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Abstract: Three urban growth theories predict parallel growth of cities. The endogenous 
growth theory predicts deterministic parallel growth; the random growth theory implies 
that city growth follows Gibrat’s law with a steady-state distribution; and the hybrid 
growth theory suggests the co-movement of random city growth. This paper uses the 
Chinese city size data from 1984-2006 and time series econometric techniques to test for 
parallel growth. The results from various types of stationarity tests on pooled 
heterogeneous cities show that city growth is random. However, once growth trend and 
structural change are taken into account, certain groups of cities with common group 
characteristics, such as similar natural resource endowment or policy regime, grow 
parallel.  
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1. Introduction 

City growth across countries exhibits two striking facts. First, cities keep growing in many 

countries, in terms of both city size (city population) and the number of cities. Second, the 

distributions of city sizes in different countries fit the power law (Pareto distribution) very 

well. Especially, in the upper tail of city size distribution, the power exponent is equal to or 

very close to one, which is called Zipf’s law or rank-size rule, meaning that a city size is 

proportional to the inverse of its rank.1

 

Correspondingly, three strands of theories have been developed to explain the two stylized 

facts. The endogenous urban growth theory (Black and Henderson, 1999; Eaton and 

Eckstein, 1997) uses human capital externalities as the driving force to explain the 

persistent and deterministic growth of cities, and concludes that in steady state, city sizes 

grow at a constant rate proportional to the growth rate of human capital accumulation, 

which is dubbed parallel growth. The random urban growth theory (Gabaix, 1999) assumes 

city growth as a random walk and shows that in steady state city size distribution obeys 

Zipf’s law. The hybrid urban growth theory (Rossi-Hansberg and Wright, 2007) employs 

both human capital externalities and stochastic productivity shocks. Under some restrictive 

conditions, the hybrid model can generate both balanced endogenous growth and city size 

distribution close to Zipf’s law. It is worth noting that another urban growth 

theory—locational fundamentals theory (Fujita and Mori, 1996; Krugman, 1996), is also 

relevant although it makes no clear prediction about the pattern of city growth. This theory 

emphasizes the persistent impact of initial location conditions on future city growth, which 

is to some degree related to the random growth theory. 

 

A recent simulation study by Gan, Li, and Song (2006) demonstrates that the very good fit 

                                                 
1 There is rich literature on city size distribution. Let R and P denote the rank and population size of a city, 
then, the power law or Pareto distribution implies that the number of cities whose population exceeds P is 
proportional to P β− . The econometric specification is εβα +−= PR lnln . With 1β = , it is called 
Zipf's law (Zipf, 1949) or rank-size rule. However, to be specific, rank-size rule is only a good approximation 
of Zipf's law (Gabaix, 1999). Many studies find that the upper tail of city size distribution obeys Zipf's law 
quite well. For a comprehensive survey on city size distribution, see Gabaix and Ioannides (2004). 
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of Pareto distribution is just a statistical phenomenon.2 Therefore, the more interesting 

focus should be to study the dynamics of urban growth process and growth determinants. 

Unfortunately, empirically, we are still not clear whether city growth is random or 

deterministic. If it is deterministic, does the growth converge (small cities grow faster), 

diverge (large cities grow faster), or parallel (all cities grow at the same speed)?3  

 

Of particular interest is to test the parallel growth hypothesis. Whether Zipf’s law for all 

cities is a statistical property or not, the relative stability of city size distribution in a 

country at different time periods suggests that cities of different sizes may grow relatively 

parallel. As a matter of fact, all the three urban growth theories are somewhat related to 

parallel growth. The endogenous urban growth theory predicts simple, deterministic, 

parallel growth; the random growth theory assumes the same average growth rates with 

common variance (Gibrat’s law) and predicts a steady-state size distribution; and the 

hybrid model predicts co-movement of random growth processes (cointegration in terms of 

time series econometrics). The goal of this paper is to test for the parallel growth of cities. 

Specifically, we use the Chinese city size time series data from 1984 to 2006 to identify the 

dynamic pattern of city growth. The results from various types of stationarity (unit roots) 

tests show that in general city growth is not parallel; however, once trend stationarity with 

endogenous structural change are allowed, cities with certain common group 

characteristics, in terms of geographic region, natural resource endowment, and policy 

regime, grow parallel. If any location-specific factors are considered location fundamentals, 

then our findings lend some support to the locational fundamentals growth theory in the 

sense that cities with similar location fundamentals tend to grow parallel. 

                                                 
2 Gan, Li, and Song (2006) show that the high R2 of the regression of rank on size is just a statistical property. 
However, their estimated values ofβ  are sensitive to the parameters of the distribution of the size variable. 
They argue that Zipf's law is just a statistical phenomenon, but, to be precise, their conclusion means that the 
Pareto distribution is a statistical phenomenon. 
3 Following economic growth theory (Barro and Sala-i-Martin, 2004), if small cities grow faster than large 
cities without conditional on any other characteristics of city economies, it is referred to as absolute 
convergence, meaning that all cities will converge to the same long-run steady state size. If different cities 
converge to their own steady state sizes, it is called conditional convergence. If small cities grow faster than 
large cities after holding fixed some other variables, such as initial human capital stock, government policies, 
it is called β -convergence. If the dispersion of city sizes (say, the standard deviation of sizes of a group of 
cities) declines over time, it is referred to as σ -convergence. 
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The rest of the paper is organized as follows: Sections 2, 3, and 4 review the three urban 

growth theories and their empirical evidence, and discuss the corresponding methodology 

of testing for parallel growth, respectively. Section 5 describes the data set; section 6 

presents the results; and section 7 concludes. 

