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Equity-linked insurances and guaranteed annuity options

K. Burnecki and L. Pazdan-Siudeja

We consider here term and whole-life cases of the equity-linked life insurance
(ELLI), and the guaranteed annuity option (GAO). For the introduction for ELLI
and GAO see, e.g., [13]. We present a financial instrument which is a combination
of ELLI and GAO in a stochastic interest rate framework.

The equity-linked life insurance can be defined as an agreement between a
buyer and a seller, where the buyer is under an obligation to pay, usually every year
until the time to maturity of the contract or the death of the buyer (it depends what
comes first) the periodic premium to the seller. At death of the buyer or maturity of
the contract, the issuer is obliged to provide a cash benefit, according to the made
agreement. The benefit equals greater of the values:

1. a function depending on the periodic premium and on the history of the spot
price of an index or mutual fund from the date when the arrangement was
defined to the expiration date of the contract,

2. a deterministic value depending on the periodic premium.

The equity-linked life insurance has been studied in [10], [11], [12], where the
price of the mutual fund was assumed to be a geometric Brownian motion and the
interest rate was constant. [1] and [19] took also ELLI into consideration but they
assumed the deterministic interest rate. [2], [3] and [4] assumed that the interest
rate is deterministic and modelled by a geometric Brownian motion. In 1993 they
extended the model to the case, when the short-term interest rate is described by
an Ornstein-Uhlenbeck process. In [4] these both events were widened and Monte
Carlo simulations were used. The relatively new papers, which are related to ELLI
are [17] and [5]. The results presented here are besad on the former. Because of
the specific nature of ELLI, computer simulations must be employed. [15] described
the pricing of ELLI without using the simulation techniques since they claimed an
analytical formula they found. Unfortunately, their formula is wrong, which was
proved in [16]. [5] presented another way to price ELLI. The author shows that
founding the analytical formula is possible but the final formula overestimates the
benefit. From [5] it is clear that any pricing of ELLI should employ simulations,
which agrees with [17]. Another important problem, which was considered in the
context of ELLI, was the uniqueness of the fair premium. This issue was the main
subject of [18].

The guaranteed annuity option is an arrangement under which the writer
delivers at policy maturity a cash benefit which can be converted to an annuity with
the minimum guaranteed or greater market rate. This contract gives the holder
the right to receive at retirement the life annuity obtained by converting the cash
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benefit at the guaranteed or market rate. [6], [7] and [8] provide information about
this instrument.

Following [17] we price ELLI tied to the term life insurance. We also price
ELLI tied to the whole life insurance. We calculate the fair premium. Moreover,
we introduce corrections to the original ideas, which make the simulations more
reliable.

The main presented result is the price of the ELLI contract combined with GAO.
The obtained formulas take into account different practical cases, for example, when
the policyholder changes the mutual fund or when one wants to invest additional
money in the fund.

In Section 2 we introduce some definitions, notations and facts, which are needed
in the further part of the Chapter. In Section 3 we deal with calculations, which
are important in pricing of the equity-linked life insurance. Section 4 is devoted to
pricing. We apply the methods from [17] to price ELLI in the term case. Then,
we propose a formula tied to the whole life insurance case. Finally, we price ELLI
combined with GAO. Our idea lies in the combination of the instrument which guar-
antees a person the maximum of the guaranteed amount and the amount collected
in the mutual fund, and the one which gives option the policyholder reaching the
retirement age to receive an annuity with a guaranteed interest rate. Section 5 shows
the numerical results.

1 Preliminaries

Let (Ω,F , P) be a probabilistic space. Following [17] we use the following notation.

• K is the periodic premium paid by the insured,

• k is a share of the periodic premium, such that k = a ·K, where a ∈ [0; 1],

• g(K) is the guaranteed, deterministic amount,

• ti is a premium payment date, where i = 0, 1, . . . , n− 1 and t0 = 0,

• tn is maturity date, where tn = T ,

• D(t, t′) is the price of a zero coupon bond at time t with time to maturity
t′ ≥ t,

• S(t) is the price of a mutual fund at time t,

• π(t)dt is the probability that the buyer will die in the time interval (t, t + dt]

• W1, W2 are the standard Wiener processes under the P measure.

We assume that S(t) and D(t, t′) satisfy the following stochastic differential equa-
tions:

dS(t)
def
= µS(t)dt + σ1S(t)dW1(t) + σ2S(t)dW2(t)

dD(t, t′)
def
= µ(t, t′)D(t, t′)dt + σ(t, t′)dW1(t), σ(t, t) = 0, D(t, t) = 1.
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Therefore D(t, t′) is the geometric Brownian motion. The condition D(t, t)=1 is
needed because D(t, t′) is the price of the zero coupon bond. The factor σ(t, t′) is
responsible for a volatility of D(t, t′) process, thus σ(t, t) = 0.

Let us introduce a definition which will be useful in pricing of ELLI and GAO:
the periodic premium is fair if the discounted value of the future benefits at time 0
is equal to the discounted value of the future premiums.

