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Abstract

Much of the literature on financial markets has not dealt with de-
pendency of project revenues. In a setup similar to the seminal SW
model, we show that the type of equilibrium can crucially depend
on the degree of project dependency. By making aggregate payoffs
risky, households face capital risk. Therefore, risk aversion and house-
holds’ consumption-savings decision become very important. Capital
risk deters households from saving so that there might be a credit ra-
tioning equilibrium. Defining the social optimum, we find that project
dependency might reduce the number of safe projects in equilibrium
in a socially harmful way. Thus, project dependency can aggravate
adverse selection. In three extensions, we will show how risk aversion,
imperfect revenue dependency and a different modelling of dependency
influence our results. Our analysis points out that project dependency
is an important factor in the determination of credit market outcomes.
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1 Introduction

Credit rationing has become a very important issue recently. In reality,
firms complain that credit is not available. Secretaries blame banks to hoard
money. On theoretical grounds, further research seems to be necessary as the
forthcoming publication of Arnold and Riley (2009) (AR, henceforth) shows.
It makes an important contribution but leaves some space for interesting
further considerations. An important fact to analyze is dependency of project
revenues,1 whose consequences for one of the banks’ most important tasks,
diversification, can be tremendous - as dramatically shown by the current
financial crisis. Revenue dependency within a single bank’s credit portfolio
is one of the main research topics in financial risk management. However,
to our best knowledge, there is no literature on the effects of dependency
of project revenues on credit market outcomes with the possibility of credit
rationing.

The concept of credit rationing has already been known to Keynes (1930)
in his Treatise on Money (Vol. 1). A seminal paper is Stiglitz and Weiss
(1981) (SW, henceforth) who pointed out the important role of asymmetric
information in credit rationing.2 They used the term credit rationing “...for
circumstances in which either a) among loan applicants who appear to be
identical some receive a loan and others do not, and the rejected applicants
would not receive a loan even if they offered to pay a higher interest rate; or
b) there are identifiable groups of individuals in the population who, with a
given supply of credit, are unable to obtain loans at any interest rate, even
though with a larger supply of credit, they would” (pp. 394-395). SW argue
that an increase of the loan rate might decrease banks’ expected returns since
some “good” borrowers do not demand credit any more, notwithstanding the
remaining borrowers paying a higher rate (if they are able to pay back). They
get an equilibrium with credit rationing if the decrease is such that the global
maximum of the return function does not occur at the highest possible loan
rate. However, the credit rationing result is inconsistent with the very SW
assumptions, as pointed out by AR. They show that the natural outcome of
the SW model is a two-price equilibrium in which only safe firms are rationed.

1Instead of “dependency”, some readers might prefer to speak of “correlation”. We use
“dependency” since the statistical concept of correlation cannot be applied to our model.

2Other important early contributions are Jaffee and Russell (1976) and Bester (1985).
Note that the definitions of credit rationing slightly differ between all the papers men-
tioned.
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AR present two modifications of the SW assumptions which make credit
rationing à la SW possible again: either a cost for seizing collateral or “fraud-
ulent” borrowers (cf. the AR paper for details).

We build on the model of SW and AR and introduce dependent project
revenues as a central assumption. We show that dependency might cause
credit rationing à la SW, i.e., at a single interest rate in equilibrium. An im-
plication of project dependency (and the assumption that banks pass through
risk) is that households face capital risk in their consumption-savings deci-
sion. As a consequence, we have to explicitly analyze households’ behav-
ior,3 thereby combining the credit rationing literature with a wholly different
strand of literature, namely savings under capital risk.

We choose the easiest modelling approach with only two types of firms:
risky and safe ones. We assume that only the revenues of the risky are de-
pendent. In our eyes, it seems to be plausible to make this assumption for
the following reasons. Low-risk firms can be thought of as producers of goods
which meet physiological needs. Examples for such low-risk projects are in-
vestments in industries such as foods and beverages, utilities, health care, and
so on. In these industries, risk is fairly low, and so is dependency. We resort
to portfolio theory and the separation between market risk and idiosyncratic
risk to make the argument clearer. Idiosyncratic risk is present in every firm.
By definition, this kind of risk is independent between firms. The exposure
to market risk, however, is highly unequal. We suggest to interpret low-risk
firms as the ones which do not face (high) market risk. Hence, dependency
between low-risk firms is low, but idiosyncratic risk is prevalent. In contrast,
due to market risk, project revenues in high-risk industries are much more
likely to be highly dependent since they frequently depend on some sort of
breakthrough, which might be technological, political or social in nature.4

The structure of the paper is this. In section 2, we present the assump-
tions of our model (in 2.1) and put some emphasis on a bank’s return function
(in 2.2), which significantly differs from the one resulting from independent
revenues. We specify the households’ consumption-savings decision in a stan-
dard expected utility setup, and analyze the firms’ investment decision (in
2.3). The central section of the paper describes different equilibrium cases

3SW and AR assume an exogenous, increasing capital supply.
4An example where a technological breakthrough caused a whole industry to flourish

is the IT sector. A case in point for a social breakthrough is web technology which
flourished, too. Genetic engineering is an example where we do not know yet if a political
breakthrough occurs or not.
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and sets up a condition for social optimality in order to find out equilibrium
inefficiencies caused by asymmetric information (in 2.4). We do comparative
statics (in 2.5) before extending the model threefold. First, in section 3, we
present a non-expected utility setup which allows us, amongst other things,
to make our propositions from section 2 more concrete by attributing results
to different preference components. Second, section 4 generalizes the concept
of project dependency and shows that the main results do not rely on the ex-
treme assumption of perfectly dependent revenues. We implement imperfect
dependency as deterministic (in 4.1), stochastic (in 4.2) and, going a little
further, as stochastic and uncertain (in 4.3). As a further robustness test,
section 5 describes another sort of project dependency. We add dependency
of the safe firms’ revenues (intra-type) and an inter-type dependency in that
risky firms can only succeed if safe firms do. The final section will give some
concluding remarks.

2 The model

2.1 Assumptions

There are two types of firms: risky and safe ones, with success probabil-
ity pR and pS, respectively. Note that “safe” means relatively safe, that is,
pR < pS < 1. We have a continuum of mass NS of safe firms and a continuum
of mass NR of risky firms. We define β ≡ NS

NS+NR
as the economy’s share of

safe firms. Project revenues R̃ are a binary random variable: If successful,
revenues are RS and RR, respectively, where RS < RR.5 In case of default,
the payoff is zero. Both types of firms have the same expected project rev-
enue pRRR = pSRS = E[R̃]. Projects require B (< E[R̃]) units of capital
which cannot be brought up internally by firms: They must rely on outside
funding by banks which require C (< B) units of collateral.

There is asymmetric information: Firms know their type, but banks can-
not observe it. However, banks know the distribution of types in the economy.
Firms have one and only one project to invest in, which is either a risky or

5There are two different types of “returns” in our model: firms’ project revenues and
the rate of return of a bank. Since we use the latter far more often, we reserve the more
common symbol R̃ for it.
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a safe one.6 This means that there is no moral hazard (no hidden actions).
Furthermore, we assume that revenues are observable ex post (costless state
verification), i.e., asymmetric information only appears in the guise of hid-
den information. It is the only market friction since we also abstain from
enforcement problems.

A central assumption concerns the dependency of project revenues: In
the main part of the paper, we assume that project revenues of risky firms
are perfectly dependent (either all firms succeed or none does), whereas rev-
enues of safe firms are independent.7

We assume that there are many banks whose intermediation is costless,8

and that these banks have no equity.9 Therefore, they go bankrupt (which we
model as a disutility of minus infinity) if they cannot serve a stipulated claim
from a deposit contract. As a consequence, banks do not take risks. Instead,
they pass it through to households. They are intermediaries and, thus, active
in two markets: the credit market, where they lend out funds to firms on the
one hand, and the deposit market, where they collect funds from households
on the other. We assume that banks set prices on the credit market, whereas
they are price takers on the deposit market. A reader might wonder about
the use of these two different concepts of market structure. The assumption
is mainly technical in that it facilitates equilibrium argumentation. Assum-
ing price setting on both markets would require a game theoretic foundation
which would tremendously enhance complexity.10 If banks are price takers,
a single bank can choose an arbitrary price for its own goods (interest rate
on money) without influencing any other bank’s price.

The attitudes towards risk are crucial: Households are assumed to be
risk-averse, whereas firms and banks are risk-neutral.11

There are H homogeneous households whose utility is assumed to exhibit

6Thus, we can speak of project type and firm type interchangeably.
7We relax both the assumption that only revenues of the risky are dependent and the

assumption about perfect dependency, in sections 4 and 5.
8Thus, we do not analyze the raison d’être of banks. A seminal paper where bank

intermediation is endogenous is Diamond (1984).
9If we modelled banks with equity, we would have to say much more about their risk

attitude and behavior in the market. However, this shall not be our focus.
10This has been done by Arnold (2007) for the case of independent project revenues and

a continuum of borrower types. Results did not change qualitatively.
11Changing risk attitudes of banks and firms does not have significant consequences for

the subsequent analysis. However, households risk attitude is of utmost importance as
will become clear later on.
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constant relative risk aversion (CRRA). They maximize expected utility in a
two-period setup with income Y in period 1. Income in period 2 only comes
from savings. If there are several contract offers by banks, we assume that
households only invest in one contract.

Most of the assumptions are identical to a two-type version of the models
of SW and AR with which we contrast our results. However, our assumption
of project dependency has far-reaching consequences in that it introduces
capital risk for households. Thus, our second main assumption, risk aversion
of households, becomes very important, too. Taken together, explicit mod-
elling of the consumption-savings decision is indispensable.

2.2 Return function

The return function of a bank is state-contingent due to dependent revenues
of the risky firms. Dependency is perfect so that we have only two states
of the world, where a state of the world is not defined by certainty about
every random variable, but by the aggregate level of repayment. In the good
state (probability pR), all risky firms succeed and so does a share pS of the
safe firms (if they apply for capital in the first place). With probability
(1 − pR), the bad state occurs. Then, from the risky firms, banks only get
the collateral, whereas of the safe firms, the same share pS is successful (if
they apply).

In Figure 1, the two solid lines denote the bank’s returns in the two
states. The dashed line in between is expected return. Let us stress the
crucial difference to AR and SW at this point. In their setup, households do
not face risk because the expected returns, which are passed through to them,
realized for sure (due to the law of large numbers (LLN) and a continuum
of borrowers). Therefore, even though SW and AR talk of expected returns,
households do not actually expect the deposit rate, they rather know it.

In the first interval (r ∈ [0, rS]), both firm types demand credit. In the
second interval (r ∈ (rS, rR]), only the risky do, i.e., there is adverse selection.
This can be understood from expected profits of firm i (i ∈ {S, R}) as a
function of the loan rate,

Eπfirm
i (r) = (1− pi)(−C) + pi [Ri − (1 + r)B] . (1)

Since firms are risk-neutral, they demand credit as long as their expected
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profits are non-negative. The respective breakeven loan rates are

rS =
pSRS − (1− pS)C

pSB
− 1, (2)

rR =
pRRR − (1− pR)C

pRB
− 1. (3)

It is instructive to look at the state-contingent return in the two intervals.
In the first interval, both firm types are active so that we get

ib(r) =
NS(pS(1 + r)B + (1− pS)C) + NRC

B(NR + NS)
,

ig(r) =
NS(pS(1 + r)B + (1− pS)C) + NR(1 + r)B

B(NR + NS)
.

From the safe firms, a share pS is successful and pays back principal plus
interest, (1+r)B. The remaining share 1−pS defaults and loses its collateral.
This is the same in both states of the world. However, the repayment from
a risky firm differs between states: (1 + r)B in the good state and C in the
bad state. In the second interval, only risky firms demand capital so that

ib(r) =
C

B
− 1, ig(r) = r.

Several properties of the rates of return of banks (state-contingent or ex-
pected) can be pointed out (cf. Figure 1):

i) The good state return ig(r) is monotonically increasing in r with a
discontinuous upward jump at rS.

ii) The bad state return ib(r) is monotonically increasing in the first
interval, but constant and at its global minimum in the second.

iii) The expected return E[i(r)] is monotonically increasing in r in both
intervals, but discontinuously decreasing at rS.

iv) E[i(r)] attains its global maximum at rR.

v) The variance of the return V ar[i(r)] is monotonically increasing in
r.
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Figure 1: Banks’ returns given dependent risky projects.

