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Heterogeneous Discount Factors in an
Assignment Model with Search Frictions*

by Andreas Ramsauer

University of Vienna, Austria

Abstract

We look at a simple market with two-sided heterogeneity and pair-
wise meetings. On the supply side are two landlord types who differ
in the quality of their apartments. On the demand side is a contin-
uum of tenant types who differ in their valuations for apartment types
and in their patience. For infinitesimal search frictions and an atom-
less tenant type distribution, we fully characterize all possible steady
state equilibria in a typical region of the parameter space. Our main
finding is that the heterogeneous discount factors can cause strong
deviations from the Walrasian outcome even when we asymptotically
remove all the search frictions. All conventional frictional models with
non-Walrasian limits are qualitatively different from the model in this

paper.
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1 Introduction

In this paper, we discuss how discount factor heterogeneities can influence
the equilibrium outcomes in a frictional assignment model. Conventional as-
signment models belong to the perfect matching literature which dates back
to the early sixties. The focus in this literature are games with two groups
of heterogeneous players in which each member of one group wants to be
matched with one member of the other group. In the original paper of Gale
and Shapley (1962), players have pure ordinal preferences over all potential
partners. Assignment models, however, are characterized by cardinal prefer-
ences and transferable utility among players. The first paper which explicitly
studies an assignment game is the one of Shapley and Shubik (1972).

An important implicit assumption on which all equilibrium concepts in
the perfect matching literature rely is that meetings between players can be
costlessly arranged, i.e., that search frictions are zero. Matching models with
positive search frictions, i.e., imperfect matching models had long not been
considered, but recently a small and fast growing literature on this topic has
begun to emerge. An already published survey of this literature is Burdett
and Coles (1999). Notice that imperfect matching models must be sharply
distinguished from these conventional search models in which match qualities
realize randomly after the match creations.

Transferable as well as nontransferable utility models do exist in the im-
perfect matching literature. A more or less complete list of all transferable
utility models is Albrecht and Vroman (1998), Lu and McAfee (1996), Shimer
and Smith (1996) and Sattinger (1995). Typical nontransferable utility mod-
els are Bloch and Ryder (1994), Burdett and Coles (1997), Eeckhout (1996),
Morgan (1996) and Smith (1997). The above mentioned papers differ signif-
icantly in the way in which they model the trader flows in a steady state.
Burdett and Coles (1997), Lu and McAfee (1996) and Morgan (1996) assume
that there is an exogenously given inflow of traders which must be balanced
by an equivalent outflow in a steady state. Bloch and Ryder (1994) and
Eeckhout (1996) do not explicitly model the trader flows in a steady state
because they just assume that all exiting pairs are automatically replaced by
identical entering pairs. The remaining papers assume infinitely lived agents
whose matches become randomly dissolved by nature so that the destruction
of matches in a steady state must be balanced by an equivalent creation.

Most authors in the imperfect matching literature build on Becker’s (1973)



perfect matching model in which there is a unique ranking of players on both
sides of the market. In the nontransferable utility version of this frictionless
model, positively assortative matching, i.e., a strictly positive correlation
between partner qualities does always arise. In the transferable utility ver-
sion, on the other hand, positively assortative matching is only possible with
supermodular productive interactions, i.e., with payoff matrices which are
complementary in qualities.

Under a single discount factor as the major friction source, it turns out
that Becker’s (1973) results need not carry over to a search setting. In a joint
paper, Shimer and Smith (1996) show for a model with transferable utility
that supermodular productive interactions do not guarantee a correlation
between partner qualities which is everywhere positive. Similarly, Smith
(1997) shows for a nontransferable utility model that a unique ranking of
players on both sides of the market does not guarantee a matching pattern
which is approximately positively assortative. The intuition behind that is
simply that with a common discount factor, the highest ranked players need
not be the choosiest ones because their high match value makes them suffer
most from a match delay. For a discount factor which approaches 1, however,
this intuition breaks down because even the highest ranked players face very
low search costs in this case.

In this paper, we deviate from the widespread assumption of a common
discount factor because we assume that some of the lower ranked players on
one side of the market are much more patient than all other players. An
advantage of this nature is obviously irrelevant in a frictionless model, and
whether this advantage can yield higher partner qualities in a frictional model
is the main question which we want to address in this paper.

Under the modeling choices of this paper which includes transferable util-
ity and which we discuss in a separate section, we get a clear-cut answer to
our main question. Even for discount factors which approach 1, we do not
only obtain an equilibrium with a positive correlation between partner qual-
ities, but also equilibria in which some or all of the more patient but low
ranked players can match with partners of the highest rank. Such deviations
from positively assortative matching always turn out to be driven by a high
steady state population share of the patient players which makes it hard for
the impatient players to meet one another. The fact that such a crowding
out can even take place when all players become infinitely patient is due to
a crowding intensity which goes to infinity at the same time. For homoge-



nous discount factors and small frictions, we never obtain deviations from
positively assortative matching because the crowding intensity must always
remain finite in such cases.

The rest of the paper is organized as follows. Section 2 presents a friction-
less benchmark model which is essentially a flow version of Becker’s (1973)
transferable utility model. Section 3 specifies the way in which we intro-
duce search frictions into the perfect matching model in Section 2. Section
4 derives necessary and sufficient equilibrium conditions. Section 5 shows
that our results do not stem from an equilibrium multiplicity problem. Sec-
tion 6 establishes equilibrium existence. Section 7 discusses our modeling
choices, and Section 8 shows that all conventional frictional models with a
non-Walrasian limit are qualitatively different from ours.

2 The Walrasian Benchmark Model

On the supply side of a housing market are two types of landlords who differ
in the quality of their apartment. On the demand side is a continuum of
tenant types who differ in their valuations for apartment types. A single
apartment is demanded by each tenant and supplied by each landlord. The
utility of a landlord or tenant who does not trade is normalized to zero. Type
¢ tenants are willing to pay a price of §;; > 0 for a type j apartment where
i € [0,v7] and j € {1,2}. The supply prices of all landlords are zero and the
demand prices of all tenants are monotonic and complementary in types, i.e.,
57',2 > 57',1, 8672/(9@ > O7 ({9671/(9@ > (0 and 6ﬂ72/62 > 6ﬂ71/62 when ¢ = [O, VT].l

An infinite number of periods follow after an initial period. In each period,
apartments become available and prospective tenants become interested in
trading. The measure of all type j apartments which become available in
each period is l/jL > (0 for 5 = 1 and j = 2, the measure of all prospective
tenants who arrive at the market in each period is v7 > 0, and the tenant
type distribution is uniform on the interval [0, 7], i.e., its density is equal to
1 for all i € [0,v7].

A single trader is of measure zero, and each trader maximizes his utility
for a given set of apartment prices. A landlord has to decide on whether and
when to hire out. A tenant has to decide on whether, when and what type of

'For simplicity, we assume that (;5 and f3;; are continuous and differentiable with
respect to .



apartment to rent. The discount factor of both landlord types is 6 > 0, and
the discount factor of a type i tenant is §; = 6 < §p < 1 for all i € [vh, V7]
with 0 < vL < o7 and 6; = 6p for all i € [0,v5).2

In the following, we limit our attention to cases where the initial stocks
of all market participants are zero, and where the sequences of the market
clearing prices remain constant over time. Such steady states have a sim-
ple structure because the markets for both apartment types must clear on a
period by period basis. Trades between different periods do not take place
because the trading opportunities remain the same as time passes by. For
a complete description of the trader flows in a steady state, we denote the
density of the type distribution of all tenants who receive a type j apartment
in each period by v;; for j =1, j =2 and all i € [0,"]. With a strictly posi-
tive correlation between partner types, the tenants with the highest demand
strength must obtain the best apartments. Hence, we can describe a steady
state of this nature by

pa_ [ 1 ifie i o],
i2 0  otherwise,

pa_ [ 1 dfie i),
i 0  otherwise,

where i** = max(v” — 1§, 0) and * = max(v" — v",0).

