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Abstract

We analyze the canonical nonlinear pricing model with limited information. A seller o¤ers

a menu with a �nite number of choices to a continuum of buyers with a continuum of possible

valuations. By revealing an underlying connection to quantization theory, we derive the optimal

�nite menu for the socially e¢ cient and the revenue-maximizing mechanism. In both cases, we

provide an estimate of the loss resulting from the usage of a �nite n-class menu. We show that

the losses converge to zero at a rate proportional to 1=n2 as n becomes large.
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1 Introduction

The theory of mechanism design addresses a wide set of questions, ranging from the design of markets

and exchanges to the design of constitutions and political institutions. A central result in the theory

of mechanism design is the �revelation principle� which establishes that if an allocation can be

implemented incentive compatible in any mechanism, then it can be truthfully implemented in the

direct revelation mechanism, where every agent reports his private information, his type, truthfully.

Yet, when the private information (the type space) of the agents is large, then the direct revelation

mechanism requires the agents to have abundant capacity to communicate with the principal, and the

principal to have abundant capacity to process information. By contrast, the objective of this paper

is to study the performance of optimal mechanisms, when the agents can communicate only limited

information or equivalently when the principal can process only limited information. We pursue the

analysis in the context of a representative, but suitably tractable, mechanism design environment,

namely the canonical problem of nonlinear pricing. Here the principal, the seller, is o¤ering a variety

of choices to the agent, the buyer, who has private information about his willingness-to-pay for the

product.

The distinct point of view, relative to the seminal analysis by Mussa and Rosen (1978) and Maskin

and Riley (1984), resides in the fact that the information conveyed by the agents, and subsequently

the menu of possible choices o¤ered by the seller, is �nite, rather than uncountable as in the earlier

analysis. The limits to information may arise for various, direct or indirect, reasons. On the demand

side, it may be too di¢ cult or too complex for the buyer to communicate his exact preferences and

resulting willingness to pay to the seller. On the supply side, it may be too time-consuming for the

seller to process the �ne detail of the consumer�s preferences, or to identify the consumer�s preferences

across many goods with close attributes and only subtle di¤erences.

Our analysis adopts a linear-quadratic speci�cation (analogous to that of Mussa and Rosen

(1978)) in which the consumer�s gross utility is the product of his willingness-to-pay (his type �)

and the consumed quantity q of the product, whereas the cost of production cost is quadratic in the

quantity. For this important case, we reveal an interesting connection between the problem of optimal

nonlinear pricing with limited information to the problem of optimally quantizing a source signal
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by using a �nite number of representation levels in information theory. In our setting, the socially

e¢ cient quantity q for a customer should be equated to his valuation � if a continuum of choices were

available. In the case where a �nite number of choices are accessible q can take on only some values.

If we see � as the source signal and q as the representation level, then the total social welfare can be

written as the mean square error between the source signal and the representation signal. Given this,

the welfare maximization problem can be characterized by the Lloyd-Max optimality conditions, a

well-established result in the theory of quantization. Furthermore, we can extend the analysis to the

revenue maximization problem, after replacing the customer�s true valuation by the corresponding

virtual valuation, as de�ned by Myerson (1979). We estimate the welfare and revenue loss resulting

from the use of a �nite n-class contract (relative to the continuum contract). In particular, we

characterize the rate of convergence for the welfare and revenue loss as a function of n. We examine

this problem �rst for a given distribution on the customer�s type, and then over all possible type

distributions with �nite support. We establish that the maximum welfare loss shrinks towards zero

at the rate proportional to 1=n2.

The role of limited information in mechanism design has recently attracted increased attention.