We now recall Itô’s lemma which will be applied further in the text. Let f =
f(X1, X2, t) where X1 and X2 are two processes of the following form

dX1 = µ1(X1, X2, t)dt + σ1(X1, X2, t)dB1, dX2 = µ2(X1, X2, t)dt + σ2(X1, X2, t)dB2

with correlation dX1dX2 = ρdt, where B1 and B2 are the standard Brownian mo-
tions. Then

df =

(
µ1fX1 + µ2fX2 + ft +

1

2
σ2

1fX1X1 + ρσ1σ2fX1X2 +
1

2
σ2

2fX2X2

)
dt

+ σ1fX1dB1 + σ2fX2dB2.

Now, we give the definition of equivalence of two measures. Let (Ω,F , P, Q) be the
probability space with measures P and Q. Two measures P and Q are equivalent
iff ∀A ∈ F

P(A) > 0 ⇐⇒ Q(A) > 0.

The function
dQ
dP

(x) > 0 such that ∀A ∈ F

Q(A) =

∫
A

dQ

dP
(x)P(dx)

is called Radon-Nikodym derivative.
The solution of the stochastic differential equation

dX(t) = aX(t)dt + b1X(t)dW1(t) + b2X(t)dW2(t)

is

X(t) = X(0) exp

[{
a− 1

2

(
b2
1 + b2

2

)}
t + b1W1(t) + b2W2(t)

]
.

2 Pricing of the ELLI contract

The value of the investments in the equity fund at time T is equal to k
∑n−1

i=0
S(T )
S(ti)

,

thus we want to evaluate S(T )
S(ti)

. Using some results obtained in [17] instead of changing
the probability twice we set

λ1(t)
def
=

µ(t, t′)− σ(t, T )

σ(t, t′)
, λ2(t)

def
=

µ− σ(t, T )

σ2

− σ1

σ2

· µ(t, t′)− σ(t, T )

σ(t, t′)
,
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what gives the same outcome as in [17] (see [17] for more details). Let PT be a
probability measure equivalent to P such that

dPT

dP
= exp

[
−
∫ T

t0

{λ1 − σ(t, T )} dW1 −
∫ T

t0

λ2dW2

− 1

2

∫ T

t0

{
(λ1 − σ(t, T ))2 + λ2

2

}
dt

]
. (1)

If we use for W T
1 and W T

2 the Radon-Nikodym derivative and the Girsanov
theorem with (1) we get

(dW T
1 , dW T

2 ) = (dW1 + (λ1(t)− σ(t, T ))dt, dW2 + λ2(t)dt). (2)

Now we will present some equations, which will be useful hereafter. From (2) and
the form of λ1 and λ2 we get

dS(t)
def
= µS(t)dt + σ1S(t)dW1(t) + σ2S(t)dW2(t)

= µS(t)dt + σ1S(t)dW T
1 − σ1S(t)

µ(t, t′)− σ(t, T )

σ(t, t′)
dt + σ1S(t)σ(t, T )dt

+ σ2S(t)dW T
2 − µS(t)dt + σ(t, T )S(t)dt + σ1S(t)

µ(t, t′)− σ(t, T )

σ(t, t′)
dt.

And simplifying:

dS(t) = (σ1σ(t, T ) + σ(t, T ))S(t)dt + σ1S(t)dW T
1 (t) + σ2S(t)dW T

2 (t). (3)

Similarly, we obtain

dD(t, t′)
def
= µ(t, t′)D(t, t′)dt + σ(t, t′)D(t, t′)dW1 = µ(t, t′)D(t, t′)dt

= µ(t, t′)D(t, t′)dt + σ(t, t′)D(t, t′)dW T
1 − µ(t, t′)D(t, t′)dt

+ σ(t, T )D(t, t′)dt + σ(t, t′)σ(t, T )D(t, t′)dt.

Thus

dD(t, t′) = σ(t, T )D(t, t′)dt + σ(t, t′)σ(t, T )D(t, t′)dt

+ σ(t, t′)D(t, t′)dW T
1 (t)

and
dD(t, T ) =

(
σ(t, T ) + σ2(t, T )

)
D(t, T )dt + σ(t, T )D(t, T )dW T

1 (t).

Applying Itô’s lemma to D(t,t′)
D(t,T )

we get

d

(
D(t, t′)

D(t, T )

)
=

[
{σ(t, T ) + σ(t, t′)σ(t, T )} D(t, t′)

D(t, T )
−
{
σ(t, T ) + σ2(t, T )

}
· D(t, T )

D(t, t′)

D2(t, T )
− σ(t, t′)D(t, t′)σ(t, T )D(t, T )

1

D2(t, T )

+
1

2
σ2(t, T )D2(t, T )

2D(t, t′)

D3(t, T )

]
dt + σ(t, t′)D(t, t′)

1

D(t, T )

· dW T
1 (t)− σ(t, T )D(t, T )

D(t, t′)

D2(t, T )
dW T

1 (t).
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Hence

d

(
D(t, t′)

D(t, T )

)
= (σ(t, t′)− σ(t, T ))

D(t, t′)

D(t, T )
dW T

1 (t). (4)

From 2-dimensional version of Itô’s formula we get

d

(
S(t)

D(t, T )

)
=

[
{σ(t, T ) + σ1σ(t, T )}S(t)

1

D(t, T )
−
{
σ(t, T ) + σ2(t, T )

}
· D(t, T )

S(t)

D2(t, T )
− σ1S(t)σ(t, T )D(t, T )

1

D2(t, T )
+

1

2
σ2(t, T )

· D2(t, T )
2S(t)

D3(t, T )

]
dt + σ1S(t)

1

D(t, T )
dW T

1 + σ2S(t)

· 1

D(t, T )
dW T

2 − σ(t, T )D(t, T )
S(t)

D2(t, T )
dW T

1 .

