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Abstract

This paper demonstrates the potential role of autonomous agents in economic
theory. We first dispatch autonomous agents, built by genetic programming, to dou-
ble auction markets. We then study the bargaining strategies discovered by them,
and from there an autonomous-agent-inspired economic theory with regard to the
optimal procrastination is derived.

Keywords: Agent-Based Double Auction Markets, Autonomous Agents, Genetic Pro-
gramming, Bargaining Strategies, Monopsony, Procrastination Strategy

1 Motivation and Introduction

Economics is about the efficient use of resources, which very much relies on the ability
of humans to discover chances and hidden patterns. However, what is lacking in current
economic theory is a proper model of the chance-discovering agents. Recent develop-
ments in regard to autonomous agents have provided economists with an opportunity to
fill this intellectual gap. This is particularly evident in the growing literature on agent-
based computational economics (Tesfatsion and Judd, 2006). The massive use of the tools
of intelligent agents has placed various kinds of autonomous agents in economic envi-
ronments so that they can explore their surroundings and make decisions without too
much external supervision (Chen, 2008a). Models built using these autonomous agents
can, therefore, evolve on their own and changes are no longer placed exogenously, but
generated endogenously.

In addition, by studying what kinds of chances or patterns are being discovered by
these agents, we, as model-builders, can also better learn about the intricate structure
of the models. In this way, autonomous agents not only learn by themselves, but also
“instruct” model-builders to learn. Nevertheless, current studies on agent-based eco-
nomic models largely focus only on the macroscopic level. The microscopic analysis has
not been advanced enough to gain insights into the discovery behavior of autonomous
agents. In this paper, we will use an agent-based double auction market for which au-
tonomous agents are built by genetic programming to illustrate the challenges posed by
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Market-1: Demand-Supply

Demand-Supply Information

Token-Value Table

Demand Curve 28 26 26 25 23 23 22 17 14 14 13 12 12 9 7 6
Supply Curve 1 2 4 7 7 8 9 9 12 17 18 18 20 21 21 23

Buyer1 Buyer2 Buyer3 Buyer4 Seller1 Seller2 Seller3 Seller4
23 28 23 26 2 8 1 7
22 26 14 25 7 12 4 9
12 17 9 14 17 21 9 20

7 13 6 12 18 23 18 21

Market-2: Demand-Supply

Demand-Supply Information

Token-Value Table

Demand Curve 79 79 79 79 76 76 76 76 76 76 76 76 75 75 75 75
Supply Curve 75 75 75 75 76 76 76 76 76 76 76 76 79 79 79 79

Buyer1 Buyer2 Buyer3 Buyer4 Seller1 Seller2 Seller3 Seller4
79 79 79 79 75 75 75 75
76 76 76 76 76 76 76 76
76 76 76 76 76 76 76 76
75 75 75 75 79 79 79 79

Figure 1: Market 1 (Left) and Market 2 (Right)

The bottom panel is the token-value table, which specifies the reservation price of buyers and sellers for each
additional token. The middle panel is a list of all reservation prices, which are arranged, from left to right,
in descending order for buyers’ reservation prices and ascending order for sellers’ reservation prices. The
corresponding demand and supply schedule is then given in the top panel.

knowledge discovery to the ecological market dynamics. In addition, through these fa-
miliar double auction markets, we shall see why this task can be difficult and will also
see how interdisciplinary research can help to make a breakthrough.

The rest of this paper is organized as follows. Section 2 presents the experimental
designs of the paper. We adopt four market designs (four different demand and supply
schedules), each with a different equilibrium (or equilibria), so as to generalize what we
may be able to learn from our dispatched autonomous agents. Section 3 provides the
simulation results. After a short summary, we analyze the best strategies found in each
market scenario and try to discover the rationale behind them. A generalization of what
we learn from these four cases motivates the theory of optimal procrastination proposed
in Section 4, followed by concluding remarks in Section 5.

2 Experimental Designs

2.1 Environment

In this paper, we consider four different schedules of demand and supply, as shown in
Figures 1 and 2. Each market has four buyers and four sellers. They are numbered from
Buyer 1 to Buyer 4 and Seller 1 to Seller 4. The commodity traded in this market is called
the token. Buyers value these tokens and their maximum willingness to pay (the reservation
price of buyers) for each token is specified in the token-value table. The willingness to pay
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Market-3: Demand-Supply

Demand-Supply Information

Token-Value Table

Demand Curve 17473 17473 17473 17473 17471 17471 17470 17470
Supply Curve 33 34 34 34 34 34 34 34

17465 17465 17465 17465 17465 17465 17465 17464
39 39 40 40 42 42 42 42

Buyer1 Buyer2 Buyer3 Buyer4 Seller1 Seller2 Seller3 Seller4
17473 17473 17473 17473 33 34 34 34
17471 17470 17470 17471 34 34 34 34
17465 17465 17465 17465 40 39 39 40
17464 17465 17465 17465 42 42 42 42

Market-4: Demand-Supply

Demand-Supply Information

Token-Value Table

6987 6985 6984 6981 6593 6593 6590 6589
4100 4100 4101 4102 4545 4547 4548 4550

Demand Curve 10521 10519 10518 10516 10073 10072 10071 10071
Supply Curve 618 619 622 622 1010 1013 1014 1016