We prove these properties in appendix 7.1. For these proofs, as well as for
an intuitive understanding, we need to know the expected returns of a bank
in state k (k ∈ {good, bad}), which are given by

Eπbank(r|k) =
E[p|k](1 + r)B + (1− E[p|k])C

B
− 1. (4)

The expectation E[p|k] is the expected success probability in state k and
equals the proportion of successful firms, due to the law of large numbers. It
is a function of the loan rate r as can be seen in Figure 2. The thick line is
the expected success probability in the good state, the dashed line represents
the bad state probability. E[p|k] differs in (two) states and (two) intervals
and can thus take on four different values.

Property iv) is the result of AR. Intuitively, there are both risky and safe
firms active at rS, and the risky make strictly positive expected profits. At
rR, only risky firms are active and their expected profits are zero. Thus,
expected returns of banks must be maximum at rR.

2.3 Credit and deposit market

From the above, it is clear that credit demand, D, is a stepwise function of
the loan rate r, equal to (NS + NR)B in the first and NRB in the second
interval, zero otherwise. This is because all firms have positive expected
profits in the first interval, whereas in the second, only the risky have.
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Figure 2: Expected success probabilities.

The description of the mechanisms on the deposit market are more com-
plicated. Since households are homogeneous, capital supply is simply the
number of households times savings of a representative household. A house-
hold’s optimal savings depend on the deposit rate faced. Since banks have
to make zero profits in a competitive equilibrium (due to the usual downbid-
ding process) and pass through risk, any equilibrium deposit rate combina-
tion must equal the return rate combination, so that ib(r) and ig(r) denote
both banks’ rates of return and the state-contingent deposit rates offered
to households at the same time. We will omit the argument r and write ig
and ib unless talking about deposit rates at a particular loan rate, such as
rS or rR, for instance. Households maximize expected utility. Let U denote
overall utility and u be instantaneous utility in the respective period. Using
additively-separable utility such that U(c1, c2) ≡ u(c1) + δu(c2) (δ being the
discount factor), optimal savings s∗ solve

max
s

EU = E{u(Y − s) + δu(sR̃)}, (5)

where R̃ is the random gross interest rate on deposits (not to be mixed up
with R̃). The FOC is

u′(Y − s) = δE
[
u′(sR̃)R̃

]
. (6)

We use CRRA utility u(c) = c1−θ

1−θ
.12 The parameter θ captures attitudes

12And u(c) = ln(c) for θ = 1. We will focus on θ < 1 later on so that we can omit this
special case.
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towards inequality both over states and in time. Since households are risk-
averse, θ must always be positive. Optimal savings s∗ can be derived from
the FOC of the maximization problem,

s∗ =
Y

1 +
(
δE[R̃1−θ]

)− 1
θ

. (7)

We can replace R̃ using the fact that R̃ = 1 + ig with probability pR and
R̃ = 1 + ib otherwise.13 Thus, equation (7) becomes

s∗ =
Y

1 + δ−
1
θ [pR(1 + ig)1−θ + (1− pR)(1 + ib)1−θ]−

1
θ

=
Y

1 + (δz)−
1
θ

, (8)

where we use the convenient definition

z ≡ E[R̃1−θ] = pR(1 + ig)
1−θ + (1− pR)(1 + ib)

1−θ. (9)

We need the derivative of z w.r.t. r later on. It is

dz

dr
= (1−θ)

(
pR(1 + ig)

−θ dig
dr

+ (1− pR)(1 + ib)
−θ dib

dr

)
≷ 0 ⇔ θ ≶ 1, (10)

since dig
dr

> 0 and dib
dr
≥ 0 in each of the intervals. At rS, ∆z

∆r
≷ 0 ⇔ θ ≷ 1.

To see this, note that we have three discontinuous jumps at rS: 1 + ig goes
up, 1 + ib goes down and E(R̃) goes down. Since R̃1−θ is a monotonically
increasing concave transformation of the binary random variable R̃ if θ < 1,
its expectation E[R̃1−θ] = z must decrease at rS, then. For θ > 1, the
transformation is monotonically decreasing and convex such that E[R̃1−θ]
must increase in that case.

We get indirect lifetime utility (LTU) by inserting optimal savings from
equation (8) into the objective function (5),

LTU =
Y 1−θ

1− θ

[
(δz)

1
θ + 1

]θ
. (11)

Aggregate savings are given by S = Hs∗. Both S and LTU are composite
functions and can be written as S(z[ib(r), ig(r)]) and LTU(z[ib(r), ig(r)]).

13It goes without saying that R̃ is a function of r, too.
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Thus, they can be plotted in a graph with the loan rate on the abscissa. This
will be important to follow our equilibrium argumentation graphically. The
loan rate r determines the deposit rates ib and ig. The latter two determine
optimal savings (and, thus, capital supply) and LTU. They also determine
z, which we only introduce to ease some proofs. Regarding the difference
between capital supply S and optimal savings s∗, note that one is only an
upscaled version of the other, so that all relative relations are valid for both
functions. For the equilibrium argumentation, we need capital supply, but
the properties of capital supply can also be proven using optimal savings.
The equilibrium analysis crucially depends on the shape of capital supply
and, thus, on the value of θ. We focus on the case of θ < 1, meaning that the
substitution effect outweighs the income effect in the consumption-savings
decision. Thus, if R̃ were deterministic, capital supply would increase in the
deposit rate. However, since it is random, the shape (especially the slope) of
capital supply depends on the change in the distribution of R̃.14 A stylized
graph of capital supply, LTU and the deposit rate combinations (equal to
banks’ state-contingent return rates) can be found in Figure 3. It clarifies
the dependencies: Capital supply and LTU are both functions of ib(r) and
ig(r). The above mentioned z is just a helpful mathematical construct for
the proofs. There are some general properties of capital supply and LTU:

Lemma 1: If θ < 1, capital supply increases monotonically in r in each of
the intervals [0, rS] and (rS, rR] with a discontinuous downward jump at rS.

Proof:
The fact that optimal savings s∗ increase in each of the two intervals is im-
plied by a more general result, namely Proposition 2 in Basu and Ghosh
(1993, p. 124). Transferring their result to the expected utility setup, their
proposition states that savings are lower in a first-order stochastically dom-
inated distribution (of deposit rates) if θ < 1. From Figure 1 we can see
that a higher loan rate within each interval implies a first-order dominant
distribution. Algebraically, dz

dr
> 0 ⇔ θ < 1 in each of the two intervals from

equation (10). Moreover, ds∗

dz
> 0 ⇔ θ < 1 from equation (8). Thus, savings

increase in each of the two intervals if θ < 1.
The discontinuous downward jump in savings follows from the fact that

there must be a deposit rate combination at some loan rate r > rS which

14In our case, this distribution is a binary one which changes its occurrences, but not
its probabilities, depending on r.
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Figure 3: Capital supply, LTU and deposit rates.

constitutes a mean preserving spread (MPS) of the deposit rate combination
at rS.15 Rothschild and Stiglitz (1971) showed that an MPS leads to a
decrease in savings if θ < 1. Since savings increase in the second interval,
savings must decrease discontinuously at rS. Algebraically, it immediately
follows from ∆z

∆r
|r=rS

< 0 ⇔ θ < 1 and ds∗

dz
> 0 ⇔ θ < 1.

q.e.d.

Lemma 2: Irrespective of θ, LTU increases monotonically in r in each of
the intervals [0, rS] and (rS, rR] with a discontinuous downward jump at rS.

Proof:
Differentiating equation (11) w.r.t. z and simplifying yields

dLTU

dz
=

Y 1−θ

1− θ

[
(δz)

1
θ + 1

]θ−1

δ
1
θ z

1−θ
θ ≷ 0 ⇔ θ ≶ 1, (12)

15If the probabilities of a binary distribution do not change, an increase in variance at
a constant mean is equivalent to an MPS. For general distributions, this is not true: Any
MPS implies a higher variance, but the reverse is not necessarily true.
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since Y, θ, δ and z are always positive. From equation (10), we know dz
dr

in
each of the two intervals: dz

dr
≷ 0 ⇔ θ ≶ 1. Therefore, dLTU

dr
> 0 ∀θ in each

of the two intervals.
LTU has a discontinuous downward jump at rS since ∆z

∆r
|r=rS

≷ 0 ⇔ θ ≷ 1
such that, for θ < 1, dLTU

dz
> 0 and ∆z

∆r
|r=rS

< 0 and, for θ > 1, dLTU
dz

< 0 and
∆z
∆r
|r=rS

> 0.
q.e.d.16

Proposition 1: For θ < 1, capital supply and LTU have their global maxi-
mum at the same loan rate, viz. either rS or rR.

Proof:
From Lemmas 1 and 2, we know that both capital supply and LTU are
increasing in each of the two intervals. Therefore, the global maximum of
the functions can only be at rS or at rR. For θ < 1, ds∗

dz
> 0 and dLTU

dz
> 0.

Suppose that the maximum of capital supply occurs at rS. Since ds∗

dz
> 0,

we must have z(rS) > z(rR). Since dLTU
dz

> 0, too, we must have LTU(rS) >
LTU(rR), i.e., the maximum of LTU occurs at rS, too. If capital supply is
maximum at rR, z(rR) > z(rS) and LTU(rR) > LTU(rS), i.e., the maximum
of LTU occurs at rR, too.
q.e.d.

Corollary: If s∗ is the same at two loan rates, LTU must be the same at
these two rates, too.

Proof:
If s∗ is the same at two loan rates, z must also be the same. Since LTU (cf.
equation (11)) only depends on z and parameters, it must be the same at
these two loan rates, too.
q.e.d.

2.4 Equilibrium

As outlined above, any possible equilibrium entails zero-profits for banks.
Therefore, we define two different types of equilibrium with a single interest

16Increasing LTU within each interval is also consistent with another, verbal proof: Since
an increase in r leads to a state-by-state dominant deposit rate combination, a change in
s∗ implies that households are better off, by revealed preferences.
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rate as follows. First, an equilibrium is characterized as a loan rate r such
that there is no r′ with

LTU [ib(r
′), ig(r

′)] > LTU [ib(r), ig(r)]

that attracts borrowers. We distinguish two types of equilibrium. A market
clearing equilibrium has capital supply at r equal to credit demand at r.
A credit rationing equilibrium has capital demand at r exceeding capital
supply at r.
With regard to our requirement for both types of equilibrium, there is always
a profitable deviation for banks if the inequality holds. If such a state-
contingent deposit contract exists, households prefer that contract and a
deviating bank can thus offer that contract making zero-profits, or, offering a
similar contract where households’ utility is still higher than with the original
contract, banks can make a profit.

Due to Lemmas 1 and 2 and Proposition 1, we get six possible cases
in equilibrium. Since households have no income in period 2 (apart from
savings), limc→0 u′(c) = ∞ implies that savings are positive.

A graphical exposition of each case can be seen in Figure 4 where the
upper graph is a capital supply and demand diagram and the lower part dis-
plays LTU, both as functions of the loan rate. Let us start with three cases
in which capital supply at rS is smaller than NRB.

Case I:
One possibility is to have capital supply and LTU maximum at rS. From our
equilibrium definitions, it is clear that there is no market clearing equilibrium
in this case since demand exceeds supply at any loan rate r. Instead, there is
a credit rationing equilibrium at the loan rate rS. No other loan rate can be
a credit rationing equilibrium. All r ∈ (rS, rR] are impossible since rS yields
a higher LTU for depositors and attracts borrowers. All r < rS do not yield
a higher LTU than rS either.

Case II:
Another possibility arises if the maxima are at rR, but still below demand
at that rate. The unique equilibrium is then to lend out all capital that
can be raised at (ib(rR), ig(rR)) at the loan rate rR. It is a case of credit
rationing since demand exceeds supply and there is no other loan rate with
corresponding deposit rates which yield a higher LTU.

15



Figure 4: Capital supply and LTU: six equilibrium cases.
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Case III:
If capital supply and LTU are below NRB at rS, but above it (and thus
maximum) at rR, the unique equilibrium entails market clearing at a loan
rate r̆ ∈ (rS, rR] with S(ib(r̆), ig(r̆)) = D(r̆). Clearly, the conditions from our
definition hold. Supply equals demand and the only loan rates r > r̆ whose
corresponding deposit rates yield a higher LTU do not attract borrowers.