 

2. The endogenous urban growth theory 

 

The endogenous urban growth theory predicts deterministic, parallel growth of cities, 

meaning that in steady state cities of different sizes grow at the same constant speed. The 

Black-Henderson model (Black and Henderson, 1999) assumes localized information 

spillovers and human capital accumulation as the engines of urban growth. This model 

produces endogenous city sizes and number of cities over time. Sizes of different types of 

cities grow at the same rate which is proportional to the growth rate of human capital 

accumulation; the number of cities of each type also grows at the same rate which equals 

the difference between the rate of national population growth and the rate of city 

population growth. A similar, deterministic, endogenous growth model by Eaton and 

Eckstein (1997) also predicts that the growth of a system of cities is parallel, with relative 

city sizes depending upon the knowledge spillover effects that cities can provide. 

 

A direct testing for the deterministic, parallel growth is straightforward: We can test 

whether individual cities’ growth rates are constant and remain the same over a long period. 

An alternative would be to split the sample into a few groups by size and to test whether 

the growth rate of each group is the same. Obviously, since city growth is affected by 

many factors (Angel, Sheppard, and Civco, 2005), such a strict parallel growth pattern is 

very rare to find, if not impossible. An indirect way is to test whether the size distribution 

of cities over a long period is stable or not. But the issue is that even though the size 

distribution is stable over time, an individual city’s ranking may change. Eaton and 

Eckstein (1997) use France and Japan city size data and estimate the Markov transition 

matrix of city size evolution. They conclude that a wide range of city size growth is 

persistent, with quite stable distribution which is close to the rank-size rule. This is 
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consistent with parallel growth. However, there are a few problems in their study. First, 

they use only the top 40 urban areas. As many studies have pointed out, the threshold of 

city size matters in estimating the power exponent. Second, as pointed out by Sharma 

(2003), they do not provide statistical inference concerning the estimated transition 

probabilities. It is hard to know how large the diagonal transition probability should be to 

justify the persistent, parallel growth. Third, they do not discuss the stationarity of the city 

size time series data. If sizes of individual cities are not stationary, then, the better way to 

test the co-movement of city growth would be to conduct cointegration test, which is one 

of the goals of this paper. Finally, the period of rapid industrialization and urbanization in 

each country is also accompanied by dramatic changes in economic structure and policy 

regime, which may have had persistent effects on later urban growth and different impacts 

on different cities. Therefore, structural changes should also be taken into account. 

 

Other possibilities of deterministic urban growth would be convergence and divergence. 

During the process of urbanization, new small cities keep forming and catch up with large 

ones, so the size distribution of cities would become more even over time, or cities with 

different initial sizes may converge to a common steady-state size. In contrast, 

urbanization could take the form of the expansion of existing large cities, which implies 

that city size distribution would be more unequal or diverge over time. In the 

Black-Henderson model, under some special constraints, cities could achieve steady-state 

levels, meaning that cities will grow and converge to a common stationary size. However, 

in another paper by Black and Henderson (1997) transitions are modeled as a stationary 

first-order Markov process and the relative size distribution of cities is astonishingly stable 

over time, with the actual distribution fluctuating little between decades and exhibiting no 

tendency to converge, diverge, or go bimodal. It is worth noting that an early study by 

Rosen and Resnick (1980) shows that large cities grow faster than small cities in most of 

the countries in their sample. 

 

3. The random urban growth theory 

 

The random urban growth theory assumes that city sizes grow stochastically, to be specific, 
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follow Gibrat’s law (the growth processes have the common expected city growth rate and 

a common standard deviation), or in the continuous case, follow a geometric Brownian 

motion. If at least for a certain range of size, the cities follow Gibrat’s law, then, regardless 

of whatever drives city growth, automatically in the steady state, the distribution of city 

sizes in that range will follow Zipf’s law with a power exponent of one (Cordoba, 2007; 

Gabaix, 1999). If this theory is correct, the future research should focus on finding if and 

on explaining why the actual city size growth follows Gibrat’s law. 

 

The Gibrat’s law implies that the city size growth process is a random walk or unit root 

process. To see this, consider a city with population  at starting time 0. The growth 

rate of population at time t, , is a random variable independently distributed with mean  
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where “ln” denotes logarithm and tε  is a white noise process. Equation (1) implies that 

 is a random walk with a drift parameterTNln µ  and that a random growth shock has a 

permanent impact on city size. 

 

There are three strategies to test the random growth theory. First, does city size distribution 

follow Zipf’s law? Second, do growth processes of cities follow Gibrat’s law, or in general, 

follow a random walk? Third, does a temporary random shock have permanent effects on 

city size evolution? The negative answer to any of the three questions would cast doubt on 

the random growth hypothesis. Note that from the perspective of time series econometrics 

the second and third testing strategies boil down to unit roots or stationarity test. 

