergence.

Another idea which runs through a number of hypercomputational proposals,
including Copeland’s [15] rediscovery of oracle Turing machines, is that of adding
contextual interactions. But as Davis has argued effectively, there is plenty of
scope to widen the definition of what is ‘internal’ to a given system to bring a
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proposed new computational paradigm based on inadequately sourced oracles
back into the classical fold.

But in [24], for instance, Goldin and Wegner are not just talking about
parallelism and internal interactivity. And the inherent vagueness of examples
they quote both stretch the mathematical analysis, and the reductionist agenda
which feeds on that, to its limits:

One example of a problem that is not algorithmic is the follow-
ing instruction from a recipe [31]: ‘toss lightly until the mixture is
crumbly.’ This problem is not algorithmic because it is impossible
for a computer to know how long to mix: this may depend on con-
ditions such as humidity that cannot be predicted with certainty
ahead of time. In the function-based mathematical worldview, all
inputs must be specified at the start of the computation, preventing
the kind of feedback that would be necessary to determine when it’s
time to stop mixing.

But such interactions, such as those involving physical oracles as in [3],
appear to take us beyond an analysis directly relevant to the computational
ingredients of emergence as a basic computational phenomenon, and towards the
more hybrid computational environments presaged at the end of the previous
section.

A computational context which is both widely suspected of transcending
the standard Turing model, and of whose inner workings we have a high level
of detailed knowledge, is the human brain. And although we do know a great
deal about the way the human brain works, it clearly fails to satisfy the first
two conditions of the emergence test.

Part of the brain’s potential for enrichment of our modelling of the compu-
tationally complex lies in the way it seems to successfully deal with the sort of
imaging of the real world we would dearly like our computing machines to per-
form. More important, the brain shows the capacity to perform re-presentations
of mental imaging to enable recursive development of complex conceptual struc-
tures. At the same time, new techniques for relating structural and functional
features of the brain, for example, using positron emission scan (PET) or a
functional magnetic resonance imaging scan (fMRI), bring us much closer to
obtaining useful models.

As we noted in [9], connectionist models of computation based on the work-
ings of the human brain have developed in sophistication since Turing’s [43]
discussion of ‘unorganised machines’ (cf. Jack Copeland and Diane Proudfoot’s
article [16] On Alan Turing’s Anticipation of Connectionism), and McCulloch
and Pitts’ initial paper [32] on neural nets. But despite the growth of computa-
tional neuroscience as an active research area, putting together ingredients from
both artificial neural networks and neurophysiology, something does seem to be
missing. As Rodney Brooks [5] says “neither AI nor Alife has produced artifacts
that could be confused with a living organism for more than an instant.” Or as
Steven Pinker puts it: “. . . neural networks alone cannot do the job”, going on
to describe [34, p.124] “a kind of mental fecundity called recursion”:
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We humans can take an entire proposition and give it a role in some
larger proposition. Then we can take the larger proposition and
embed it in a still-larger one. Not only did the baby eat the slug,
but the father saw the baby eat the slug, and I wonder whether
the father saw the baby eat the slug, the father knows that I wonder
whether he saw the baby eat the slug, and I can guess that the father
knows that I wonder whether he saw the baby eat the slug, and so
on.

We are good at devising computational models capable of imaging, and
of going some way to emulate how the brain comes up with neural patterns
representing quite complex formations. But the mechanisms the brain uses to
represent such patterns and relate them in complex ways is more elusive. What
makes the sort of recursion Stephen Pinker has in mind so difficult to get to
grips with at the structural level, is that it seems wound up with the puzzle of
consciousness and its relationship to emotions and feelings. Antonio Damasio
[17, p.169] describes the hierarchical development of a particular instance of
consciousness within the brain (or, rather, ‘organism’), interacting with some
external object:

. . . both organism and object are mapped as neural patterns, in first-
order maps; all of these neural patterns can become images. . . . The
sensorimotor maps pertaining to the object cause changes in the
maps pertaining to the organism. . . . [These] changes . . . can be re-
represented in yet other maps (second-order maps) which thus repre-
sent the relationship of object and organism. . . . The neural patterns
transiently formed in second-order maps can become mental images,
no less so than the neural patterns in first-order maps.

What is important here is the re-representation of neural patterns formed
across some region of the brain, in such a way that they can have a computa-
tional relevance in forming new patterns. This is where the clear demarcation
between computation and computational effect becomes blurred. The key con-
ception is of computational loops incorporating these ‘second-order’ aspects of
the computation itself. Building on this one can derive a plausible schematic
picture of of the global workings of the brain.