Buyer1 Buyer2 Buyer3 Buyer4 Seller1 Seller2 Seller3 Seller4
10518 10519 10516 10521 622 622 618 619
10073 10072 10071 10071 1013 1010 1014 1016
6984 6981 6985 6987 4102 4101 4100 4100
6593 6593 6589 6590 4547 4548 4545 4550

Figure 2: Market 3 (Left) and Market 4 (Right)

The bottom panel is the token-value table, which specifies the reservation price of buyers and sellers for each
additional token. The middle panel is a list of all reservation prices, which are arranged, from left to right,
in descending order for buyers’ reservation prices and ascending order for sellers’ reservation prices. The
corresponding demand and supply schedule is then given in the top panel.

is non-increasing with the number of tokens already owned. For example, in Figure 1,
Market 1, for Buyer 1, the maximum willingness to pay for the first token is 23, then 22
for the second, 12 for the third, and 7 for the fourth. A similar structure holds for other
buyers. On the other hand, sellers would like to provide these tokens and the minimum
acceptable price (the reservation price of the seller) for each token is also specified in the
token-value table. As the opposite of the maximum willingness to pay, the minimum
acceptable price is non-decreasing with the number of tokens already sold. Let us use
Seller 1 in Market 1 (Figure 1, Left) as an example. The minimum acceptable price starts
from 2 for the first token, then 7 for the second, 17 for the third, and 18 for the fourth.

This structure of the token-value table is generated in light of the familiar behavior
of marginal utility and marginal cost and hence it fits well with the law of demand and
supply. If we pool all the maximum willingness to pay and the minimum acceptable
price together, and arrange then in descending order and ascending order separately
(as shown in the middle panel of each figure), then we can draw a downward-sloping
demand schedule and upward-sloping supply schedule, as shown in the top panel of
each figure.

Since different demand and supply schedules may have different effects on the behav-
ior of bargaining, we try to make our demand-supply schedules different so as to explore
this sensitivity. The first two cases (Figure 1) have demand and supply cross so that the
equilibrium price is unique. Their difference lies in the multiplicity of the equilibrium
quantity. For the first case, this is also unique, whereas for the second it has multiple
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equilibria. The last two cases (Figure 2) differ from the first two in that they never cross,
so their equilibrium price is not unique, but has an equilibrium quantity. Between the
two, differences exist in the distance between demand and supply curves. For Market 3,
the demand and supply schedules are parallel to each other from the left end to the right
end, and the distance between the two changes little, whereas for Market 4, the demand
curve is piecewisely step-down and the supply curve is piecewisely step-up, and the dis-
tance between the two, therefore, gets smaller. It is not quite clear how these different
topologies may impact the bargaining strategies. At the outset, we simply wonder and
let our simulation results enlighten us.

One autonomous agent will be placed in this environment, and it will play the role
of Buyer 1 (see Section 2.4 for more).1 The trading behavior of the autonomous agents are the
focus of this study. In particular, we ask how genetic programming enables these agents to
discover profitable trading strategies and what they discover, a question already raised
in Chen (2008).2 To better understand the nature of this question, consider the case of
one autonomous agent. The four reservation prices (the maximum willingness to pay) of
Buyer 1 are highlighted in each figure. From this mark, we can immediately see the orig-
inal competitive advantage of Buyer 1 relative to other competitors (buyers and sellers).
The question is what the optimal bargaining strategy is given this competitive position,
be it superior or inferior, and how genetic programming can help the autonomous agent
to discover this strategy.

2.2 Bargaining Strategies

By a bargaining strategy, we mean an algorithm to indicate the kind of information re-
quired for making a decision (the inputs), and how the decision is made based upon the
information received (the outputs), or, alternatively, a process to connect inputs to out-
puts. Of course, that would in turn depends on the inputs available for the artificial
agents. In this paper, we follow the experimental design of the Santa Fe Double Auction
Tournament (Rust, Miller, and Palmer, 1993, 1994) and make the information as summa-
rized in Table 1 available for traders. Basically, three types of information are available
for our autonomous agents: price or quote information (indexes 1–9 and 16–17), time
information (indexes 10–11), and private information (indexes 12–14).

This information is rather concise compared to what human subjects will normally
have from laboratory experiments, where they may get access to all information on the
previous trading “days” and “rounds”. What we have here is only partial information
on the previous day and previous round. However, this condensed information may
be sufficient given what we learned from Rust, Miller, and Palmer (1993, 1994). In fact,
some later developed artificial double auction systems are also built upon this “minimal”
information set (Andrews and Prager, 1994).