 

Davis and Weinstein (2002) find that one of the most powerful shocks to city size 

evolution in the human history—the Allied bombing of Japanese cities during the World  
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War II—has only temporary effects: Most cities return to their relative positions in the 

distribution of city sizes within about fifteen years from the devastating destruction. This 

strongly strikes at the random growth theory. Brakman, Garretsen, and Schramm (2004) 

and Bosker et al. (2008) apply the similar methodology and also find that city growth in 

Eastern Germany follows a random walk but city growth in Western Germany does not, 

suggesting that different post-war economic systems may have played an important role in 

shaping urban growth dynamics. 

 

4. The hybrid urban growth model 

 

The hybrid urban growth model proposed by Rossi-Hansberg and Wright (2007) combines 

both the endogenous growth model and Gibrat’s law and is able to predict both city growth 

facts. A random total factor productivity shock is introduced to the model so that the 

balanced growth of city sizes is also random. Under two sets of restrictive conditions 

(eliminating physical capital or AK type model without human capital), the expected 

long-run growth rate and variance are independent of city size, which fits Gibrat’s law. 

Under certain range of parameter values, the hybrid model can also generate distributions 

which deviate from Zipf’s law, as uncovered by some empirical literature.4  

 

The hybrid urban growth theory has been tested by Sharma (2003). Sharma uses the Indian 

decennial population census data from 1901-1991 and conducts unit roots and 

cointegration tests. She concludes that city growth may be parallel in the long run, but the 

short-run growth may deviate from the long-term rate of growth due to exogenous shocks; 

and temporary shocks may take less than a decade to dissipate.5 However, Sharma 

specifies a very strong assumption that the time trend of growth is zero or very small and 

negligible, in order to produce parallel growth.6

                                                 
4 AK model is the simplest endogenous growth model in economic growth theory. AK refers to a production 
function using only capital K and dependent on an exogenous technology shift denoted by A. 
5 It is interesting to note that Sharma’s empirical study is done before Rossi-Hansberg and Wright’s 
theoretical work. A careful reader can find that Sharma’s paper provides empirical evidence for 
Rossi-Hansberg and Wright’s conclusion that cities grow parallel in steady state yet the growth processes 
follow Gibrat’s law. 
6 Sharma (2003) specifies the following model to test parallel growth: 

, 1ln ln .it i i j t itP t Pα δ β ε−= + + +  
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To see this, let  denote the population of city i at time t, and assume that  is a 

general first-order autoregressive ( AR(1)) process with a unit root, a drift, and a time 

trend: 

itP itPln

, 1ln lnit i i i t itP t Pα β ε−= + + + . 

The expected growth rate at time t is ( )itE g

.)ln(ln)( 1, tPPEgE iitiitit βα +=−= −  

By the same token, the expected growth rate of city j at time t is 

.)ln(ln)( 1, tPPEgE jjtjjtjt βα +=−= −  

The random parallel growth requires that for any t,  

.i i j jt tα β α β+ = +  

Therefore, parallel growth implies the same time trend across all cities, regardless of the 

magnitude of time trend. The long-run equilibrium relationship between two city sizes with 

parallel growth is 

ln ln .it i jtP Pα= +  

Since both  and  are likely to be unit root processes, the cointegration 

relationship should be tested before making any estimation. The regression model for 

cointegration test is specified as 

itPln jtPln

          ln lnit i jt itP Pα γ ε= + + ,       (2) 

where  is the population level of a chosen reference city. If and are 

cointegrated and

jtP itPln jtPln

1≠γ , then city i grows at a rate different from the reference city j . If 

and  are cointegrated anditPln jtPln 1=γ , then the two cities grow parallel at the same 

expected long-run rate. Based on equation (2), we will test parallel growth for a few groups 

of cities in section 6.3. 

 

Another relevant but hard-to-test theory—locational fundamentals theory (Fujita and Mori, 

1996; Krugman, 1996), is also worth discussion here. Locational characteristics may be 

                                                                                                                                                    
1=iShe argues that β  implies parallel growth. This is true only if the time trend δ is zero orδ  is very 

small and can be neglected. 
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considered randomly distributed over space (a spatial random process). They are the initial 

conditions which play a crucial role in shaping the formation and evolution of the size of 

that location. Even the initial conditions become unimportant any more, their effects may 

still persist, which is called the path dependence effect or the lock-in effect of 

self-reinforcing agglomeration forces (Fujita and Mori, 1996). Strong location-specific 

advantages may even revert the strong temporary shocks to city growth. However, this 

theory makes no clear prediction of the pattern of urban growth. Davis and Weinstein 

(2003) use the soon recovery of Japanese cities and Brakman, Garretsen, and Schramm 

(2004) the recovery of Western Germany, after the World War II bombing, as the 

confirmation of locational fundamentals theory. 

 

5. Data 

 

Before introducing the data, let’s first summarize our testing methodology based on the 

three urban growth theories. We will test whether Chinese city sizes obey Zipf’s law; if not, 

we will reject the random urban growth theory. We will also test whether Chinese city 

sizes follow Gibrat’s law or unit root processes; if yes, we will proceed to test for parallel 

growth. For parallel growth test, we use a modified cointegration test strategy which will 

be explained in detail in section 6.3.   

 

Our various tests use the Chinese city size data from 1984 to 2006. The data are from each 

year’s China Urban Statistic Yearbook. In this paper a city is defined as “city proper,” 

including both inner city area and suburban areas but excluding independent suburban 

counties.7 City population is defined as the number of non-agricultural population in urban 

area of a city (by the permanent residence) at year-end. Non-agricultural population are 

those who engaged in non-agricultural vocations and their dependents. 

