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Abstract: The aim of this paper is to propose a model of decision-making for 
lotteries. The key element of the theory is the use of lottery qualities. Qualities allow 
the derivation of optimal decision-making processes and are taken explicitly into 
account for lottery evaluation. Our contribution explains the major violations of the 
expected utility theory for decisions on two-point lotteries and shows the necessity of 
giving explicit consideration to the lottery qualities. 
 
Résumé:  L’objet de cette recherche est de proposer un modèle de décision pour les 
loteries. L’élément clé de la théorie est l’utilisation des caractéristiques des loteries. 
Les qualités permettent de dériver les processus optimaux de décision et sont 
explicitement prises en compte dans l’évaluation des loteries. Notre contribution 
explique les principales violations de la théorie de l’espérance d’utilité pour les  
décisions sur les loteries à deux points et montre la nécessité d’utiliser les qualités 
des loteries. 
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1. Introduction 

 

Over the last fifty years many theories have been proposed to explain the results of 

lottery tests (for a survey of the main results see Machina, 1987; McFadden, 1999; 

Luce, 2000). However, even for the simplest two–point lotteries, no theory is able to 

take into account all tests together. The goal of this paper is to use lottery qualities to 

build up a model that will take into account all possible tests related to both the 

pricing and comparison of two–point lotteries and, second, explain why it is optimal 

for an agent to act according to the test results. 

 

There exist two important features about lottery tests: (1) the existence of lottery 

qualities and (2) the presence of more than one cognitive process. Regarding the 

existence of lottery qualities, Tversky and Kahneman (1992), among others, have 

already tested the difference between the positive and negative qualities for 

monetary amounts xi. Prelec (1998) has pointed out the qualitative difference 

between impossibility (pi = 0) and possibility (pi ∈ ]0,1[) for probabilities, while 

Tversky and Kahneman (1979) have looked at certainty (pi = 1) as another quality. 

The presence of more than one cognitive process can be illustrated by the preference 

reversal paradox (Tversky et al., 1990, Lichtenstein and Slovic 1971), where a 

majority of subjects would prefer lottery A to lottery B in a direct choice but give a 

higher judged price to lottery B. In this choice, it was always possible for subjects to 

price each lottery first and then compare the two prices. The test result obtained 

clearly shows that individuals do not price before making their choices. We must 

then conclude that there exist at least two different cognitive processes and that 

individuals have preferences regarding these processes. In this paper, we shall 

condense the choices of all processes into one simple principle which consists in 

splitting of sets into more homogeneous subsets. 
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The concept of qualities will be shown to be useful in two different ways. First, 

qualities determine the decision process and, second, they serve as explicit elements 

in the lottery judgment. So, the role played by qualities seems strong enough to 

justify the necessity of using them. 

 

In non–expected utility (NEU) models such as Σw(pi)u(xi) (Kahneman and Tversky, 

1979, Edwards, 1955), pi and xi are always first evaluated with the functions w and u 

and then the summation of the different products are used to evaluate the lotteries. In 

expected utility (EU), w(pi) = pi for all i, and the same type of evaluation process is 

used for all lotteries. In this paper, we shall show that considering qualities in the 

choice process makes it possible to extend the most common models in two 

directions. First, as in the current literature, it allows individuals to make a primary 

judgment of pi and xi whenever it seems optimal. Second, individuals can use the 

product of judged pi and xi (as in NEU or EU) but again only when it is optimal. For 

example, they may also, as in Rubinstein (1988) and Leland (1994), compare the 

two pi and the two xi in some cases. 

 

The paper is organized as follows. Section 2 lists the fourteen more problematic 

empirical facts culled from the literature on two–point lotteries and Section 3 defines 

vectors of qualities and a relation that orders these vectors. In Section 4, we use 

these two definitions to explain how the agent selects optimal processes (Definition 

4) and evaluates lotteries (Definitions 5.1 and 5.2). Section 5 presents numerical 

examples and discusses the fourteen facts in relation with these examples. Section 6 

concludes. 
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2. Facts about two–point lotteries 

Notation 

The notation {a,b} is for a set and the notation (a,b) is for an ordered pair. A 

monetary amount with values in ]–∝,∝[ is denoted xi, and xi ∈ X, the set of 

monetary amounts. A probability with values in [0,1] is denoted pi, and pi ∈ P, the 

set of probabilities. A lottery where the agent can win xi with probability pi and 0 

otherwise is denoted (pi,xi).The set of the two elements of this lottery is li = {pi,xi}. 