This information set defines part of the algorithms which may be discovered by the
autonomous agents, but it is just a collection of primitive inputs. To process this raw data,

1This fixed design is simple and make our analysis coming later easier.
2In an experimental setting, the same kind of question has been asked by Rust, Miller, and Palmer (1993)

and Rust, Miller, and Palmer (1994). The difference is that they asked how human agents discover or design
the trading strategies, but here we are addressing how software agents do that. For other subtle differences,
the interested reader is referred to Chen and Tai (2010).
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Table 1: Information Available for Traders (Terminal Set)

Index Terminal Interpretation

1 PMax the highest transaction price on the previous day
2 PMin the lowest transaction price on the previous day
3 PAvg the average transaction price on the previous day
4 PMaxBid the highest bidding price on the previous day
5 PMinBid the lowest bidding price on the previous day
6 PAvgBid the average bidding price on the previous day
7 PMaxAsk the highest asking price on the previous day
8 PMinAsk the lowest asking price on the previous day
9 PAvgAsk the average asking price on the previous day
10 Time1 the number of auction rounds left for today
11 Time2 the number of auction rounds that have no transaction
12 HT the highest token value
13 NT the second highest token value
14 LT the lowest token value
15 Pass pass the current auction round
16 CASK the lowest asking price in the previous auction round
17 CBID the highest bidding price in the previous auction round
18 Constant randomly generated constant number

Table 2: Logic and Mathematical Operators (Function Set)

Function

+ - * % min
> exp abs log max
sin cos if-then-else if-bigger-then-else

some further operations are expected. Normally this can be done by allowing agents to
obtain access to some logical and mathematical operators, and Table 2 provides a list of
these options.

Given the information (Table 1) and the way to operate it (Table 2), various bargaining
strategies can be formed. Two examples are given as follows:3

• (Min PMinBid HT)

• (If Bigger Then Else HT CASK CASK+1 Pass)

In the first example, to decide how much to bid, the buyer simply looks at the minimum
bid on the previous day (PMinBid) and his current reservation price (HT), and bids at
the minimum of the two. In the second example, the buyer first checks whether his
reservation price (HT) is bigger than the lowest ask (CASK) in the previous round. If
this condition is met, he will bid by adding one dollar to the current ask; otherwise, he
will simply pass. Not all bargaining strategies are that simple. A little knowledge of

3The generation of these examples is based on the grammar of the formal language, in particular, the
context-free grammar. The famous Backus-Naur Form (BNF) is extensively used in the literature and is also
applied here.
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Figure 3: Composition of Market Participants

combinatorics or context-free grammar will lead us to see that the formed bargaining
algorithm can potentially become complex like the next one.

• ((Min (If Bigger Then Else PMinBid PAvgBid CASK PAvgBid)
(If Bigger Then Else HT PAvgBid PAvgBid CASK))

2.3 Institutional Arrangements

One may question whether the syntax developed above can be semantically meaningful
as well. That depends on the kind of institutional arrangements. In a double auction
market, both buyers and sellers can submit bids and asks. This contrasts with only buy-
ers shouting bids (as in an English Auction) or only sellers shouting asks (as in a Dutch
Auction). There are several variations of DA markets. One example is the clearinghouse
DA of the Santa Fe Token Exchange (SFTE) (Rust, Miller, and Palmer, 1993) on which this
work is based.

On the SFTE platform, time is discretized into alternating bid/ask (BA) and buy/sell (BS)
steps. Initially, the DA market opens with a BA step in which all traders are allowed to
simultaneously post bids and asks for one token only. After the clearinghouse informs
the traders of each others’ bids and asks, the holders of the highest bid and lowest ask are
matched and enter into a BS step. During the BS step, the two matched traders carry
out the transaction using the mid-point between the highest bid and the lowest ask as the
transaction price. Once the transaction is cleared, the market enters into a BA stage for
the next auction round. The DA market operations are a series of alternating BA and BS
steps.

Our introduced syntax of the bargaining strategy works well with the SFTE platform
because for this platform the decision only involves a bid or an ask for a single unit of
token. There is no involvement of market time, which certainly exists in the continuous-
time double auction, and there is no involvement of units when each transaction allows
for one unit as the maximum.

2.4 Opponents’ Behavior

In this paper, to make our later analysis simple, we assume that all opponents are truth
tellers except one autonomous agent (the first buyer) (see Figure 3). Being a truth teller,

6



Table 3: Experimental Designs

# of Autonomous Agents (Code) Markets (Code) Cognitive Capacity (Code)

One, Buyer 1 (B1) 1 (M1), 2 (M2), 3 (M3), 4 (M4) 10 (P10)
1 (M1), 2 (M2), 3 (M3), 4 (M4) 50 (P50)

Inside the brackets is the code of the corresponding design. So, for example, Case B1M1-P10 refers to the
design involving one GP buyer in Market one, and the population size of the GP buyer is set to 10. Case
B1M4-P50 refers to the one involving one GP buyer in Market 4, and the population size is 50.

the trader simply bids or asks at his current reservation price (HT for buyers and LT
for sellers). This simplification makes it easier for us to make sense of the behavior of
autonomous agents and evaluate their novelty-discovery capability. We start with the
simplest case, only one one autonomous agent (the left panel of Figure 3) to gain some
basic understanding of the bargaining strategies discovered.4

The inquiry above is addressed based on multiple runs of four designs. The four
designs differ according to the population size of GP being 10 or 50. Each of the designs
is implemented with the four demand-supply schedules. A summary is given in Table
3. 90 runs are conducted for each market under each design. Hence, a total of 720 (2 ×
2 × 4 × 90) runs are completed. For the purpose of running GP, each run lasts for 300
generations (iterations).