Considering how complex a structure the human brain is, it is surprising
one does not find more features needing reflecting in any basic computational
model based on it. However, a thorough trawl through the literature, and one’s
own experiences, fails to bring to light anything that might be held up as com-
putational principle transcending in a fundamental way what we have already
identified. The key ingredients we expect in a model are imaging, parallelism,
interconnectivity, and a counterpart to the second-order recursions pointed to
above.

Mathematically, the imaging appears to be dependent on the parallelism and
interconnectivity. This is what connectionist models are strong on. The recur-
sions are not so easy to model, though. Looked at logically, one has representa-
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tions of complex patternings of neural events underlying which there is no clear
local mechanism, but for which one would expect a description in terms of the
structures pertaining. Looked at physically, such descriptions appear to emerge,
and be associated with (but not exclusively) the sort of non-linear mathematics
governing the emergence of new relations from chaotic environments. This leads
us to turn the picture of re-representations of mental imaging as a describable
mapping on its head, and think (see [8]) in terms of descriptions in terms of a
structure defining, and hence determining, the mental re-representations.

Looking at this more closely, what seems to be happening is that the brain
stores away not just the image, but a route to accessing that image as a whole.
This is what people who specialise in memorising very long numbers seem to
display — rather than attempting to go directly into the detailed memory of a
given number, they use simple representational tricks to call the entire number
up. Here is how Damasio summarises the process (and the quotation from [17,
p.170] is worth giving in full):

As the brain forms images of an object — such as a face, a melody,
a toothache, the memory of an event — and as the images of the ob-
ject affect the state of the organism, yet another level of brain struc-
ture creates a swift nonverbal account of the events that are taking
place in the varied brain regions activated as a consequence of the
object-organism interaction. The mapping of the object-related con-
sequences occurs in first-order neural maps representing the proto-
self and object; the account of the causal relationship between ob-
ject and organism can only be captured in second-order neural maps.
. . . one might say that the swift, second-order nonverbal account nar-
rates a story: that of the organism caught in the act of representing
its own changing state as it goes about representing something else.

So what is going on here, and how can one make sense of this in a fun-
damental enough way to apply to it computability-theoretic analysis? Let us
describe what seems to be the key idea in abstract terms, and then reinforce
this powerful conceptual lever via something more familiar, but with new eyes.

What we first looked at, in a fairly schematic way, is a particular physical
system whose constituents are governed by perfectly well-understood basic rules.
These rules are usually algorithmic, in that they can be described in terms
of functions simulatable on a computer, and their simplest consequences are
mathematically predictable. But although the global behaviour of the system
is determined by this algorithmic content, it may not itself be recognisably
algorithmic. We certainly encounter this in the mathematics, which may be
nonlinear and not yield the exact solutions needed to retain predictive control
of the system. We may be able to come up with a perfectly precise description of
the system’s development which does not have the predictive — or algorithmic
— ramifications the atomic rules would lead us to expect.

If one is just looking for a broad understanding of the system, or for a pre-
diction of selected characteristics, the description may be sufficient. Otherwise,
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one is faced with the practical problem of extracting some hidden algorithmic
content, perhaps via useful approximations, special cases, or computer simula-
tions. Geroch and Hartle [22] discuss this problem in their 1986 paper, in which
they suggest that “quantum gravity does seem to be a serious candidate for a
physical theory for whose application there is no algorithm.”

For the logician, this is a familiar scenario, for whom something describable
in a structure is said to be definable. The difference between computability and
definability is well-known. For example, if you go to any basic computability text
(e.g., Cooper [7]) you will find in the arithmetical hierarchy a usable metaphor
for what is happening here. What the arithmetical hierarchy encapsulates is
the smallness of the computable world in relation to what we can describe.
And Post’s Theorem [35] shows us how language can be used to progressively
describe increasingly incomputable objects and phenomena within computable
structures. An analysis of lower levels of the hierarchy even gives us a clue to the
formal role of computable approximations in constraining objects computably
beyond our reach.

Now, the important thing to notice is that a description in some language can
be viewed as being essentially a code for an algorithm for reconstruction mean-
ing from the real world within the human brain. More precisely, a description
conveys an epistemological algorithm which enables us to emulate emergent as-
pects, non-algorithmic, aspects of the world within the architecture of the brain.
Key to this is the logical structure of the relevant word, sentence, or more ex-
tensive module of language. This, of course, is why certain ideas or human
creations have memetic content. They come with a representation of, a recipe
for, their mental recreation and simulation. The simulated phenomenon may be
far from being algorithmic in its full manifestation, but the brain may be able
to by-pass the computational barriers via an algorithmic device for activating
and directing the brain’s capacity for reproducing its own emergent features.