A lottery where the agent can win xi with probability pi and xi–1 with probability 1–pi 

is denoted (1,xi–1;pi,xi–xi–1) and li = {1,xi–1,pi,xi–xi–1}. For convenience we assume 

that xi–1< xi. This notation puts the emphasis on the fact that, when xi–1 ≠ 0, the 

agent first considers a sure monetary amount xi–1 and then a lottery (pi,xi–xi–1), 

which is almost equivalent to the concept of segregation in Kahneman and Tversky 

(1979) as discussed in Luce (2000).1 

 

The more basic tests for two–point lotteries are the judged certainty equivalent 

(subjects are asked to select a price), the choice certainty equivalent (subjects choose 

between a lottery and a sure monetary amount) and the comparison involving two 

lotteries. Almost every test involves some difficulties for theoreticians. We list 

below fourteen of the more problematic facts associated with these tests. 

 

Lotteries:  (pi,xi), xi > 0. 

Fact #1: 

In a lottery choice between lotteries A and B, if pi
A is high and pi

B is low, both 

yielding the same von Neuman–Morgenstern expected utility, a majority of subjects 

will select lottery A. (Tversky et al., 1990). 
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Fact #2: 

When two lotteries A and B with the same expected value are compared and the 

probabilities pi
A > pi

B are both high, a majority of subjects will choose lottery A. 

However, when both probabilities are low and the ratio pi
A/pi

B remains the same, a 

majority of subjects will choose lottery B. This is the common ratio paradox. 

(Kahneman and Tversky, 1979; MacCrimon and Larsson, 1979). 

 

Fact # 3: 

When subjects are asked to select a price (judged certainty equivalent JCE) for the 

lotteries (pi,xi), lottery A with high probability of winning is underestimated, while 

lottery B with a low probability of winning is overestimated (Birnbaum et al., 1992). 

 

Facts #1 and #3 together lead to the preference reversal paradox. Moreover, Alarie 

and Dionne (2001) have shown that a one−parameter weighting probability function 

w(pi) is not able to explain the choices observed for these three facts involving the 

need for a function w(pi 
A; pi

B). 

 

A very important point often neglected in the literature is the next one. 

 

Fact # 4: 

In comparing two lotteries, it is always possible for subjects to price each lottery 

first and then compare the two prices. But the test results (Facts #1 and #3) clearly 

imply that individuals do not price before making their choices. So we have to 

explain why pricing lotteries is not optimal when subjects face a lottery choice. 

 

Fact # 5: 

If we compare a lottery with a sure monetary amount or with a series of sure 

monetary amounts, we obtain the choice certainty equivalent CCE. Tversky et al. 

(1990) found that CCE = JCE for lotteries with high probabilities but CCE < JCE for 
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lotteries with low probabilities. We have to explain these results and why it is not 

optimal for subjects to price (JCE) first when asked to choose between a lottery with 

a high pi and a sure monetary amount (CCE). 

 

Lotteries:  (pi,xi), xi < 0. 

Fact # 6: 

One can also note that for the CCE and the common ratio paradox where xi > 0, the 

observed preferences run counter to the ones for lotteries where xi < 0 (Kahneman 

and Tversky, 1979; Tversky and Kahneman, 1992). 

 

Lotteries:  (1,xi–1;pi,xi–xi–1) xi,xi–1 > 0. 

Fact # 7: 

When pi is high, the JCE of a lottery (1,xi–1;pi,xi–xi–1) where an agent can win xi with 

probability pi or xi–1 otherwise is smaller than the JCE of a lottery (pi,xi) where the 

agent can still win xi with probability pi but 0 otherwise (Birnbaum et al., 1992). 

 

Fact # 8: 

In direct choices, the lottery (1,xi–1;pi,xi–xi–1) where an agent can win xi with 

probability pi or xi–1 otherwise is preferred to a lottery (pi,xi) where the agent can still 

win xi with probability pi but 0 otherwise. This result, opposite to that of Fact #7, 

yields another reversal of preferences (Birnbaum and Sutton, 1992). 

 

Consequently, the agent does not price the two lotteries when facing a lottery choice 

and we have to show again that the pricing of each lottery is not always optimal for 

this case. 