As Becker (1973), we find that supermodular productive interactions lead
to positively assortative matching in a market clearing equilibrium. A Wal-
rasian apartment assignment must maximize total surplus, and with type
complementarity, surplus improvements are always possible when signifi-
cantly many tenants receive better apartments than some other tenants with
a higher demand strength. We omit the proof of the following proposition
because it just sharpens this simple argument.

Proposition 1 The unique competitive equilibrium which does exist is one
with v = P43

2Unless explicitly mentioned, we assume throughout the paper that §p # 8, i.e., that
discount factors are heterogeneous.

By v = vF4 we mean that v;; = Vf;A for j =1, j =2 and almost all i € [0,v7]. For
notational simplicity, we use analogous abbreviations repeatedly throughout the paper.



3 The Search Model

We use the same framework as in the previous section except for the as-
sumption that a Walrasian auctioneer calls market clearing prices. Instead,
we assume that the formation of prices takes place through decentralized
bargaining in a market with pairwise meetings. Each trader can only enter
the market at the time when she arrives, and each tenant who enters the
market must decide on a desired level of quality. All traders who dwell in the
market meet at most one partner per period. Landlords with an apartment
of type j € {1,2} meet a tenant of a type not greater than ¢ € [0,v”] with
probability fé ﬂfjdz’. Tenants who choose quality level j € {1,2} meet only
landlords with an apartment of type 7, and they meet such a landlord with
probability 7_TJ-T. The probability densities ij and the matching probabilities
7‘ro are determined by the stocks of traders and the tenant’s quality decision:

uk
o iy <0 g >0,
Y #—fo it pk >l >0,
J
0 if ul =0,
1 if pl <plnopk >0,
L
7_ro: Z—;, if ,uf>uf>0,
J
0 if k=0,

where uiTj is the density of the type distribution of all tenants who chose

quality level j, ,uJT =fy " ,uiTjdi is the measure of all tenants who chose quality

level 5, and pé; is the measure of all available apartments of type j.

A single take-it-or-leave-it offer must be made when a meeting takes place,
and a fair chance move determines who can make this offer. All traders who
reach an agreement leave the market, and all traders who reject an offer
or whose offer gets rejected terminate the meeting and remain unmatched
until they face a new chance in the next period. The personal history of
each trader is private information, but the type of partner in a match is
observable. The discount factor of the patient trader types ép, the discount
factor of the impatient trader types 6, and a small entry fee e > 0 are the



only frictions sources.* All traders must choose a strategy which specifies the
behavior in all possible decision nodes. The common risk aversion is zero.

4 Search Equilibrium

We analyze symmetric subgame perfect Nash equilibria in which all traders
of the same type choose the same strategy, and we focus on steady state
cases in which the stocks of all landlord types and the stocks of all tenant
types who chose a given quality level remain constant over time. We also
assume that the behavior in a match is independent of what happened in
previous matches. This stationarity assumption is not restrictive because
the probability of getting matched twice with the same partner is zero.

For a given set of stationary strategies, we can compute an unmatched
market participant’s expected utility at the beginning of a period discounted
to that period: 'UJL is the expected utility of an unmatched landlord with an
apartment of type j € {1,2}, ’Uij;- is the expected utility of an unmatched
type i € [0,v7] tenant who chose quality level j, and v] = max (v}, v})) is
the expected utility of a type i tenant who enters the market. These value
functions are time independent because all matching probabilities remain the
same as time progresses. The expected utility of a landlord who enters the
market with a type j apartment is ’UjL .

The unique subgame perfect equilibrium in a bargaining situation be-
tween a type ¢ tenant and a landlord with an apartment of type j is an
outcome in which the trader who makes the offer receives all the gain from
trade. A disagreement yields a total utility of UJL(S + 0557; because both
traders must wait one period before the next chance arrives. An agreement,
on the other hand, yields a total utility of 3;;, and, consequently, the gain
from trade is 3;; — ij6 — v;;6; . No exchange of goods can take place if §;; <
UJL(S + v%&i. For the knife edge case when §;; = UJL(S + 0567;, we assume that
trade does always take place. The expected utility of an unmatched type ¢
tenant who chose quality level j is

_T
T
(1) vy = (L= 7))o + —-vljei +

vy

=T
T

5 (viTj&; + max(0, §;; — vf& - vz;-&;)).

“In order to establish the existence of an equilibrium for cases when v7 < v¥, we need
an entry fee or a similar friction source which can be arbitrarily small.



She does not meet a partner with probability (1 — 7_ro), she receives an offer
with probability 7‘ro /2, and she can make an offer with probability ﬁJ-T /2. Her
expected utility is vg;-&; if she does not meet a partner, vg;-&; if she receives
an offer, and 0557; + max(0, 5;; — UJL(S — v%&;) = max(vg;-éi, Bij — v]-Lé) if she
can make an offer. Similarly, we obtain that

L

(2) vi = (1—/7rfjdz')uf(5+(/ %dz’)u}é

L
5 )
+ [ 076+ max(0, 8, — vf6 — vfj8))di

The traders who enter the market in a steady state must always replace
identical traders who leave the market. For a complete description of these
trader flows, we use again the per-period type distribution of all tenants who
rent type j apartments. As in the frictionless benchmark model, we denote
by v;; the per-period density of all type ¢ tenants who rent an apartment
of type j. A steady state requires that the per-period density of all type ¢
tenants who choose quality level j when they enter the market must also be
vij, and that the per-period measure of all landlords who enter the market
with a type j apartment must be [v;;di. The density resp. measure of
traders who arrive at the market in a given period is an upper bound for the
density resp. measure of traders who can enter the market in this period.
Hence,

(3) vit +vip <1
and
(4) / Vf,jdi S VjL.

The per-period density of all type ¢ tenants who meet a landlord with an
apartment of type j is 7] p;, and

because all these meetings must end up with trade if some of them do. Market
participants who do not trade cannot be ignored in our model because they

_ T
At an abuse of notation and throughout the paper, we use [ as a shorthand for fOV .



influence the matching probabilities. In the following, however, we will focus
on equilibria without such superfluous market participants. We assume that,

(6) ph =0 if vy; =0,
and that
(7) ph =0 if /u,,jdz' —0.

All stock and flow variables which satisfy (3),..,(6) and (7) represent a
steady state, and a given steady state is possible in a subgame perfect equi-
librium iff there are value functions which support the necessary entry, qual-
ity, and exit decisions, and at the same time satisfy the Bellman equations
(1) and (2). The remaining equilibrium conditions must, therefore, estab-
lish that the value functions do support the decisions which induce the right
trader flows. A trader must be willing to enter the market if some members
of his type enter the market, and he must be willing to stay out of the market
if some members of his type stay out of the market. Hence,

(8) b > e if /yijdz' >0,
9) vl > e if vy + v >0,
(10) vf <e if / vijdi < vl
and

(11) vl <e if v+ < 1.9

Type 7 tenants must be willing to choose quality level 7 and must be able to
trade with landlords who possess an apartment of type j if v;; > 0. Hence,

(12) viTj = max(vﬂ,vig) = viT if v;; >0
and
(13) ﬂij > U]L5 + U?;& if Vij > 0.

SFor simplicity, we ignore incentive compatibility violations which could occur for some
traders with an overall measure of zero. Strictly speaking, (8) should require that v]L >e

if v; ; > 0 for some 2 € [0,v7], and (10) should require that vk <eif vy ; <1 for some i

€ [0,v7].