Therefore

d

(
S(t)

D(t, T )

)
= {σ1 − σ(t, T )} D(t, T )

S(t)
dW T

1 (t) + σ2
D(t, T )

S(t)
dW T

2 (t). (5)

A big advantage of the equations (4) and (5) is the lack of the drift. From [9] we know

that S(T )
D(t,T )

and D(t,t′)
D(t,T )

are martingales under the P T measure. This feature is needed
in order to have no arbitrage in the market. The second important feature, which
can be sometimes troublesome to proved, is completeness of the market. However,
from [9] we know that our model guarantees completeness of the market. Solving
(5) we get

S(T )

D(T, T )
=

S(t)

D(t, T )
exp

[
− 1

2

∫ T

t

{
(σ1 − σ(u, T ))2 + σ2

2

}
du

+

∫ T

t

(σ1 − σ(u, T ))dW T
1 (u) +

∫ T

t

σ2dW T
2 (u)

]
.

Thus

S(T )

S(t)
=

1

D(t, T )
exp

[
− 1

2

∫ T

t

{
(σ1 − σ(u, T ))2 + σ2

2

}
du

+

∫ T

t

{σ1 − σ(u, T )} dW T
1 (u) +

∫ T

t

σ2dW T
2 (u)

]
. (6)

Now our aim is to get rid of D(t, T ), which complicates calculation of S(T )
S(t)

in (6).

When we solve (4) we obtain

D(t, t′)

D(t, T )
=

D(t0, t
′)

D(t0, T )
exp

[∫ t

t0

{σ(u, t′)− σ(u, T )} dW T
1 (u)

− 1

2

∫ t

t0

{σ(u, t′)− σ(u, T )}2
du

]
. (7)
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Therefore for t′ := t we have

D(t, T ) =
D(t0, T )

D(t0, t)
· exp

[
−
∫ t

t0

{σ(u, t)− σ(u, T )} dW T
1 (u)

+
1

2

∫ t

t0

{σ(u, t)− σ(u, T )}2 du

]
. (8)

Substituting (8) in (6) we obtain

S(T )

S(t)
=

D(t0, t)

D(t0, T )
exp

[∫ t

t0

{σ(u, t)− σ(u, T )} dW T
1 du

− 1

2

∫ T

t

{σ(u, t)− σ(u, T )}2 du

− 1

2

∫ T

t

{
(σ1 − σ(u, T ))2 + σ2

2

}
du

+

∫ T

t

{σ1 − σ(u, T )} dW T
1 (u) +

∫ T

t

σ2dW T
2 (u)

]
. (9)

Thus S(t)
S(ti)

is lognormally distributed. Hence, it is impossible to find distribution

of
∑n−1

i=0
S(T )
S(ti)

. This forces us to use Monte Carlo simulations in pricing ELLI. The
simulation technique is well known and widely applied when the other ideas fail.
But first let us find σ(t, t′). It is very important to choose such σ(t, t′) that makes
the model more feasible. Nielsen and Sandmann (see [17]) in order to make the
model computationally feasible set σ(t, t′) = σ(t′ − t). This choice of σ transforms
the equation (9) to

S(T )

S(t)
=

D(t0, t)

D(t0, T )
exp

[
− 1

2
(T − t)2σ2t− 1

2

∫ T

t

{
(σ1 − (T − u)σ)2 + σ2

2

}
du

− (T − t)σW T
1 (t) +

∫ T

t

{σ1 − (T − u)σ} dW T
1 (u) +

∫ T

t

σ2dW T
2 (u)

]
.

In this parametrization

E
S(T )

S(t)
=

D(t0, t)

D(t0, T )
,

Var
S(T )

S(t)
=

D2(t0, t)

D2(t0, T )

[
exp

{
(T − t)2σ2t +

(
σ2

1 + σ2
2

)
(T − t)

− σσ1(T − t) +
1

3
σ2(T − t)3

}
− 1

]
.