Of course, this process depends on humanly constructed language. But the
universe has the capacity to handle descriptions, memetic content, and codings
for algorithms which perform hugely sophisticated tasks, in a wide spectrum
of situations, even though this may be via ad hoc emergent language of its
own. Probably the most familiar example of this is the reproduction of vari-
ous life forms via chromosomes and other genetic materials. A chromosome is
a structured package of DNA and DNA-bound protein, involving genes, reg-
ulatory elements and other nucleotide sequences. Its coding functionality has
algorithmic content, enabling the reproduction of complex aspects of the world
— but this only within a context which is not obviously algorithmic, and which
seems to ride upon undeniably emergent processes. Another example, involving
the human brain, but not a particular language, is the process whereby experts
in such tasks remember long seemingly random numbers. This is commonly
achieved by algorithmically coding the details of the numbers into images sim-
ulable in the brain, the simulation itself being dependent upon higher order
mental processes.

In order to associate a sufficiently basic model with such situations, which
replaces the simple Laplacian determinism captured via Turing computability,
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one needs to look more closely at how science describes the world, and at the
scientist’s historic agenda. In particular, we will need to look at Turing’s 1939
extension of his basic machine model of computation. The aim will be to go
beyond an analysis of the computability-theoretic content of emergence, to that
leading to a better understanding of the computational role of emergence in the
wider context.

4 The Turing Model

Turing’s extended [42] 1939 model, able to capture the algorithmic content of
those structures which are presented in terms of real numbers can be seen in
implicit form in Newton’s Principia, published some 272 years earlier. New-
ton’s work established a more intimate relationship between mathematics and
science, and one which held the attention of Turing, in various guises, through-
out his short life (see Hodges [25]). Just as the history of arithmetically-based
algorithms, underlying many human activities, eventually gave rise to models of
computation such as the Turing machine, so the oracle Turing machine schemat-
ically addresses the scientific focus on the extraction of predictions governing
the form of computable relations over the reals. Whereas the inputting of data
presents only time problems for the first model, the second model is designed
to deal with possibly incomputable inputs, or at least inputs for which we do
not have available an algorithmic presentation. One might reasonably assume
that data originating from observation of the real world carries with it some
level of computability, but we are yet to agree a mathematical model of physical
computation which dispenses with the relativism of the oracle Turing machine.
In fact, even as the derivation of recognisable incomputability in mathemat-
ics arises from quantification over algorithmic objects, so definability may play
an essential role in fragmenting and structuring the computational content of
the real world. The Turing model of computability over the natural numbers
appears to many people to be a poor indicator of what to expect in science.

Typically, specialist computability theorists are loath to speculate about
real-world significance for their work. Since the time of Turing, the theory of
computability has taken on a Laputa-like1 aspect in the eyes of many people,
an arcane world disconnected from naturally arising information. Below, we
look at Post’s legacy of relating computability-theoretic concepts to intuitively
immediate information content, and examine how that can be further extended
to an informative relationship with the mathematics of contemporary science.

The oracle Turing machine, which made its first appearance in Turing [42],
should be familiar enough. The details are not important, but can be found
in most reasonable introductions to computability (see for instance [7]). One
just needs to add to the usual picture of a Turing machine the capacity for
questioning an oracle set about the membership status of individual natural
numbers.

1Swift even has a Laputan professor introduce Gulliver to The Engine, an (appropriately
useless) early anticipation of today’s computing machines, and more.
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The basic form of the questioning permitted is modelled on that of everyday
scientific practice. This is seen most clearly in today’s digital data gathering,
whereby one is limited to receiving data which can be expressed, and transmitted
to others, as information essentially finite in form. But with the model comes
the capacity to collate data in such a way as enable us to deal with arbitrarily
close approximations to infinitary inputs and hence outputs, giving us an exact
counterpart to the computing scientist working with real-world observations. If
the different number inputs to the oracle machine result in 0-1 outputs from
the corresponding Turing computations, one can collate the outputs to get a
binary real computed from the oracle real, the latter now viewed as an input.
This gives a partial computable functional Φ, say, from reals to reals, which
may sometimes be described as a Turing reduction.