In a seminal paper, Wilson (1989) considers the impact of a �nite number of priority classes on the

e¢ cient rationing of services. His analysis is less concerned with the optimal priority ranking for a

given �nite class, and more with the approximation properties of the �nite priority classes. McAfee

(2002) rephrases the priority rationing problem as a two-sided matching problem (between consumer

and services) and shows that already binary priority contract (�coarse matching�) can achieve at least

half of the social welfare that could be generated by a continuum of priorities. Hoppe, Moldovanu, and

Ozdenoren (2010) extend the matching analysis and explicitly considers monetary transfers between

the agents. In particular, they present lower bounds on the revenue which can be achieved with

speci�c, not necessarily optimal, binary contracts. By contrast, Madarasz and Prat (2010) suggest

a speci�c allocation, the �pro�t-participation�mechanism to establish approximation results, rather

than �nite optimality results, in the nonlinear pricing environment. While the above contributions

are concerned with single agent environments, there have been a number of contributions to multi-

agent mechanisms, speci�cally single-item auctions among many bidders. Blumrosen, Nisan, and

Segal (2007) consider the e¤ect of restricted communication in auctions with either two agents or
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binary messages for every agent. Kos (2010) generalizes the analysis by allowing for a �nite number of

messages and agents. In turn, their equilibrium characterization in terms of partitions shares features

with the optimal information structures in auctions as derived by Bergemann and Pesendorfer (2007).

2 Model

We consider a monopolist facing a continuum of heterogeneous consumers. Each consumer is charac-

terized by a quasi-linear utility function: u (�; q; t) = �q�t, where q is the quantity of his consumption

purchased from the monopolist, � describes his willingness-to-pay for the good (his "type"), and t is

the transfer paid by the agent. The monopoly seller o¤ers q units of products at a cost c (q) = 1
2q
2.

Consequently, the net utility of the buyer and seller are given by �q � t (q) and t (q) � 1
2q
2 respec-

tively, where t (q) is the transfer price that the buyer has to pay the seller for a quantity q of the

product. The speci�c parameterization of the utility function and the cost function is referred to

as the "linear-quadratic model" and has been extensively studied in the literature beginning with

Mussa and Rosen (1978). The prior distribution of � is given by F and has compact support on

R. Without loss of generality we normalize it to the unit interval [0; 1]. We denote the set of all

distribution on the unit interval by � � � [0; 1].

3 Welfare Maximization

We �rst consider the social welfare maximization problem in the absence of private information by

the agent. That is, the willingness-to-pay of the buyer, his type, is publicly known. Moreover, as the

transfer t does not determine the level of the social surplus, but rather its distribution between buyer

and seller, it does not enter the social welfare problem. In the absence of communication constraints,

n = 1, the social surplus, denoted by SW1 is then determined as the solution to the allocation

problem:

SW1 , max
q(�)

E
�
�q (�)� 1

2
q2 (�)

�
: (1)

In the absence of private information, the optimal solution for every type � can be obtained pointwise,

and is given by q� (�) = �. In other words, the socially optimal menu M�
1 = fq� (�) = �g o¤ers a
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continuum of choices and assigns each consumer the quantity of the good which is equal to his

willingness-to-pay. The resulting social surplus is given by SW1 = 1
2E
�
�2
�
. Importantly, given its

linear-quadratic structure, the welfare maximizing problem is equivalent to minimizing the mean

square error (MSE), E�[(� � q)2]. We shall use this equivalent representation of the problem as we

now consider the problem with communication constraints.

By contrast, we seek to determine the optimal menu when we can o¤er only a �nite number of

choices, and we denote byMn the set of contracts which o¤er at most a �nite number n of quantity

choices. Henceforth, such a discretized contract Mn = fqkgnk=1 is called an n�class contract or

n�class menu. The socially optimal assignment rule then seeks to assign to each buyer with type � a

speci�c quantity q (�) with the property that the quantity q (�) represents an element in the n�class

contract. For a given number of choices n , the social welfare problem is:

SWn = max
q(�)

E�
�
�q (�)� 1

2
(q (�))2

�
subject to fq (�)g1�=0 2Mn. (2)