It can be shown that VarS(T )
S(t)

grows rapidly with T . This is a very undesirable
feature because it makes the results more variable. The second reason why it is
worth to change parametrization is that D(t, t′) is a bond process, so it should be
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less risky than mutual fund S(t). For constants σ, σ1 and σ2 used in [17], σ(t, t′)
being the factor of D(t, t′) can be large for a long maturity time. Thus, we set
σ(t, t′) = σ(1 − e−(t′−t)). We must keep in mind that σ(t, t) must be equal to
0 but for the new form of σ this condition is satisfied. It is worth noting that
1 − e−(t′−t) ≈ t′ − t when the right side is small. Now (9) can be symbolically
expressed as

S(T )

S(t)
=

D(t0, t)

D(t0, T )
exp

(
−1

2
A + B

)
,

where A and B stand for a deterministic and stochastic part, respectively.
The stochastic part

B =

∫ t

0

σ
(
eu−T − eu−t

)
dW T

1 (u) +

∫ T

t

{
σ1 − σ(1− eu−T )

}
dW T

1 (u)

+

∫ T

t

σ2dW T
2 (u) = σe−T

∫ T

0

eudW T
1 (u) + (σ1 − σ)

{
W T

1 (T )−W T
1 (t)

}
− σe−t

∫ t

0

eudW1(u) + σ2

{
W T

2 (T )−W T
2 (t)

}
,

while deterministic part

A =
{
(σ1 − σ)2 + σ2

2

}
(T − t)− 1

2
σ2
(
e−t − e−T

)2
+
(
2σσ1 − σ2

) (
1− e−(T−t)

)
.

Hence, we finally get the following equality

S(T )

S(t)
=

D(t0, t)

D(t0, T )
exp

[
− 1

2

{
(σ1 − σ)2 + σ2

2

}
(T − t) +

1

4
σ2
(
e−t − e−T

)2
− 1

2

(
2σσ1 − σ2

) {
1− e−(T−t)

}
+ σe−T

∫ T

0

eudW T
1 (u)

+ (σ1 − σ)
{
W T

1 (T )−W T
1 (t)

}
− σe−t

∫ t

0

eudW T
1 (u)

+ σ2

{
W T

2 (T )−W T
2 (t)

}]
.

Similarly as it was in the previous parametrization, we calculate ES(T
S(t)

and VarS(T )
S(t)

.
We obtain that

E
S(T )

S(t)
=

D(t0, t)

D(t0, T )
,

and

Var
S(T )

S(t)
=

D2(t0, t)

D2(t0, T )

[
exp

[ {
(σ1 − σ)2 + σ2

2

}
(T − t)− 1

2
σ2
(
e−t − e−T

)2
+

(
2σσ1 − σ2

) {
1− e−(T−t)

} ]
− 1

]
.
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Now we will analyze the order of the variance for two choices of σ. The order of the
variance for the old parametrization is

R1 = exp

{
(T − t)2σ2t +

(
σ2

1 + σ2
2

)
(T − t)−σσ1(T − t) +

1

3
σ2(T − t)3

}
− 1

whereas for the new parametrization the order is

R2 = exp

[{
(σ1 − σ)2 + σ2

2

}
(T − t)− 1

2
σ2
(
e−t − e−T

)2
+
(
2σσ1 − σ2

)
·
{
1− e−(T−t)

} ]
−1.

Now we compare R1 and R2 with respect to different T ’s and t’s. Let σ = 0.08,
σ1 = 0.1 and σ2 = 0.15.
In Table 1 we can observe that the alternation of σ makes sense.

Table 1: The order of the variance with respect to old and new σ

T t Varold Varnew

10 0 0.4758 0.2654
10 5 2.2845 0.1320
30 0 e7.6575 1.0005
30 15 e29.208 0.4233
50 0 e33.9458 2.1626
50 25 e133.2146 0.7898

For σ = σ
(
1− e−(t′−t)

)
the variance is bigger for t = 0 than for t > 0. For

σ(t, t′) = σ(t′ − t) the situation is quite different. However, we see that the new
σ is much better, because the variance is always smaller. The differences between
variances under the same t and T parameters are visible: for new σ it is not greater
than 2.2 and for old σ it can reach e133. Therefore the new choice of σ is justified.

2.1 The term case

First, we recall the definition of ELLI. It is an agreement under which the maximum
of the money collected in the investment fund and the guaranteed amount is paid.
The benefit for the insured from the insurance contract received at maturity time T
can be written in the following way (see [17]).

g(K) + V (T, T ) = g(K) +

(
k

n−1∑
i=0

S(T )

S(ti)
− g(K), 0

)
+

,

where (x)+ = max(x, 0). Please notice that the benefit is de facto a call option with
the exercise price equal to the guaranteed amount. We can also see the necessity
of calculating the expression

∑n−1
i=0

S(T )
S(ti)

and finding its easy form in the previous
section. We know from the definition of the fair periodic premium that in order to

8



evaluate this premium we must take into account the expected discounted benefit,
which is equal to the expected discounted cost of the contract. It is evident that the
cost which must bear the policy holder is equal to

K
n−1∑
i=0

D(t0, ti)

{
1−

∫ ti

t0

π(t)dt

}
.