2.5 Genetic Programming

Autonomous agents in this paper are programmed by genetic programming. Genetic
programming is a population-based stochastic search algorithm. The population is com-
posed of a number of chromosomes. In different applications, these chromosomes rep-
resent different things. In our case, each chromosome simply represents a bargaining
strategy as described in Section 2.2. The grow method is used to generate an initial pop-
ulation of bargaining strategies. Each initial strategy can have a hierarchy with a depth
of up to 5. The population size is set to 10 and 50. The population is time-variant; it
evolves for a given duration (a given number of generations), which is 300 in our setting.
To have effectively equal sampling for evaluating two populations with different sizes,
each generation lasts 2× pop size (population size) days.

The evolving population is driven by a sequence of genetic operators, which intro-
duce a few more parameters. The selection mechanism is the tournament selection with
a tournament size of 5. To avoid disruption due to genetic variations, the elitism operator
is triggered to automatically keep the best strategy discovered in the previous generation
in the next. Finally, the new bargaining strategies are discovered through crossover (re-
combination) and mutation. The crossover rate is 100%. There are two styles of mutation,

4Co-evolution will complicate the situation when one more autonomous agent is added to the market.
While one may be interested in knowing whether the market co-evolves toward Nash equilibria when there
are two autonomous agents, given the infinite number of possible bargaining strategies, it would be very
difficult to identify Nash equilibria in a strategy space.
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Table 4: GP Parameters

Parameter Value Parameter Value

Initialization method grow initial maximum tree depth 5
population size 10,50 no. of generations 300
number of days 2×pop size tournament selection size 5
elitism size 1 crossover rate 1.0
point mutation rate 0.045 subtree mutation rate 0.005

point mutation and subtree mutation. The mutation rate for each is 0.45 and 0.05, respec-
tively. Table 4 gives the GP parameter values used to perform simulation runs.

3 Novelty-Discovering Agents

To “appreciate” what our GP buyers have found, we need to be reminded that these GP
buyers are not much different from ants in the sense that they are almost “blind” without
knowing what the market structure is, both on the demand side and the supply side. The
only thing known to them is what are given in Table 1. Hence, they are placed in a much
more disadvantageous situation human agents that were placed in the double auction
market experiments. Yet, their opponents (the programmed agents), from the beginning
to the end, following the same trading rules to trade, round to round, have created a very
friendly environment as in the movie Ground Hog Day for these GP agents.5 Novelty-
discovering agents will not always be rewarded by their constant attempt to discover
hidden patterns, but when these “hidden” patterns are just there it is just a matter of
time for these agents to discover them. With this remark, we hope that the following
description of what we have learned from GP agents will not be considered to be trivial
due to human hindsight bias.

3.1 Data Processing and Analytical Procedure

As mentioned earlier, the analysis below is not based on any single run, but on 90 runs
for each market with each design. This leaves a huge amount of data in front of us.
For example, for each single run, depending on the population size, one can have 6000
(300 × 2 × 10) or 30,000 (300 × 2 × 50) strategies being observed in the auctions.6 By
multiplying them by 90, one would have a total of 540,000 or 2,700,000 strategies. This
huge amount of data inevitably drives us to take some steps to make it tractable. What
we do here is the following. We drop off the first 290 generations and focus only on the
last 10 generations. The usual justification to have this convenience is something related
to ergodicity, which we found quite applicable to our environment when the simulation
has run for such a long time. Restricting our analysis to the last 10 generations will then
reduce the set of observable strategies to “only” a size of 18,000 (pop size=10) or 90,000
(pop size=50) separately. This reduced sample is still large enough to provide a valid

5See Thaler (2000) for the use of this metaphor.
6As mentioned in Section 2.5, the number of iterations for each generation is composed of 2×pop size

(population size) trading days.
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Table 5: Distribution of daily profit generated by 18,000 strategies (pop size 10).

Profit -0.5 0 8 10.5 12.5 14 14.5 17 18 18.5 21 Total

Count 18 429 346 5,666 72 8 3,829 16 4 335 7,277 18,000

Table 6: The 3 most frequently-used strategies and the associated information (pop size
10).

Strategy Profit Count Ratio (Count/18,000)

PMinBid 21 7,277 0.4043
PMinBid 10.5 5,666 0.3148
HTV 14.5 3,829 0.2127

Total 16,722 0.9318

answer to the question: what did the autonomous agent learn and what is the effect of a larger
population size?

The second step which we take to deal with this large amount of data is to focus our
attention on some most frequently-used strategies. An alternative is to first generate a
profit distribution over the reduced dataset. For example, Table 5 gives the distribution
of daily profit generated by the set of 18,000 strategies in the case of B1M1-P10. As shown
in the table, the strategies that generated the profits 21, 10.5 and 14.5 were used for a
total of 93% of the auctions. It is therefore reasonable to assume that they represent the
GP buyer’s trading strategies. Table 6 presents these 3 strategies and their associated
information.

The most highly-used strategy is (PMinBid): the lowest bidding price on the previ-
ous day. The other highly-used strategy is (HT): the highest token value, which is just
the truth-telling strategy. In this way we can then have a general idea of what the au-
tonomous agent discovered, and why it is so; we as experimenters can then also learn
(Chen, 2008).7 Finally, the procedure suggested above will be carried out on both the
cases of P-10 and P-50 so that a comparison between the results of the two will enable us
analyze how the autonomous agents behave differently so as to see the effect of popula-
tion size.