 

Fact # 9: 

The graph of the JCE for the lottery (1,xi–1;pi,xi–xi–1)  as a function of pi has an 

inverse S–shape like the one for the case where xi–1= 0. Moreover, xi–1 + JCE of 
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(pi,xi) ≠ JCE of (1,xi–1;pi,xi) and the difference between the two JCE decreases when 

pi increases (Birnbaum and Sutton, 1992). 

 

Fact # 10: 

For lotteries (xi, xi–1> 0) the JCE is equal to the CCE for high and low probabilities 

of gain, contrary to Fact #5 where xi–1 = 0 and xi> 0 (Birnbaum, 1992) (see Alarie 

and Dionne, 2004, for a discussion). 

 

Lotteries:  (1,xi–1;pi,xi–xi–1), xi–1 < 0 < xi. 

This subsection introduces an additional complexity, namely the presence of 

negative and positive outcomes in the same lottery. Kahneman and Tversky (1979) 

have already pointed out the asymmetry between these outcomes and its 

consequence for expected utility theory. Below, we present additional facts that 

show the significance of this asymmetry for lottery choices and pricing. 

 

Fact # 11: 

When an agent is indifferent to a choice between a lottery (1,xi–1; pi,xi–xi–1) and a 

sure monetary amount 0, the value of |xi–1| is a lot smaller than |xi|. This result is far 

too extreme to be explained by a wealth effect or by decreasing risk aversion as 

Tversky and Kahneman (1992) have pointed out. 

 

Fact # 12: 

For comparisons of lotteries with the same expected value as in Bostic et al. (1990), 

the lottery with the monetary amount xi–1 closer to 0 is always chosen. 

 

Fact # 13: 

In two of the four tests in Bostic et al. (1990) there exists a reversal of preferences, 

while there is no reversal for the other two tests. This situation is more complex than 
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the one for lotteries (pi,xi) where reversals are observed for all tests (Tversky et al. 

1990). 

 

Fact # 14: 

For this type of lottery (xi–1 < 0 < xi), CCE = JCE for high probabilities but CCE < 

JCE for low probabilities (Bostic et al. 1990). This result is like the ones for lotteries 

(pi,xi) (Fact #5) and runs counter to the ones where xi–1,xi > 0 (Fact #10). 

 

These fourteen facts strongly suggest that an evaluation function designed to take all 

of them into account simultaneously would be different from those already 

documented in the literature. This is why we analyse the processes behind the 

preferences in order to construct a unified explanation of the fourteen facts above 

listed. Then an evaluation function is derived from this analysis in Section 5. 

 

 

3. Qualities of lotteries 

 

We now present a model which yields optimal decision processes and takes into 

account the preceding facts. We first define the vector of qualities associated with 

any set of elements pi and xi, and then the lexicographic order relation p L used to 

compare different vectors.  

 

3.1 Vector of Qualities 

 

We described four collections of sets of qualities ℘j, j=1,...,4. They may contain the 

two sets P and X, their union and their intersection or any set of other lottery 

qualities described below, along with their unions and their intersections. In a first 

step, each group of elements pi and xi is naturally split into elements that belong 

respectively to the sets P and X defined in Section 2. So, the first collection of sets 
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of qualities becomes ℘1 = {P,X,P∪X,∅} where ∅ = P∩X. Monetary amounts can 

be positive or negative and these qualities are already mentioned in the literature 

(Tversky and Kahneman 1992). So, we define two other sets: X+ = {xi / xi ∈ ]0, ∝[} 

and X– = {xi / xi ∈ ]–∝,0 [}. By considering the union and the intersection of these 

two sets we obtain ℘2 = {X+,X–,X–∪X+,∅}. Note that xi = 0 does not belong to any 

set in ℘2 since this monetary value is considered neutral (Kahneman and Tversky, 

1992). 

 

As in Kahneman and Tversky (1979), we assume that probabilities have surety (S) 

and risk (R) qualities. Prelec (1998) obtained a w(pi) function that takes into account 

the qualitative difference between impossibility (I) and risk (R). So, we define a 

partition of P as {S,R,I}: S = {1}, R = {pi/pi ∈ ]0,1[} and I = {0}. The third 

collection of sets of qualities becomes ℘3 = {R,S,I,R∪S,R∪I,S∪I,P,∅} where P = 

R∪S∪I and ∅ = R∩S∩I = R∩S = S∩I = R∩I. We also add to the literature two 

new qualities for probabilities that indicate whether a lottery has high chances of 

winning or not. In the partition {H,L} of P, the elements of H have the high quality 

and those of L have the low quality: L = {pi/pi ∈ [0, p*[} and H ={pi/pi ∈ [p*,1]}. A 

value of p*, the fixed point of the inverse S–shape probability weighting function, 

larger than 0.3 but smaller than 0.5, is observed in many tests (see Prelec, 1998, for 

a discussion)2. In this paper we assume that p* belongs to [0.3,0.5]. So the fourth 

collection is ℘4 = {H,L,P,∅}. The existence of H and L is empirically supported by 

the common ratio paradox (Fact # 2), the comparison in the preference reversal (Fact 