The expected discounted benefit is of more complicated form, because it consists of
the guaranteed part

g(K)

∫ T

t0

D(t0, t)π(t)dt + g(K)D(t0, T )

{
1−

∫ T

t0

π(t)dt

}
and the bonus part

∫ T

t0
D(t0, t)E

t

k

n∗(t)−1∑
i=0

S(t)

S(ti)
− g(K)


+

π(t)dt

+ D(t0, T )ET

{
k

n−1∑
i=0

S(T )

S(ti)
− g(K)

}
+

{
1−

∫ T

t0

π(t)dt

}
,

where n∗(t) = min {i : ti > t}. Observe that we incorporate the mortality case, and
π(t)dt stands for the probability that the policy holder will die in the time interval
(t, t + dt]. Denoting

B(t0, t) = D(t0, t)E
t

k

n∗(t)−1∑
i=0

S(t)

S(ti)
− g(K)


+


and

B(t0) =

∫ T

t0

B(t0, t)π(t)dt + B(t0, T )

{
1−

∫ T

t0

π(t)dt

}
the pricing formula for ELLI can be reduced to the following expression (see [17])

B(t0) +g(K)

∫ T

t0

D(t0, t)π(t)dt + g(K)D(t0, T )

{
1−

∫ T

t0

π(t)dt

}
= K

n−1∑
t=0

D(t0, ti)

{
1−

∫ ti

t0

π(t)dt

}
. (10)

This equation enables us to calculate the fair premium K. But instead of it we will
use a slightly simpler pricing formula. The formula

∫ T

t0
Et

g(K)− aK

n∗(t)−1∑
i=0

S(t)

S(ti)


+

D(t0, ti)π(t)dt

+ ET

[{
g(K)− aK

n−1∑
i=0

S(T )

S(ti)

}
+

]
D(t0, T )

{
1−

∫ T

t0

π(t)dt

}

= (1− a)K
n−1∑
i=0

D(t0, ti)

{
(1−

∫ ti

t0

π(t)dt

}
(11)

9



is equivalent to (10).
Left side of the above equation can be interpreted as the cost, which must bear

the policy seller, when he guarantees to give the policyholder the amount g(K).
The right side of the equation is the amount of money, which must pay the buyer
in order to have right to get g(K).

Equation (11) concerns the term case, thus it can be used when we want to find
a fair periodic premium in the term life insurance.

2.2 The whole life case

In the case when we consider the whole life insurance equation (11) reduces to

∫ T

t0
Et

g(K)− aK

n∗(t)−1∑
i=0

S(t)

S(ti)


+

D(t0, ti)π(t)dt

= (1− a)K
n−1∑
i=0

D(t0, ti)

{
1−

∫ ti

t0

π(t)dt

}
. (12)

Remembering, that (1− a)K = K − k we can rewrite (12) in the form

∫ T

t0
Et

g(K)− aK

n∗(t)−1∑
i=0

S(t)

S(ti)


+

D(t0, ti)π(t)dt (13)

= (K − k)
n−1∑
i=0

D(t0, ti)

{
1−

∫ ti

t0

π(t)dt

}
. (14)

This equation (like (10)) has some advantages. It enables us to calculate K − k
when the mutual fund has been changed, when the buyer wants to adjust g(K) or
pay in some addition money into the fund.

3 Pricing of the combined instrument

In this section we price whole-life and term equity-linked life insurance linked with
the guaranteed annuity option. This idea comes from [16].

3.1 ELLI and GAO

Our financial instrument can be characterized as follows: when the insured dies
before the age of 65 the seller pays the amount of money due to ELLI and when the
buyer survives 65 he has a option to receive an annuity with the guaranteed or the
market interest rate. Thus this instrument can be described as the life insurance with
the investment fund changing into pension at age of 65. Let v be the discounting
factor under the guaranteed interest rate and D(t, t′) is defined as in Section 3 as
the price of a zero coupon bond. The general formula, which describes the actuarial
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value V of annual payments can be written in the following way: V = S
∑∞

i=0 vi
ipx,

where v is the discounting factor. In our case V can be expressed as

V = S
∞∑
i=1

D(T, T + i)ipT (15)

which is actuarial value of the annuity under the market rate calculated for a retire-
ment age T of the policyholder. Analogically

V = S ′
∞∑
i=1

vi
ipT (16)

is the actuarial value of the annuity with the guaranteed interest rate for a person
aged T . On the other hand we are aware of the fact that V is also the amount of
money collected in the mutual fund, because it is the amount of money guaranteeing

us getting the annuity. Therefore V = max
{

g(K),
∑n−1

i=0
S(T )
S(ti)

}
. The loss of the

issuer, connected with variable rates is
∑∞

i=1 D(T, T +i)ipT max(S ′−S, 0). Equations
(15) and (16) imply that

S =
V∑∞

i=1 D(T, T + i)ipT

and S ′ =
V∑∞

i=1 vi
ipT

.