Notice that our simplifying assumption of a once-in-a-lifetime quality choice
does not matter in a steady state because optimal quality decisions remain
optimal over time.

Equations (1) to (13) are necessary and sufficient conditions for a search
equilibrium if they hold for all i € [0,v7] and j € {1,2}. The exogenous
variables are §;;, v/, VT, vp, 6, 6p and e. The endogenous variables are v;;,
fis pk vl vl and o).

5 Equilibrium Characterization for Infinitesi-
mal Search Frictions

The complete equilibrium characterization for arbitrarily small search fric-
tions depends on the structure of the exogenously given trader flows. In the
following, we omit a full discussion of all possible cases because similar equi-
librium configurations appear everywhere. In order to avoid redundancies,
we only provide a detailed treatment for the parameter region where v} = v”
—vh < vl and v < vy < v}, but for the sake of completeness, we describe
the remaining regions without proofs.

The special assumptions of our model permit implausible “shut-down”
equilibria in which one or both apartment types are not traded so that [ v;;di
=0 or [vpdi = 0. In the following, we ignore such equilibria because they
are not robust with respect to infinitesimal stochastic perturbations of the
quality or entry decisions. Their existence is driven by a coordination failure
in which high resp. low quality landlords do not enter the market because
there are no tenants who choose a high resp. low quality level, and in which
the tenants do not choose a high resp. low quality level because there are no
high resp. low quality landlords who enter the market.

Even for infinitesimal search frictions, we find substantial deviations from
the Walrasian outcome in our model, and the critical feature which makes this
possible is a high or low quality market in which the number of tenants per
apartment goes to infinity resp. the matching probabilities of all tenants go
to zero as the frictions become asymptotically removed. Lemma 1(i) reveals
that such an ever growing tightness in the high resp. low quality market can
only arise if this market becomes exclusively populated with patient tenant



types, i.e. , if [;vpdi resp. [;v;di approaches 0.7 Lemma 1(ii) establishes
that the tightness in a market without impatient tenants must always grow
at a lower rate than the patience of the patient tenant types.

Lemma 1 Let {(6™,6%,e™)}m= be a sequence of frictional parameter
which converges to (1, 1,0) and assume that an equilibrium does exist for
each element of this sequence.

(i) If & < [;vijdi holds for a j € {1,2}, a §& > 0 and all m € N, then
{7T™ym=5° must be bounded below by an n > 0.

(i) If 0 = [; vjjdi < & < [p vjjdi holds for a j € {1,2}, a & > 0 and all
m € N, then lim,, .~ (1 —06%)/ 7’rom =0.

In our proof of this preparatory lemma, we now argue that the equilibrium
conditions (1), (2) and (13) could never hold at once for sufficiently small
search frictions if Lemma 1 were false. For a given matching matrix v;; and
by using (5) and (6), we, thereby, need to figure out all possible steady state
stock configurations, i.e., the so called Berveridge curve.

Exploiting (1), we can show that

5 maX(O, ﬁij — ’Uf(s — ’U?;(SZ) = Jﬁ—T
j
Using this expression and (2), note that
L
r_ (T (A—6) 1.

When we manipulate (1) and (13), we can verify that

~T1
- PR LD
V1= 6+ 7l 56

if Vij > 0.

Our equilibrium condition (6) demands that ug;- = 0if v;; = 0 and, therefore,
that 7r7L‘7 =0 if v;; = 0. With (14), we, thus, find that

(1= 6)3(Bi; — vlo)

T T
"Throughout the paper, f[ resp. fP is short, for f:T resp. fOVP.
P

10



Before we can continue, we have to figure out all possible steady-state
stock configurations for the case when [v;;di > 0. From (5), we know that
Vij:ﬁf,ug;- if v;; > 0. From (6), we know that ,ug;- = 0if v;; = 0. Hence, we
observe that
which implies that p) # 0 and z] # 0. With 0 < pu> < p] , we obtain that
Tk = (u

]/’L /,LL] )/’L] _,LLJ fVZ]dZ < M?J

= fyijdi/,ujr and
Mw/ﬂg = v/ (7] 117 ) = vig/ [vidi.
With 0 < ,uJT < ,uj , on the other hand, we obtain that
Tl =g = fuidi < pf,
‘JT =1 and

H’zg/ﬂ’] - V7J/(7T luj) - V7]/ILL]

The discussion in the previous paragraph adds up to the conclusion that
for [v;;di > 0, either

(a) ph = fvydi<pl, 7] =[vgdi/p, and w5 =wvi;/ [vidi

or

(b) pl = fvydi <py, 77 =1 and 7} =uv;/uk.

Under (a), (16) requires that

ij ij L6
(17) ’Uffvij > / (Vl 2_(§+ ﬂTl(S;d 8

If {(6™, 6%, ™) }m=$° is a parameter sequence which converges to (1,1,0) and
if 0 <¢ < fI viidi, then 0 < &/(2v]) < v}y must hold for some i € [V}, V7]

8Using (1) and (13), notice that 7) ;> 0 for all i and that B;; — v Ls > 0if vy > 0.
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with measure greater than some & > 0.2 Since 0 < 3;; — Lmé " must hold
for the smallest such 4, there must also be some i € [V}, VT] with measure
greater than ¢’ > 0 such that 0 < &/(2v]) < v and

!
0< —mln 67]

3

( )}< ﬁij_ijmém-lO

Hence, under (a), (17) would certainly be violated for some large enough m,
if {77™}m=5° were not bounded below by an 1 > 0.'' Under (b), on the
other hand, 7_rom = 1 would certainly be violated for some large enough m,
if {ﬁfm}ngo were not bounded below by an 7 > 0. To summarize, Lemma
1(i) must be true.

Under (a), (16) requires that

vij(1 — 6P)l(ﬂi' - UL(S) .
1 L > J 2\ J )
(18) v i —/p(1—5)(1—6p+7‘ro§6p)dZ

If {(6™, 67, ™) }m=%° is a parameter sequence which converges to (1,1,0) and
if 0 <¢ < fp 7di, then 0 < £/(2vf) < vj7 must hold for some i € [0,v})
with measure greater than some ¢ > 0. Since 0 < §3;; — vfmém must hold
for the smallest such 7, there must also be some i € [0,rL) with measure
greater than 2£’ > 0 such that 0 < £/(2v}) < v and

! . aﬁz m om
0<§H§}ﬂ{a—,&j( ")} < By — vy e

Hence, under (a), (18) would certainly be violated for some large enough m,
if {(1-061)/ ﬁTm'}m:‘X’ were bounded below by an n > 0. Under (b), on the
other hand, 7T = 1 would certainly be violated for some large enough m,
if {(1-169)/ ;‘Fm m—5° were bounded below by an 7 > 0. To summarize,
Lemma 1(ii) must be true. O

9Among all impatient types, some i with £/(2v]) < vi7 < 1 and a sufficiently small
measure & > 0, will certainly not be enough to raise the average density above £/v] given
that the density of all other i is less than &/(2v1).

"9The lowest &'/3 of all i € [vE, V7] with 0 < £/(2v]) < vj? cannot be in an interval
smaller than §'/3 since according to (3), vj7 <1 for all i.
" Exploiting (4), (13), v5™ > 0 and the fact that v/7 > 0 for some 7 if 0 < £ < [, v di,

observe that ?}L fy di muq‘r remain finite as m goeq to oo.