  

Chinese cities usually are classified into five size categories according to their population: 

                                                                                                                                                    
 
7 Although some independent suburban counties, officially speaking, belong to the administrative scope of a 
city, they do not actually function like an urban area. Therefore, the China Urban Statistical Yearbook 
advises users to use “city proper” when studying urban related issues. 
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small, medium, large, extra large, and super large-sized cities with population less than 

200,000, between 200,000 and 500,000, between 500,000 and 1,000,000, between 

1000,000 and 2,000,000, and above 2,000,000 persons, respectively. By region, Chinese 

cities traditionally are assigned to one of the following three categories: Eastern, Middle, 

and Western region. A more disaggregated regional classification includes seven 

sub-regions: Northeastern, Northwestern, Southwestern, Northern, Eastern, Southern, and 

Middle China. 

 

During the transition to a market-oriented economy and opening to the world, Chinese 

government has favored a small number of cities to implement reform and open policies. 

These include 5 cities in special economic zones and 16 open coastal cities (starting from 

1980). 

 

Rapid urbanization has taken place in China since the 1980s. The urbanization rate 

increases from 23.01% in 1984 to 43.90% by the end of 2006. Almost every year, there are 

new cities coming into being, and the total number of cities increases from 295 in 1984 to 

661 in 2006. 

 

The dramatic change of Chinese economic structure and policies may have had strong 

impacts on the evolution of city sizes and size distribution. Some cities benefit from the 

strong agglomeration economies from nearby super-large cities or city-belt; some other 

cities, however, still suffer from locational disadvantages. Cities in special economic zones 

have been blessed by favorable government economic policies and grow much faster. In 

addition, cities in the same region but of different sizes may have different growth patterns. 

These special features of Chinese city growth have attracted a few studies (Anderson and 

Ge, 2005; Song and Zhang, 2002). However, no studies have been done on the dynamics 

of Chinese city growth. 

 

Our research focuses on identifying the growth pattern of Chinese cities. Do Chinese cities 

grow randomly, deterministically parallel, or with a constant long-run rate but short-run 

deviation? The analysis and answers are presented in the next section. 
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6. Results 

6.1 Time Variations of Zipf's Exponent 

 

The random urban growth theory states that if city growth processes follow Gibrat’s law, 

then the steady state distribution will obey Zipf’s law. Therefore, if the Chinese city size 

distribution is not consistent with Zipf’s law, we would cast doubt on the random growth. 

We estimate the standard rank-size model for each year to trace the change of the power 

exponent and the stability of city size distribution: 

ln ln ,R Pα β= − + ε           (3) 

where R and P are the rank and population size of a city, andβ  is Zipf's exponent. Table 1 

reports the estimated coefficient β . 
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Table 1

Time variations of the Zipf’s exponent
 All cities Cities with 

population >200,000
Cities with 

population >500,000 
Balanced 

panel 
Year Number 

of cities 
β  Number 

of cities 
β  Number 

of cities 
β  β  

1984 295 0.891 131 1.266 50 1.463 0.879 
1985 324 0.856 146 1.275 52 1.459 0.895 
1986 342 0.857 149 1.260 54 1.447 0.904 
1987 382 0.884 158 1.260 55 1.445 0.904 
1988 434 0.927 168 1.273 58 1.440 0.919 
1989 450 0.932 175 1.282 58 1.429 0.925 
1990 468 0.902 177 1.253 60 1.381 0.929 
1991 479 0.923 182 1.289 61 1.423 0.934 
1992 514 0.950 201 1.302 62 1.433 0.941 
1993 569 0.981 228 1.343 69 1.433 0.942 
1994 622 1.007 248 1.377 73 1.453 0.961 
1995 640 1.023 267 1.383 76 1.451 0.965 
1996 665 1.038 273 1.388 78 1.454 0.968 
1997 666 1.032 285 1.389 81 1.452 0.978 
1998 665 1.047 291 1.383 86 1.457 0.988 
1999 665 1.075 302 1.380 86 1.423 0.990 
2000 661 1.025 293 1.364 92 1.412 0.989 
2001 662 1.026 304 1.357 105 1.430 0.993 
2002 656 1.001 311 1.339 108 1.448 0.972 
2003 653 0.986 324 1.269 122 1.416 0.897 
2004 655 1.024 348 1.290 130 1.412 0.945 
2005 659 1.117 581 1.473 363 1.939 1.073 
2006 659 1.129 586 1.480 368 1.936 1.072 

Note: The balanced panel includes 259 cities. All regressions have good fit; most of the p-values for testing 
the null hypothesis 0 :H 1β = are zeroes. Two cities (Lasa and Hailaer) have missing population data in 
various years and are not included in analysis.  
 