# 1) and the pricing of lotteries (Fact # 3), where, in each of these tests, one can 

observe a different way of judging the probabilities that belong to H and L.  

 

Each element pi or xi or each set of these elements has a vector of qualities denoted 

Q(•) = (q1,q2,q3,q4) where the set qj ∈ ℘j. The set qj associated with one pi or xi is 

the intersection of all sets of ℘j that contains this pi or xi. For example, the 
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probability pi = 1 belongs to the next four sets of ℘3 that are S, R∪S, S∪I, and P. 

Then S ∩ (R∪S) ∩ (S∪I) ∩ P = S and the q3 of pi = 1 is S. S is the smallest set 

included in all other sets. When there is no such a set, then qj = ∅. For example, the 

q2 of any probability is ∅, because a probability cannot have monetary values. Any 

set of probabilities or monetary amounts is denoted Θn where the superscript n = 

1,2,… identifies the different sets used in the Optimal Process (to be defined). The 

vector of qualities of the set Θn is denoted Q(Θn). Sometimes when it is pertinent we 

write each element of the set rather than Θn. The jth quality of Q(Θn) is the union of 

the qj of each element of Θn. 

 

Definition 1: Vector of Qualities 

1.1)  Q(pi) = (P,∅,q3,q4) where pi ∈q3 ∈{R, S, I} and pi ∈ q4 ∈{H, L}. 

1.2)  Q(xi) = (X,q2,∅,∅) where xi ∈q2 ∈ {X+, X–} or q2 = ∅ if xi = 0. 

1.3)  The jth quality of Q(Θn) is the union of the jth quality of elements pi and xi. 

 

Example 3.1 

Suppose we have three probabilities .2, .6, and 1. The vectors of qualities of 

these probabilities are Q(.2) = (P,∅, R, L), Q(.6) = (P,∅, R, H), and Q(1) = 

(P,∅, S, H), respectively. For the set {.2,.6}, Q(.2,.6) = (P∪P, ∅∪∅, R∪R, 

H∪L) = (P,∅,R,P) and Q(.6,1) = (P∪P, ∅∪∅, R∪S, H∪H) = (P,∅,R∪S,H). 

 

A partition of a set Θn is a collection of disjoint subsets of Θn whose union is all of 

Θn. In this paper, the partitions of Θn are always composed of two sets denoted Θ2n, 

Θ2n+1  ≠ ∅. Figure 1 shows the first partition considered in Example 3.2. 
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                                              Θ1 = {0.2,10,1,5} 

 

                         Θ2 = {0.2,10}                           Θ3 = {1,5}               

Figure 1: The partition of Θn, n=1, is Θ2n = Θ2 and Θ2n+1= Θ3 

 

Example 3.2 

Suppose an individual faces a lottery (0.2,10) and a sure monetary amount 

(1,5). We then have the set Θ1 = {0.2,10,1,5}. Q(0.2) and Q(1) are defined as in 

Example 3.1 and Q(10) = Q(5) = (X,X+,∅,∅). Then the vector associated with 

the first lottery Q(Θ2) = Q(0.2,10) = (P∪X,X+,R,L) and the one associated with 

the sure monetary amount Q(Θ3) = Q(1,5) = (P∪X,X+,S,W). These vectors take 

into account every quality of each lottery. For example, they indicate that the 

first lottery (0.2,10) has the quality P∪X and this lottery has a positive 

monetary amount X+ and is risky (R) while the second lottery is sure (S). The 

individual can also form other partitions from the set Θ1 = {0.2,10,1,5} by 

grouping the two probabilities together and the two monetary amounts together 

which yields Q(Θ2) = Q(0.2,1) = (P,∅,R∪S,P) and Q(Θ3) = Q(10,5) = 

(X,X+,∅,∅). 