As usual, one cannot computably know when the machine for Φ computes
on a given natural number input, so Φ may not always give a fully defined real
output. So Φ may be partial. One can computably list all oracle machines, and
so index the infinite list of all such Φ, but one cannot computably sift out the
partial Φ’s from the list.

Anyway, put R together with this list, and we get the Turing Universe. That
is, we obtain a structure involving information in the form of real numbers,
algorithmically related by all possible Turing reductions. Depending on one’s
viewpoint, this is either a rather reduced scientific universe (if you are a poet, a
philosopher, or a string-theorist), or (if one is vainly looking for the richness of
algorithmic content contained on our list in the physical context, being familiar
with the richness of emergent structure in the Turing universe) a much expanded
one. But we will defer difficult comparisons between the information content of
the Turing universe and that of the physical universe until later. For the moment
we will follow Emil Post in his search for the informational underpinnings of
computational structure in a safer mathematical context.

Post’s first step was to gather together binary reals which are computation-
ally indistinguishable from each other, in the sense that they are mutually Turing
computable from each other. Mathematically, this delivered a more standard
mathematical structure to investigate — the familiar upper semi-lattice of the
degrees of unsolvability, or Turing degrees. There is no simple scientific counter-
part of the mathematical model, or any straightforward justification for what
Post did with the Turing universe for perfectly good mathematical reasons —
if one wants to get a material avatar of the Turing landscape one needs both a
closer and a more comprehensive view of the physical context.

5 Definability in Science

Schematically, any causal context framed in terms of everyday computable
mathematics can be modelled in terms of Turing reductions. Then emergence
can be formalised as definability over the appropriate substructure of the Turing
universe; or more generally, as invariance under automorphisms of the Turing
universe. Simple and fundamental as the notion of definability is, and basic as
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it is to everyday thought and discourse, as a concept it is not well understood
outside of logic. This is seen most strikingly in the physicists’ apparent lack
of awareness of the concept in interpreting the collapse of the wave function.
Quantum decoherence and the many-worlds hypothesis comprise a far more
outlandish interpretive option than does speculating that measurements, in en-
riching an environment, merely lead to an assertion of definability. It appears
a sign of desperation to protect consistent histories by inventing new universes,
when the mathematics of our observable universes already contains a straight-
forward explanation. We have argued (see for instance [13]) that many scientific
puzzles can be explained in terms of failures of definability in different contexts,
and that the key task is to identify useful theoretical models within which to
investigate the nature of definability more fully. One of the most relevant of
these models has to be that of Turing, based as it is on a careful analysis of the
characteristics of algorithmic computation.

This brings us to a well-known and challenging research programme, initiated
by Hartley Rogers in his 1967 paper [36], in which he drew attention to the
fundamental problem of characterising the Turing invariant relations. Again,
the intuition is that these are key to pinning down how basic laws and entities
emerge as mathematical constraints on causal structure. It is important to
notice how the richness of Turing structure discovered so far becomes the raw
material for a multitude of non-trivially definable relations, matching in its
complexity what we attempt to model.

Unfortunately, the current state of Rogers’ programme is not good. For a
number of years research in this area was dominated by a proposal originating
with the Berkeley mathematician Leo Harrington, which can be (very) roughly
stated:
Bi-interpretability Conjecture: The Turing definable relations are exactly
those with information content describable in second-order arithmetic.

Most importantly, bi-interpretability is not consistent with the existence
of non-trivial Turing automorphisms. Despite decades of work by a number
of leaders in the field, the exact status of the conjecture is still a matter of
controversy.

For those of us who have grown up with Thomas Kuhn’s 1962 book [29] on
the structure of scientific revolutions, such difficulties and disagreements are not
seen as primarily professional failures, or triggers to collective shame (although
they may be that too), but rather signs that something scientifically important is
at stake. A far more public controversy currently shapes developments around
important issues affecting theoretical physics — see, for example the recent
books of Lee Smolin [40] and Peter Woit [47].

This turns out to be very relevant to our theme of the importance of funda-
mental notions, such as that of mathematical definability, to the formation of
basic scientific theories. In this context, the specific focus on string theory of
the above-mentioned books of Smolin and Woit is important, given that string
theory was initially intended to remedy a number of inadequacies in current
scientific thinking, without really getting to grips with fundamental issues. Our
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argument is that string theory does very validly point towards a substitution of
abstract mathematics for inaccessible observational data. And that it has pro-
duced some very beautiful and useful mathematics, and widened our conceptual
horizons in relation to models of the universe. But — that it has failed to enlist
notions of global definability to pin down important elements of the real world.