In Table 1, the coefficient β  in the third column is estimated using the full sample. The 

power exponent has been increasing from less than one in 1984 to quite greater than one in 

2006, implying that the overall city size distribution becomes close to and finally more 

even than what Zipf’s law predicts. In 19 out of 23 years an F test rejects the null 

hypothesis thatβ  is equal to 1. Column 8 presents the Zipf’s exponent for the balanced 

panel that includes 259 cities existing during 1984-2006. The pattern is very similar to the 

full sample, suggesting that the city sample of the balanced panel is representative.  
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Since many empirical studies confirm that the exponent is sensitive to the sample choice 

and is close to one for the upper tail of size distribution (Rosen and Resnick, 1980; 

Eeckhout, 2005), we also estimate the model by selecting only cities of size greater than a 

certain large threshold. The fifth and seventh columns report the results for cities of size 

greater than 200,000 and 500,000, respectively. The estimated power exponents now are 

significantly different from one, to be specific, significantly greater than one. The values 

of β  increases when we move the cutoff to the upper tail, suggesting that larger cities 

distribute more evenly than what Zipf’s law predicts. One possible explanation is that the 

Chinese government has implemented the policy that restricted the migration into large 

cities and promoted the development of small and medium-sized cities. Another 

explanation is that the current size distribution may not be in the steady state. In fact, the 

overall size distribution of Chinese cities has been evolving. According to the United 

Nations data source, in 2007 the urbanization rate in China is 42.2%, while the 

urbanization rate of developed countries is above 70%.8China is still in the period of rapid 

urbanization and the distribution of city sizes will keep evolving. Historically, the power 

exponent shows a U-shaped pattern in many countries (Parr, 1985). Cross-country studies 

also show that the Zipf’s exponent is significantly different from one (Nitsch, 2005; Soo, 

2005). In addition, using the Chinese city size data up to 1999, Anderson and Ge (2005) 

find that Chinese city sizes are better described by a log-normal distribution. Given all 

these pieces of mixed evidence, we tend not to make conclusion about the random growth 

and parallel growth by looking at only the evolution of the power exponent. 

 

6.2 Non-stationarity in City Sizes 

 

The sizes of a city at different time periods are most likely correlated due to reasons such 

as the durability of urban infrastructure, housing, and fixed costs of production. The 

intertemporal autocorrelation of city sizes implies that a temporary random shock to city 

size may have persistent impact on the future city growth. The random growth theory 

indicates that the growth of city size is a random walk, implying that a temporary shock 

                                                 
8 In 2007, the urbanization rate of U.S. is 81.4%; Canada, 80.3%; Japan, 66.3%; United Kingdom, 89.9%; 
France; 77.1% (Source: World Urbanization Prospects: the 2007 Revision, available at www.un.org). 
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will have permanent effects on city growth. If a random shock is identified to have only 

temporary effects on city size, as in Davis and Weinstein (2002), then the random growth 

theory can be rejected. 

 

Testing the persistence of a random shock to city size boils down to the test for the 

stationarity of city sizes or the test for unit roots. Let  denote the logarithm of the 

population of city i at time t, then, the simplest specification is to assume that city size is a 

first-order autoregressive (AR(1)) process: 

ln itP

, 1ln ln ,it i i t itP Pφ ε−= +  

where iφ is the first-order autocorrelation coefficient and itε  is the random shock at time t. 

The augmented Dickey-Fuller (ADF) test for non-stationarity (Dickey and Fuller, 1979) of 

population levels takes the form 

Δ lnPit  i lnPi,t−1  it,  

where 1i iγ φ= − . The null hypothesis is non-stationarity: 1iφ = (or 0iγ = ). If 1iφ < , city 

population will converge to a constant in the steady state. Since the conclusion of unit root 

test is sensitive to the specification of the model, we specify the model in the very general 

form, including a drift iα  and a linear trend itβ controlling for the upward trending: 

, 1 ,
1

ln ln ln
ik

it i i i i t ij i t j it
j

P t P Pα β γ ρ ε− −
=

∆ = + + + ∆ +∑ , 

where is the number of lagged difference term for city i .We choose the optimal lags 

using Bayesian information criterion (BIC). 

ik

 

To make sure the stationarity tests are reliable and robust, we also apply the KPSS test 

(Kwiatkowski et al., 1992). The null hypothesis of KPSS test is that the underlying time 

series is trend stationary, which is complementary to the ADF test. The KPSS test selects 

the optimal lag length automatically with Newey-West methodology. If the results from 

both ADF test and KPSS test agree with each other, then we will be confident about the 

stationarity characteristics of a city size. 
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Since China’s economic reform and transition to a market economy may have had very 

different impacts on city size dynamics within different time periods, it is worth taking into 

account structural change or break point in the trajectory of city size. A methodology 

testing both unit root and endogenous structural break point simultaneously is the 

Zivot-Andrews (ZA) test (Zivot and Andrews, 1992). The null hypothesis of the ZA test is 

that the underlying time series  has a unit root with driftln itP µ : 

, 1ln lnit i t itP Pµ ε−= + + .        (4) 

The alternative hypothesis is that  is trend stationary with a one-time break in the 

trend occurring at an unknown point of time. For example, suppose that  has one 

structural change in the level, then, the regression equation for testing unit root is 

ln itP

ln itP

, 1 ,
1

ln ( ) ln ln
k

it t i t j i t j it
j

P DU t P Pµ θ λ β γ ρ−
=

∆ = + + + + ∆ +∑ ε− ,        

where /t Tλ =  is the location of the break point and is chosen to give the least favorable 

result for the null hypothesis (4) and ( ) 1tDU λ =  if t Tλ> .9 Again BIC is applied to select 

the optimal lag length in the ZA test.  