3.2 General Results

Since there are a total of eight scenarios to be discussed, it would be easier to have a gen-
eral picture first, and then to get into some specific results later. Table 7 provides such a
summary of the effect of a larger population size. The column “benchmark” gives the ma-
jor bargaining strategies discovered by the autonomous agents when the population size
is set to 10 (pop size=10). These major strategies are identified based on the procedure
given in Section 3.1. For example, as we have seen earlier, the key strategy discovered by
the autonomous agent in Case B1M1 is (PMinBid). The next column “Differences” then
shows the essential differences after the population size increased to 50 (pop size=50).

As we summarize in this table, there are a number of things that we are looking at,
namely, profitability, stability (or robustness) and complexity. They are our focuses because

7This is a response to the criticism that agents learned but we do not.

9



Table 7: A Summary of the Results

Case Benchmarks (P-10) Alternative (P-50)

B1M1 (PMinBid) (Min (HT PMinBid)), (P-22)
profitability ↑, stability ↑, complexity ↑

B1M2 (NT) (NT)
No Effect

B1M3 (CASK), (PMaxAsk),(PMin) (CASK) ↑, (PMaxAsk) ↓, (PMinn) ↓
stability ↑

B1M4 (CASK) (CASK)
complexity ↑

the fundamental question to address is: Does a larger population size lead to the discovery
of better bargaining strategies, better in the sense of higher and stable (robust) profits? If the
answer is yes, we further ask: what may cause this difference? The answer to the second
question hinges upon complexity.

A larger population size makes it easier for autonomous agents to find the profitable
bargaining strategies which are complex and are normally beyond the availability of the
agents with a smaller population size. Complex profitable bargaining strategies are ob-
served in both Markets 1 and 4. For example, in Market 1, when the population size
increases to 50, a new, better, and more complex strategy, (Min (HT PMinBid)), is dis-
covered. In fact, this is not the only improvement being discovered. A class of new
strategies, called P-22, is also discovered.8 Nevertheless, some of the better but more
complex strategies discovered in the course of evolution did not get stabilized and re-
main to the end. Market 4 has several such examples. Hence, the best surviving strategy
in both cases P10 and P50 is the same, i.e., (CASK) (see Table 7).

Stability (robustness) can be an issue because bargaining strategies can be context-
dependent, or, more specifically, history-dependent. As we can see from Table 1, autonomous
agents relied very much on the historical data to develop their strategies. Hence, even
though some strategies are good in one or a few runs, the use of these strategies may
cause history to change and result in a new environment, which in turn leads to their
deterioration. However, the stability issue is not only the privilege of complex strate-
gies, for simple strategies can evoke the same problem. In fact, in Markets 1 and 3, we
observe the possibility that larger population size can either enhance stability by dis-
covering more complex strategies (Market 1), or by intensifying the use of robust, not
necessarily complex, strategies (Market 3). This is reflected in a higher frequency of us-
ing (CASK), which is more robust, and a lower frequency of using (PMaxAsk) and (PMin),
which is more history-dependent.

Among the four markets, only in Market 2, does the expansion of population size not
have much effect on any features which we mentioned above. In both cases of P-10 and
P-50, the best strategies discovered are both (NT).

8P-22 refers to a class of strategies which can gain a trading profit up to or greater than 22.
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3.3 Analysis of the Best Strategy Found: What Do We Learn?

3.3.1 Market 1

One of the most competitive strategies found by the autonomous agent in Market 1 is
(PMinBid). This strategy is very aggressive, and attempts to maximize the possible profits
from trading. Buyer 1 first realized that in equilibrium the market can have a trading
volume of 9. His advantageous positions, determined by the reservation prices, ranked
him as the fifth (his first unit) and the seventh (his second unit) trade, which means that
these two are surely sellable. The question is what would be the best strategy to sell them.
From “experience”, Buyer 1 also realized that it would not be wise to compete with those
buyers with similar advantageous positions. Therefore, he decided to wait and make
others with lower ranks trade first. He then gave concessions to Buyers 2 and 3 (Figure 4,
left panel). While losing the opportunities of early trades with good offers, this strategy
of procrastination allowed him to stand in a monopsony position after the first few trades,
and hence enabled him to exploit the residual sellers much more when all those high bids
were gone. This is what the strategy (PMinBid) did for him.

While (PMinBid) enabled a procrastination strategy for Buyer 1 to wield a “monopsony
power”, it also constantly led Buyer 1 to bid a price of 14, which was the minimum bid
on the previous trading day. This bidding not only made Buyer 1 successfully sell the
first two tokens, but also made him able to sell the third token, which nonetheless has a
reservation price lower than 14 (Figure 4, left panel). Therefore, Buyer 1 suffered a loss
from the trade of the last unit. This is equivalent to selling the first three tokens in a
package, something like “42 for three”. Buyer 1 then used the profits gained from the
first two tokens to compensate for the loss of the last token. Now the question is whether
we can separate the first two from the third and even make a bigger profit. The answer
is this strategy, (Min (HT PMinBid)), which has a description length of 3 and hence is
more complex than (PMinBid). This strategy will guide the GP buyer to bid the minimum
of PMinBid and HT. So, after trading his first two tokens, the GP buyer will bid HT because
it is the minimum of the two. Of course, from Figure 1, this bid will not get matched, but
neither will it incur an economic loss (Figure 4, right panel). With this improvement, the
profit of the GP buyer increases by one accordingly.