Given that the valuation of the buyer is supermodular, i.e. @2u (�; q) =@�@q > 0, it follows that

the optimal assignment of types to quantities has a partitional structure. Let fAk = [�k�1; �k)gnk=1
represent a partition of the set of consumer types where 0 = �0 < � � � < �k�1 < �k < � � � < �n = 1. A

consumer with type � 2 Ak will be assigned q� (�) = q�k, and the socially optimal menuM
�
n = fq�kg

n
k=0

is increasing in k, so that q�1 < q�2 < � � � < q�k. Now, given the relationship to the mean square error

problem discussed above, if we view � as the source signal and qk as the representation points of

� on the quantization intervals Ak = [�k�1; �k), then the solution to the social welfare maximizing

contract is given by the n-level quantization problem, where both the quantization intervals Ak and

the corresponding representation points qk are chosen to minimize the mean square error (MSE):

MSEn � min
q(�)

E�
h
(� � q)2

i
, subject to fq (�)g1�=0 2Mn: (3)

Hence, the optimal solution must satisfy the Lloyd-Max optimality conditions, see Lloyd (1982) and

Max (1960).

Proposition 1 (Lloyd-Max-Conditions) The optimal menu M�
n of the social welfare problem (2)

satis�es:

��k =
1

2

�
q�k + q

�
k+1

�
; q�k = E�

�
�j� 2

�
��k�1; �

�
k

��
; k = 0; : : : ; n. (4)
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That is, q�k, the production level for the interval A
�
k =

�
��k�1; �

�
k

�
, must be the conditional mean

for � given that � falls in the interval A�k and �
�
k, which separates two neighboring intervals A

�
k and

A�k+1, must be the arithmetic average between q
�
k and q

�
k+1. One can observe immediately that q

�
k is

actually determined by the �rst-order condition with respect to (3) because MSEn in (3) is convex

in qk when taking �k and �k+1 as given. Similarly, ��k is determined by the �rst-order condition when

qk and qk+1 are given because MSEn in (3) is convex in �k when taking qk and qk+1 as given. For

certain family of distributions (e.g., uniform distribution and some discrete distributions) we can

obtain closed-form solutions from the Lloyd-Max optimality conditions. We are interested in the

relative performance of �nite contracts and evaluate the di¤erence between SW �
1 and SW �

n .

De�nition 1 Given any F 2 �, the welfare loss of an n-class contract compared with the optimal

continuous contract is de�ned by L (F ;n) � SW �
1 � SW �

n .

It is easy to see that the lower bound over all densities is zero, i.e. infF2� L (F ;n) = 0. This can

be achieved by a categorical distribution, i.e., Pr
�
� = k

n

�
= 1

n for k = 1; :::; n . Our main task is to

provide an upper bound over all distributions, i.e., the worst-case scenario from the point of view of

total social welfare.

De�nition 2 The maximum welfare loss of an n-class contract over all F 2 � is given by L (n) �

supF2� L (F ;n) :

We �rst consider a simple example, and show in detail how to use the Lloyd-Max conditions to

obtain the optimal discretized contract and measure the resulting welfare loss.

Example 1 Suppose that � is uniformly distributed over [0; 1]. The optimization problem (2) has a

unique optimal solution given by ��k =
k
n ; q�k =

(k�1=2
n , k = 0; 1; : : : ; n. The expected social welfare

is SW �
n =

1
6 �

1
24n2

and the welfare loss is SW �
1 � SW �

n =
1

24n2
:

In this example, the cuto¤ points are uniformly distributed, which is due to the fact that the

underlying distribution of � is uniform. In addition, the convergence rate of the welfare loss induced

by discretized contracts is of the order 1=n2. Next, we provide a general estimate of the convergence

rate of the welfare loss induced by discretized contracts as the number of classes tends to in�nity. A
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direct approach to calculate the welfare loss for general distributions would require the explicit form

of the optimal quantizer, determined by the Lloyd-Max conditions. But an explicit characterization

of the optimal quantizer is not known, and thus we pursue an indirect approach to obtain a bound

through a series of suboptimal quantizers. For any given F 2 �, we have:

SWn = E�
�
�q � 1

2
q2
�
=
1

2
E
�
�2
�
� 1
2
MSEn;

and since the social welfare with the continuous contract is SW1 = 1
2E
�
�2
�
, we obtain

SW1 � SWn =
1

2
MSEn: (5)

Given the necessary conditions of Proposition 1, it will su¢ ce to con�ne our attention to the set of

�nite menusM�
n with the property that, given a distribution F 2 �, the menu Mn = fqkgnk=1 can

be generated by a �nite partition Ak through qk = E (�j� 2 Ak) ; k = 1; : : : ; n, so that M�
n is the

feasible set of menusMn consistent with the optimality condition (4). For any Mn 2M�
n,

MSEn = E�
h
(q � �)2

i
=

nX
k=1

(F (�k)� F (�k�1)) var (�j� 2 Ak) : (6)

We can write L (F ;n) and L (n), using (5) and (6) as follows:

L (F ;n) = inf
Mn2M�

n

[SW �
1 � SWn] = inf

Mn2M�
n

1

2

nX
k=1

(F (�k)� F (�k�1)) var (�j� 2 Ak) ; (7)

and consequently:

L (n) = sup
F2�

inf
Mn2M�

n

1

2

nX
k=1

(F (�k)� F (�k�1)) var (�j� 2 Ak) : (8)

It is then central to estimate the variance of � conditional on the interval Ak to provide an upper

bound on L (n).

Proposition 2 For F 2 �, and any n � 1, L (F ;n) � 1
8n2
.

Proof. For any given F 2 �, let Mn be de�ned by �0k = k=n, q0k = E [(�j� 2 [�k�1; �k))] ;

k = 0; 1; : : : ; n. Now, we have L (F ;n) given by:

inf
Mn2M�

n

1

2

nX
k=1

(F (�k)� F (�k�1)) var (�j� 2 [�k�1; �k)) �
1

2

nX
k=1

�
F
�
�0k
�
� F

�
�0k�1

��
var

�
�j� 2

�
�0k�1; �

0
k

��
:
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But the variance in any interval is bounded by the following elementary inequality:

var
�
�j� 2

�
�0k�1; �

0
k

��
� 1

4

�
�0k � �0k�1

�2
=

1

4n2
.

It then follows that:

L (F ;n) � 1

8n2

nX
k=1

�
F
�
�0k
�
� F

�
�0k�1

��
=

1

8n2
;

which concludes the proof.

By considering the uniform distribution of Example 1, we can in fact show that the maximum

welfare loss is bounded both above and below by 1=n2 (up to some constant).

Proposition 3 For any n � 1, 1
24n2

� L (n) � 1
8n2
, i.e. L (n) = �

�
1
n2

�
.

Similar to us, Wilson (1989) establishes that a �nite priority ranking of order n induces a welfare

loss of order 1=n2. His method of proof is di¤erent from ours, in that it does not use quantiza-

tion explicitly, and in that for the limit results he proposes uniform quantization of the relevant

distribution.

4 Revenue Maximization

We now analyze the problem of revenue maximization with limited information. In contrast to the

social welfare maximizing problem, the seller wishes to maximizes his expected net revenue. The

expected net revenue is the di¤erence between the gross revenue that he receives from the buyer

minus the cost of providing the demanded quantity. The contract o¤ered by the principal now has to

satisfy two sets of constraints, namely the participation constraint, �q (�)� t (�) � 0, for all � 2 [0; 1],

and the incentive constraints: �q (�) � t (�) � �q
�
�0
�
� t

�
�0
�
, of the buyer for all �; �0 2 [0; 1]. The

participation constraint guarantees that the buyer receives a nonnegative net utility from his choice,

and the incentive constraints account for the fact that the type � is private information to the buyer,

and hence the revelation of the information is required to be incentive compatible. The current

problem is then identical to the seminal analysis by Mussa and Rosen (1978) and Maskin and Riley

(1984) with one important exception: the buyer can only access a �nite number of choices due to
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the limited communication with the seller. Now, a menu of quantity-price bundles is designed by

the monopolistic seller to extract as much pro�t as possible.