 

Small sample size, especially short time period, is a notorious problem to the standard time 

series analysis, especially for the stationarity test and cointegration analysis. For example, 

severe size distortions are found in stationarity test when a time series has a large negative 

moving average (MA) root (Schwert, 1989) or a large AR root (DeJong et al., 1992). One 

possible remedy is to expand the time span of the data set. But we are aware that before 

1981 China employed different definitions of urban population and it is very difficult to 

adjust the data to be consistent. To deal with the small sample size problem, we interpolate 

annual city size time series data and transform them into higher 

                                                 
9 Similarly, if we assume that  has one structural change in the growth rate, then, the regression 

equation for testing unit root is 

ln i tP

, 1 ,
1

ln ( ) ln ln
k

it t i t j i t j it
j

P t DT P Pµ β θ λ γ ρ ε− −
=

∆ = + + + + ∆ +∑ , where 

( )tD T t Tλ λ= −  if t Tλ> . We generally consider only the structural change in the level. 

 15



frequency—quarterly—data.10 Of the two commonly used interpolation methods—the 

quadratic method and the cubic spline method, we use the second as recommended by 

Baxter (1998). 

 

We select cities in the balanced panel from 1984 to 2006 but exclude cities at the county 

level to do the unit root tests.11 Overall, both the ADF and KPSS tests show that 153 out of 

210 cities have unit roots, suggesting that the sizes of most cities are not stationary. Table 

2 reports the unit root test results for some selected cities: panel 1 presents the cases that 

the ADF test and KPSS test are not consistent, panel 2 the cases that are stationary, and 

panel 3 the cases that are not stationary. It is worth noting that in panels 2 and 3 when both 

ADF and KPSS tests agree with each other, the ZA test tends to be consistent too. 

                                                 
10 Interpolation is commonly used in macroeconomics to transform low frequency data into high frequency 
data. For example, Bernanke, Gertler, and Watson (1997) interpolate quarterly GDP data into monthly series 
when studying the effects of monetary policy. 
11 Cities at the county level are in general small cities and the definition for city population changed since 
2005. 

 16



 

Table 2  

Testing stationarity of city sizes 
City name ADF test  KPSS test ZA test Break point date 

Examples of cities with inconsistent testing results 
Anyang -1.950 0.142 -5.413* 2002Q4 
Baoji -3.093 0.063 -3.934 1997Q4 
Baotou -2.595 0.078 -3.722 1989Q2 
Binzhou -2.081 0.095 -3.438 1999Q3 
Examples of cities that are trend stationary 
Dazhou -3.710* 0.142 -5.117* 1992Q4 
Deyang -3.850* 0.089 -4.245 1993Q3 
Jingmen -3.812* 0.067 -4.993* 1992Q4 
Xiangfan -4.240* 0.141 -7.361* 2003Q2 
Examples of cities that are non-stationary 
Shanghai -0.134 0.268* -1.762 2003Q3 
Beijing -2.886 0.270* -3.305 1990Q1 
Chongqin -0.463 0.272* -1.394 1990Q2 
Guangzhou -2.008 0.235* -8.171* 1999Q4 

Note: For the ADF test, the null hypothesis is non-stationarity; the critical value for the 5% level is 
-3.46. For the KPSS test, the null hypothesis is trend stationarity; the critical value for the 5% level 
is 0.15. For the ZA test, the null hypothesis is non-stationarity without a break point and the 
alternative hypothesis is trend stationarity with an endogenous break point; the critical value for the 
5% level is -4.80. Superscript “*” indicates significance least at the 5% level.  
 
It is well known that the power of unit root test based on single equation is poor, especially 

when the time series is short. Panel unit root tests with a large N can improve the power. 

The time length of our data set is not very long; but the number of cities is large enough. 

For robustness check, for the 153 cities detected with unit root, we also conduct the 

Im-Pesaran-Shin panel unit root test (Im, Pesaran, and Shin, 2003) and the Levin-Lin-Chu 

panel unit root test (Levin, Lin, and Chu, 2002). Both test results can not reject the null 

hypothesis that all cities in the panel have unit roots (the values of Im-Pesaran-Shin test 

statistic and the Levin-Lin-Chu test statistic are 16.3 and 17.0, respectively). 

  

We also conduct unit root tests for population growth rate of the same set of cities, using 

the first-order difference of logarithmic population level. The null hypothesis of unit root 

of growth rate is rejected for all cities. 

 

Two inferences can be drawn from unit root tests. First, there exists no steady state size for 
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the majority of cities. This rejects the conditional convergence hypothesis. Second, since 

for the majority of cities, city size is a non-stationary process and the rate of growth is a 

stationary process, we can not reject the random urban growth theory as confidently as 

Davis and Weinstein (2002). 

 

6.3 Testing parallel growth 

 

Even city sizes evolve in a non-stationary way, they still could move together as city 

growth is affected by many common factors, such as national economic growth or other 

nation-wide macroeconomic factors. A special case is that cities grow parallel in the long 

run but deviate in the short run, which can be tested using equation (2). Parallel growth of 

cities also implies that their population levels move together with the national urban 

population. 