As Peter Woit [47, p.1] describes, according to purely pragmatic criteria
particle physics has produced a standard model which is remarkably successful,
and has great predictive power:

By 1973, physicists had in place what was to become a fantastically
successful theory of fundamental particles and their interactions, a
theory that was soon to acquire the name of the standard model.
Since that time, the overwhelming triumph of the standard model
has been matched by a similarly overwhelming failure to find any
way to make further progress on fundamental questions.

The reasons why people are dissatisfied echo misgivings going back to Ein-
stein himself [20, p.63]:

. . . I would like to state a theorem which at present can not be
based upon anything more than upon a faith in the simplicity, i.e.
intelligibility, of nature . . . nature is so constituted that it is possi-
ble logically to lay down such strongly determined laws that within
these laws only rationally completely determined constants occur
(not constants, therefore, whose numerical value could be changed
without destroying the theory) . . .

If one really does have a satisfying description of how the universe is, it should
not contain arbitrary elements with no plausible explanation. In particular, a
theory containing arbitrary constants, which one adjusts to fit the intended
interpretation of the theory, is not complete. And as Woit observes:

One way of thinking about what is unsatisfactory about the stan-
dard model is that it leaves seventeen non-trivial numbers still to be
explained, . . .

At one time, it had been hoped that string theory would supply a sufficiently
fundamental framework to provide a much more coherent and comprehensive
description, in which such arbitrary ingredients were properly pinned down.
But despite its mathematical attractions, there are growing misgivings about
its claimed status as “the only game in town” as a unifying explanatory theory.
Here is how one time string theorist Daniel Friedan [21] combatively puts it:

The longstanding crisis of string theory is its complete failure to
explain or predict any large distance physics. . . . String theory is
incapable of determining the dimension, geometry, particle spectrum
and coupling constants of macroscopic spacetime. . . . The reliability
of string theory cannot be evaluated, much less established. String
theory has no credibility as a candidate theory of physics.
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Smolin starts his book [40]:

From the beginning of physics, there have been those who imagined
they would be the last generation to face the unknown. Physics has
always seemed to its practitioners to be almost complete. This com-
placency is shattered only during revolutions, when honest people
are forced to admit that they don’t know the basics.

He goes on to list what he calls the “five great [unsolved] problems in the-
oretical physics”. Gathering these together, and slightly editing, they are [40,
pp.5-16]:

1. Combine general relativity and quantum theory into a single theory that
can claim to be the complete theory of nature.

2. Resolve the problems in the foundations of quantum mechanics.

3. The unification of particles and forces problem: Determine whether or not
the various particles and forces can be unified in a theory that explains
them all as manifestations of a single, fundamental entity.

4. Explain how the values of the free constants in the standard model of
physics are chosen in nature.

5. Explain dark matter and dark energy. Or, if they do not exist, determine
how and why gravity is modified on large scales.

That each of these questions can be framed in terms of definability is not
so surprising, since that is exactly how, essentially, they are approached by
researchers. The question is the extent to which progress is impeded by a lack
of consciousness of this fact, and an imperfect grip of what is fundamental.
Quoting Einstein again (from a letter to Robert Thornton, dated 7 December
1944, Einstein Archive 61-754), this time on the relevance of a philosophical
approach to physics:

So many people today – and even professional scientists – seem to
me like someone has seen thousands of trees but has never seen a
forest. A knowledge of the historical and philosophical background
gives that kind of independence from prejudices of his generation
from which most scientists are suffering. This independence created
by philosophical insight is – in my opinion – the mark of distinction
between a mere artisan or specialist and a real seeker after truth.

Smolin’s comment [40, p.263] is in the same direction, though more specifi-
cally directed at the string theorists:

The style of the string theory community . . . is a continuation of the
culture of elementary-particle theory. This has always been a more
brash, aggressive, and competitive atmosphere, in which theorists
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vie to respond quickly to new developments . . . and are distrustful
of philosophical issues. This style supplanted the more reflective,
philosophical style that characterized Einstein and the inventors of
quantum theory, and it triumphed as the center of science moved
to America and the intellectual focus moved from the exploration of
fundamental new theories to their application.