12



Our preliminary Lemma 1 is very helpful for the purpose of singling out
the possible equilibrium configuration for arbitrarily small search frictions.
In the parameter region where v¥ <vl<vk and vF<vF| it turns out that only
equilibria with positively assortative matching, equilibria with crowding out
in the high quality market and equilibria with crowding out in both markets
do exist when the search frictions become asymptotically removed. In an
equilibrium with crowding out in the high quality market, the patient tenant
types with the highest demand strength completely take over the high quality
market, and the tenant types with the highest demand strength among the
remaining tenants share the low quality market. For vT'<vf we can describe
the matching pattern in an equilibrium of this nature by

o _ [ 1 ifie [ i),
2 0  otherwise,

o _ [ 1 i e[ U BT
i 0 otherwise,

where i** = max(0,v5 — vF) and i = max(0,vT — v*). An equilibrium
with crowding out in both markets is characterized by patient tenants who
completely take over both markets in such a way that the ones with the
highest demand strength receive the best apartments. No such equilibrium
is possible when vj<vd', but for v5'<vh, we can describe such an equilibrium
by
OB :{ 1 ifdi e [ith,vh),
i2 0 otherwise,

cn _ [ 1 itie[it,it),
i 0  otherwise,

where i+ = max(0,v5 — v£) and i* = max(0,v5 — vl).

To convince ourselves that no other than the above mentioned equilibrium
configurations do exist for arbitrarily small frictions, we need to examine all
matching matrices which obey (3) and (4). For this purpose, we start out
with those in which only the high quality market is exclusively populated
with patient tenant types.

Lemma 2 Equilibria with v#£v°H, 0=/, vipdi<E<[p viadi and E<[;vidi do
not exist in an € neighborhood of (8,6p,€)=(1,1,0) if vI < v and & > 0.
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In our proof of Lemma 2, we first argue that under sufficiently small search
frictions, our incentive constraints (8) to (12) can never be compatible with
a matching pattern in which, on the one hand, only the high quality market
is exclusively populated with patient tenant types, and which, on the other
hand, deviates from I/SH in the high quality market. In Stepl and Step
2, we, thereby, need to distinguish the case when all high quality landlords
enter the market from the case when some of them stay out of the market.
In Step 3 and Step 4, we repeat this exercise for a matching pattern which
coincides with VgH in the high quality market, but deviates from VgH in the

low quality market. Throughout the proof, we frequently use the fact that

_T1 L
(19) T _ T3 max (0, B;; — vjd)
7 1—6;+7F36i

which we obtain when we somewhat manipulate the equilibrium condition
(1).

Step 1. If 0 < E<[vpndi, 0=[; Viodi<E<[p Vjodi = vl and vy = 1 for
almost all i € [i**,v%), then vh=[p di> [p vipdi=vE must be the case since
(3) demands for all 7 € [0,v5) that 1 > ;5 . Hence, note that i**=v] —

T
. v . .
vl must also be the case. Since [.5 vipdi=vh—vh+vi=vl and since (4)

demands that [ Vigdigué: , we, consequently, observe that r;,=0 must hold
for almost all i€[0,7**)U[v5, 7], i.e., that vy = vS7 must hold for almost
all i€[0, v"] under these circumstances.

The argument above reveals that there must be some ¢ with positive mea-
sure such that vy < 1 and i” € [(**, 1) if we assume that 0 < < [; v, di,
that 0=[; vppdi<é<[p vipdi = vE and that vy # v5H for some nonnegligible
i.12 At the same time, there must be some 7’ with positive measure such that
virg > 0 and 7' < ** because f;;g; Vipdi<vE and since [p vppdi = vE.* Since
vip > 0, (15), (12), and (19) require that

o 72 (B2 — v50) o 71 2 max(0, By — vld)

Virg = I =
o 1-bpt+aiep T~ 1—6p+ 7t 36p

12Using(3), note that ;e cannot be greater than 1.
13Gince (3) requires for all i € [i**,v%) that v;5 < 1 and since by assumption, vy <

T T
1 for some nonnegligible i € [i**,vL), ("7 Vigdi<fiyxpx di= v¥ must hold. Note that

K3
ixxzyg — vk is again valid since V}Q:fP di> fP Vindi = v& must be the case.
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and since B9 — Byo > By — Bir1 > 0 by type complementarity and monotonic-
ity, Lemma 1 implies that Sys —vl6 > max(0, By; — v{'6) and that By — vl
> max(0, By — vFd) must hold for (8,6p, €) sufficiently close to (1,1,0). For
i = 1", however, this leads us into a contradiction with (12) and (11) since by
using (19), Lemma 1 and again (19) resp. by using (19), Gino > Bira, virs > 0,
(15), (12) and (9), we can conclude that

UT > ﬁg%(ﬂiug — U%(S) ﬁ'%—‘% IHELX(O7 6,,://1 — ”U%(S) T
2T 1—6p+rliop 1—6p+ 71 36p o
resp. that
T 73 5(B —v3d) w3 5(Br2—vid) . g
Vjng = — —7 = Vppg = Uy =€
1—5P+7T2§5p 1—5P+7T2§5p
for (8,6p,¢€) sufficiently close to (1,1,0).1* To summarize, v;s = v5 must

hold for almost all 7 if 0=/, vedi<€<[p viadi = vE if 0 < £<f;vadi and if
(6, 6p, €) sufficiently close to (1,1,0).

Step 2. Tt 0 < <[, vindi, 0=/, Vvppdi<€<[pvindi < vl and v = 1 for
almost all 7 € [1**,v5), then v > v) cannot be the case since it would

T
. . 14 . . .
imply z”:yﬁ — VQL and [.5 VigdZ:VQLS [p viadi. Hence, notice that 1/17; < Vé:

and =0 must be the case. Since v;z = 1 for almost all i € [(**,v})
and since [; vjpdi = 0 implies that v, = 0 for almost all i € [V}, V7], we,
consequently observe that v, = v$7 for almost all i€[0,2”] under these

circumstances.

The comment above discloses that there must be some " with posi-
tive measure such that vy < 1 and ¢/ € [(**,v}) if we assume that
0 < &<[rvadi, that 0=, vpdi<é<[puipdi < v¥ and that vy # vSH for
some nonnegligible i. Further, we can deduce from (8) and (10) that v} = e
and that vl > e. For i = i, however, this leads us immediately into a con-
tradiction with (12) and (11) since by using (19), Bive > (i1, Lemma 1(ii),
By >0, 1—06p +7‘rf%6p> ﬁf% and again (19) resp. by using (19), Bie > 0,
and Lemma 1(ii), we find that

T 73 3 max(0, B — €d)

(] = — > i1 — ed
"2 1—5P+7Tg%5p ﬁz

“Since vy < 1 and since (3) demands that vy + vy < 1, note that vy + v < 1
or vyry > 0. The incentive constraints (12) and (11), thus, demand that v, > v, or
that e > vl, > vk,.
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-71 L

71 £ max(0, By — vi6) -
> max(0, B;n1 — v > 2 = U
- (0, i 1) 1—5P+7‘T1T%6p i

resp. that
v 73 3max(0, B — €d)
Vg = — —T1 > e
1 6}3 + 71-2 26]3

for (8,6p,¢€) sufficiently close to (1,1,0).> To summarize, v;s = v5 must

hold for almost all @ if 0=/ vedi<€<[p viodi < vE if 0 < £<f;vadi and if
(6, 6p, €) sufficiently close to (1,1,0).

Step 3. If vy = vGM for almost all i, 0<é< [;vndi< [vadi = vi and
vi1 = 1 for almost all 4 E [i%, ) U[vp, T] then

IHELX(O7 V]Z — yQL) + Vf _ féXX di + fI di
> [ vadi+ frvadi = [vpdi = vf

must be the case since (3) demands for all ¢ € [0,7**)U[v5,vT] that 1 >
v;1 and for almost all + € [i**, v]) that vin = 0. With VlL > vl as a
qualification in Lemma 2, hence, note that v} — vk> vF — vT> 0, i** =
vE — vk ¢ = v — vl and % — ¢ = v — I > 0 must also be the
case. Since [ vidi+[; vindi=vE — VT + 0T =0 and since (4) requires that
[vadi< vl we, consequently, observe that v;; = 0 must hold for almost all

€ [0,)U[i**, vE), ie., that v;; = v5" must hold for almost all i€[0, 7]
under these Circumstances.