 

Parallel growth among cities implies that city sizes are cointegrated with a cointegrating 

coefficient of 1 ( 1γ＝  in equation (2)). While various methods of cointegration test, such 

as Johansen-Juselius cointegration rank test (Johansen and Juselius, 1990), are applicable 

here, a more convenient way is to test whether the logarithm of the ratio of two city sizes is 

stationary or not. To see this, suppose two city sizes grow parallel, then equation (2) can be 

re-written as 

    ln( / )it jt tP P α ε= + ,            (5) 

meaning that parallel growth of two cities requires that the ratio of two city sizes be 

stationary around a constant. Furthermore, if city i grows faster than city j by a constant 

rate, the relationship will be featured by a linear time trend: 

tjtitjtit tPPPP εβα ++=−= lnln)/ln( .    (6) 

We can apply the same unit root test techniques in section 6.2 to test whether the 

transformed time series data  is (trend) stationary. Another advantage of using 

equation (6) to test parallel growth is that we can take into account structural change in 

either or both cities under testing. 

ln( / )it jtP P
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It would be unnecessary to compare by pair all cities that are non-stationary to detect the 

growth pattern. We first randomly select cities of same size, or of same region, or with 

same major government intervention (such as special economic zones) to test for parallel 

growth. Our preliminary finding is that the majority of cities do not appear to grow parallel; 

however, cities with the same location-specific characteristics, such as same region, same 

major natural resource endowment, and same policy intervention, are more likely to grow 

parallel. Therefore, as a representative demonstration, we present the results for 7 groups 

of cities with similar locational fundamentals: tourist cities, capital cities, coastal cities, 

cities in Yangtze River Delta region and Pearl River Delta region, and cities in 

Southwestern region and Northeastern region.  

 

Table 3 provides the ADF, KPSS, and ZA test results for testing parallel growth for the 7 

groups of cities. To save space, for each group, we present only three cities that grow 

parallel with the reference city of each group. 
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Table 3  

Testing for parallel growth of city sizes 
Cities ADF KPSS ZA Break point date 

Group 1: Tourism cities (Guilin as reference city) 
Hangzhou -1.165 0.270* -7.029* 2000Q4 
Suzhou -0.976 0.253* -6.945* 2000Q4 
Xian -4.024* 0.138 -5.518* 1994Q4 
Group 2: Capital cities (Guangzhou as reference city) 
Beijing -2.244 0.171* -6.117* 2001Q2 
Shanghai -2.706 0.169* -6.325* 1999Q4 
Shenyang -3.225 0.252* -6.982* 1999Q3 
Group 3: Coastal cities(Shantou as reference city) 
Sanya -0.779 0.230* -8.196* 2002Q3 
Shenzhen -0.797 0.257* -6.413* 2002Q3 
Xiamen -0.977 0.182* -8.189* 2002Q4 
Group 4: Yangtze River Delta cities (Shanghai as reference city) 
Hangzhou -0.0994 0.263* -6.870* 2000Q3 
Nantong -1.417 0.148* -6.013* 2002Q3 
Suzhou -0.832 0.243* -6.389* 2000Q4 
Group 5: Pearl River Delta cities (Jiangmen as reference city) 
Guangzhou -2.503 0.165* -5.550* 2002Q3 
Shenzhen -1.113 0.248* -5.138* 2002Q1 
Zhongshan -1.236 0.187* -8.363* 2001Q4 
Group 6: Southwestern cities (Panzhihua as reference city) 
Chengdu -0.768 0.253* -6.451* 1989Q4 
Leshan -2.969 0.078 -5.488* 1998Q4 
Mianyang -2.293 0.190* -5.539* 2002Q3 
Group 7: Northeastern cities (Liaoyang as reference city) 
Anshan -0.647 0.169* -4.917* 1989Q4 
Benxi -1.536 0.159* -4.956* 1993Q3 
Fuxin -1.174 0.145 -5.226* 1993Q3 
Note: For the ADF test, the null hypothesis is non-stationarity; the critical value for the 5% level is 
-3.46. For the KPSS test, the null hypothesis is trend stationarity; the critical value for the 5% level 
is 0.15. For the ZA test, the null hypothesis is non-stationarity without a break point and the 
alternative hypothesis is trend stationarity with an endogenous break point; the critical value for the 
5% level is -4.80. Superscript “*” indicates significance at least at the 5% level. 
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(1) Tourism cities. Obviously, tourism cities have location-specific fundamentals—natural 

tourist attractions such as beautiful lakes, rivers, beaches, and mountains. Using Guilin as 

the reference city, we conduct parallel growth test for the 54 cities in the first list of the 

best tourism cities nominated by the National Tourism Administration of China in 1998. 

Panel 1 of Table 3 reports the test statistics for three cities that grow parallel with Guilin. It 

is interesting to see that Hangzhou and Suzhou satisfy parallel growth condition with one 

level shift occurring at the same date (the second quarter in 2000). These two cities are 

geographic neighbors in Zhejiang province but Hangzhou is a capital city. Figure 1 plots 

the logarithm of population levels for Hangzhou, Suzhou, and Guilin. Visually we can see 

that the three cities grow parallel if we ignore the break point occurring in 2000 for 

Hangzhou and Suzhou. Figure 2 plots the logarithm of population ratio for Hangzhou and 

Suzhou compared with Guilin, and the patterns are remarkably similar. Taking together, 

we tentatively conclude that natural tourist attractions might play a very important role in 

long-run urban growth for tourism cities. 
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GUILIN HANGZHOU SUZHOU

 
Figure 1 Population levels of three tourism cities 

Note. The vertical axis is the logarithm of city population; the horizontal axis is year. 
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Figure 2 Logarithm of population ratio  

Note. The vertical axis of the left panel is the logarithm of population ratio of Hangzhou to Guilin; 

the vertical axis of the right panel is the logarithm of population ratio of Suzhou to Guilin; the 

horizontal axis is year. 