Next, consider NRB < S(ib(rS), ig(rS)) < (NS + NR)B. There are two
qualitatively different subcases.

Case IV:
In the first one, capital supply (and LTU) are maximum at rS. In this case,
there is a credit rationing equilibrium at the loan rate rS. Demand exceeds
supply and there is no other loan rate with corresponding deposit rates which
yield a higher LTU. It is irrelevant whether there is a higher, market clearing
loan rate or not (cf. the dotted line in Figure 4).

Case V:
Now suppose that the maxima are at rR. The reader can check that there
is neither a market clearing nor a credit rationing equilibrium. In this case,
the natural outcome of the model is a two-price equilibrium, as in SW and
AR. To see this, recall our corollary and apply it to a loan rate like r2

in Figure 3: S(ib(rS), ig(rS)) = S(ib(r2), ig(r2)) ⇔ LTU(ib(rS), ig(rS)) =
LTU(ib(r2), ig(r2)). Since households can only invest in one contract, a si-
multaneous deposit rate offer of (ib(rS), ig(rS)) and (ib(r2), ig(r2)) leads to
a capital supply S(ib(rS), ig(rS)) = S(ib(r2), ig(r2)). In analogy to SW and
AR, an equilibrium situation with two prices arises if banks lend out at both
loan rates rS and r2. The amounts must be such that S(ib(rS), ig(rS)) =
S(ib(r2), ig(r2)) will be lent out in aggregate. Furthermore, the amount of
funds lent out at the higher rate r2 must be equal to residual demand after
credit has been given at the lower rate rS. The idea is a sequential one in that
banks first lend out some funds at rS, where all firms apply, and subsequently
lend out some funds at r2, where only the risky firms ask for capital. In this
situation, all risky firms get capital. Some safe firms are rationed without
missing positive expected profits, but no bank has an incentive to serve them
since it cannot get additional funds to do so. Ex ante, it does not matter for
households in which contract they invest their share of income (which is the
same at both offers since LTU is the same). It does, however, matter for the
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existence of a two-price equilibrium.17

Case VI:
If S(ib(rS), ig(rS)) > (NS + NR)B, there is a market clearing equilibrium at
a loan rate at or below rS, irrespective of the shape of capital supply and
LTU at higher loan rates.

Up to now, we have only considered capital supply and credit demand, mea-
suring credit rationing as the difference between what firms want and what
households are willing to supply, given the information asymmetries.

However, credit rationing caused by asymmetric information is not neces-
sarily connected to under-investment from society’s point of view. Therefore,
we need to find the socially optimal level of investment. A well-established
notion of a social optimum is the level of investment under perfect informa-
tion. The idea is that households own (the same share of all) firms so that
they also know about their risk characteristics.

First, when project revenues are independent (as in SW and AR), we know
from section 2.2 that risky firms have zero expected profits at rR so that all

economic rents at the corresponding deposit rate E(R̃)
B

− 1 go to households.
Since safe and risky projects have the same expected project revenue, S(rR)
is an adequate measure of the socially optimal level of investment. If S(rR) >
(NS + NR)B, it is socially optimal to fund all projects.

When it comes to dependent project revenues among risky firms, the same
shortcut is not available since projects differ fundamentally in the aggregate:
The risky firms’ market risk cannot be diversified. Clearly, risk-averse house-
holds prefer safe projects to risky ones since all project revenues have the
same expectation.18

Thus, a social optimum either consists of only safe projects, or of all
safe and some (or all) risky projects. Technically, we first optimize utility
assuming that households do only safe projects.19 If the optimal amount of

17Formally, every single bank has to make sure that its amount of credit given at each
loan rate equals its amount of deposits collected at the respective deposit rate combina-
tions. Otherwise, a bank might not meet its liabilities and, thus, incur an expected utility
of minus infinity. Since households are indifferent between deposit contracts ex ante, banks
are able to match loan rates with deposit rates.

18Formally, the variance of a risky project is higher than the variance of a safe project
if and only if RR > RS , which is true by assumption.

19Note that we optimize utility as opposed to expected utility. If there are only safe
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the safe projects, m, is in the interval [0, NS], m is the socially optimal level
of investment. However, if the solution m is larger than NS, the optimal
amount of safe projects is NS.20 Then, we find the amount of risky projects
in a social optimum, n ∈ [0, NR], by maximizing expected utility over n,
using m = NS. The optimization problem in step one is

max
s′m

U = u(Y − s′m) + δu(s′m(1 + i′)), (13)

where i′ = E(R̃)
B

− 1 is the expected revenue rate from a safe project which
results in a safe payoff rate in aggregate. Using CRRA utility and solving the
FOC for (s′m)∗, the optimal amount of savings with only safe firms, yields

(s′m)∗ =
Y

1 + (δ(1 + i′)1−θ)−
1
θ

. (14)

This implies

m =
H(s′m)∗

B
(15)

safe projects. If m > NS, the optimal amount of savings with both firm
types, (s′mn)∗, solves

max
s′mn

EU = u(Y − s′mn) + δ
[
pRu(s′mn(1 + i′g)) + (1− pR)u(s′mn(1 + i′b))

]
.

(16)

The payoff rates depend on n = Hs′mn

B
−NS. Using this, we get

i′g =
NSE(R̃) + nRR

(NS + n)B
− 1 =

NSE(R̃) + (Hs′mn

B
−NS)RR

Hs′mn

− 1, (17)

projects in a social optimum, the payoff rate is a safe one.
20A negative second derivative of the objective function w.r.t. savings is sufficient to

guarantee that doing NS safe projects is better than doing any other number of safe
projects less than NS if m > NS . We have d2EU

ds2 = u′′(Y − s) + δE[u′′(sR̃′)R̃′2] < 0 since
u′′(c) = c−θ−1

−θ < 0 due to risk aversion. Clearly, R̃′ (the gross payoff rate) is only random
if the social optimum entails some risky projects. We use primes to label variables in a
social optimum so that i is a deposit rate offered to households by banks, whereas i′ is the
payoff rate in a social optimum without asymmetric information.
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i′b =
NSE(R̃)

(NS + n)B
− 1 =

NSE(R̃)

Hs′mn

− 1. (18)

Next, using CRRA utility, we derive the FOC which we solve for (s′mn)∗

(s′mn)∗ =
HY −

(
δE(R̃)

B

)− 1
θ
NS(E(R̃)−RR)(

δE(R̃)
B

)− 1
θ HRR

B
+ H

. (19)

This uniquely determines n, i′g and i′b. They all depend on the number of
households since an increase in the number of households results in higher
savings which have to be invested in risky firms. Each household has an ex-
ternality on all other households by making payoff rates riskier in that case.
If n > NR, the social optimum consists of doing all projects available.21

We can now come to a central point in our paper, namely the influence
of project dependency on equilibrium outcomes. The benchmark are the
results of SW and AR. For now, to get strong points, we focus on cases
where it is socially optimal to fund all projects - both with independent and
dependent project revenues. Then, from the stylized equilibrium cases in
Figure 4, cases I, II and IV22 are impossible when revenues are independent
since S(rR) < (NR + NS)B such that the social optimum would not consist
of all projects.

It is easy to see that case I is not fundamentally different from case IV and
case II is similar to case III.23 Therefore, we concentrate on cases III to VI
when project revenues are dependent. Since project dependency introduces
risk without changing the expectation of the deposit rate, our consideration
of θ < 1 implies that savings will decrease at any loan rate r.24

21Again, the negative second derivative of the objective function w.r.t. savings is suffi-
cient to guarantee this. This procedure is equivalent to constrained optimization with the
constraint n ≤ NR.

22These are the cases with credit rationing either at rS (cases I and IV) or at rR (case
II).

23The difference between cases II and III is the number of risky firms in equilibrium and
the loan rate charged. However, they are similar in that only risky firms get credit.

24Formally, risk leads to an MPS at any loan rate r such that the result of Rothschild
and Stiglitz (1971) applies.
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Transition Equilibrium Equilibrium ∆ # total ∆ # safe ∆ # risky
revenues indep. revenues dep.

1 III III no no no
2 V V less less no
3 V IV less unclear less
4 V III less less (all to zero) no
5 VI VI no no no
6 VI V less less no
7 VI IV less less less
8 VI III less less (all to zero) no

Table 1: Equilibrium transitions and amount of projects.

Thus, we are left with eight possible transitions, where a transition is
the change of the equilibrium case arising from the (perfect) dependency of
project revenues. We list them in Table 1.

Transition 1 is not very interesting since the introduction of dependency
does not change much. The allocation is the same in that only risky projects
are funded. The difference is that the loan rate increases (in order to make
households up for the overtaking of risk). Also, transition 5 is trivial: Both
allocations (with and without dependency) are socially optimal in their re-
spective environment, the difference again being a higher loan rate.

Proposition 2: Dependency of project revenues might significantly reduce
the equilibrium number of projects in a socially harmful way: While leaving
unaffected the number of risky projects, (some) safe projects might not be
funded.

Proof:
Transitions 2, 4, 6 and 8 are such cases. The reduction is harmful in two
ways: The overall level of investment is too small and the projects being
funded are of the wrong type. The following parameter constellations prove
that the transitions can occur.

• transition 2: pS = 0.7, pR = 0.5,RS = 6
0.7

,RR = 12, NS = 100, NR =
200, C = 0.2, B = 5, Y = 3, δ = 0.9, H = 1200 and γ = 0.2.

• transition 4: pS = 0.8, pR = 0.2,RS = 5,RR = 20, NS = 25, NR =
275, C = 0.1, B = 3, Y = 2, δ = 0.9, H = 2000 and γ = 0.45.
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• transition 6: pS = 0.8, pR = 0.2,RS = 8,RR = 32, NS = 25, NR =
275, C = 0.1, B = 3, Y = 2, δ = 0.9, H = 1700 and γ = 0.45.

• transition 8: pS = 0.8, pR = 0.2,RS = 8,RR = 32, NS = 10, NR =
290, C = 0.1, B = 3, Y = 2, δ = 0.9, H = 1800 and γ = 0.45.

Using these parameters and then plotting capital supply and LTU with and
without dependency shows that the respective transitions occur. For the
case of independency, simply use E(i) instead of ib and ig in all we have done
so far. Note that all parameter constellations lead to social optima with all
projects funded.
q.e.d.

The most extreme case is transition 8 where all safe projects are funded when
revenues are independent but none when revenues are dependent. Intuitively,
households face a trade-off: loan rate vs. firm type. A loan rate above rS

discourages safe firms from lending and makes the deposit rate riskier such
that risk preferences are crucial to determine equilibrium. With few safe firms
present in the economy and/or low risk aversion, the tendency is to neglect
the safe firms and increase the loan rate. This is what we can observe in the
parameter constellations of the proof.

Proposition 3: Dependency of project revenues might lead to an equilibrium
with credit rationing.

Proof:
Transitions 3 and 7 are such cases. They arise at several parameter specifi-
cations, as for instance:

• transition 3: pS = 0.8, pR = 0.2,RS = 10,RR = 40, NS = 200, NR =
100, C = 0.2, B = 5, Y = 2, δ = 0.9, H = 1250 and γ = 0.2.

• transition 7: pR = 0.2, pS = 0.99,RS = 6.4
0.99

,RR = 6.4
0.2

, NS = 100, NR =
200, C = 0.1, B = 5.5, Y = 2, δ = 0.9, H = 4000 and γ = 0.37.

q.e.d.

The intuition is similar, now with risk-aversion rather high and/or number
of safe firms rather high.
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Transition 3 is the case where a two-price equilibrium becomes an equi-
librium with credit rationing, transition 7 has a market clearing equilibrium
turned into a credit rationing equilibrium. This is particularly interesting
in light of the recent result of AR: Credit rationing as in cases I and IV is
impossible in the SW setup.25 In Proposition 3, we have shown that the in-
troduction of project dependency might make credit rationing possible again.
This happens in spite of it being socially optimal to fund all projects such
that every unit of rationing is socially inefficient.26

Up to now, we focussed on cases where the social optimum consists of all
projects. We then compared the situation with and without project depen-
dency. Now, we look at cases where the social optimum does not necessarily
consist of all projects any more.27 Thus, rationing of firms needs not be
socially harmful under-investment.