The exposition in the previous paragraph amounts to the conclusion that
there must be some 7" with positive measure such that vim <1, vue=0 and
i" € [1*, i) Uvh, vT] if we assume that Vi = vSH for almost all i, that
0<é< [vndi< [vadi = vF and that v,y # VST for some nonnegligible 7. At
the same time, there must be some i’ with positive measure such that v;; > 0
and i < i* since ff:x vidi+ [; vndi< vE| since [vndi = vF and since (3)
requires for almost all i € [(**,v}) that 15, = 0.'5 For i = 7”, however,

5Here, the same comment as in footnote 14 applies.
6Since (3) requires that v;; < 1 for all i € [i*, 9 )U[vh, vT] and since by assump-
s X X
tion, v;1 < 1 for some nonnegligible i € [i*,i**)U[vE,vT], f;x v di + fIyﬂdi <
- X X .
[ di+ [,di = v{ must hold. Note that i** — i*=v{" — v]'>0 is again valid since

X X X X
max(0,vh—vi)+vl= fol di + f[ di > f(; vindi + f[ virdi = v¥ must be the case.

16



this leads us into a contradiction with (11) since by using (19), Gy > B,
Lemma 1(i), v;1 > 0, (15), (12) and (9), we can conclude that

vh > %(@"1 — U 5) ﬁr{%(ﬁm _ L(S) > o — 07 >e

i1 = = %'l i =
1—511/4-7'(‘15(51'// 1—(5 +7T1 (S

for (8,6p, e) sufficiently close to (1,1,0).1" To summarize, v; = VCH must

hold for almost all i if 0<é< [;vpdi< [vndi = vi if vy = V H holds for
almost all ¢ and if (¢, 5p, e) is sufficiently close to (1,1,0).
Step 4. If vy = VZQ for almost all i, 0<é< [;vadi< [vpdi < vl and

vip = 1 for almost all i € [¢%,7%)U[vE, T] then v<vT cannot be the case
since with V] <vl as a quahﬁcation in Lemma 2, it would imply that 0<
vl —I< VP vE % = — vk i =T — R — z’X:Vf — >0 and

that v —f7;x vidi+ [; vindi<[ v;1di. Hence, note that v >v" and ¢*=0 must
be the case. Since v;; = 1 for almost all 6 [i%, ) U[vE, vT] and since (3)
demands that v;; = 0 for almost all i € [(** V};) we, consequently observe
that v;; = v5H must hold for almost all i € [0, vT] under these circumstances.

The discussion in the previous paragraph shows that there must be some
i"” with positive measure such that vy <1, vre=0 and i" € [i*, 7 )U[vL, VT]
if we assume that 1/72 = V H for almost all i, that 0<£< f] 1/71dz< [vipdi < Vl
and that v;; # S for some nonnegligible 7. For i = ", however, this leads
us immediately into a contradiction with (11), since by using (19), (8), (10),
Bin1 > 0 and Lemma 1(i), we find that

—T1
r T3 max(0, B — ed)
’U7'///1 = —T1 > e
1 - (SZ'N + 73 551'//

for (8,6p,¢€) sufficiently close to (1,1,0).® To summarize, v;; = v$? must

hold for almost all i if 0<é< [, vidi< [vadi < vE, if vy = vSH holds for
almost all 7 and if (6, 6p, €) is sufficiently close to (1,1,0). This finishes our
proof of Lemma 2. O

To complete our quest for possible equilibrium matching configurations,
we need to examine all matching matrices in which only the low quality
market is exclusively populated with patient tenant types, all matrices in
which both markets are exclusively populated with patient tenant types,

"Since vy9=0 and ;1 <1, (11) demands that e > v%, > v, .
8Here, the same comment as in footnote 17 applies.
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and all matching matrices in which some impatient tenant types appear in
both markets.

Lemma 3 Equilibria with v#vP4, <[, viadi and 0=[; vy di<é<[pvadi do
not exist in an € neighborhood of (8,6p,€)=(1,1,0) if vI < v¥ and & > 0.

Lemma 4 Equilibria with v#v°P, 0=/, v;pdi<E<[p vindi and 0=, v;;di<E
<[pvidi do not exist in an € neighborhood of (6,6p,e)=(1,1,0) if £ > 0.

Lemma 5 Equilibria with v£v, <[, viodi and €< [, vadi do not exist in
an € neighborhood of (6,6p,€)=(1,1,0) if £ > 0.

We omit the proofs of Lemma 3, Lemma 4 and Lemma 5 because they require
exactly the same steps as the proof of Lemma 2. The only basic difference
is that these proofs apply Lemma 1(i) and Lemma 1(ii) in different markets.
The proof of Lemma 4 applies Lemma 1(ii) in both markets, the proof of
Lemma 5 applies Lemma 1(i) in both markets, and the proof of Lemma 3
applies Lemma 1(i) in the high and Lemma 1(ii) in the low quality market.

6 Existence

In this section, we show that the various equilibrium configurations which
we singled out in the previous section do indeed exist for arbitrarily small
search frictions. We summarize most of the discussion in section 5 and 6 as
follows:

Proposition 2 For vI<vi<vl and vI<vE, the three possible equilibria
which do exist in an € neighborhood of (6,6p,e)=(1,1,0) are as follows:

(a) an equilibrium with crowding out in the high quality market;
(b) an equilibrium with crowding out in both markets;

(c) an equilibrium with positively assortative matching."®

Temma 2, 3, 4 and 5 do not, rule out equilibria with v#£v“H, v£0E and v#vF4 in
which the measure of all impatient resp. patient tenant types in a given market is greater
than zero but approaches zero as the frictions become removed, i.e., in which £ > 0 is
violated. Such equilibria, probably, do indeed exist, but similar arguments as in the proof
of Lemma 2 show that they must converge to an equilibrium with v=v“#  an equilibrium
with v=v“B an equilibrium with v=vF4 or a “shut-down” equilibrium as the frictions
become small.
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We could establish similar results for all possible parameter regions: Ex-
cept for equilibria with crowding out in the low quality market, no other
equilibrium configurations than the one mentioned in Proposition 2 do exist
for infinitesimal frictions in general. An equilibrium with positively assor-
tative matching and an equilibrium with crowding out in the high quality
market does always exist for infinitesimal frictions. An equilibrium with
crowding out in the low quality market does exist in an e neighborhood of
(6,6p,€)=(1,1,0) iff ] >l and an equilibrium with crowding out in both
markets does exist in such an ¢ neighborhood iff vl <vl. vI<vl is an as-
sumption which is irrelevant from the viewpoint of equilibrium existence. In
Proposition 2, we just impose this assumption because it simplifies the de-
scription of the matching pattern in a search equilibrium with crowding out
in the high quality market.

The patient tenant types with the highest demand strength completely
take over the low quality market, and the tenant types with the highest
demand strength among the remaining tenants share the high quality market
in an equilibrium with crowding out in the low quality market. For v] <vJ
and arbitrarily small search frictions, no such equilibrium turns out to be
possible because the impatient tenant types must always leave some high
quality apartments for the patient tenant types with the highest demand
strength. For vh<vf and arbitrarily small search frictions, no equilibrium
with crowding out in both markets turns out to be possible simply because
there are not even enough patient tenants for a complete take over of all high
quality apartments.