 

Two vectors of qualities Q(Θ2n) and Q(Θ2n+1) can be more or less different. We use 

the intersection of the two vectors of qualities Q(Θ2n) ∩ Q(Θ2n+1) = ( 2n
1q ∩ 2n 1

1q + , 

2n
2q ∩ 2n 1

2q + , 2n
3q ∩ 2n 1

3q + , 2n
4q ∩ 2n 1

4q + ) in order to judge how different the vectors 

of qualities are where the jth quality of Θn is denoted qj
n. The lexicographic order 

relation p L allows the comparison of these vectors of qualities in ℘1 x℘2 x℘3 

x℘4. In the next definition, A ⊂ B means that A is a proper subset of B (i.e. A ≠ B). 
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Definition 2: Lexicographic order relation 

A relation p L on ℘1 x℘2 x℘3 x℘4 is defined as Q(Θ2n) ∩ Q(Θ2n+1) p L Q(Θ2m) ∩ 

Q(Θ2m+1), if there exists a ĵ such that ( 2n
Ĵ

q ∩ 2n 1
Ĵ

q + ) ⊂ ( 2m
Ĵ

q ∩ 2m 1
Ĵ

q + ) and, for all j < 

ĵ, ( 2n
jq ∩ 2n 1

jq + ) = ( 2m
jq ∩ 2m 1

jq + ). 

 

So when Q(Θ2n) ∩ Q(Θ2n+1) p L Q(Θ2m) ∩ Q(Θ2m+1), we observe that the vectors 

Q(Θ2n) and Q(Θ2n+1) are more different than the vectors Q(Θ2m) and Q(Θ2m+1). We 

will conclude that the sets Θ2n and Θ2n+1 are also more different than the sets Θ2m 

and Θ2m+1. For a partition of Θn into two sets, the more homogeneous their elements, 

the more the two sets will differ. p L is nonreflexive and transitive, but it is a partial 

order relation because comparability fails (Munkres, 1975).3 

 

Example 3.3 

For the probabilities of Example 3.1, we have Q(0.2) ∩ Q(0.6) = 

(P∩P,∅∩∅,R∩R,L∩H) = (P,∅,R,∅) and Q(0.6) ∩ Q(1) = (P,∅,∅,H). Then 

(P,∅,∅,H) p L (P,∅,R,∅) since P=P, ∅ = ∅ and ∅ ⊂ R. So 0.6 and 1 are more 

different than 0.6 and 0.2 because in {0.6,1} one probability is risky (R) and 

the other probability is sure (S) while in {0.2,0.6} the two probabilities are 

risky (R) and the set contains more similar elements. 

 

Because we use the lexicographic order relation, the positions of the qualities in the 

vectors are important. The most natural difference between qualities is the one 

between probabilities (P) and monetary amounts (X). This is why this difference is 

the first one, 2n
1q ∩ 2n 1

1q + , considered in the vector of qualities ( 2n
1q ∩ 2n 1

1q + , 

2n
2q ∩ 2n 1

2q + , 2n
3q ∩ 2n 1

3q + , 2n
4q ∩ 2n 1

4q + ). Moreover, in lottery tests, Tversky and 

Kahneman (1992) have reported a very significant effect for the difference between 

a positive quality (X+) and a negative (X−) one for monetary amounts. So this 
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difference becomes the second important one, 2n
2q ∩ 2n 1

2q + . Finally, according to 

different test results, the difference between the qualities of S, I and R already 

pointed out in the literature seems more significant than the one between the 

qualities of H and L, suggested in this article. In the remainder of this article, we 

will keep this order based on empirical tests. However, any other order is possible 

and, for example, some agents may find that H and L (0.9 vs 0.2) are more different 

than R and S (0.9 vs 1). 

 

 

4. Optimal process and evaluation of lottery 

 

With the help of the two preceding definitions of vector of qualities and 

lexicographic order relation p L, we are now able to define an optimal process and to 

evaluate lotteries. 

 

4.1 Optimal Process 

 

An optimal process (OP) is obtained by comparing partitions of sets of elements pi 

and xi in a recursive manner. We obtain an OP by first ranking partitions of the first 

set Θ1. Then each set of the partition is split into other partitions and so on. We use 

the lexicographic order relation (Definition 2) to compare the intersection of the 

vector of qualities of each pair of sets (Q(Θ2n) ∩ Q(Θ2n+1)) since the more the two 

sets differ the more similar the elements contained in each. Payne et al. (1993) 

pointed out that it is more complex to evaluate two different elements (p1 and x1 for 

example) than to compare two similar elements (p1 and p2, for example). 