Thus the expected loss of the seller can be written as

ET

[
∞∑
i=1

D(T, T + i)ipT max

{
V∑∞

i=1 vi
ipT

− V∑∞
i=1 D(T, T + i)ipT

, 0

}]

· D(t0, T )

{
1−

∫ T

t0

π(t)

}
= ET

[
∞∑
i=1

D(T, T + i)ipT V

·
{

1∑∞
i=1 vi

ipT

− 1∑∞
i=1 D(T, T + i)ipT

}
+

]
D(t0, T )

{
1−

∫ T

t0

π(t)dt

}
.(17)

Similarly (17) can be represented as

ET

[
∞∑
i=1

D(T, T + i)ipT max

(
g(K),

n−1∑
i=0

S(T )

S(ti)

)

·
(

1∑∞
i=1 vi

ipT

− 1∑∞
i=1 D(T, T + i)ipT

)
+

]
D(t0, T )

(
1−

∫ T

t0

π(t)dt

)
.(18)

Now we use (11) presenting the cost of the guaranteed part of the ELLI-contract.
To price ELLI mixed with GAO we should take into consideration (18), because this
equation concerns the loss (so costs) connected with different interest rates, under
which the annuity is calculated. Thus all costs bearing by the issuer of the option
must be included in our pricing equation. Finally, we present the following equation
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which summarizes (11) and (18):

∫ T

t0
Et

g(K)− aK

n∗(t)−1∑
i=0

S(t)

S(ti)


+

D(t0, ti)π(t)dt

+ ET

[
∞∑
i=1

D(T, T + i)ipT max

{
g(K),

n−1∑
i=0

S(T )

S(ti)

}

·
{

1∑∞
i=1 vi

ipT

− 1∑∞
i=1 D(T, T + i)ipT

}
+

]
D(t0, T )

{
1−

∫ T

t0

π(t)dt

}

= (1− a)K
n−1∑
i=0

D(t0, ti)

(
1−

∫ ti

t0

π(t)dt

)
. (19)

4 Numerical results

In this section we will show some results obtained via simulations and we will ana-
lyze them. We assume that mortality follows Makeham,s law, namely the survivor
function lx can be described as

lx = bsxg cx

,

where b > 0, s > 0, g > 0, c > 0. The first step is to estimate the parameters b, s,
g and c using Polish life tables for the year 2005. We obtain that
b = 99704.1832,
s = 0.99961478,
g = 0.99991201,
c = 1.11595563.
Now (see [17]) we can compute the density function of the random variable describing
the future lifetime for a person aged x:

π′x(t) =
(lx+t)

lx

′

.

We study K − k. This value depends on g(K), because this is the amount of
money, which the policyholder must pay in order to receive the guaranteed amount
g(K). We make the antithetic Monte Carlo simulations with 1000 paths (i.e. using
2000 paths, which stems from the definition of the antithetic method). We set the
flat initial term structure D(t0, ti) = (1.06)−ti , what implies that the annual interest
rate is equal to 6%.

4.1 Results for ELLI whole life case

In all simulations we have considered a person aged 30. Now we show how K − k
changes with g(K) for ELLI. Let k = 100.

First we analyze the variance, which changes, of course, but is small and varies
only little. It is also obvious that the bigger g(K) the larger K − k because when
we want to be offered a higher protection we must bear the cost connected with

12



Table 2: K − k with respect to different g(K)

g(K) K − k Var(K − k)
5 000 3.409146 0.018879562

10 000 12.30417 0.074464537
15 000 25.01689 0.116564028
20 000 40.29600 0.133931721
25 000 57.33679 0.134654032
30 000 75.62904 0.119531645
35 000 94.84122 0.109018809
40 000 114.7477 0.123134971
45 000 135.1923 0.155640645
50 000 156.0627 0.194149183

this privilege, thus the probability that the amount collected in the mutual fund
will exceed g(K) becomes small. In Table 2 we see that K − k > 100 = k for
g(K) ≥ 40000 which means that over half of the periodic premium guarantees the
amount g(K). For g(K) < 20000 K − k is less than the third part of k. So little
K − k with respect to the guaranteed amount can mean that the mutual fund will
exceed the guaranteed amount. It can also give evidence that the probability of
death of 30-year-old person, until the mutual fund will exceed g(K), is not too big.
Therefore the part guaranteeing getting of g(K) is relatively small.
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In Figure 1 quantile lines of the mutual fund shares are depicted.

Figure 1: Quantile lines of the mutual fund shares

In Figure 1 we can observe how the amount of money collected in the fund can
vary. It results from the pessimistic and optimistic cases of the sum

∑n−1
i=0

S(T )
S(ti)

. The
yellow line is the most optimistic trajectory, so the mutual fund can ”earn” more
than 65 000 over 50 years. Below we can see the 75th percentile, so only 25% of
trajectories provide better value for the policyholder. The dark blue line stands
for the mean of the collected mutual fund shares while the light blue refers to the
median. We note that the median and mean differ. The median of the trajectories
is below the mean. The best for the issuer and the worst for the buyer are red and
dark green lines. They present 25th and 10th percentiles of trajectories, respectively.
For these trajectories

∑n−1
i=0

S(T )
S(ti)

is about 10 000. Thus, they can be called the most
pessimistic from the point of view of the policyholder.