There are two kinds of inefficiencies: the amount of projects done and the
type of the projects done. From these two, the total number of projects done
cannot be used alone to determine inefficiencies. After all, if a social optimum
requires, say, 20 safe projects and no risky one but the market equilibrium
entails only risky projects, how should we judge the inefficiency from the
total number of projects? This is the story of apples and oranges. We simply
cannot compare them. However, we can make type-specific statements.28

Proposition 4: The number of safe projects in equilibrium cannot be higher
than in a social optimum.

Proof:
We prove this for each equilibrium case separately. For cases II and III it is
true since the equilibrium in both cases consists of only risky projects and
the social optimum always has some safe projects funded.

25Recall from the introduction that a two-price equilibrium has rationing, too. However,
only safe firms are rationed, whereas in a credit rationing equilibrium (at a single interest
rate), both firm types are rationed, and the risky miss a strictly positive expected profit.

26Clearly, the harm (as measured by LTU) from not doing a safe project outweighs the
harm from not doing a risky one, all other things equal.

27This can be considered the more natural case since parameter constellations which
lead to a social optimum with funding for all projects in our six cases are rather extreme,
especially collateral C is very small.

28For all equilibrium cases, we give some numerical examples together with the respective
amounts of safe and risky projects both in equilibrium and in the social optimum in
appendix 7.2.
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For cases I, IV and VI, we only have to look at social optima with m < NS

safe projects. Clearly, case VI is impossible then. We show that m < NS

implies that the total number of projects in equilibrium and, thus, the number
of safe projects in particular, is less than the number of safe projects in the
social optimum.

To see this, note that the payoff rate in a social optimum is a safe one

(and equal to E[R̃]
B
−1), whereas the deposit rate in equilibrium is always risky

with a mean below the payoff rate (from Figure 1, recall that E[R̃]
B

− 1 is the
highest deposit rate mean possible and it only occurs in equilibrium case II).
Since we focus on θ < 1, the substitution effect outweighs the income effect.
Therefore, if the equilibrium expected deposit rate were riskless, savings in
equilibrium would be lower than in a social optimum. The additional effect
of the equilibrium risk reduces savings even further, a result well-known from
Rothschild and Stiglitz (1971).29

The same logic is true for case V, the two-price equilibrium: Having
a social optimum with m < NS, the deposit rate combination at either
equilibrium loan rate has a mean which is lower than the riskless payoff rate

in optimum (E[R̃]
B

− 1 for m < NS), and a strictly positive variance. Thus,
total savings in equilibrium are lower and, in particular, the number of safe
projects must be smaller, too.
q.e.d.

However, it is interesting to see that this does not imply that the total number
of projects in equilibrium is always lower than in a social optimum.

Proposition 5: The equilibrium level of investment in each of the six cases
might be higher than the respective socially optimal level.

Proof:
As can be seen from Table 4 in appendix 7.2, there are parameter constella-
tions which yield a social optimum with a lower level of investment than in
the respective equilibrium for each of the six cases.
q.e.d.

29Therefore, instead of repeating this chain of arguments each time we compare two
different deposit (or payoff) rate combinations, we can use mean-variance argumentation
as a shortcut in our setup with a binary distribution of the deposit (or payoff) rate and
CRRA utility.
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If the social optimum consists of m < NS firms, this cannot happen (cf. the
argument from the proof of Proposition 4). If n > 0, the mean of the payoff

rates in the social optimum is always (equal to E[R̃]
B

− 1 and thus) higher
than (or, in case II, equal to) the mean of any equilibrium deposit rate com-
bination. The variance, however, can also be higher. There are two driving
forces to determine differences in variance: the relationship between safe and
risky and the amount of collateral. First, the relationship between safe and
risky firms is always better (decreases variance) in a social optimum since
m
n
≥ NS

NR
(in case V, this fraction is even worse). There are several parame-

ters influencing this relationship, as for instance NS, NR and H.30 Second,
it can be shown that an increase in collateral leaves the variance (and the
mean anyway) of the payoff rates unaffected but decreases the variance of
the deposit rate combinations. In sum, the effect of the higher risk in a social
optimum can outweigh the effect of the higher mean such that, with θ < 1,
savings in equilibrium can be higher than in a social optimum.31

Another natural question arises: Can the equilibrium allocation be the one
of a social optimum so that number and type of projects coincide, i.e., is
there an efficient equilibrium?

Proposition 6: Market clearing at a loan rate r ≤ rS is a necessary (but
not sufficient) condition for a socially efficient equilibrium.

Proof:
In case VI, all firms are funded in equilibrium. If the social optimum consists
of all projects, the equilibrium allocation is efficient. Otherwise, it is not. The
former occurs when parameters are as in line 11 in Table 3 in appendix 7.2,
the latter occurs for parameters as in line 12 (the allocations can be found
in the respective lines in Table 4 in the appendix).

Evidently, cases II and III cannot be socially efficient since only risky
firms are funded. The equilibrium in cases I, IV and V can not be efficient
if m = NS since there is always rationing of safe firms. If m < NS, the

30An increase in H, the number of households, decreases the safe-risky relationship in a
social optimum with n > 0, but does not necessarily change this relationship in equilibrium
(in case V it does).

31This happens, e.g., when the difference in the safe-risky relationship is small and/or
C high. There are other such parameter variations, as can be seen from the parameter
constellations with the respective allocations in Tables 3 and 4 in appendix 7.2.
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arguments of the proof of Proposition 4 can be used to see that the number
of safe firms in equilibrium must be lower than the number of safe firms in a
social optimum.
q.e.d.

We close this section with a short summary. We developped the concept of
social desirability for the case of dependent project revenues. Assuming that
it is socially optimal to do all projects, we found that dependency of project
revenues can have two strong effects: First, it might reduce the number
of safe firms in equilibrium and, second, it can lead to credit rationing in
equilibrium. We found and stressed the importance of a closer examination
by number and type of projects in a social optimum. The interplay between
asymmetric information and dependent project revenues can have serious
consequences: The equilibrium amount of safe firms is never higher than the
socially optimal amount. However, it is possible to have an equilibrium with
more projects than in a social optimum. The only efficient equilibrium is a
market clearing one with all firms active.

2.5 Comparative statics

We have made two important assumptions in our model: dependent revenues
and risk aversion. We have analyzed the influence of perfectly dependent
revenues at a given degree of risk aversion (and intertemporal substitution
preferences at the same time). The aim of this section is to see how changes in
θ influence the equilibrium given perfect dependency of project revenues (of
the risky firms). An increase in θ has two economic effects: higher risk aver-
sion and stronger preferences for smooth consumption.32 As a consequence,
changes in capital supply and LTU might cause changes in equilibrium. We
have seen in Figure 4 that whether the maximum of capital supply (and
LTU) occurs at rS or rR is of utmost importance for the equilibrium. If
S(rR)− S(rS) is positive (⇔ s∗(rR)− s∗(rS) > 0), the maxima occur at rR,
and vice versa.

At θ = 0, the difference s∗(rR) − s∗(rS) can be either 0 or Y . θ = 0
means risk neutrality so that only the expected deposit rate matters for the

32With CRRA utility, the relationship is an inverse one: θ is the Arrow-Pratt measure
of relative risk aversion and the inverse of the elasticity of intertemporal substitution at
the same time.
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consumption-savings decision. Furthermore, the marginal utility of consump-
tion is finite and equal to 1 for all consumption levels, especially u′(0) = 1
in both periods. Therefore, the FOC for θ = 0 becomes 1 = δ(1 + E(i))
so that there is a critical E(i) from which on (discounted) marginal util-
ity in period two will be higher than in period 1 so that households will
save Y for E(i) > E(i) and nothing otherwise. Since E(i(rS)) < E(i(rR)),
s∗(rR) − s∗(rS) can start at either 0 or Y .33 The former occurs if E(i) <
E(i(rS)) or E(i) > E(i(rR)), the latter if E(i(rS)) < E(i) < E(i(rR)). We
get four different shapes for s∗(rR)−s∗(rS) (as a function of θ) which we plot
in Figure 5.

1. The curve starts at 0, increases until a local maximum, decreases to a
negative local minimum and finally becomes zero at θ = 1.

2. It starts at 0, increases until a local maximum, decreases to a root at
θ = 1 so that there is no intersection with the abscissa for θ < 1.

3. It starts at Y , decreases to a (negative) local minimum and finally
becomes zero at θ = 1.

4. It starts at Y and decreases to a root at θ = 1 so that there is no
intersection with the abscissa for θ < 1.

The root at θ = 1 always occurs since θ = 1 means log utility with the
well-known property of a constant amount of savings. With most parameter
constellations, we get shape 1 or 3, i.e., there is a critical θ < 1 above which
the maximum of capital supply (and LTU) occurs at rS. However, shapes
2 and 4 show that we do not necessarily have such a critical θ.34 If it were
possible to vary risk aversion alone, an educated guess would be to always
have a critical value from which on the high risk at rR leads to S(rR) < S(rS).
This is the most important drawback of the preceding analysis: We cannot
vary risk aversion keeping all other things equal. Therefore, we present a
non-expected utility setup (non-EU) in the next section.

33In a generic case, namely E(i) = E(i(rS)), the difference at θ = 0 can be anything
between 0 and Y .

34An exemplary parameter constellation which leads to shape 2 is: pS = 0.9, pR =
0.1,RS = 10,RR = 90, NS = 200, NR = 280, C = 2, B = 5, Y = 2, δ = 0.5 and arbitrary
H. For shape 4: pS = 0.9, pR = 0.1,RS = 10,RR = 90, NS = 200, NR = 280, C = 2, B =
5, Y = 2, δ = 0.9 and arbitrary H.
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Figure 5: Four different shapes of s∗(rR)− s∗(rS).

3 Extension I: Non-expected utility

Luckily, there is a way to separate risk aversion and intertemporal prefer-
ences. In a setup equivalent to ours, Selden (1978, 1979) implemented the
consumption-savings decision with two parameters, each measuring one of
the two preference components.35

3.1 Capital supply, LTU and equilibrium

Selden suggests to use the certainty equivalent of uncertain consumption in
the second period to maximize overall utility. He calls his approach the
ordinary certainty equivalent representation of preferences. Note that the
optimization problem as a whole is a non-expected utility approach since the

35Among others, Selden’s work prompted the often-quoted paper by Epstein and Zin
(1989), which might be more familiar to readers, but works with an infinite horizon. This
additional complication is not necessary to make our main points.
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objective function is in general not linear in probabilities.36 Agents solve

max
s

U = {u(Y − s) + δu(ĉ2)}, (20)

where ĉ2 is the certainty equivalent defined by v(ĉ2) = E[v(sR̃)], so that ĉ2 =
v−1(E[v(sR̃)]). As before, sR̃ is the uncertain income (and consumption) flow
in the second period. The function v(·) determines the certainty equivalent
for random consumption in the second period and is assumed to be of the
CRRA type: v(c) = c1−γ

1−γ
. Instantaneous utility in the respective period

is u(c) = c1−α

1−α
, which implies constant elasticity of substitution (CES) time

preferences.37 Both γ and α are positive (which represents risk aversion and a
desire for smooth consumption). High γ indicates high risk aversion, whereas
high α indicates a low intertemporal elasticity of substitution, i.e., there is a
strong desire for a smooth consumption path.38 Using the above functional
forms in ĉ2 and the FOC of equation (20), we get the latter as

(Y − s)−α = δE[(sR̃)−γ]E[R̃]
[
s(E[R̃1−γ])

1
1−γ

]γ−α

. (21)

Solving for optimal savings s∗ yields

s∗ =
Y

1 + δ−
1
α R̂

α−1
α

, (22)

where

R̂ =
(
E[R̃1−γ]

) 1
1−γ

(23)

is the certainty equivalent interest rate. This is the riskless interest rate
which an agent with CRRA requires to be as well off as with the uncertain
payoff R̃. Plugging s∗ into the maximization problem and using ĉ2 = R̂s∗

yields LTU as a function of R̂,

36Setting γ = α = θ, we are back in the expected utility case as in section 2. Note that
the definition of the certainty equivalent follows pure expected utility theory.