6.1 Crowding Out in the High Quality Market

Lemma 6 For vi<vh, vi<vl and any given (6,e) sufficiently close (1,0),
one and at most one equilibrium with v = v does exist if 6p is sufficiently
close to 1.

In an equilibrium with v = v“" not impatient tenant types get the

high quality apartments, but patient tenant types whose demand strength is
strictly lower. Lemma 6, consequently, shows that strong deviations from the
Walrasian outcome even remain possible in our model if we asymptotically
remove all search frictions. The critical feature which is responsible for this
surprising result is a high quality market which becomes infinitely crowded
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with patient tenant types during the removal of the search frictions: All
impatient tenant types would like to meet a high quality landlord in a search
equilibrium with v = v“F_ but all of them choose a low quality level because
the tenant per apartment ratio in the high quality market is very high. ¢p is
an important parameter in such an equilibrium because lims, ., pd /uf=cc
for any given (6,e). The discount factor of the patient tenant types must
be close enough to 1 in order to make sure that a sufficiently crowded high
quality market induces a low quality choice for all impatient tenant types.

In our argument on the existence of an equilibrium with v = v“% we
first verify that some of our equilibrium conditions uniquely determine all
endogenous variables in the low quality market. As a second step, we repeat
this exercise for the high quality market and finally, we show that all these
endogenous variables do indeed satisfy all equilibrium conditions if 6p is
sufficiently close to 1. Throughout the proof, we focus on the case when
vE>pT and omit the case when v”>v’ because it would not add much.
For the purpose of demonstration, v“>v7 is more rewarding because all
equilibrium conditions apply in some way, and because it shows why we need
an entry fee in our model. Notice also that v{*>v7T is a direct consequence of
vE>uT and vE>ul.

Step 1. With v = v pyL>pT and vE >l the equilibrium condition (10)
must apply because some low quality landlords must remain without a tenant.
Formally, we obtain i* = 0, i**=vh—vl [vipdi=vy and 0<[ vydi=v] +v)
—vl<vl which according to (10) and (8) requires that vl = e, i.e., that
low quality landlords must be indifferent between entering the market and
staying out of the market. With (16), we, thus, find that

Th(1—6;)5(Bin —ed) .
(20) e=/ TEDETES

Since [ vjdi=vT —vk, we know from our discussion in the proof of Lemma
1 that either

vl —v v;
L_ T _ L T =T _ 2 L il
(a) py=v —uy <y, 771—7 and Tl = F L
1 —
or
(b) (T =0T vk <ub, 7T=1 d oL =Kt
Hy =V vy = py, ™= an 7%1—#1;’
1



Under (b) and for small e, the right hand side of equation (20) is mono-
tonically and continuously decreasing in p!* and approaches 0 as uf goes to
infinity. Under (a) and for small e, the right hand side of equation (20) is
monotonically and continuously increasing in uf and approaches

/ %(@1 —ed) vn di

(1-6) v —vk

as pul goes to infinity. Thus, there must be a unique p¥ > 0 and ul > 0
which solve (20) since for (6, e) sufficiently close to (1,0), e > 0 is certainly
in between these extremes. For given p! > 0 and uf > 0, on the other hand,
we observe that (5), (6), and (19) uniquely determine p; and v}]

(21) [ = _— if v;1 >0,
T
(22) pi, =0 if v =0, and
(23) of = Tamex0f —od) o,
1 - 61 + 7T1 567
(24) vl = e.

Notice, thereby, that we need a positive entry fee in order to establish exis-
tence.

Step 2. Now, we proof that our equilibrium conditions also pin down
the tightness in the high quality market. Since (10) does not apply there,
this is a quite different task than before. As a first step, we show that the
market conditions in the low quality market determine v .,. Then, we use
this result for the derivation of an equation which uniquely determines all
endogenous variables in the high quality market.

Our incentive Compatlblhty condition (12) requlres that v5—v} >0 for all
i € [i**,vh) and that vL—v} <0 for all i € [i*,7°%). Using (19), note that
vh—vk must be continuous at 1 =1** since with respect to 7 and at ¢ = +**
the functions (;1, B2 and ; are continuous by assumption. Hence, we observe
vho=v],, i.e., that type i** tenants must be indifferent between a high
and a low quality choice.

Employing v .,=v] ., vixxo = 1 and (15), we can verify that

5),
(1_6i><>< —’—ﬁg%(sixx)v;-l;xl g%(ﬁixxg—véé)
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and that o .
T = 2 3 (Biz — v3'0)
P 1= 6+ 7L
When we subtract the former from the latter equation, we find that
T ]_—(S'xx —i—ﬁgéé,,xx T ﬁg%(ﬁﬂ 6’1X 2)

o — I if v >0.
Vi2 1— 6 +7d 5 Vi 1—6+7ad 5 2

if Vg > 0.

Our equilibrium condition (6) requires that wi = 0 if v;3 = 0 and, hence,
that 75 = 0 if v;» = 0. Exploiting (14), vL,=v5 ., Vixxa = 1 and (15)
can further show that

ﬁiXXQ 1 - 6/L'><>< + ﬁg%ézxx T T‘-’L[Q/ T .
(1- o) (=22 - s L) = / (= b)oldi
Notice finally that these comments amount to
ﬁwg —(Sxx—i-ﬁ'Tléixx
(25) 0 = - 15“ Vixxy

51) (612 ﬁ1><><2)

/”@(( =5 -6+ 750"
/ i (1

(S)(]_ - 6i><>< +7T2 §5i><><) T

Ujxx1dl.

T(1=06) (1—6&+m3i6)

Since [ vppdi=vE, we know from our discussion in the proof of Lemma 1
that either

L _ L T 7T_V2L d oL - Y2
(a) py = vy <y, WQ—M_T an 7T7:2—V_L
2 D)
or
(b) pl=vhk<ub, 77=1 and rh=22
Mo = Vo = g, T = a sz—lup
2

Under (a) and for small e, the right hand side of (25) is monotonically and
continuously decreasing in uJ and approaches —oco as ul goes to infinity.
Under (b) and for small e, the right hand side of (25) is monotonically and
continuously increasing in pf and approaches

/Bixxg _ 1-— 6i><>< + %5Z'><><U3:<><1 > ﬁiXXQ _ maX(O,ﬁixxl - 6(5) <0

5 I 5 5
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as pb goes to infinity. Consequently, there must be unique p% > 0 and
pd > 0 which solve (25). For given pl > 0 and p2 > 0, on the other
hand, we observe that (5), (6),(19), vi«,=vi«,, vixxa = 1 and (15) uniquely
determine pk, and v}

(26) ph = f— if v >0,
T
(27) fh =0 if v =0, and
77l max(0 ﬁzg o)
28 T—=222 th
( ) Vig = 1 — 5 47 6 Wil
I3 ﬂixxg —67;><>< +7Tgl(s7;><>< T

Step 3. So far, we have shown that some of our equilibrium conditions
uniquely pin down all endogenous variables for v = v“". To complete the
proof of Lemma 6, we now show that with (4, e) sufficiently close to (1,0),
these endogenous variables do indeed satisfy all equilibrium conditions if 6p
is sufficiently close to 1.

With v">v" and i* = 0, our definition of v" obviously reveals that
(3) is valid, and that (7) and (11) do not apply. % Since [ vipdi = vd and
[vadi=vT —vE<vF, we also find that (4) is valid. The conditions (1), (5) and
(6), on the other hand, hold by construction since we used them to express
wh, uh, vl and v} explicitly. Formally, (1) is equivalent to (23) and (28),
(5) is equivalent to (21) and (26), and (6) is equivalent to (22) and (27).