If we look at the Table 3 we observe that the more optimistic scenario for the
buyer the greater the bonus part. It seems to be sensible, because if we take 10th
percentile of the bonuses and the 90th percentile of the bonuses then the bonus part is
larger for the second one. Besides the bonus begins to appear at different times with
different scenarios. For the 90th percentile it appears for 35 years of the contract’s
duration. For the most pessimistic case even 55 years of having the contract are not
enough to give the bonus part. For the 50th percentile the bonus part is less than
for the mean trajectories. That means that there are fewer optimistic trajectories
than pessimistic trajectories but their character is ”more aggressive”.
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Table 3: The bonus part with respect to different trajectories

Percentiles of the bonus parts
Years mean 10% 25% 50% 75% 90%

15 0 0 0 0 0 0
20 0 0 0 0 0 0
25 19.1519 0 0 0 0 0
30 289.459 0 0 0 0 0
35 1248.88 0 0 0 0 2194.56
40 3577.61 0 0 0 743.053 12408.6
45 7743.85 0 0 0 7817.69 27062.1
50 15171.4 0 0 1602.64 18064.9 43468.4
55 25839.8 0 0 8259.41 30801.6 71697.8

4.2 Results for ELLI mixed with GAO

We present here simulation results obtained for ELLI combined with GAO (see
(19)). In Table 4 we present the changeability of two parts: the first part assures
g(K) and the second assures the annuity with the guaranteed interest rate i. Both
g(K)’s-part assurance and interest’s part assurance are calculated from (19). This
equation consists of the parts coming from ELLI and GAO. The first one equals[ ∫ T

t0

Et

g(K)− aK

n∗(t)−1∑
i=0

S(t)

S(ti)


+

D(t0, ti)π(t)dt

]

/
n−1∑
i=0

D(t0, ti)

{
1−

∫ ti

t0

π(t)dt

}
(20)

and is the factor connected with ELLI. The second one is equal to[
ET
[ ∞∑

i=1

D(T, T + i)ipT max

{
g(K),

n−1∑
i=0

S(T )

S(ti)

}

·
{

1∑∞
i=1 vi

ipT

− 1∑∞
i=1 D(T, T + i)ipT

}
+

]
D(t0, T )

·
{

1−
∫ T

t0

π(t)

}]
/

n−1∑
i=0

D(t0, ti)

{
1−

∫ ti

t0

π(t)dt

}
(21)

and comes from the GAO’s part in (19).
First we show how much the policyholder must pay for the guaranteed amount

g(K) and guaranteed interest rate i. We assume that the buyer pays k = 100 in the
mutual fund.

15



Table 4: The costs of the guaranteed amount (20) and the guaranteed interest rate
(21).

Interests’s part
g(K) g(K)’s 2% 3% 4% 5% 6% 7%
5000 4.91914 7.83983 12.0134 17.4918 24.6413 33.3009 43.3178
10000 25.9181 8.67955 13.3056 19.3954 27.3387 36.9763 48.1514
15000 59.7834 10.3754 15.9068 23.2113 32.7299 44.3011 57.7739
20000 100.087 12.6114 19.3201 28.2065 39.7844 53.8749 70.3186
25000 143.868 15.1473 23.1924 33.8627 47.7576 64.6789 84.4522
30000 189.509 17.8326 27.3075 39.8825 56.2581 76.2005 99.5161
35000 236.187 20.6222 31.5881 46.1398 65.0832 88.1521 115.13
40000 283.378 23.4524 35.9323 52.4884 74.0379 100.279 130.972
45000 330.773 26.3142 40.3197 58.8945 83.0678 112.501 146.93
50000 378.354 29.1917 44.7276 65.3303 92.1434 124.787 162.973

If we look at Table 4 we can observe that the costs grow with i, what is obvious,
if we want to have greater interest rate we must bear the costs connected with this
privilege. Therefore we pay only 7.83983 for the guarantee of the annuity with 1%
interest rate and 43.3178 for the annuity with 7% interest rate. We must also pay
in the greater periodic premium when we want to have greater g(K). If we want
to be sure that we will get g(K)=5 000 we pay only 4.91914 but the guarantee of
g(K)=50000 is bigger and it costs 378.354. Therefore the growth of the price of i’s
and g(K)’s assurance part is evident. It is worth noting that the assurance of g(K)
is more expensive than assurance of the guarantted interest rate i. But we cannot
say that the assurance of g(K) is always more expensive because we cannot be sure
what it is happening in case when i is greater than 0.07. One thing we can be sure
of is that the average cost of the growth of g(K) for i = 0.07 is smaller than the
same growth of g(K)-part assurance (although for i = 0.07 and g(K)=5 000 the cost
is equal to 43.3178 and for the same g(K) the cost of the guaranteeing part equals
only 4.91914, then for g(K) = 50000 these costs are 162.973 and 378.354 for i and
the guaranteeing part, respectively). We pay attention to i once more. Observe
that for the last 3 rows the values of the part guaranteeing the annuity are almost
proportional to the g(K). This behavior can be explained in the following way. As
we remember g(K) and the amount gathered on the mutual fund decide how much
the policyholder will get as the annuity. The mutual fund is the dominating factor
until we decide the guaranteed amount to be too big. For the last table’s rows the
guaranteed amount is probably so big that the mutual fund does not influence the
annuity but g(K) does. To make this consideration clearer we show some example:
we want to pay in 100 in the mutual fund and to have the guaranteed amount equals
45 000. This guarantee costs 330.773, so over 3 times more than k. The additional
privilege of i is 26.3142 for 1% and 146.93 for 7%, thus it is not so expensive as
the bearing the costs of g(K). Of course it depends on us what we want to have -
greater g(K) or i.