37The same mathematical function displays both CRRA and CES. We omit the special
cases of u(c) = ln c for α = 1 since we restrict our attention to α < 1 later on, and do not
look at v(c) = ln c for γ = 1 either, unless necessary in mathematical proofs.

38The elasticity of intertemporal substitution turns out to be α−1.
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LTU =
δ

1− α


(
Y − Y

1+δ−
1
α R̂

α−1
α

)1−α

δ
+

(
Y R̂

1 + δ−
1
α R̂

α−1
α

)1−α
 . (24)

Lemma 3: Using non-expected utility, the main properties of capital supply
and LTU stay the same.

Specifically, first, if α < 1 (as opposed to the condition θ < 1), capital supply
increases monotonically in r in each of the intervals [0, rS] and (rS, rR] with a
discontinuous downward jump at rS (cf. Lemma 1). Second, irrespective of
α and γ, LTU increases monotonically in r in each of the intervals [0, rS] and
(rS, rR] with a discontinuous downward jump at rS (cf. Lemma 2). Third,
for α < 1 (not θ < 1), capital supply and LTU have their global maximum
at the same loan rate, viz. either rS or rR (cf. Proposition 1). Fourth, if s∗

is the same at two loan rates, LTU must be the same at these two rates, too
(cf. corollary). In appendix 7.3, we prove all these properties.

Up to now, the crucial insight from introducing non-expected utility is
that the parameter for intertemporal substitution (α) alone is responsible for
the slope of capital supply. As long as α < 1, capital supply is increasing in
r in each of the two intervals with a downward jump at rS, irrespectively of
γ, the parameter capturing risk aversion.

Lemma 4: Whether the maximum of capital supply and LTU occurs at rS

or rR does not depend on the intertemporal substitution parameter α.

The proof of this lemma is also delegated to appendix 7.3. We again focus on
an increasing capital supply. Thus, we only look at α < 1. In consequence,
we get the same six equilibrium cases as in Figure 4 in the expected utility
setup. We could do an analogous analysis regarding social optimum and
equilibrium inefficiencies. However, we abstain from it since it yields no
further insight.

3.2 Comparative statics

The main reason to present the non-EU setup is our interest in how changes
in risk aversion (measured by γ) influence equilibrium. For that purpose,
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we analyze the influence of γ on optimal savings (and thus also on capital
supply).

Proposition 7: If α < 1, an increase in households’ risk aversion decreases
optimal savings at any combination of ib and ig.

Proof:
First, from Basu and Ghosh (1993), we know that a decrease in R̂ implies a
reduction in savings if α < 1. This can be seen from differentiating optimal
savings in (22) w.r.t. R̂,

ds∗

dR̂
= Y

 δ
1
α R̂

1−2α
α(

1 + δ
1
α R̂

1−α
α

)2

1− α

α

 . (25)

Therefore, it is sufficient to show that dR̂
dγ

< 0 for α < 1. Let R1 ≡ 1 + ib
and R2 ≡ 1 + ig (with probabilities (1− p) and p, respectively. We omit the
index R of the probabilities). We distinguish three different cases: 1. R1 < 1
and R2 > 1, 2. R1 < 1 and R2 < 1 and 3. R1 > 1 and R2 > 1.

Case 1, R1 < 1 and R2 > 1:

The derivative of R̂ in equation (23) w.r.t. γ is

dR̂

dγ
=
(
E[R̃1−γ]

) 1
1−γ

(
ln(E[R̃1−γ])

1

(1− γ)2
+

1

1− γ

1

E[R̃1−γ]

dE[R̃1−γ]

dγ

)
.

(26)
We show that it is negative for all admissible parameter values. We can
substitute

• dE[R̃1−γ ]
dγ

= p
(
R1−γ

1 [− ln(R1)]
)

+ (1− p)
(
R1−γ

2 [− ln(R2)]
)

and

• ln(E[R̃1−γ]) = ln
(
pR1−γ

1 + (1− p)R1−γ
2

)
.

Multiply equation (26) by E[R̃1−γ] and (1− γ)2 and let dR̂
dγ

be the resulting
expression,

31



dR̂

dγ
(γ, p, R1, R2) =

[
pR1−γ

1 + (1− p)R1−γ
2

]
ln
(
pR1−γ

1 + (1− p)R1−γ
2

)
− (1− γ)

[
pR1−γ

1 ln(R1) + (1− p)R1−γ
2 ln(R2)

]
.

(27)

Since multiplication with positive values does not change inequalities, it has
the same sign as the original derivative in equation (26).

We undertake the following steps: First, we show that the limit of dR̂
dγ

is

zero as γ approaches 1 (from both left and right).39 Second, we show that

the derivative of dR̂
dγ

w.r.t. γ is negative for γ > 1 and positive for γ < 1.

Third, we show continuity of R̂(γ). Taken together, this means that dR̂
dγ

is
negative for all γ 6= 1.

First step:

lim
γ→1

(
dR̂

dγ

)
= lim

γ→1

{[
pR1−γ

1 + (1− p)R1−γ
2

]
ln
(
pR1−γ

1 + (1− p)R1−γ
2

)
− (1− γ)

[
pR1−γ

1 ln(R1) + (1− p)R1−γ
2 ln(R2)

]}
= 0.

(28)

The argument of the logarithm in the first term approaches one such that
the logarithm approaches zero. The second term is a product where the first
factor goes to zero whereas the second factor approaches some finite real
number such that the whole limit is zero.

Second step:

39Recall that our formulas are not defined for γ = 1.
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d
(

dR̂
dγ

)
dγ

=
[
−pR1−γ

1 ln(R1)− (1− p)R1−γ
2 ln(R2)

]
ln
(
pR1−γ

1 + (1− p)R1−γ
2

)
− (1− γ)

[
−pR1−γ

1 [ln(R1)]
2 − (1− p)R1−γ

2 [ln(R2)]
2
]

= (−1)

{
pR1−γ

1 ln(R1) ln
(
p + (1− p)(R2/R1)

1−γ
)

+ (1− p)R1−γ
2 ln(R2) ln

(
(1− p) + p(R1/R2)

1−γ
)}

,

(29)

where the second equality follows from ln(x + y) = ln(x) + ln(1 + y/x). It is
the sum of two products of three factors each and is of type (−1){F1 · F2 ·
F3 + F4 · F5 · F6}, where F2, F3, F5 and F6 are the logarithms.

For γ > 1, R1 < 1 and R2 > 1, we can see that F1 > 0, F2 < 0, F3 <

0, F4 > 0, F5 > 0, F6 > 0. Thus,
d( dR̂

dγ
)

dγ
< 0 for γ > 1.

For γ < 1, R1 < 1 and R2 > 1, we have F1 > 0, F2 < 0, F3 > 0, F4 >

0, F5 > 0, F6 < 0. Thus,
d( dR̂

dγ
)

dγ
> 0 for γ < 1.

Third step:

Concerning continuity, the only critical value of γ is 1. The left and right
limit of R̂ as γ approaches 1 equals the certainty equivalent interest rate from
using v(c) = ln(c) (the case of γ = 1), namely Rp

1R
1−p
2 .

Taken together, R̂ is a continuous, monotonically decreasing function in
γ in case 1.

Case 2 and 3, R1, R2 < 1 and R1, R2 > 1:

The same proof as in case 1 does not work if both R are either smaller or
larger than one. But there is a shorter version. Let R be the tuple (R1, R2)
with R1 < R2 and R′ another tuple (R′

1, R
′
2) with R′

1 < R′
2. We claim that,

for any R > 0, there are κ > 0 and R′ > 0 such that R = κR′ with R′
1 < 1

and R′
2 > 1. To see this, taking κ = R1 + ε with ε > 0 yields
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R′
1 =

R1

κ
=

R1

R1 + ε
, R′

2 =
R2

κ
=

R2

R1 + ε
.

Clearly, R′
1 < 1. Since R1 < R2, there must be an ε small enough to get

R′
2 > 1. Therefore

R̂(R) = R̂(κR′) = κR̂(R′), (30)

where the second equality follows from first-degree homogeneity of R̂ w.r.t.

R.40 From case 1, we know that dR̂
dγ

< 0 for all R1 < 1 and R2 > 1.41 There-

fore, equation (30) implies that R̂ monotonically decreases in γ not only in
case 1, but also in cases 2 and 3.
q.e.d.

So if risk aversion increases, savings decrease at any (combination of deposit
rates corresponding to a) loan rate r. Since the shape of capital supply and
LTU determine the equilibrium outcome, we can say something about the
influence of risk aversion on equilibrium.

Proposition 8: Capital supply and LTU are maximum at rS for risk aver-
sion high enough, they are maximum at rR otherwise.

Proof:
Let f(γ) ≡ s∗(γ)|r=rR

− s∗(γ)|r=rS
. The proposition is equivalent to saying

that f(γ) has a single root at some γ > 0. Rigorously, we can only show that
there is at least one root. However, we have not found evidence for the fact
that there should be more than one root in a large set of numerical examples.

From AR, we know that the expected return function attains its global
maximum at rR. This implies that, given α < 1, capital supply must be
maximum at rR for risk-neutral households (γ = 0) so that f(0) > 0. The
other extreme is an infinitely high aversion to risk. In this case, we can
see that savings are higher at rS by looking at the limit of the difference in
savings.

40Due to CRRA utility, R̂ is independent of the absolute level of both income and
savings.

41We do not repeat the discussion about the special case of γ = 1.
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lim
γ→∞

(f(γ)) = Y

[
1

1 + δ−1/α(R̂(rR))
α−1

α

− 1

1 + δ−1/α(R̂(rS))
α−1

α

]
,

where R̂(ri) is the certainty equivalent interest rate for our state-contingent
deposit rates ig(ri) and ib(ri) (i ∈ {S, R}) with their corresponding proba-

bilities pR and (1− pR). Since γ only appears in R̂, we only have to look at
the limits of R̂ at rR and rS. Since R̂ decreases in γ (cf. proof of Proposition
7), the smallest riskless deposit rate which can make a maximum risk-averse
household as well off as with a Bernoulli lottery is the worse of the two
lottery outcomes, i.e., (1 + ib(rR)) for rR and (1 + ib(rS)) for rS.42 Since
ib(rR) < ib(rS) (cf. property ii) in section 2.2), we get

(1 + ib(rR))
α−1

α > (1 + ib(rS))
α−1

α ,

given that α < 1. Therefore, the above limit is negative, and its algebraic
form can be obtained by substituting R̂(ri) for (1 + ib(ri)).

Thus, f(γ) starts at a positive value for γ = 0 and asymptotically ap-
proaches the negative limit for γ → ∞, either from above or from below.
Different possible shapes of f(γ) can be seen in Figure 6. Note that we show
two exemplary graphs without being exhaustive.43 Since f(γ) is a continuous
function, there is at least one root. From these figures44, it seems that there
is only one critical value of γ from which on the maximum of capital supply
occurs at rS. For a rigorous proof, we would have to preclude the possibility
of more than one root, which is not straightforward.
q.e.d.

We illustrate this proposition in Figure 7. We plotted capital supply and
LTU for three different values of γ, as indicated in that figure. The upper
part is capital supply (and demand), the lower part is LTU, both depending

42The opposite is also true: For maximum risk lovers, i.e., γ → −∞, the largest riskless
deposit rate which can make a maximum risk-loving household as well off as with a lottery
is the better of the two outcomes: (1 + ig(rS)) and (1 + ig(rR)) at the respective loan
rates.

43For extreme parameter constellations, we found cases where f ′(0) is positive, i.e., the
maximum of the difference in savings might occur at a positive value of γ.

44Apart, we tried a large amount of numerical examples. In none of these, there was
more than one root.
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Figure 6: Two exemplary shapes of f(γ).

on the loan rate r. For a high value of γ, both capital supply and LTU have
their maximum at rS (the dashed curves). For low γ, both maxima occur at
rR (the solid curves). At γ = 0.39, capital supply (and LTU) are the same
at rS and rR (the dotted curves).45

Proposition 8 confirms the guess we were making in section 2.5: There
is always a critical value for the risk-aversion parameter from which on the
maximum occurs at rS. Apart from this, the non-expected utility setup has
further convenient features: On the one hand, it is a genuine generalization
since setting α = γ = θ yields the expected utility setup. This added flexibil-
ity allows to vary two preference components separately. In particular, we are
able to vary risk aversion to arbitrarily high degrees of risk aversion without
changing the sign of the slope of capital supply. On the other hand, the em-
pirical literature shows that there is no unanimous relationship between risk
aversion and the intertemporal elasticity of substitution. In particular, the
hypothesis of an inverse relationship as implied by the expected utility setup
is rejected. However, there is dissent regarding the plausible magnitudes of
α and γ. In an empirical study, Attanasio and Weber (1989) get α < 1 and

45The remaining parameters used for the plots are: pS = 0.8, pR = 0.2, RS = 10,
RR = 40, NS = 100, NR = 100, C = 2, B = 5, Y = 2, H = 500, α = 0.5 and δ = 0.9.