 

However, all partitions are not admissible in an OP. As we have seen, each set must 

be different from the empty set. We must also take into account the natural link 
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between an xi and its corresponding probability pi to prevent non−natural judgments 

such as comparing p1 and x2, for example. Because these problems occur when there 

are more than two elements of the same lottery in the set Θn, we then constrain the 

elements pi and xi to the same set of the partition of Θn. So the constraint is used 

when #(Θn ∩ li) > 2 (where # means cardinality and li, as defined in Section 2, is the 

set of the elements of a lottery) 

 

Definition 3: Admissible Partition 

An admissible partition of Θn is a two–set partition {Θ2n, Θ2n+1} such that Θ2n, Θ2n+1 

≠ ∅. If there is an li such that #(Θn
   ∩ li ) > 2 then all couples pi, xi ∈ Θn will belong 

to the same set of the partition of Θn. 

 

An Optimal Process is a series of partitions where each partition is ranked in the 

sense of Definition 2 and the sets of admissible partitions is constrained as in 

Definition 3. The first set considered is the union of elements of the two lotteries. 

 

Definition 4: Optimal Process (OP) 

An OP for a set Θ1* = l1 ∪ l2 is a collection of sets {Θ1*,…,Θn*,…}. The sets Θ2n*, 

Θ2n+1* belong to the OP if and only if {Θ2n*, Θ2n+1*} is an admissible partition of Θn* 

such that Q(Θ2n*) ∩ Q(Θ2n+1*) p L Q(Θ2n) ∩ Q(Θ2n+1) where {Θ2n ,Θ2n+1} is any other 

admissible partition of Θn*. 

 

Example 4.1 

Consider the two lotteries (0.2,35) and (0.6,10). By definition Θ1* = 

{0.2,35,0.6,10}. Since #(Θ1*
 ∩ li) ≤ 2 for i = 1,2, we use the set 

{0.2,35,0.6,10} without the restriction in Definition 3. We have Q(0.2) = 

(P,∅,R,L), Q(0.6) = (P,∅,R,H) and Q(10) = Q(35) = (X,X+,∅,∅). Moreover 

Q(0.6,0.2) = (P,∅,R,P) and Q(10,35) = (X,X+,∅,∅). 
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If we consider different admissible sets of two elements, the partition 

{{0.6,0.2},{10,35}} is optimal since Q(0.6,0.2) ∩ Q(10,35) = (∅,∅,∅,∅) 

p L (X∪P,X+,R,∅) = Q(0.6,10) ∩ Q(0.2,35) = Q(0.2,10) ∩ Q(0.6,35). If we 

now consider any admissible partition where one set contains one element 

and the other three elements, the partition {{0.6,0.2}, {10,35}} is still 

optimal because there is no other partition that yields (∅,∅,∅,∅). For 

example Q(0.2) ∩ Q(0.8,10,35) = (P,∅,R,∅) and then for the first quality ∅ 

⊂ P. Finally, for the set {0.6,0.2} the optimal partition is {{0.6},{0.2}}and 

for {10,35} the partition is {{10},{35}}. 

 

As we shall see in Section 5, for all lottery tests considered in this paper, an OP 

exists and is unique (see note 4). 

 

4.2 Lottery evaluation 

 

In this section we emphasize the role of qualities in the evaluation of lotteries. From 

an OP the agent already knows the collection of sets {Θ1*,...,Θn*,...}. He must now 

evaluate the set Θn*, taking the values of its two subsets Θ2n*,Θ2n+1*while 

considering the qualities. 

 

The optimal partition {Θ2n*, Θ2n+1*} of a set Θn* (#Θn* > 2) selected from a set of 

admissible partitions is the one that has the first j such that 2n* 2n 1*
j jq q +≠  (see note 

4). In fact, the agent selects the partition that has the most important qualitative 

difference. For the evaluation of a set, we will also consider this qualitative 

difference. 
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Definition 5.1: Value of sets with more than one element 

v(Θn*) = 2n* 2n 1*
J Jq qJ + (v(Θ2n*),v(Θ2n+1*): RxR→ R where for all j such that 

2n* 2n 1*
j jq q +  ≠ ∅, J = max j such that for all j < J, 2n* 2n 1*

j jq q += . 