 

(2) Capital cities. A provincial capital city or a municipality directly under the central 

government can be considered a “policy city” in the sense that it receives all kinds of 

favorable economic policies and resource allocation from central and local governments, 

even more so during the planned economy period. If we treat location-specific policies as 

general location fundamentals, then, these capital cities have advantages comparable to 

natural tourist attractions in tourism cities. There are 32 capital cities in China. Using 

Guangzhou as the reference city, panel 2 of Table 3 shows that Beijing, Shanghai, and 

Shenyang grow parallel with Guangzhou. 

 

(3) Coastal cities. Coastal cities are harbor cities and enjoy natural location advantage in 

transportation. They are also the cities that started transition in the early stage of China 

economic reform and have received favorable government intervention. Choosing Shantou 

as the reference city, panel 3 shows that Sanya, Shenzhen, and Xiamen grow parallel with 

Shantou. We should point out that Shantou, Shenzhen, and Xiamen are three of the five 

cities in the special economic zones.   

 22



 

(4) Yangtze River Delta cities. Cities in this region have both transportation advantage 

(near the Yangtze River and the Pacific Ocean) and policy advantage (receiving favorable 

open and reform policies); furthermore, this region is one of the manufacturing industry 

clusters. Panel 4 shows that Hangzhou, Nantong, and Suzhou grow parallel with Shanghai. 

 

(5) Pearl River Delta cities. Cities in this area enjoy advantages similar to Yangtze River 

Delta cities. They also attract labor intensive manufacturing firms. Panel 5 shows that 

Guangzhou, Shenzhen, and Zhongshan grow parallel with Jiangmen. 

 

(6) Southwestern cities. Southwestern cities are located in less developed Southwestern 

China, with less developed transportation network and a large minority population. Taking 

cities in Sichuan province as examples, panel 6 shows that Chengdu, Leshan, and 

Mianyang grow parallel with Panzhihua when a structural change is taken into account. 

 

(7) Northeastern cities. Northeastern region is a traditional heavy industry center and a 

mining center. Panel 7 of Table 3 shows that Anshan, Benxi, and Fuxin grow parallel with 

Liaoyang conditional on a structural change. Anshan, Benxi and Liaoyang are well-known 

for their steel industry, and Fuxin is well-known for its coal mining industry. This panel 

suggests that natural resource endowment might play an important role in long run growth 

of “resource cities.” 

 

After examining the above seven groups of cities, we have found rare evidence for the 

simple, deterministic, parallel growth among Chinese cities. However, after taking into 

account growth trend and structural change in city size, we find some pairs of cities with 

common group characteristics do grow parallel in terms of generalized concept of parallel 

growth. Those common characteristics can be summarized as generalized locational 

fundamentals, including natural tourist attractions (tourist cities), transportation advantages 

(coastal cities), natural resource endowment such as coal mine (resource cities), and 

similar government interventions (policy cities). If we extend the definition of locational 

fundamentals to any location specific amenities, including natural resources, location 
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accessibility, and government interventions, the identified parallel growth patterns of 

sub-groups may partly support the locational fundamentals theory. 

 

One point worth noting is that structural changes occur to the growth path of many cities. 

This is not surprising since transition to a market economy and rapid urbanization in China 

are accompanied by dramatic institutional changes and government interventions, such as 

the Western region development plan and favorable economics policies to the Pearl River 

Delta and Yangtze River Delta regions. Our research show that it is important to take into 

account structural changes when studying city size distribution and city size dynamics for 

developing countries.  

 

7. Conclusions 

 

Three urban growth theories, namely the endogenous growth theory, the random growth 

theory, and the hybrid growth theory, predict three types of parallel growth of 

cities—deterministic parallel growth, random growth with a stable steady-state distribution, 

and cointegrated parallel growth, respectively. This paper focuses on identifying the 

parallel growth patterns of Chinese cities based on these three urban growth theories. 

Given the fact that China is still in the period of rapid urbanization, even though we apply 

rigorous time series econometric techniques, we can only tentatively conclude that the 

overall Chinese city growth does not follow the pattern of simple, deterministic, parallel 

growth. However, once allowing for growth trend and structural change, we find that a 

small number of cities with certain common group characteristics, such as similar location 

advantages or policy regime, do grow parallel. For example, super large-sized cities 

Guangzhou and Shanghai grow parallel; steel industry cities Anshan and Liaoyang grow 

parallel; Shenzhen and Xiamen, both in special economic zones, also grow parallel. Our 

findings suggest that location fundamentals may have persistent impacts on urban growth. 

Furthermore, if we extend the concept of locational fundamentals to any location-specific 

factors, including natural resource endowment, transport accessibility, and government 

interventions, our findings provide some evidence supporting the locational fundamentals 

urban growth theory.   
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Our research focuses on only cities from the balanced panel (having observations since 

1984). However, one of the striking features of Chinese urbanization is the entry of new 

cities each year. It would be interesting to investigate the growth evolution incorporating 

migration and the birth of new cities. In addition, we are only interested in identifying the 

growth pattern in this paper, but urban growth determinants warrant further studies. 
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