36



Figure 7: Capital supply and LTU for different values of γ.

γ > 1, which could not be considered using an expected utility setup.46

4 Extension II: Imperfect dependency

In all the above, we considered perfect dependency in that all risky firms
either succeed or fail. This is the most extreme sort of dependency. To
be closer to reality, we introduce a random variable q̃ with support [0, 1] to
capture the degree of dependency. Let f(q̃) be its density. Varying q̃ (or f(q̃))
can be seen as comparative statics w.r.t. the degree of project dependency,
one of our two important assumptions. We can interpret q̃ as an aggregate
shock which determines capital risk.47 The extreme realization q = 0 means
that all risky (and, thus, all) firms’ revenues are independent, such that we
get the SW setup with a riskless deposit rate. The other extreme q = 1

46We do not want to omit contrary studies. Hall (1987) and Epstein and Zin (1991)
estimate values of α > 1. If α > 1, the whole SW and AR analysis which is based on an
increasing capital supply is not valid.

47The project revenue is another sort of random variable which can be interpreted as a
shock to each individual firm.
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Figure 8: Timing of the new model structure.

means that all risky firms have returns perfectly depending on each other (as
in the above section). Intermediate values of q yield imperfect dependency
among the risky firms. For example, if q = 0.5, half of the risky firms have
independent revenues, but the other half will either succeed or fail as a whole.
The timing of this new model structure is visualized in Figure 8.

4.1 Deterministic degree of dependency

We assume that households take the consumption-savings decision after q̃
has realized. Evidently, credit demand of firms is unaffected by this new
modelling approach. The realization of q̃ only changes aggregate risk and,
thus, the deposit rates. Banks act in the same way as before, i.e., they pass
through risk and make zero profits in any potential equilibrium. Thus, the
good and bad state deposit rates (which still occur with probabilities pR and
(1− pR)) become

ib(q) = (1− q)E[i] + qib, ig(q) = (1− q)E[i] + qig. (31)

As in section 2.3, ib and ig are the deposit rates for perfectly dependent
revenues and E[i] is the expected deposit rate. Also, all three rates depend
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on r which we again omit, unless stated otherwise. Again using the expected
utility maximization, the optimal amount of savings becomes a function of
q.

s∗(z(q)) =
Y

1 + (δz(q))−
1
θ

, (32)

where z(q) ≡ pR(1+(1−q)E[i]+qig)
1−θ +(1−pR)(1+(1−q)E[i]+qib)

1−θ, in
analogy to the definition of z in section 2.3. Instead of being a function of z,
optimal savings are a function of z(q). The same is true for indirect lifetime
utility: Take equation (11) and write z(q) instead of z to get LTU(z(q)).

For the equilibrium analysis, we need to know the shapes of both capital
supply and LTU as functions of r. They depend on the shape of the deposit
rate combinations (as functions of r) as in Figure 1. For that purpose, let us
first look at the influence of a change in q at a given r. A decrease in q does
not change the expectation of the deposit rate, but decreases its variance.

E[i(q)] = pR ((1− q)E[i] + qig) + (1− pR) ((1− q)E[i] + qib) = E[i], (33)

V ar[i(q)] = pR ((1− q)E[i] + qig − E[i])2

+ (1− pR) ((1− q)E[i] + qib − E[i])2

= pR (q(ig − E[i]))2 + (1− pR) (q(ib − E[i]))2 = q2V ar(i),

(34)

where V ar(i) is the variance of the deposit rate if project revenues are per-
fectly dependent. This is illustrated in Figure 9, where we show density
functions of the deposit rates, contingent on the realization of q.48

Given our binary distributed random variable, we have already shown
that an increase in variance at a constant mean is an MPS. Therefore, com-
paring ib(q), ig(q) for q < 1 with ib and ig (i.e., q = 1), the latter is an MPS of

48Note that we used pR = 2
3 so that E(i) is closer to ig than to ib. The three vertical

dashed lines indicate the worst possible bad deposit rate, the expected deposit rate and
the best possible deposit rate, respectively. The actual deposit rates after q̃ has realized
are functions of q and occur where the thick bars are drawn.
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Figure 9: Density functions of deposit rates depending on q.
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the former at any loan rate r.49 Thus, Rothschild and Stiglitz (1971) applies:
Savings decrease in q at any loan rate r.

Since the above relationship is valid for all r, the deposit rates (as func-
tions of r as in Figure 1) change as follows. Not all of the general properties
i) to v) necessarily apply. The jump of ig(q) at rS (property i)) does not
need to be upward. For q sufficiently close to 0, it is a downward jump. The
bad-state deposit rate ib(q) is monotonically increasing in r in each of the
two intervals for q < 1 (property ii)). Properties iii), iv) and v) stay the
same. In particular, the expected deposit rate attains its global maximum at
rR and the variance of the deposit rate is monotonically increasing in r. The
latter fact can be seen from equation (34): V ar(i) increases monotonically
so that q2V ar(i) does so, too.

The reader can check that the arguments in the proofs of Lemmas 1 and
2, as well as the ones of Proposition 1 and its corollary stay the same, so that
we get the same six equilibrium cases as shown in Figure 4. Therefore, we
conclude:

Proposition 9: Sign of slope, direction of the discontinuity at rS and the
fact that capital supply and LTU both have their maximum at either rS or rR

do not depend on q. However, a higher degree of dependency amongst risky
firms decreases households’ savings at any loan rate r.

Proposition 10: The degree of project dependency might crucially influence
equilibrium outcomes in our model.

Proof:
Proposition 10 follows from Propositions 2 and 3, where we have seen and
proven that the two extreme cases of q = 0 and q = 1 (all other parameters
equal) can lead to different equilibrium outcomes.
q.e.d.

For a proof of the proposition, it is sufficient to look at the extreme cases.
Of course, the same effect can happen with only small variations in q. Using
pS = 0.8, pR = 0.2, RS = 10, RR = 40, NS = 200, NR = 200, C = 2, B = 5,
Y = 2, δ = 0.9, H = 1030, θ = 0.40 and changing q from q = 0.48 to q = 0.49
decreases capital supply at any given r such that there is a case V equilibrium

49Equivalently, we could say that ib(q), ig(q) is a mean preserving contraction of ib and
ig for q ∈ [0, 1).
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(with two loan rates) for q = 0.48 but a case III market clearing equilibrium
for q = 0.49.50 This numerical example proves the next proposition:

Proposition 11: There is financial fragility. A small change in a parameter
can have a significant influence on the type of equilibrium.

In our setup, not only a change in q, but also small changes in other parame-
ters, e.g., the number of households H, can influence the type of equilibrium.

4.2 Stochastic degree of dependency

Instead of assuming that q̃ has realized when households decide about con-
sumption and savings, as we did in the last section, we now assume that q̃
has not realized yet when they decide. We assume that households know
the distribution of q̃, i.e., there is risk in the degree of dependency, but no
uncertainty. In contrast to section 4.1, the two state-contingent deposit rates
are not known any longer since they depend on the realization of q̃. Note
that their distributions are the same as the one of q̃ since they are linear
combinations of q̃. Clearly, the parameters and support of the distribution
will change. Therefore, the deposit rate is a two-step random variable and
the deposit rate distribution is not a binary one before q̃ has realized. In
Figure 10, the reader can find an exemplary distribution of q̃ and the implied
distribution of the deposit rate i(q̃). The upper part is a discrete uniform
distribution with five occurrences. The lower part is the continuous uniform
distribution of q̃. We used pR = 2

3
both times.

For the consumption-savings decision, we must know the expectation
E0[i(q̃)] and variance V ar0(i(q̃)) of i before q̃ has realized.51 The index 0
at the expectation and variance operator indicates that we take expectations
before any random variable has realized. We get

50Although such a marginal change in a parameter changes the equilibrium case, the
allocation is not dramatically different. In the given example, the two-price equilibrium
has almost no safe firm funded and most of the risky firms get credit at a high loan rate
anyway. Thus, the market clearing equilibrium with only risky firms funded at a slightly
higher loan rate is not very different.

51This does not mean that we are conducting mean-variance analysis. However, looking
at the mean and the variance is sufficient for our purpose as can be seen later on.

42



Figure 10: Density functions of q̃ and the implied densities of i (pR = 2
3
).

E0[i(q̃)] = pRE0 [(1− q̃)E[i] + q̃ig] + (1− pR)E0 [(1− q̃)E[i] + q̃ib]

= E[i] + E0[q̃] (E[i]− E[i]) = E[i].

(35)

Since V ar(X) = E[X2]−E[X]2, we get the variance by finding the expecta-
tion of the squared deposit rate,

E0[i(q̃)
2] = pRE0

[
((1− q̃)E[i] + q̃ig)

2
]
+ (1− pR)E0

[
((1− q̃)E[i] + q̃ib)

2
]

= E[i]2 + 2E[i]E0[q̃] (E[i]− E[i]) + E0[q̃
2]V ar(i)

= E[i]2 + E0[q̃
2]V ar(i).

(36)

As E0[q̃
2] = V ar0(q̃) + E0[q̃]

2, we get
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V ar0[i(q̃)] = E0[i(q̃)
2]− E0[i(q̃)]

2 = E0[q̃
2]V ar(i)

=
(
V ar0(q̃) + E0[q̃]

2
)
V ar(i).

(37)

The variance of the deposit rates only depends on the variance and expecta-
tion of any distribution of q̃.

Lemma 5: Irrespective of f(q̃), the distribution of the dependency of project
revenues, the mean of the distribution of deposit rates is the same and the
variance is less than with perfectly dependent project revenues.

Proof:
The first part of the lemma follows immediately from equation (35). From
equation (37), E0[q̃

2] < 1 since q̃ has support [0, 1], irrespectively of the
distribution. Therefore, V ar0[i(q̃)] < V ar(i).
q.e.d.

Lemma 6: A change in the distribution of q̃ influences savings at a given
loan rate r. An increase in either expectation or variance (or both, or any
combination of changes such that V ar0(q̃) + [E0(q̃)]

2 increases) of the distri-
bution of project dependency decreases savings, and vice versa.

Proof:
Equation (37) implies that the variance of the deposit rate increases from
the changes in the distribution of q̃ indicated in the proposition. Since the
mean stays the same, such changes constitute an MPS of the distribution
of the deposit rate. Furthermore, since we assumed θ < 1, we know from
Rothschild and Stiglitz (1971) that an MPS decreases savings in an expected
utility setup with CRRA utility.
q.e.d.

We should now go through all the lemmas and propositions in section 2 to
check if they still hold. This task is more complex but results in the same
consequences for the crucial functions, capital supply and LTU: If θ < 1,
savings increase with the well-known discontinuous downward jump, and so
does LTU. Again, their maxima occur at the same loan rate, rS or rR (just
define z(q̃) in an analogous way and apply the same arguments).
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distribution qj p(qj) E0(q̃) V ar0(q̃) V ar0(q̃) + E0(q̃)
2

a) 0 1 0 0 0
b) 0.5 1 0.5 0 0.25
c) 0.75 0.5

0.5 1
16

0.3125
0.25 0.5

d) 0.9 0.5
0.7 1

25
0.53

0.5 0.5
e) 1 1 1 0 1

Table 2: Various (discrete) distributions of q̃ and some respective character-
istics.

Proposition 12: A change in the distribution of q̃ might crucially influence
equilibrium outcomes in our model by changing whether the maximum of
capital supply and LTU occurs at rS or at rR.

Proof:
We only have to find one such case to prove the proposition. In analogy to
the proof of Proposition 10, we can look at the two degenerate distributions
q̃ = 0 and q̃ = 1 with certainty (all other parameters equal). The proposition
then follows from Propositions 2 and 3.
q.e.d.