So what is it that is fundamental that is being missed? For Smolin [40,
p.241], it is causality :

It is not only the case that the spacetime geometry determines what
the causal relations are. This can be turned around: Causal rela-
tions can determine determine the spacetime geometry . . . Its easy
to talk about space or spacetime emerging from something more fun-
damental, but those who have tried to develop the idea have found
it difficult to realize in practice. . . . We now believe they failed be-
cause they ignored the role that causality plays in spacetime. These
days, many of us working on quantum gravity believe that causality
itself is fundamental – and is thus meaningful even at a level where
the notion of space has disappeared.

Citing Penrose as an early champion of the role of causality, he also mentions
Rafael Sorkin, Fay Dowker, and Fotini Markopoulou, known in this context for
their interesting work on causal sets (see [4]), which abstract from causality
relevant aspects of its underlying ordering relation. Essentially, causal sets
are partial orderings which are locally finite, providing a model of spacetime
with built-in discreteness. Despite the apparent simplicity of the mathematical
model, it has had striking success in approximating the known characteristics of
spacetime. An early prediction, in tune with observation, concerned the value
of Einstein’s cosmological constant.

Of course, this preoccupation with causality might suggest to a logician a
need to also look at its computational content. Smolin’s comment that “Causal
relations can determine the spacetime geometry” touches on one of the biggest
disappointments with string theory, which turns out to be a ‘background de-
pendant’ theory with a vengeance — one has literally thousands of candidate
Calabi-Yau spaces for shaping the extra dimensions of superstring theory. In
current superstring models, Calabi-Yau manifolds are those qualifying as pos-
sible space formations for the six hidden spatial dimensions, their undetected
status explained by the assumption of their being smaller than currently ob-
servable lengths.

Ideally, a truly fundamental mathematical model should be background in-
dependent, bringing with it a spacetime geometry arising from within.

6 The Emergence-Definability Symbiosis

There are obvious parallels between the Turing universe and the material world.
Each of which in isolation, to those working with specific complexities, may seem
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superficial and unduly schematic. But the lessons of the history of mathematics
and its applications is that the simplest of abstractions can yield unexpectedly
far-reaching and deep insights into the nature of the real world. The main
achievement of the Turing model, and its definable content, is to illuminate and
structure the role of computability theoretic expressions of emergence.

At the most basic level, science describes the world in terms of real num-
bers. This is not always immediately apparent, any more that the computer on
ones desk is obviously an avatar of a universal Turing machine. Nevertheless,
scientific theories consist, in their essentials, of postulated relations upon reals.
These reals are abstractions, and do not come necessarily with any recognisable
metric. They are used because they are the most advanced presentational de-
vice we can practically work with. There is no faith that reality itself consists
of information presented in terms of reals. In fact, those of us who believe that
mathematics is indivisible, no less in its relevance to the material world, have a
due humility about the capacity for our science to capture more than a surface
description of reality.

Some scientists would take us in the other direction, and claim that the uni-
verse is actually finite, or at least countably discrete. We have argued elsewhere
(see for example [14]) that to most of us a universe without algorithmic content
is inconceivable. And that once one has swallowed that bitter pill, infinitary
objects are not just a mathematical convenience (or inconvenience, depending
on one’s viewpoint), but become part of the mathematical mold on which the
world depends for its shape. As it is, we well know how essential algorithmic
content is to our understanding of the world. The universe comes with recipes
for doing things. It is these recipes which generate the rich information content
we observe, and it is reals which are the most capacious receptacles we can
humanly carry our information in, and practically unpack.

Globally, there are still many questions concerning the extent to which one
can extend the scientific perspective to a comprehensive presentation of the
universe in terms of reals — the latter being just what we need to do in order
to model the immanent emergence of constants and natural laws from an en-
tire universe. Of course, there are many examples of presentations entailed by
scientific models of particular aspects of the real world. But given the fragmen-
tation of science, is fairly clear that less natural presentations may well have an
explanatory role, despite their lack of a role in practical computation.

The natural laws we observe are largely based on algorithmic relations be-
tween reals. For instance, Newtonian laws of motion will computably predict,
under reasonable assumptions, the state of two particles moving under gravity
over different moments in time. And the character of the computation involved
can be represented as a Turing functional over the reals representing different
time-related two-particle states. One can point to physical transitions which
are not obviously algorithmic, but these will usually be composite processes,
in which the underlying physical principles are understood, but the mathemat-
ics of their workings outstrip available analytical techniques. Over forty years
ago, Georg Kreisel [27] distinguished between classical systems and cooperative
phenomena not known to have Turing computable behaviour, and proposed
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[28, p.143, Note 2] a collision problem related to the 3-body problem, which
might result in “an analog computation of a non-recursive function (by repeat-
ing collision experiments sufficiently often)”. However, there is a qualitatively
different apparent breakdown in computability of natural laws at the quantum
level — the measurement problem challenges us to explain how certain quantum
mechanical probabilities are converted into a well-defined outcome following a
measurement. In the absence of a plausible explanation, one is denied a com-
putable prediction. The physical significance of the Turing model depends upon
its capacity for explaining what is happening here. If the phenomenon is not
composite, it does need to be related in a clear way to a Turing universe de-
signed to model computable causal structure. We will need to talk more about
definability and invariance.