3.3.2 Market 2

In Market 2, the best strategy discovered by the GP buyer is (NT). With the help of Fig-
ure 1 (the right part), this strategy can again be interpreted as a procrastination strategy.
The GP Buyer gave up the privilege of an early trade. In fact, in this case, his advan-
tageous position was ranked as number one, but he made other participants trade first.
When three other tradable tokens had been finished, he held the last possible tradable
token, and used this monopsony power to fully exploit the producer’s surplus from the
residual seller (Seller 4). After this trade, because the demand curve overlaps the supply
curve, trades are still possible, but making profits is infeasible. After the population size
increases to 50, the GP buyer can not discover any better strategy. As we can see from
this market (Figure 1), there exists no better strategy given that all participants are truth
tellers.
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Step Bid1 Bid2 Bid3 Bid4 Ask1 Ask2 Ask3 Ask4 Buyer Seller Traded Price
1 14 28 23 26 2 8 1 7 2 3 14.5

2 14 26 23 26 2 8 4 7 2 1 14

3 14 17 23 26 7 8 4 7 4 3 15

4 14 17 23 25 7 8 9 7 4 1 16

5 14 17 23 14 17 8 9 7 3 4 15

6 14 17 14 14 17 8 9 9 2 2 12.5

7 14 13 14 14 17 12 9 9 1 3 11.5

8 14 13 14 14 17 12 18 9 1 4 11.5

9 14 13 14 14 17 12 18 20 1 2 13

10 14 13 14 14 17 21 18 20

11 14 13 14 14 17 21 18 20

12 14 13 14 14 17 21 18 20

13 14 13 14 14 17 21 18 20

14 14 13 14 14 17 21 18 20

15 14 13 14 14 17 21 18 20

16 14 13 14 14 17 21 18 20

17 14 13 14 14 17 21 18 20

18 14 13 14 14 17 21 18 20

19 14 13 14 14 17 21 18 20

20 14 13 14 14 17 21 18 20

21 14 13 14 14 17 21 18 20

22 14 13 14 14 17 21 18 20

23 14 13 14 14 17 21 18 20

24 14 13 14 14 17 21 18 20

25 14 13 14 14 17 21 18 20

Profit 21 30 8 20 21 5.5 27 10.5

Buyer's Bid Seller's Ask Matched Trader

 

Step Bid1 Bid2 Bid3 Bid4 Ask1 Ask2 Ask3 Ask4 Buyer Seller Traded Price
1 14 28 23 26 2 8 1 7 2 3 14.5

2 14 26 23 26 2 8 4 7 2 1 14

3 14 17 23 26 7 8 4 7 4 3 15

4 14 17 23 25 7 8 9 7 4 1 16

5 14 17 23 14 17 8 9 7 3 4 15

6 14 17 14 14 17 8 9 9 2 2 12.5

7 14 13 14 14 17 12 9 9 1 3 11.5

8 14 13 14 14 17 12 18 9 1 4 11.5

9 12 13 14 14 17 12 18 20 3 2 13

10 12 13 9 14 17 21 18 20

11 12 13 9 14 17 21 18 20

12 12 13 9 14 17 21 18 20

13 12 13 9 14 17 21 18 20

14 12 13 9 14 17 21 18 20

15 12 13 9 14 17 21 18 20

16 12 13 9 14 17 21 18 20

17 12 13 9 14 17 21 18 20

18 12 13 9 14 17 21 18 20

19 12 13 9 14 17 21 18 20

20 12 13 9 14 17 21 18 20

21 12 13 9 14 17 21 18 20

22 12 13 9 14 17 21 18 20

23 12 13 9 14 17 21 18 20

24 12 13 9 14 17 21 18 20

25 12 13 9 14 17 21 18 20

Profit 22 30 9 20 21 5.5 27 10.5

Buyer's Bid Seller's Ask Matched Trader

 

Figure 4: Trading Processes of GP Buyer in Market 1

The two trading processes above correspond to two different trading strategies: (PMinBid) (left panel) and
(Min (HT PMinBid)) (right panel).

3.3.3 Market 3

The best strategies found in Market 3 are (CASK), (PMaxAsk), and (PMin). Given what
we have learned from the previous two cases, it is not surprising to see that all these three
strategies are also kinds of procrastination strategies, which can also be seen from Figure
2 (the left part). Since the demand curve is parallel to the supply curve, all tokens are
in principle tradable. The only question is how the created surplus should be divided.
Using the procrastination strategy, the GP buyer simply waited for other participants to
trade first, and when all 12 other tokens had been traded, he acquired the monopsony
power and completely exploited all the remaining producer’s surplus. As we can see
from the trading processes exhibited in Figure 5, the three strategies led to the same
trading pattern, and all four tokens of the GP buyers were traded at a price of 42 (zero
producers’ surplus). Nevertheless, it does not mean that the three strategies are the same.
The subtle difference between (CASK) and the other two, (PMaxAsk) and (PMin), is that
the former is history-independent, whereas the latter are not. They will work only when
on the previous trading day these same kinds of strategies were played; if not, the history
may not be the same, and there is no guarantee that (PMaxAsk) or (PMin) will still be 42.
This is why these two strategies are not that robust (stable) as compared to (CASK).

When the population size increases to 50, there is no better strategy being discovered.
However, something interesting still happens. The GP buyer increases his reliance on
(CASK) and hence enhances the stability of his monopsony profits.