Again, the proposition holds for many other distributions. Consider the
(simple and discrete52) distributions in Table 2.

The graphs in Figure 11 are based on the distributions of q̃ in Table
2. The other parameters are: pS = 0.6, pR = 0.4, RS = 40

3
, RR = 20,

NS = 100, NR = 100, C = 2, B = 5, Y = 2, γ = 0.8 and δ = 0.9.
On the abscissa, we have the loan rate r, with breakeven loan rates of 1.4
and 2.4 under the given parameter constellation. The ordinate displays the
optimal amount of savings. Going from distribution a) to e) in Figure 11,
we can observe what Lemma 6 predicts. Any change in expectation and/or

52It would also be possible to use continuous distributions of q̃. However, there is no
additional insight from the increasing complexity. Results do not change qualitatively,
but the cost increases manyfold. From the formula of optimal savings, we must find the
distribution of some power of the deposit rate, which is not necessarily possible. Literature
on the search of distributions for (non-linearly) transformed random variables will help,
as for instance Krishnan (2005).
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Figure 11: Capital supply for distinct distributions of q̃ in one graph.

variance of the distribution of q̃ that increases the sum of the variance and
the squared expectation decreases savings. Also, for distributions a), b) and
c), the maximum of capital supply occurs at rR, whereas distributions d) and
e) yield maxima at rS (Proposition 12). Note that LTU will also have its
maximum at the respective loan rate such that we have different equilibrium
outcomes.

The reader has certainly observed the similarity of Propositions 10 and
12. Only making q̃ stochastic does not change much. However, it is a useful
tool which enables us to go one step further, namely to introduce uncertainty.

4.3 Stochastic and uncertain degree of dependency -
self-fulfilling expectations

We now assume that households have a prior about the distribution of the
degree of dependency, which might or might not be correct. The correct
distribution is unknown, i.e., there is uncertainty. As in section 4.2, house-
holds take the consumption-savings decision before q̃ has realized. Since we
assumed homogeneous households all over the paper, we go on to assume
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that the prior is the same for all households.

Proposition 13: There can be self-fulfilling expectations: If households ex-
pect a high degree of dependency among the risky firms, the equilibrium might
be characterized by a high degree of dependency.

Proof:
If the households’ prior on q̃ has a very high mean and a very low variance,
i.e., they are pretty sure that there will be a high degree of dependency,
savings will be quite low. For a prior with a very low mean and a very
low variance, savings could be much higher. As a proof to the proposition,
assume the two most extreme cases: a prior of a degenerate distribution of
q̃ = 1 with probability 1 vs. a prior of q̃ = 0 with probability 1. Then, for
suitable parameter constellations, transition 8 in Proposition 2 can occur,
i.e., if households expect a low degree of dependency, the equilibrium could
be a market clearing one with all projects funded (say, equilibrium 1). On
the contrary, if they expect a high degree of dependency, the equilibrium can
become a market clearing one with all risky projects funded, but no safe ones
(say, equilibrium 2).

Clearly, the degree of dependency as measured by the realization of q̃ is
exogenous. However, measuring the degree of dependency with regard to all
firms active in equilibrium, there is a share q(1− β) of firms with (perfectly)
dependent revenues in equilibrium 1, but a share q of firms with (perfectly)
dependent revenues in equilibrium 2. Since β = NS

NS+NR
, (1− β)q < q.

q.e.d.

5 Extension III: Intra and inter-type depen-

dency

The reader might have wondered from the very beginning about the specific
form of dependency we assumed. Even though we have argued in favor of the
assumption that only the risky firms’ project revenues are dependent, this
is not a necessary assumption of the model. In this section, we use another
sort of dependency. First, we add (perfect) dependency among the safe firms,
i.e., in the aggregate, all safe firms will either succeed or fail. Second, we
consider inter-type dependency: We assume that risky firms can only succeed
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if the safe firms succeed. Therefore, the risky firms’ success probability is a
conditional one. This section can be considered a robustness test since we
show that the main results obtain with these assumptions, too.

The individual success probability of a safe firm does not change, it is still
pS. For the risky firms, we define p′R as the success probability conditional on
the safe firms’ success. Let Si be a Bernoulli random variable which takes on
the value “1” if all firms of type i succeed, and “0” otherwise (i ∈ {R,S}).53
The four conditional probabilities for the risky firms are: P (SR = 1|SS =
1) = p′R, P (SR = 1|SS = 0) = 0, P (SR = 0|SS = 1) = 1 − p′R and P (SR =
0|SS = 0) = 1.
The four states of the world54 occur with the following probabilities:

• P (SR = 0 ∩ SS = 0) = P (SR = 0|SS = 0) · P (SS = 0) = 1 · (1− pS) =
1− pS,

• P (SR = 1∩SS = 0) = P (SR = 1|SS = 0) ·P (SS = 0) = 0 · (1−pS) = 0,

• P (SR = 0 ∩ SS = 1) = P (SR = 0|SS = 1) · P (SS = 1) = (1− p′R) · pS,

• P (SR = 1 ∩ SS = 1) = P (SR = 1|SS = 1) · P (SS = 1) = p′R · pS.

Omitting the zero probability case and defining pR ≡ p′R · pS, we have three
remaining states.

1. All firms fail, with probability (1− pS). Returns in that case are i1 =
C
B
− 1 for all r ≤ rR.

2. The safe firms succeed but the risky fail, with probability (pS − pR).
Returns are i2 = βr + (1 − β)

(
C
B
− 1
)

for r ≤ rS and i2 = C
B
− 1 for

rS < r ≤ rR.

3. All firms succeed, with probability pR. Returns are i3 = r for all r ≤ rR.

Note that pR is both the probability that all firms succeed and the uncondi-
tional success probability of the risky firms. A stylized graph of the return
function can be found in Figure 12. In analogy to properties i) and ii) in
section 2, we consider the properties of the state-contingent deposit rates.
The worst deposit rate (i1) is negative and equal to C

B
− 1, irrespective of

53We write Si instead of the formally preferable S̃i.
54This time, we use the term “state” in its genuine meaning.
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Figure 12: State-contingent return function.

the loan rate. The mediocre deposit rate is strictly increasing up to rS, but
equal to the worst deposit rate for higher loan rates (since there are no safe
firms in the market for loan rates beyond rS, the rate in the “safe succeed
but risky fail” state equals the rate in the “all fail” state). The best deposit
rate is continuous and monotonically increasing in the loan rate with a slope
of one. From these properties, it is clear that savings must increase in each
of the two intervals for θ < 1.55 The state-contingent returns lead to an
expected return function as in Figure 13.

In analogy to properties iii) and iv), the expected return function is
strictly increasing in each of the two intervals with a discontinuous down-
ward jump at rS, and the maximum occurs at rR. We prove this property in
detail in appendix 7.4. The intuitive explanation is identical as in section 2,
the AR result.56

Property v) from section 2 does not hold any more. Even though the
variance increases monotonically within each of the intervals, it need not
increase at rS. Intuition might question whether savings still have to decrease

55From equation (7), we know that capital supply must be increasing in each of the two
intervals. This is because the derivative of optimal savings w.r.t. E(R̃1−θ) is positive, and
because E(R̃1−θ) increases in each of the intervals. After all, the deposit rates weakly
increase for all states of the world and taking them to some positive power is a monotonic
transformation.

56Moreover, the formula for the expected return is exactly the same as in section 2.
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Figure 13: Expected return function.

discontinuously since the lower mean and the lower variance point to opposite
directions. However, we argue that savings must decrease at rS.

Since R̃ changes, the formula of z as in equation (9) changes, too: z ≡
E(R̃1−θ) = (1 − pS)(1 + i1)

1−θ + (pS − pR)(1 + i2)
1−θ + pR(1 + i3)

1−θ. The
behavior of z as the loan rate r changes is the same as with the original
formula of z (with R̃ as a binary random variable). Luckily, with the new
definition of z, the formulas for capital supply and LTU do not change.
Therefore, the proofs regarding shape and maxima of capital supply and
LTU are still valid.

Proposition 14: With intra and inter-type dependency, all six equilibrium
cases from Figure 4 are possible. In particular, credit rationing might occur.

Proof:
Plugging the new formula for z = (1− pS)(1+ i1)

1−θ +(pS − pR)(1+ i2)
1−θ +

pR(1 + i3)
1−θ into optimal savings, the parameter constellations in Table 3

in appendix 7.2 again lead to the same six equilibrium cases.
q.e.d.

To get the analogue of Table 4 in appendix 7.2, we would have to set up
a definition of social optimum. This is not the aim of this section. We
rather look at the possible equilibrium cases. For that purpose, we compare
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the new savings function with two benchmarks: independent revenues as in
SW and the dependency structure in section 2 with only the revenues of
the risky dependent. First, in comparison to independent revenues, savings
must decrease due to a well-known argument: The new deposit rate has the
same mean but is now risky. Second, comparing the new setup to the original
dependency structure, optimal savings only change in the first interval, where
both firm types are active. The higher aggregate risk leads to more risky
deposit rate combinations such that capital supply decreases at any loan
rate r (the Rothschild and Stiglitz (1971) MPS argument). In the second
interval, there are only risky firms active so that aggregate risk and, thus,
the deposit rate combination at any r are the same.

Therefore, the same parameter constellations do not lead to the same
equilibrium under the two different dependency structures. To see this nu-
merically, using θ = 0.45 instead of θ = 0.47 in the first two lines in Table
3 in appendix 7.2 leads to different equilibrium cases with the two sorts of
dependency. With intra and inter-type dependency, these are of type II,
whereas with only the revenues of the risky firms dependent, the equilibrium
cases are of type I.

6 Conclusion

Much of the literature on financial markets has not dealt with dependency of
project revenues. This is surprising to us since its consideration can have far-
reaching consequences both in a theoretical model and in reality. In a setup
similar to the seminal SW model, we have shown that the type of equilib-
rium can crucially depend on the degree of project dependency. By making
aggregate payoffs risky, households face capital risk in our setup. Therefore,
risk aversion of households becomes a parameter of utmost importance since
it influences households’ consumption-savings decision. Thus, although the
expected deposit rate is maximum at the highest loan rate accepted by bor-
rowers (the AR result), savings and LTU do not have to be maximum at
that rate. Capital risk deters households from saving so that there might be
a credit rationing equilibrium at a lower loan rate.

To make this point stronger, we have shown that credit rationing can
occur even if a social optimum required funding of all projects. The definition
and analysis of the social optimum significantly differs from a situation with
independent project revenues. The new social optimum is characterized both
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by the number and the type of the projects funded. We distinguished six
different equilibrium cases. We found out that project dependency might
reduce the number of safe projects in equilibrium in a socially harmful way.
Thus, project dependency can aggravate adverse selection. Allowing for less
than all projects in the social optimum, we attained another, unobvious
result: The interplay of asymmetric information and project dependency can
lead to an equilibrium with more projects than in the social optimum.

Using a non-expected utility setup to separate aversion against risk per
se and aversion against differences over time, we were able to show that
the degree of risk aversion alone is responsible for whether the maximum
of capital supply and LTU occur at a lower or higher loan rate. Thus, the
equilibrium outcome crucially depends on risk aversion on the one hand and
the degree of project dependency on the other. The latter was made even
more clear by showing that leaving aside the restrictive assumption of perfect
dependency does not change the conclusion.

As a last robustness check, we showed that our results are not an artifact
of our chosen way to model project dependency. In addition to dependency
of risky firms’ projects, having safe firms’ project revenues depending on each
other and assuming inter-type dependency at the same time does not change
the results.

Our analysis points out that project dependency is an important factor
in the determination of credit market outcomes. We suggest further research
on project dependency in other theoretical models, especially in the realm
of credit markets. One particular model to analyze is De Meza and Webb
(1987), where expected project revenues of safe and risky firms are not the
same.

Also, as shown by the current financial crisis, dependency appears not
only between project revenues. It has often been neglected or not fully un-
derstood in many areas of the theoretical literature in finance. Therefore, we
strongly suggest to consider dependencies in areas adjacent to credit markets,
too.
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7 Technical Appendix

7.1 Proof: Shape of return function

We prove properties i) to v) from section 2.2 one after another.

i) In the good state, all risky firms and, if they ask for capital in the first
place, a fraction pS of the safe firms succeed. Within both intervals, the
composition of the firms doing projects is unaffected by a change in r. At
rS, safe firms stop asking for capital such that only risky firms are left in the
market in the second interval.