For the moment, let us think in terms of what an analysis of the automor-
phisms of any sufficiently comprehensive, sufficiently fundamental, mathemati-
cal model of the material universe might deliver.

Let us first look at the relationship between automorphisms and many-
worlds. When one says “I tossed a coin and it came down heads, maybe that
means there is a parallel universe where I tossed the coin and it came down
tails”, one is actually predicating a large degree of correspondence between the
two parallel universes. The assumption that you exist in the two universes puts
a huge degree of constraint on the possible differences — but nevertheless, some
relatively minor aspect of our universe has been rearranged in the parallel one.
There are then different ways of relating this to the mathematical concept of
an automorphism. One could say that the two parallel worlds are actually iso-
morphic, but that the structure was not able to define the outcome of the coin
toss. So it and its consequences appear differently in the two worlds. Or one
could say that what has happened is that the worlds are not isomorphic, that
actually we were able to change quite a lot, without the parallel universe looking
very different, and that it was these fundamental but hidden differences which
forces the worlds to be separate and not superimposed, quantum fashion. The
second view is more consistent with the view of quantum ambiguity displaying
a failure of definability. The suggestion here being that the observed existence
of a particle (or cat!) in two different states at the same time merely exhibits an
automorphism of our universe under which the classical level is rigid (just as the
Turing universe displays rigidity above 0′′) but under which the sparseness of
defining structure at the more basic quantum level enables the automorphism to
re-represent our universe, with everything at our level intact, but with the parti-
cle in simultaneously different states down at the quantum level. And since our
classical world has no need to decohere these different possibilities into parallel
universes, we live in a world with the automorphic versions superimposed. But
when we make an observation, we establish a link between the undefined state
of the particle and the classical level of reality, which destroys the relevance of
the automorphism. To believe that we now get parallel universes in which the
alternative states are preserved, one now needs to decide how much else one is
going to change about our universe to enable the state of the particle destroyed
as a possiblity to survive in the parallel universe — and what weird and won-
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derful things one must accommodate in order to make that feasible. It is hard
at this point to discard the benefits brought by a little mathematical sophisti-
cation. Quantum ambiguity as a failure of definability is a far more palatable
alternative than the invention of new worlds of which we have no evidence or
scientific understanding.

Another key conceptual element in the drawing together of a global picture
of our universe with a basic mathematical model is the correspondence between
emergent phenomena and definable relations. This gives us a framework within
which to explain the particular forms of the physical constants and natural laws
familiar to us from the standard model science currently provides. It goes some
way towards substantiating Penrose’s [33, pp1̇06-107] ‘strong determinism’, ac-
cording to which “all the complication, variety and apparent randomness that
we see all about us, as well as the precise physical laws, are all exact and un-
ambiguous consequences of one single coherent mathematical structure” — and
repairs the serious failure of the standard model pointed to by researchers such
as Smolin and Woit. It also provides a hierarchical model of the fragmentation
of the scientific enterprise. This means that despite the causal connections be-
tween say particle physics and the study of living organisms, the corresponding
disciplines are based on quite different basic entities and natural laws, and there
is no feasible and informative reduction of one to another. The entities in one
field may emerge through phase transitions characterised in terms of definable
relations in the other, along with their distinct causal structures. In this con-
text, it may be that the answer to Smolin’s first ‘great unsolved problem in
theoretical physics’ consists of an explanation of why there is no single theory
(of the kind that makes useful predictions) combining general relativity and
quantum theory.

For further discussion of such issues, see [6], [9], [10], [11], [13] and [14].

References

[1] I. Adler, D. Barab and R. V. Jean, A history of the study of phyllotaxis,
Annals of Botany, 80 (1997), 231–244.

[2] R. C. Arkin, Behaviour-Based Robotics, M.I.T. Press, Cambridge, MA,
1998.