3.3.4 Market 4

As opposed to the other three market scenarios, Market 4 is more intriguing. In one re-
spect, it is very similar to Market 3 of which the demand and supply schedules never
intersect. Hence, all 16 tokens in the market can in principle be sold. Under these circum-
stances, one may expect that the GP buyer will develop a strategy which is very similar
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CASK

Step Bid1 Bid2 Bid3 Bid4 Ask1 Ask2 Ask3 Ask4 Buyer Seller raded Price
1 -1 17473 17473 17473 33 34 34 34 2 1 8753

2 33 17470 17473 17473 34 34 34 34 3 1 8753.5

3 34 17470 17470 17473 40 34 34 34 4 2 8753.5

4 34 17470 17470 17471 40 34 34 34 4 2 8752.5

5 34 17470 17470 17465 40 39 34 34 2 3 8752

6 34 17465 17470 17465 40 39 34 34 3 3 8752

7 34 17465 17465 17465 40 39 39 34 2 4 8749.5

8 34 17465 17465 17465 40 39 39 34 2 4 8749.5

9 34 17465 17465 40 39 39 40 3 2 8752

10 39 17465 17465 40 42 39 40 3 3 8752

11 39 17465 40 42 42 40 4 1 8752.5

12 40 17465 42 42 42 40 4 4 8752.5

13 40 42 42 42 42

14 42 42 42 42 42 1 1 42

15 42 42 42 42 1 2 42

16 42 42 42 1 3 42

17 42 42 1 4 42

18

19

20

21

22

23

24

25

Profit 69705 34869 34864 34863 26152 26151 26149 26144

PMaxAsk

Step Bid1 Bid2 Bid3 Bid4 Ask1 Ask2 Ask3 Ask4 Buyer Seller raded Price
1 42 17473 17473 17473 33 34 34 34 2 1 8753

2 42 17470 17473 17473 34 34 34 34 3 1 8753.5

3 42 17470 17470 17473 40 34 34 34 4 2 8753.5

4 42 17470 17470 17471 40 34 34 34 4 2 8752.5

5 42 17470 17470 17465 40 39 34 34 2 3 8752

6 42 17465 17470 17465 40 39 34 34 3 3 8752

7 42 17465 17465 17465 40 39 39 34 2 4 8749.5

8 42 17465 17465 17465 40 39 39 34 2 4 8749.5

9 42 17465 17465 40 39 39 40 3 2 8752

10 42 17465 17465 40 42 39 40 3 3 8752

11 42 17465 40 42 42 40 4 1 8752.5

12 42 17465 42 42 42 40 4 4 8752.5

13 42 42 42 42 42 1 1 42

14 42 42 42 42 1 2 42

15 42 42 42 1 3 42

16 42 42 1 4 42

17

18

19

20

21

22

23

24

25

Profit 69705 34869 34864 34863 26152 26151 26149 26144

PMin

Step Bid1 Bid2 Bid3 Bid4 Ask1 Ask2 Ask3 Ask4 Buyer Seller raded Price
1 42 17473 17473 17473 33 34 34 34 2 1 8753

2 42 17470 17473 17473 34 34 34 34 3 1 8753.5

3 42 17470 17470 17473 40 34 34 34 4 2 8753.5

4 42 17470 17470 17471 40 34 34 34 4 2 8752.5

5 42 17470 17470 17465 40 39 34 34 2 3 8752

6 42 17465 17470 17465 40 39 34 34 3 3 8752

7 42 17465 17465 17465 40 39 39 34 2 4 8749.5

8 42 17465 17465 17465 40 39 39 34 2 4 8749.5

9 42 17465 17465 40 39 39 40 3 2 8752

10 42 17465 17465 40 42 39 40 3 3 8752

11 42 17465 40 42 42 40 4 1 8752.5

12 42 17465 42 42 42 40 4 4 8752.5

13 42 42 42 42 42 1 1 42

14 42 42 42 42 1 2 42

15 42 42 42 1 3 42

16 42 42 1 4 42

17

18

19

20

21

22

23

24

25

Profit 69705 34869 34864 34863 26152 26151 26149 26144

Buyer's Bid Seller's Ask Matched Trader

Buyer's Bid Seller's Ask Matched Trader

Buyer's Bid Seller's Ask Matched Trader

Figure 5: Trading Processes of GP Buyer in Market 3

The three trading processes above correspond to three different trading strategies: (CASK) (upper panel)
(PMaxAsk) (middle panel), and (PMin) (lower panel).

to what the GP buyer used in Market 3. This is indeed the case. The most frequently
seen strategy used by the GP buyer in this market is still (CASK). Obviously, Buyer 1 al-
ready learned that all tokens are tradable, and he wanted to be patient to wait for the
last few rounds so that he could completely exploit all of the remaining producers’ sur-
plus. However, Market 4 is different from Market 3. In Market 3, procrastination does
not cause good trading opportunities to be missed since the supply curve is essentially
flat; nevertheless, in Market 4, the supply curve is piecewisely step-up. The later the GP
buyer gets into the market, the less likely he is to receive favorable offers. In other words,
the cost of delayed trading becomes more significant in Market 4, and the pure procras-
tination strategy simply neglects this cost. Therefore, one may wonder whether the GP
buyer can learn something even more intelligent, i.e., a strategy which can balance the
gains from full monopsony against the loss due to missing favorable offers. The answer
is yes.