When we somewhat manipulate (23) and (28), we can show that
(30) vh(1— &) =7 max(0, B — vi6 — v)6;)
which proofs that 3;; — v}6 —v]6; > 0iff v]; > 0. For (6, e) sufficiently close

o (1,0), (23) and (24) reveal that v]] > 0 for all 4, and in particular that
vl > 0if vy > 0. When we plug (29) into (28), we find that v%.,= vi.,.
Exploiting (28), vL«,= vh., > 0 and type monotonlmty, we can further
show that Bz — v26 > 0 if i > ** which implies that v}, > 0 if ;5 > 0. The

WEquation (7) only matters in “shut-down” equilibria. Equation (11), however, does
matter in cases where v7 > v, In the omitted part of this proof, for example, analogous
arguments as in Step 2 must be used in both markets since (11) and (9) imply that v}, =e
if i* > 0.
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comments in this paragraph add up to the conclusion that 3;; —UJ-L 0 —Ug;-(si >0

if v;; > 0, i.e., that (13) must hold. Using (23) and (28), also notice that,
(31) Bij —vi6 >0 if vy > 0.

When we insert (29) into (28) and, at the same time, apply (31), we get
that

_Tl 12 »]'XX 1 - 57'><>< _Tl67><><
7 Ta3(Bi _ﬁTi 2) : +7_T2T% T i by > 0,
1—6Z+7T2§6Z 1—(51""7'('2561'
Using (27), note that 75=0 if 1,5 = 0. Exploiting (25) and (29), we can,
thus, show that vl(1 — &)=/ n5(1 — &;)vh/7d di. When we finally plug (30)
into this equation, we find that

vQL(l —0) = /ﬂé% max (0, Bio — vQL(ﬁ — vg&;)di,

i.e., that (2) must hold for j = 2.

As an immediate consequence of (22), we observe that m5=0 if v;;=0.
Exploiting (20), (23), (24) and (31), we can, thus, show that v{(1 — §)=
[7h (1 = &)v] /7T di. Inserting (30) into this expression, we find that

vlL(l —0) = /7T7L1% max (0, B;1 — vlLé — vﬁ(ﬂ;)di,

i.e., that (2) must hold for j = 1.

We can exploit (20), (31) and (24) to show that

mhi3(Bi — ed)

32 > / T — €9) 4
(32) ‘ 11—6+ﬁ{%6Z
With lim 77 = 0 and (8, e) sufficiently close to (1, 0),?! this requirement must
certainly be violated since lim 7] = 0 would imply that lim /;=v;; /(v =)
> 0 for all i€[v], v"]. Using (23), (24) and lim 7] > 0, we can, thus , verify
that lim(v)] —e) = B;; > 0 for all i, ** i.e., that (9) must hold if (6,¢) is
sufficiently close to (1,0).2

2IAt an abuse of notation and throughout the paper, we use lim as a shorthand for

1iIIl(5.e)_,(1.0).
22Notice, thereby, that & > 6.
2BSince v + vio = 1 for all 4, (9) must be valid if v} > e for all 4.
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When we manipulate (25), we can easily verify that

ﬁixxg Vlj; ﬂ-i[é (1—(513) T .
s > /i><>< %inxxldl.
With lim(1 — 6p)/73 > 0 and (6,¢) sufficiently close to (1,0),>* this re-
quirement must certainly be violated since lim(1 — 6p)/73 > 0 would imply
that lim s=v;e/va > 0 for all i€[i**, v}).? Exploiting lim(1 — 6p) /71 =0,
limvl ., = Bixx; and (29), we can, thus, show that lim v} —e=0;xxy—Bixx1 >
0, i.e., that (8) and (10) must hold if (8, e) is sufficiently close to (1,0).%

We can manipulate lim 7] > 0, lim(1 — 6p)/73 = 0 and lim vf=0xxo—
Bixx1, (23), (24) and (28) to show that

limvj, — v} = B2 — Bixxa — (Bin — Bixx1) if i € [i*,v}).

Since 0Bi2/0i>03;1/0i by assumption, this implies that limvh—v5>0 if
ie[i**,vh) and limv}—v5>0 if i€[i*,i**), i.e., that (12) must hold for
i€li*, vh) if (6, e) is sufficiently close to (1,0).

Finally, we need to focus on the incentive constraint of the impatient
tenant types. First, we proof that lims, .1 72 = 0 and that lims, ., 71 >
0 for any given (6, e) sufficiently close to (1,0). Then, we show that all
impatient tenant types do indeed choose a low quality level if relative to 9,
Op is sufficiently close to 1.

Assume that lims, .; 72 > 0 for given (8, e) sufficiently close to (1,0).
Then, the right hand side of (25) must approach Bixx9/0—vL.,/d as we
let 6p go to 1. Using (23), however, notice that B;xx;>vk., and that
Bixxa/6—v]x, /6 > 0. Hence, we observe that lims, ., 73 > 0 is in contradic-
tion with (25). To summarize, lims, . 75 = 0 for any given (6, e) sufficiently
close to (1,0).

Assume that lims, .; 77 = 0 for given (8, ¢e) sufficiently close to (1,0).
Then, the right hand side of (32) must approach

di

/ Vi1 %(@1 — ed)
JrvT —vk 16

2Since §p > 8, notice that lim 72 = 0 if lim(1 — 6p)/7d > 0.
25Using the result in the previous paragraph, notice that lim 7)g<><1:/6ix><1>0.
Since 0< [vndi = vT — vk < vl and [v;pdi = vf, (8) and (10) hold iff vF = e and
L
vy > e.
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as we let 0p go to 1. For (4, e) sufficiently close to (1,0), however, this
expression is certainly greater than e. Hence, we find that limgs, ., 7] = 0
is in contradiction with (32). To summarize, lims, .; 77 > 0 for any given
(6, e) sufficiently close to (1,0).

Using (23), (24), (28) and the results in the two previous paragraphs, we
can show that with given (6, ) sufficiently close to (1,0), lims, ., v}; > 0 and
limg, .1 v}y, = 0 if i€[vp, v"]. Hence, we have proofed that with given (6, e)
sufficiently close to (1,0), v} >v}, for all i€[vh, v"] if §p>6 is sufficiently close
to 1. Note that all other equilibrium conditions hold for all 6p>¢ given that
(6, e) is sufficiently close to (1,0). O

6.2 Crowding Out in Both Markets

Lemma 7 For vi<vl, and any given (8,e) sufficiently close (1,0), one and
at most one equilibrium with v=v°B does exist if 6p is sufficiently close to 1.

Lemma 7 reveals that there is a second strong deviation from the Wal-
rasian outcome which does exist for arbitrarily small frictions. In an equi-
librium with v = v“?, only patient tenants receive an apartment, and the
impatient tenants whose demand strength is strictly higher do not even enter
the market. The crucial feature which makes such an outcome possible in our
model is a high tenant per apartment ratio in each of the markets which con-
verges to infinity as the frictions become removed. 0p is an important variable
in an equilibrium with v = v“% because lims, ., pd /ub=lims, . pul /ul=cc
for any given (6,e). The discount factor of the patient tenant types must be
close enough to 1 in order to make sure that all impatient tenant types want
to stay out of the market. Since it is just a variation of Lemma 6’s proof, we
omit Lemma 7’s proof.

6.3 Positively Assortative Matching

Lemma 8 For vl < vh and any (6,0p,¢) sufficiently close (1,1,0), one and
at most one equilibrium with v = v™4 does exist.