In the first interval, E[p|good] = βpS +(1−β) from a bank’s point of view.
In the second interval, E[p|good] = 1. From equation (4), an increase in r
will increase the expected good state return of a bank by E[p|good] which
is strictly positive (and smaller than one) in the first interval and equal to
one in the second. Therefore, the good state rate is monotonically increasing
within both intervals.

To see that there must be a discontinuous upward jump in the good state
rate at rS, note that, in the good state, banks’ returns jump from equation
(4) with E[p|good] = βpS +(1−β)(< 1) to r. Equation (4) can be seen to be
smaller than r for any E[p|good] < 1 since C < (1 + r)B for any r > C

B
− 1,

and, thus, in particular for r = rS.

ii) In the bad state, none of the risky firms, but a fraction pS of the safe firms,
succeed. In the first interval, E[p|bad] equals βpS(> 0), whereas E[p|bad] = 0
in the second interval. Again, the composition of borrowers does not change
within the respective intervals, so that an increase in r will increase expected
returns in the bad state by E[p|bad]. This expression is positive in the first
interval, but equal to zero in the second.

To see that the bad state rate is at its global minimum in the second
interval, note that banks’ returns from equation (4) become C

B
−1 in the sec-

ond interval. In the first, at r = 0, it must be larger than that since B > C,
and, thus, any weighted average of C and B (in equation (4)) must be larger
than C.

iii) Since the expected rate is a probability weighted average of the good
and bad state rates, the fact that it must be increasing within both intervals
follows from i) and ii).
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To see that there must be a discontinuous downward jump at rS, look
at an infinitesimal increase in r from rS to rS + ε. All other things equal,
this change in r marginally increases the banks’ returns. However, since all
the safe firms drop out of the market, the average success probability (also
taking expectations on the state of the world) varies drastically. While it is
equal to βpS +(1−β)pR in the first interval, it equals pR in the second. Since
pS > pR, the latter expression, pR, is smaller than the former, which proves
that expected returns decrease discontinuously at rS.

iv) Simply calculate the respective expected rates of return depending on all
parameters. They are

E[i(rS)] =
(1− β)[pRE[R̃] + C(pS − pR)] + βE[R̃]pS

BpS

− 1,

E[i(rR)] =
E[R̃]

B
− 1.

Doing some algebra on these two expressions shows that the former is smaller
than the latter iff E[R̃] > C, which is true by assumption of the model.

v) We prove the increase of the variance in each of the two intervals by
showing that (ig − ib) increases in r. This is sufficient for the proof since

V ar(i) = pR(ig − E(i))2 + (1− pR)(ib − E(i))2

= pR(ig − (pRig + (1− pR)ib))
2 + (1− pR)(ib − (pRig + (1− pR)ib))

2

= pR(1− pR)(ig − ib)
2.

(38)

Note that these probability weights pR and (1 − pR) are the same in both
intervals. From properties i) and ii), we know that (ig − ib) increases in r
both within the intervals and at rS.

7.2 Some numerical results for social optima

In Table 3, we give some parameter specifications which we use to generate
Table 4. In this latter table, we give the socially optimal levels of investment
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constellation pS RS pR RR NS NR C B Y H δ θ

1 0.8 8 0.2 32 80 220 0.2 6 2 1500 0.9 0.47
2 0.8 8 0.2 32 80 220 0.2 6 2 2600 0.9 0.47
3 0.8 8 0.2 32 80 220 0.2 6 2 2600 0.9 0.40
4 0.8 8 0.2 32 80 220 0.5 6 2 2600 0.9 0.40
5 0.8 10 0.2 40 100 200 2 5 2 1225 0.9 0.30
6 0.8 10 0.2 40 50 250 2 5 2 1600 0.9 0.30
7 0.8 10 0.2 40 200 100 2 5 2 1000 0.9 0.30
8 0.8 10 0.2 40 200 100 2 5 2 1200 0.9 0.30
9 0.8 10 0.2 40 200 100 2 5 2 1000 0.9 0.20
10 0.8 10 0.2 40 120 180 4.5 5 2 1000 0.9 0.25
11 0.8 10 0.2 40 200 100 2 5 2 1500 0.9 0.20
12 0.8 10 0.2 40 200 100 2 5 2 1500 0.9 0.30

Table 3: List of parameters.

in both safe and risky firms, as well as the respective equilibrium values for
each of the parameter constellations. We chose parameters in Table 3 to get
all six equilibrium cases twice: once with the amount of projects done in
equilibrium less than in a social optimum and the other way round.

There are ten columns in Table 4. The first one indicates the type of
equilibrium (cf. Figure 4). The second (fifth, eighth) column gives the total
number of projects (number of safe, number of risky) to be done in a social
optimum, whereas the third (sixth, ninth) column gives the total number
(safe, risky) in the respective equilibrium. Column four (seven, ten) is the
difference between the former two.

7.3 Proof: Lemmas 3 and 4

The structure of the proofs is identical to the expected utility setup, only
using R̂ instead of z. Using γ instead of θ in the definition of z, we have

z
1

1−γ = R̂.

Proof of Lemma 3:

We prove these properties one after another.

1. If α < 1, capital supply increases monotonically in r in each of the
intervals [0, rS] and (rS, rR] with a discontinuous downward jump at
rS.
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case #all SO # all E diff # safe SO # safe E diff # risky SO # risky E diff
I 127, 96 122, 57 −5, 38 80, 00 32, 69 −47, 31 47, 96 89, 89 41, 93
I 181, 74 212, 46 30, 72 80, 00 56, 65 −23, 35 101, 74 155, 80 54, 06
II 180, 22 175, 29 −4, 93 80, 00 0, 00 −80, 00 100, 22 175, 29 75, 07
II 180, 22 210, 69 30, 47 80, 00 0, 00 −80, 00 100, 22 210, 69 110, 47
III 201, 57 200, 00 −1, 57 100, 00 0, 00 −100, 00 101, 57 200, 00 98, 43
III 217, 91 250, 00 32, 09 50, 00 0, 00 −50, 00 167, 91 250, 00 82, 09
IV 231, 16 225, 20 −5, 96 200, 00 150, 14 −49, 86 31, 16 75, 07 43, 91
IV 254, 88 270, 24 15, 36 200, 00 180, 16 −19, 84 54, 88 90, 08 35, 20
V 264, 71 250, 29 −14, 42 200, 00 150, 29 −49, 71 64, 71 100, 00 35, 29
V 202, 27 231, 89 29, 62 120, 00 51, 89 −68, 11 82, 27 180, 00 97, 73
VI 300, 00 300, 00 0, 00 200, 00 200, 00 0, 00 100, 00 100, 00 0, 00
VI 290, 47 300, 00 9, 53 200, 00 200, 00 0, 00 90, 47 100, 00 9, 53

Table 4: Inefficiency results.

2. Irrespective of α and γ, LTU increases monotonically in r in each of
the intervals [0, rS] and (rS, rR] with a discontinuous downward jump
at rS.

3. For α < 1, capital supply and LTU have their global maximum at the
same loan rate, viz. either rS or rR.

4. If s∗ is the same at two loan rates, LTU must be the same at these two
rates, too.

Proof of 1.

We only give a proof for α < 1, the same technique can be applied to α > 1.
The fact that capital supply increases in each of the two intervals directly
follows from Basu and Ghosh (1993, p. 124) (Proposition 2). It can also be
seen from differentiation of equation (22) w.r.t. R̂,

ds∗

dR̂
≷ 0 ⇔ 1− α ≷ 0. (39)

Next, the derivative of R̂ w.r.t. r is

dR̂

dr
=

(E[R̃1−γ])
−γ
1−γ

1− γ

(
pR

1− γ

(1 + ig)γ

dig
dr

+ (1− pR)
1− γ

(1 + ib)γ

dib
dr

)
, (40)
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which is positive for all γ > 0 (there is no α in it). Therefore, for α < 1, we

have ds∗

dR̂
> 0 and dR̂

dr
> 0 so that ds∗

dr
> 0, too.

To prove the discontinuous downward jump at rS, we apply the same ar-
gument as in the expected utility case in Lemma 1. The proof was based on
Rothschild and Stiglitz (1971). The corresponding argument in the non-EU
case was made by Selden (1979): An MPS decreases savings in a non-expected
utility setup iff α < 1. The existence of an MPS at r > rS together with an
increasing capital supply in the second interval completes the proof.

Proof of 2.

Differentiating equation (24) w.r.t. R̂ and simplifying yields

dLTU

dR̂
=

Y 1−α(
1 + δ

1
α R̂

1−α
α

)3−α

αR̂

[
δ

1
α R̂

1−α
α α + δ

2
α R̂

2−2α
α 2α + δ

3
α R̂

3−3α
α α

]
.

(41)
Since Y, α, δ and R̂ are always positive, the derivative itself is always positive.

Since dR̂
dr

> 0 in each of the two intervals, dLTU
dr

> 0 in each of the two

intervals. Both signs do not depend on α or γ. Since ∆R̂
∆r

< 0 at rS,57
∆LTU

∆r
< 0 at rS. Again, the signs do not depend on α or γ. Therefore, LTU

monotonically increases in each of the two intervals with a discontinuous
downward jump at rS, irrespective of γ and α.

Proof of 3.

The structure of the proof is as with expected utility: From 1. and 2., the
global maximum of LTU and capital supply can only be at rS or rR for
α < 1. If savings are higher at, say, rS, R̂ must also be higher at rS since
ds∗

dR̂
> 0 (for α < 1), from equation (39). Since, from equation (41), we also

have dLTU

dR̂
> 0, LTU(rS) > LTU(rR). An analogous argument applies if the

maximum occurs at rR.

57The behavior of R̂ at rS follows from the fact that capital supply decreases discontin-
uously at rS and ds∗

dR̂
> 0 (for α < 1).
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Proof of 4.

The same argument (as for expected utility) applies: If savings are the same
at two loan rates, R̂ must also be the same. Since LTU in equation (24) only
depends on s∗, R̂ and parameters, LTU must be the same at these two loan
rates, too.

Proof of Lemma 4:

From equation (39), we know that ds∗

dR̂
> 0 for α < 1. Therefore, the max-

imum of capital supply occurs where R̂ is maximum. From the definition

of R̂(= (E[R̃1−γ])
1

1−γ ), we know that the maximum value of R̂ (and, thus,
whether it occurs at rS or rR) does not depend on α. A change in α clearly
influences the absolute amount of savings (as can be seen from its appearance
in equation (22)). However, whether the maximum occurs at rS or at rR is
independent of α.

7.4 Proof: Maximum of expected returns for exten-
sion III

For the first interval, expected returns are

Eπbank
r≤rS

(r) = (1− pS)

(
C

B
− 1

)
+ (pS − pR)

[
βr + (1− β)

(
C

B
− 1

)]
+ pRr

= (1− x)

(
C

B
− 1

)
+ xr,

(42)

where the last line uses the definition x ≡ (1− β)pR + βpS, x ∈ [pR, pS]. In
the second interval, expected returns do not depend on β,

Eπbank
rS<r≤rR

(r) = (1− pR)

(
C

B
− 1

)
+ pRr. (43)

Setting β = 0, we have
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Eπbank(rS) = (1− pR)

(
C

B
− 1

)
+ pRrS

< (1− pR)

(
C

B
− 1

)
+ pRrR = Eπbank(rR),

(44)

since rS < rR.58 Setting β = 1, we need to plug rS and rR from equations
(2) and (3), as well as x = pS into equations (42) and (43) to see that they
are equal.59 Since expected returns at rR do not depend on β, the proof is
complete if the derivative of expected returns w.r.t. β is positive at rS. From
equation (42), we get

dEπbank
r≤rS

(r)

dβ
= −

(
C

B
− 1

)
dx

dβ
+ r

dx

dβ
= (pS − pR)

(
r + 1− C

B

)
,

which is positive for all positive r since C < B.

58This makes perfect sense since β = 0 means that there are only risky firms in the
market. Since returns equal project revenue less firm profits, they must be maximum
where expected firm profits are minimum, i.e., at rR.

59Which makes sense since β = 1 means that there are only safe firms in the market
such that a loan rate of rS also extracts all rents from projects.
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