In addition to (CASK), our GP buyer also learned the following strategies:

• ((* NT (% PAvgBid PMaxBid )) (profit=15997)
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• ((Min (If Bigger Then Else PMinBid PAvgBid CASK PAvgBid)
(If Bigger Then Else HT PAvgBid PAvgBid CASK)) (profit = 16512)

• ((Min (If Bigger Then Else PAvgBid HT CASK HT) PAvgBid) (profi= 16512)

None of these strategies will advise the GP buyer to wait until the very end of trading,
but to use a more aggressive strategy (higher bidding) to compete with other opponents
(other buyers) and to obtain the favorable offers from suppliers.

4 The Theory of Optimal Procrastination

The theory of optimal procrastination means that the agent attempts to delay his partici-
pation in the market transaction so as to avoid early competition and become a monop-
sonist in the later stage. Once getting there, he will then fully exercise the monopsony
power by bidding with third-degree price discrimination. However, procrastination may
also cause the agent to miss some good offers; therefore, there is an opportunity cost for
procrastination and the agent will try to optimize the procrastination time by balancing
his monopsony profits against these costs. Economic theory requires economists to have
a good understanding of the structure of the problem and then to find a good solution to
it. Sometimes, both of these tasks are demanding and, in this case, we simply dispatch
autonomous agents to the “complex world” and see what they find and get inspiration
from there. The theory of optimal procrastination presented here is a perfect illustration
of what we mean by autonomous-agents-inspired economic theory.

More formally, this theory can be stated as follows. Without losing generality, let
us use the simulated buyer (the autonomous agent) in this paper as an example. It is
assumed that, at time t, the buyer can be a current holder, i.e., he can offer the highest
bid, which is also greater than the current ask. Then the deal is made, and the transaction
price Pt, by the Aurora rule, is the average of the two.

Pt =
bidt + askt

2
, i f bidt ≥ askt . (1)

Now, in order to gain better terms and conditions, the buyer chooses to trade at a delayed
time, say t + Δt. With this delay, we assume that he can reduce his bid by the amount
Δbidt+Δt (Δbidt+Δt > 0); nevertheless, with this delay, the more favorable offers have
gone, and the alternative ask may require an additional amount, say Δaskt+Δt (Δaskt+Δt >
0). Hence, the consequence of this delay is to pay a price, Pt+Δt.

Pt+Δt =
(bidt − Δbidt+Δt) + (askt + Δaskt+Δt)

2
, i f bidt − Δbidt+Δt ≥ askt + Δaskt+Δt. (2)

The gain, G, with this delay is, therefore, the difference between the two prices paid at
different times, and that depends on the difference between Δbidt+Δt and Δaskt+Δt ,

Gt,Δt =| Δbidt+Δt − Δaskt+Δt |, (3)

which is further determined by the shape of the demand schedule and the supply sched-
ule. When the demand schedule and supply schedule are flat and horizontal to each
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other, such as in Market III, Δaskt+Δt is zero, so it pays the buyer to wait until he is the
sole buyer in the market. However, when the demand and supply schedules are step
functions, things can get complicated, such as in Market I and Market IV, but our GP
buyer can still figure out a good time to get into the market.

5 Concluding Remarks

In this paper, through a large computer simulation, we simulate the evolution of the bar-
gaining strategies of autonomous agents (buyers) in a competitive environment. These
autonomous agents, by design, are purported to search for better deals from which to
gain. In the very foundation of economics, we do need these agents to discover, exploit
and eventually destroy any hidden patterns and opportunities. The purpose of our sim-
ulation is then to have a clear picture of what the autonomous agents discover and what
these discoveries mean, and from that to see whether we can also learn and construct a
theory in this light. The theory optimal of procrastination found in this paper demonstrates
what we can glean from the behavior of our autonomous agents. At the end of the paper,
we would like to point out several directions for further study.

First, the choice of a highly static environment is not necessary, but it does make it
easier for us to comprehend and make sense of the behavior of these chance-discovery
agents. This learning can then help us to have a better idea of what these agents are do-
ing or attempting to do when they are placed in a much more complex situation, such
as the one defined in Chen and Tai (2010), where autonomous agents are placed in sur-
roundings filled with SFI-style programmed agents. It may not surprise us to see that
these autonomous agents eventually beat all these programmed agents, but it is difficult
to perform an in-depth analysis of the discovered bargaining strategies given these com-
plex surroundings. Maybe a challenging task for the future would be to introduce novel
data mining or text mining techniques to this large database so as to know more of the
“mental process” of these autonomous agents.

Second, this paper and Chen and Tai (2010) only consider a single autonomous agent.
It would thus be interesting and challenging to see whether we can develop a theory
of multi-agent competition. The immediate next step is to expand the current single-agent
version into a two-agent version, so that in the latter we can have a co-evolutionary game-
theoretic situation, and the monopsony result observed in this paper can become that of
a duopsony, as would be expected.

Third, it is always interesting to know whether human agents can also learn the intel-
ligent trading strategies discovered by the autonomous agents, for example, the optimal
procrastination strategy. We are now designing market experiments to see whether the
trading patterns realized by our autonomous agents can also be replicated by human
agents.
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