Now it will be shown, how much money the policyholder gets as the annuity. We
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assume that the guaranteed interest rate i = 0.06 and k = 100.

Table 5: The annuity with respect to different guaranteed amounts k = 100

Percentiles of the actuarial value of annuities
g(K) K mean 5th 25th 50th 75th 95th

5000 140.936 1417.25 570.761 744.151 1095.09 1691.62 2626.82
10000 164.603 1618.93 1023.32 1039.53 1297.73 1728.71 2626.82
15000 205.154 2000.38 1534.98 1534.98 1709.49 2119 2751.53
20000 254.797 2472.95 2046.64 2046.64 2171.02 2659.54 3168.47
25000 308.834 2991.74 2558.3 2558.3 2656.12 3228.69 3765.03
30000 365.237 3534.17 3069.96 3069.96 3154.27 3811.97 4414.23
35000 422.798 4089.18 3581.62 3581.62 3650.49 4419.07 5119.00
40000 481.241 4651.83 4093.29 4093.29 4156.75 5020.63 5824.39
45000 540.201 5218.47 4604.95 4604.95 4668.28 5618.65 6512.78
50000 599.396 5787.47 5116.61 5116.61 5180.14 6222.7 7195.22

Two factors influence the annuity: v (which corresponds to i) and g(K). We
prove this fact by the analysis of Table 5. The right part of the table shows the
influence of S(t) and g(K) on the top right and down, respectively (see ephasized
parts of the table). On the down right the annuities are proportional to g(K), when
on the top right are not. But comparing the down parts (see text in bold face)
we note the big differences between left and right side. On the left the annuity is
4093.29 for g(K) = 40000 and the 5th percentile of the annuities, and it is 5824.39 for
the same g(K) and the 95th percentile. The question is, where such a big difference
comes from. The reason why the annuities are greater in the right block is one factor
–D(t, t′), which dominates for greater percentiles. The influence of v becomes weak
with the percents. The left side on the top shows the beginning of the S(t)’s activity
but this behavior is not so evident as it was on the right. The bold part on the left
represents the interesting event. Columns of 5th and 25th percentile are the same.
We note the same outcomes, what testifies to the domination of g(K) over S(t) and
v greater than D(t, t′). S(t) determines the annuity on the top and g(K) determines
the annuity on the lower part of the table from 2001. Summarizing, for the little
guaranteed amount the mutual fund and v or D(t, t′) influence the annuity, which
gets the policyholder. The existence of the guaranteed interest rate is noticable for
the worst scenarios of the annuities and the zero-coupon bond is important for the
higher percents of the annuities’ results.

In Table 6 we show what happens, when the guaranteed interest rate v changes,
g(K)=20 000 and the trajectories changes from pessimistic trough median to op-
timistic. The interest rate i is the guaranteed interest rate resulting from the dis-
counting factor v.
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Table 6: The annuity with respect to different guaranteed interest rates. g(K) =
20000

Percentiles of the annuities
i K mean 5% 25% 50% 75% 95%

0.01 208.501 2257.96 1392.12 1735.71 2124.37 2595.55 3125.32
0.02 213.564 2274.86 1440.01 1738.21 2126.54 2595.63 3125.32
0.03 220.513 2301.29 1584.02 1748.53 2133.62 2596.19 3127.44
0.04 229.753 2341.14 1733.42 1756.28 2136.85 2603.82 3129.76
0.05 241.478 2397.71 1887.77 1887.77 2159.46 2620.85 3140.82
0.06 255.792 2473.83 2046.64 2046.64 2178.24 2636.83 3164.68
0.07 272.552 2570.7 2209.63 2209.63 2209.63 2664.7 3199.62
0.08 291.478 2687.82 2376.36 2376.36 2376.36 2701.46 3278.89

Considering Table 6 we can find some interesting elements. Observing the first
and the last column of the percentiles we see some differences inside each of them.
In the first one we can note the numbers from 1392.12 to 2376.36, and in the last one
from 3125.32 to 3278.89. So in the last column the numbers are almost the same,
when in the first are not. We can say, that in contrast to the first column, the last
one does not depend on i, because it does not change so much with i. Therefore
for the higher percentiles of the annuities the zero-coupon bond, not the guaranteed
interest rate, determines the value of the annuity. We can find out that the influence
of D(t, t′) grows with the growth of the percentiles of the annuities. The bold part of
the table implies the next interesting event. The annuities are the same in the rows
for 5th, 25th and 50th percentile. This fact gives evidence that only the guaranteed
interest rate plays a large part in changeability of the annuity for little percentiles.
By the analyze of table 6 we can also make clear that the instrument priced by us
protects against the little annuity, when i grows. It is obvious, if we look at the
fair periodic premium K, the mean annuity and the 5th percentile. The growth of i
makes the growth of K from 208.501 to 291.478 (so it is about half more than at the
beginning). This growth of K does not put the medium annuity up so much, which
evaluates from 2257.96 to 2687.82, but it puts the pessimistic annuity up. Hence
the choice of the greater guaranteed interest rate protects the policyholder against
the pessimistic scenario of the interest rate and then it puts the annuity up.
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