The revenue maximization problem, �nding the optimal solution for the allocation q (�) and

the transfer t (�) simultaneously, then appears to be rather distinct from the welfare maximization

problem, which only involved the allocation q (�). However, we can use the above incentive constraints

to eliminate the transfers and rewrite the problem in terms of the allocation alone. This insight

appeared prominently in the analysis of revenue maximizing auction in Myerson (1979). He showed

that the revenue maximization problem can be transformed into a welfare maximization problem

(without incentive constraints) as long as we replace the true valuation � of the buyer with the

corresponding virtual valuation:

�̂ �  (�) = � � 1� F (�)
f (�)

: (9)

The virtual valuation is always below the true valuation, and the inverse of the hazard rate (1� F (�)) =f (�)

accounts for the information rent, the cost of the private information, as perceived by the principal

in the optimal mechanism. We shall follow Myerson (1979) and impose the regularity condition that

 (�) is strictly increasing in �. With this standard transformation of the problem, the expected

pro�t of the seller (without information constraints) is:

��1 = max
q(�)

E�
�
q (�) (�)� 1

2
q2 (�)

�
: (10)

The resulting optimal contract exhibits q� (�) = max f (�) ; 0g. Now, in the world with limited

information, the seller can only o¤er a �nite menu f(qk; tk); k = 1; : : : ; ng to the buyer. After rewriting

the revenue maximizing problem in terms of the virtual utility, we can omit the dependence on the

transfers and rewrite the problem in terms of a choice over a �nite set of allocationsMn:

��n = max
q(�)2Mn

E�
�
q (�)� 1

2
q2
�
: (11)

We denote the distribution function and density function of �̂ by G and g, respectively. We have

F (x) = Pr (� � x) = Pr(�̂ �  (x)) = G ( (x)), and thus f (x) = g ( (x)) 0 (x). Using the

insights of the previous section, we observe that maximizing the seller�s revenue is equivalent to

minimizing the mean square error E�̂[(�̂ � q)2], where the expectation is taking with respect to
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the new random variable b�. We then appeal to the appropriately modi�ed Lloyd-Max optimality
conditions to characterize the revenue maximizing contract in the presence of information constraints:

Proposition 4 The revenue maximizing solution (11) satis�es:

��k �
1� F (��k)
f (��k)

=
1

2

�
q�k + q

�
k+1

�
k = 0; : : : ; n� 1; (12)

and

q�k =
��k�1

�
1� F

�
��k�1

��
� ��k (1� F (��k))

F (��k)� F
�
��k�1

� k = 1; : : : ; n: (13)

Similar to the social welfare problem, we wish to evaluate the upper bound of ��1 � ��n across

all possible distribution functions F 2 �. To this end, we de�ne the revenue loss induced by an

n-class contract compared with the optimal continuous contract, given a distribution F 2 �, as

� (F ;n) � ��1���n and the maximum revenue loss induced by an n-class contract across all F 2 �

as � (n) � supF2� � (F ;n). The example of the uniform distribution is again illustrative before

turning to the general analysis.

Example 2 Suppose that � is uniformly distributed over [0; 1]. The optimization problem (11) has

a unique solution: ��k =
n+k+1
2n+1 ; q�k =

2k
2n+1 ; k = 0; : : : ; n: The maximum expected revenue is

��n =
n(n+1)

3(2n+1)2
and revenue loss is ��1 ���n = 1

12(2n+1)2
:

It follows that the convergence rate of the revenue loss induced by discretized contracts is also

of the order 1=n2. We �nd that the seller tends to serve fewer buyers as compared to the case when

a continuous contract is used. This property holds for general distributions as the seller�s ability of

extracting revenue is limited. To compensate, the seller reduces the service coverage to pursue higher

marginal revenues. We now provide the convergence rate of the revenue loss induced by discretized

contracts as the number of intervals (classes) tends to in�nity. Thus,

��1 ��n =
1

2

"Z �̂0

0
�̂
2
g
�
�̂
�
d�̂ +

Z 1

�̂0

�
�̂ � q

�2
g
�
�̂
�
d�̂

#
. (14)

The �rst term in the square bracket captures the revenue loss by reducing the service coverage. The

second term in the square bracket and L (F ;n) in (7) are very much alike. One can immediately

get this term by replacing � by �̂ and F by G in L (F ;n). We can then adapt Proposition 2 to the

current environment.
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Proposition 5 For any F 2 �, and any n � 1, � (f ;n) � 1=8n2.

The approximation result of the revenue maximizing problem is similar to the one of the social

welfare program. Likewise, we can use the above uniform example to establish a lower bound for the

revenue losses.

Proposition 6 For any n � 1, 1=12 (2n+ 1)2 � � (n) � 1=8n2, and hence � (n) = �(1=n2).

5 Conclusion

We analyzed the role of limited information (or communication) in the context of the canonical

nonlinear pricing environment. By focusing on the simple linear-quadratic speci�cation of the utility

and cost function, we were able to relate the limited information problem directly to the quantization

problem in information theory. This allowed us to explicitly derive the optimal mechanism, both

from a social e¢ ciency as well as from a revenue-maximizing point of view. In either case, our

analysis established that the worst welfare loss due to the limits of information, imposed by an

n-class contract, is of the order of 1=n2.

While the nonlinear pricing environment is of interest by itself, it also represents an elementary

instance of the general mechanism design environment. The simplicity of the nonlinear pricing

problem arises from the fact that it can viewed as a relationship between the principal, here the

seller, and a single agent, here the buyer, even in the presence of many buyers. The reason for the

simplicity is that the principal does not have to solve allocative externalities. By contrast, in auctions,

and other multi-agent allocation problems, the allocation (and hence the relevant information) with

respect to a given agent constrains and is constrained by the allocation to the other agents. For an

information-theoretic point of view, the ensuing multi-dimensionality would suggest that the methods

of vector quantization rather than the scalar quantization employed here, would become relevant.

Finally, the current analysis focused on limited information, and the ensuing problem of e¢ cient

source coding. But clearly, from an information-theoretic as well as economic viewpoint, it is natural

to augment the analysis to reliable communication between agent and principal over noisy channels,

the problem of channel coding, which we plan to address in future work.

11



References

Bergemann, D., and M. Pesendorfer (2007): �Information Structures in Optimal Auctions,�

Journal of Economic Theory, 137, 580�609.

Blumrosen, L., N. Nisan, and I. Segal (2007): �Auctions with Severly Bounded Communica-

tion,�Journal of Arti�cal Intelligence Research, 28, 233�266.

Hoppe, H., B. Moldovanu, and E. Ozdenoren (2010): �Coarse Matching with Incomplete

Information,�Economic Theory.

Kos, N. (2010): �Communication and E¢ ciency in Auctions,�Discussion paper, Universita Bocconi.

Lloyd, S. (1982): �Least Square Quantization in PCM,�IEEE Transactions in Information Theory,

28, 127�135.

Madarasz, K., and A. Prat (2010): �Screening with An Approximate Type Space,�Discussion

paper, London School of Economics.

Maskin, E., and J. Riley (1984): �Monopoly with Incomplete Information,� Rand Journal of

Economics, 15, 171�196.

Max, J. (1960): �Quantizing for Minimum Distortion,�IEEE Transaction on Information Theory,

6, 7�12.

McAfee, P. (2002): �Coarse Matching,�Econometrica, 70, 2025�2034.

Mussa, M., and S. Rosen (1978): �Monopoly and Product Quality,�Journal of Economic Theory,

18, 301�317.

Myerson, R. (1979): �Incentive Compatibility and the Bargaining Problem,� Econometrica, 47,

61�73.

Wilson, R. (1989): �E¢ cient and Competitive Rationing,�Econometrica, 57, 1�40.

12