The fact that our frictional model can generate a Walrasian apartment
assignment when we asymptotically remove all frictions is not very surprising
since it confirms the widespread intuition that the impact of the match cre-
ation costs on the expected payoffs should become negligible when all traders
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become very patient, i.e., that only prices should determine the expected pay-
offs in an environment with infinitesimal frictions. From the analysis above,
we know, however, that this intuition is based on the assumption that the
matching probabilities do not approach zero as frictions become removed.
Since it is again just a variation of Lemma 6’s proof, we also omit Lemma
8’s proof.

7 Discussion

Our result in Proposition 2 shows that lowly ranked but patient players
can get highly ranked partners in a marriage model with unboundedly low
frictions. In the following, we will briefly discuss the modeling choices under
which we obtain this remarkable result.

The special type distribution which we use throughout the paper is cer-
tainly not an essential ingredient in our model. With a discrete distribution
on one side of the market and a uniform one on the other, the description
of an equilibrium matching pattern just becomes especially easy. At the ex-
pense of notation, an extension of our result to arbitrary type distributions
is a straight forward exercise. Such an extension should also be possible if
we assume that the patient players and all others on their side of the market
can only choose the quality of their potential partner within given ranges
and not exactly. In such a framework, however, the analysis becomes much
more involved because meetings need not always end up with partnership
formations.

The main finding in this paper should further be independent of the way
in which we model the steady state player flows. We should be able to make
similar observations in models with a finite measure of infinitely lived players
whose matches become randomly destroyed by nature at a constant rate. In
such an environment, the steady state population share of some patient player
types can still approach 1 as frictions vanish, i.e., as the match creation rate
becomes unbounded: Their stocks may simply remain positive while that of
all other player types go to zero.

The most unusual aspect of our model is the assumption that the patient
players and all others on their side of the market can choose the quality of
the partners they meet. We can easily think of situations where such an
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asymmetry is plausible, 27 but primarily we make this assumption because it
tremendously simplifies our steady state description: Meetings must always
end up with partnership formations under an endogenous matching technol-
ogy of this nature.

A small but positive stochastic perturbation of the quality choice in our
model should not destroy our main result because the discrete quality and
entry decisions will typically remain optimal as long as this perturbation
is sufficiently small. Whether our result can survive in frameworks where
all players get matched exogenously and at random, is a more complicated
question. According to my intuition it does when we assume that lowly
ranked but patient players do not only appear on one but on both sides of
the market: In a model of this nature, there should be an equilibrium in
which lowly ranked but patient players crowd both market sides and, at the
same time, do not trade with each other because they can get highly ranked
but impatient partners.?®

With homogenous discount factors and unboundedly low frictions, we
never obtain a deviation from the Walrasian outcome in the framework of this
paper.? But even under these circumstances, it sometimes remains possible
that lowly ranked players get highly ranked partners. An example for that
is given by Ramsauer (1998) who studies homogenous discount factors and a
purely discrete type distribution in a framework which is otherwise identical
to the one in this paper. The result in Ramsauer(1998) is driven by a high
steady state population share of the worst active players which makes it
hard for the other players to meet each other. In such an equilibrium, some
marginal players are very choosy because their match value and, hence, their
match delay costs are much lower than that of all other players. The existence
of such an equilibrium requires that the flow measure of all marginal players
is above a certain positive threshold. Obviously, this is violated when the

2TOne example is a housing market with tenants who are familiar with the city and
landlords who must advertise the location of their apartment: The tenants in such a
market do receive a strong quality signal before they contact a partner, but the landlords
do not.

Z8Notice that this assumption would also work in the framework of this paper: The high
quality market would be crowded with lowly ranked but patient tenants, the low quality
market would be crowded with patient landlords, and the highly ranked but impatient
tenants would choose a low quality level.

29 According to Lemma 1(a), the crowding intensities must always remain finite in such
cases.
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type distribution is nonatomic.

An extension of our results to nontransferable utility frameworks should
also be possible. Again, we can imagine an equilibrium in which lowly ranked
but patient players crowd both sides of the market. When atoms appear in
the type distribution, however, we may run into problems. An example for
that is the nontransferable utility version of the model in this paper: A very
patient landlord in a high quality market which is crowded with lowly ranked
tenants would only want to form a partnership with the very best of them.
In our transferable utility version, this problem does not arise because better
tenants also demand a higher compensation. Without atoms, the problem
would not arise because no landlord type would have to form partnerships
with a fixed variety of tenant types.

8 Related Literature

Since the pioneering work of Diamond (1971), it has been well known that the
equilibrium in a search model with infinitesimal search costs need not be close
to the equilibrium of the corresponding Walrasian model. Regardless of how
small the search frictions are, and regardless of how many buyers and sellers
there are, the monopoly price is the only equilibrium price in Diamond’s
simple model. This surprising result is often referred to as the “Diamond
paradox,” and the crucial feature which is responsible for its appearance is
an extremely asymmetric bargaining procedure in which only the sellers can
commit to a price.

Diamond’s introduction of an equilibrium approach to search theory ini-
tiated the labor market oriented “search and bargaining” literature which is
primarily concerned with generating non-Walrasian outcomes, often denoted
as “non-degenerate equilibrium price distributions,” that are observed in real
world markets. The issue of convergence to a Walrasian outcome as search
costs become negligible is typically not studied in this literature. The first
paper which explicitly raises this question is Rubinstein and Wolinsky (1985).
They focus on the steady state of a simple search model with a continuum
of traders, indivisible, homogenous goods and a symmetric bargaining pro-
cedure. Their main finding is that the equilibrium price for infinitesimal
frictions deviates from the Walrasian price if the Walrasian price is defined
relative to trader stocks. In a response to this result, Gale (1987) argues that
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the competitive equilibrium in a model with an infinite measure of traders
should be defined relative to the trader flows, and shows that the unique
search equilibrium in his model yields the alternatively defined Walrasian
equilibrium when the rate of time preference converges to 0. A succession
of papers which are concerned with the “game theoretic foundations of Wal-
rasian equilibrium” has emerged since this important debate about the right
manner of defining a Walrasian equilibrium. Osborne and Rubinstein (1990)
survey this literature through the end of the eighties. An often used phrase
in this literature is “decentralized trade” which stands for search and bar-
gaining environments. “Centralized trade,” on the other hand, is reserved
for Walrasian procedures.

Several approaches have led to search and bargaining models with equi-
librium outcomes which do not converge to the Walrasian benchmark as the
frictions become asymptotically removed: multistage bargaining procedures
with outside options [Bester(1988a), Muthoo (1993), Shaked (1987), Shaked
and Sutton (1984)], absence of anonymity [Rubinstein and Wolinsky (1990),
Hendon and Transes (1991), Hendon and Tranges (1995)], incomplete infor-
mation [Bester (1988b), Samuelson (1992)],3° simultaneous offer bargaining
[Serrano and Yosha (1995a)], simultaneous offer bargaining with incomplete
information [Serrano and Yosha (1995b)] and simultaneous offer bargaining
with incomplete information and common values [Wolinsky (1990)]. The ap-
proach which we take in this paper is qualitatively different from all other ap-
proaches in the literature. The traders in our model are perfectly anonymous
and possess complete information about their partner’s type. The bargaining
procedure, on the other hand, is symmetric and based on “take-it-or-leave-
it” offers. A closely related model which also possesses these feature is the
one of Gale (1987), but the unique equilibrium in Gale (1987) converges to
the Walrasian outcome as the frictions become asymptotically removed. The
crucial element in our model which makes it possible that we arrive at a dif-
ferent conclusion than Gale (1987) is a trader population with heterogeneous
discount factors. Notice that we also use the flow concept rather than the
stock concept for the definition of our Walrasian benchmark.

30Gamuelson (1992) explains why disagreement may arise in a market with matching
and bargaining. His equilibrium outcomes, however, do not deviate from the Walrasian
benchmark if we define this benchmark in terms of trader flows.
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