[3] E. J. Beggs and J. V. Tucker, Experimental computation of real numbers by
Newtonian machines, to appear in Proceedings of the Royal Society Series
A.

[4] L. Bombelli, J. Lee, D. Meyer and R. D. Sorkin, Spacetime as a causal set,
Phys. Rev. Lett. 59 (1987), 521–524.

[5] R. Brooks, The relationship between matter and life. Nature 409 (2001),
409–411.

18



[6] S. B. Cooper, Clockwork or Turing U/universe? - Remarks on causal de-
terminism and computability, in Models and Computability (S. B. Cooper
and J. K. Truss, eds.), London Mathematical Society Lecture Notes Series
259, Cambridge University Press, Cambridge, New York, Melbourne, 1999,
pp.63–116.

[7] S. B. Cooper, Computability Theory, Chapman & Hall/CRC, Boca Raton,
London, New York, Washington, D.C., 2004.

[8] S. B. Cooper, Computability and emergence. In Mathematical Problems
from Applied Logic. New Logics for the XXI-st Century II (eds. Gabbay
D., Goncharov S., Zakharyaschev M.) Kluwer/Springer International Math-
ematical Series, Vol. 5, 2005.

[9] S. B. Cooper, Definability as hypercomputational effect, Applied Mathe-
matics and Computation, 178 (2006), 72–82.

[10] S. B. Cooper, How Can Nature Help Us Compute?, in SOFSEM 2006:
Theory and Practice of Computer Science - 32nd Conference on Current
Trends in Theory and Practice of Computer Science, Merin, Czech Re-
public, January 2006 (J. Wiedermann, J. Stuller, G. Tel, J. Pokorny, M.
Bielikova, eds.), Springer Lecture Notes in Computer Science No. 3831,
2006, pp.1–13.

[11] S. B. Cooper, Computability and emergence, in Mathematical Problems
from Applied Logic I. Logics for the XXIst Century (D.M. Gabbay, S.S.
Goncharov, M. Zakharyaschev, eds.), Springer International Mathematical
Series, Vol. 4, 2006, pp. 193–231.

[12] S. B. Cooper, The Incomputable Alan Turing, in the Proceedings of
Alan Mathison Turing 2004: A celebration of his life and achieve-
ments, Manchester University, 5 June, 2004 (Janet Delve and Jeff Paris,
eds.), electronically published by the British Computer Society (2008):
http://www.bcs.org/server.php?show=nav.9917.

[13] S. B. Cooper, Extending and interpreting Post’s Programme, to appear.

[14] S. B. Cooper and P. Odifreddi, Incomputability in Nature, in Computabil-
ity and Models (S.B. Cooper and S.S. Goncharov, eds.), Kluwer Aca-
demic/Plenum, New York, Boston, Dordrecht, London, Moscow, 2003,
pages 137–160.

[15] J. Copeland, Turing’s O-machines, Penrose, Searle, and the brain. Analysis,
58 (1998), 128–38.

[16] J. Copeland and D. Proudfoot, On Alan Turing’s anticipation of connec-
tionism. Synthese, 108 (1996), 361–377. Reprinted in Artificial Intelligence:
Critical Concepts in Cognitive Science (R. Chrisley, ed), Volume 2: Sym-
bolic AI. Routledge, London, 2000.

19



[17] A. Damasio, The Feeling Of What Happens. Harcourt, Orlando, FL., 1999.

[18] M. Davis (Ed.), Solvability, Provability, Definability: The Collected Works
of Emil L. Post , Birkhäuser, Boston, Basel, Berlin, 1994.

[19] Deutsch D. (1997) The Fabric of Reality. Penguin, London, New York.

[20] A. Einstein, Autobiographical Notes, in Albert Einstein: Philosopher-
Scientist (P. Schilpp, ed.), Open Court Publishing, 1969.

[21] D. Friedan, A Tentative Theory of Large Distance Physics, J. High Energy
Phys. JHEP10 (2003) 063.

[22] R. Geroch and J. B. Hartle, Computability and physical theories, Founda-
tions of Physics 16 (1986), 533–550.

[23] D. Goldin and P. Wegner, Computation Beyond Turing Machines: seeking
appropriate methods to model computing and human thought. Communi-
cations of the ACM 46 (2003), 100–102.

[24] D. Goldin and P. Wegner, The Church-Turing Thesis: Breaking the Myth,
in CiE 2005: New Computational Paradigms: Papers presented at the con-
ference in Amsterdam, June 8–12, 2005 (Cooper S. B., Löwe B., Torenvliet
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