 

When an agent evaluates a set Θn*, knowing the values of its two subsets Θ2n* and 

Θ2n+1*, he will select the first two qualities of each of the subsets Θ2n*, Θ2n+1* that are 

different when such qualities do exist. In the above definition, the value of Θn* is 

v(Θn*) = 2n* 2n 1*
J Jq qJ +  (v(Θ2n*), v(Θ2n+1*) where the value of the two subsets are 

judged by considering the optimal qualities 2n*
jq  and 2n 1*

jq + . 

 

Example 4.2 

For the comparison of lotteries (0.2,35) and (0.6,10) in Example 4.1, we 

obtained the partition Θ2* = {0.2,0.6} and Θ3* = {10,35}. By Definition 1, 

Q(0.2) = (P,∅,R,L), Q(0.6) = (P,∅,R,H) and since P = P, ∅=∅ and R = R, 

the first different qualities are H and L. Then, from Definition 5.1, we have 

JHL(0.6,0.2) and the agent considers these qualities while judging 0.6 and 

0.2. The agent can also evaluate the monetary amounts. Since Q(10) = 

Q(35) = (X,X+,∅,∅), all qualities are equal and by Definition 5.1, the agent 

rules out the ∅ and selects the last ones X+. So we have JX+X+(10,35). 

Finally, to obtain v(Θ1*) the agent considers Q(0.6,0.2) = (P,∅,R,P) and 

Q(10,35) = (X,X+,∅,∅). Since P and X are the first different qualities we 

have v(Θ1*) = JPX (JHL(0.6,0.2), JX+X+(10,35)). This means that the agent 

judges the two monetary amounts together and the two probabilities 

together. Then he makes a third judgment considering the qualities P and X. 

 

It remains to discuss the values of a single element pi or xi. Like Tversky and 

Kahneman (1992), we consider the particular role of the next two boundaries for 
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probabilities 0 and 1. The corresponding boundary of a pi noted bpi is 0 if pi < p* or 

1 if not. As the monetary amount 0 has no quality in℘2 (i.e. q2 = ∅) there is no need 

for a boundary for xi  and v(xi) = xi.5 

 

Some theories use an evaluation function like w(pi) in NEU or use directly the value 

of the elements like pi in EU. So we must include this possibility of a 

single−element judgment in our model. In particular Kahneman and Tversky (1979) 

and Prelec (1998) have pointed out that the shape of the w(p) function reflects the 

qualitative difference between the boundaries and the other probabilities. In the 

same spirit, judgments of one probability with its corresponding boundary are 

allowed. However, these judgments with a boundary will be used only when they 

are optimal for the agent. The lexicographic order relation p L of Definition 2 sets 

whether the boundaries are used or not. 

 

A boundary is optimal for judging a probability if there is an element pi ∈ S of a set 

{pi,θ} that is less different from its corresponding boundary bpi than from the other 

element θ, where θ is either a probability or a monetary amount. In fact, θ is the 

element of Θ1* which is most similar to pi, among those that can be judged with pi in 

the OP. Then, like the OP that leads to judgments with a similar element, the use of 

boundaries also leads to judgments with a more similar element for pi. When a 

boundary bpi is used, the judgment of (pi,bpi) is as in Definition 5.1 and the value of 

pi is v(pi) = p b
JJq qJ (pi,bpi): RxR→R, where p

Jq  and b
Jq  are the first different qualities 

of pi and bpi. 
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Definition 5.2: Value of elements pi 

v(pi) = p b
JJq qJ (pi , bpi) if and only if there is a set Θn* = {pi,θ} ∈ OP and pi ∈ R, such 

that Q(pi) ∩ Q(θ) p L Q(pi) ∩ Q(bpi). v(pi) = pi otherwise. 

 

Example 4.3 

Suppose the lottery (0.8,10) and b0.8 is 1 since 0.8 > p*. Then Q(0.8) ∩ 

Q(10) = (∅,∅,∅,∅)p L (P,∅,R∩S,H) = Q(0.8) ∩ Q(1). So the boundary 1 

is used and the value of 0.8 is JRS(0.8,1). 

 

 

5. Results 

 

We now present in Table 1 results that derive the judgments of the optimal processes 

associated with eleven tests found in the literature. As we shall see, they correspond 

to the fourteen facts listed in Section 2. The other possible tests are a combination of 

these eleven tests. The proofs are in the Appendix and their implications are 

discussed in Section 5.1. 

 
(Table 1 here) 

 

5.1 Examples and discussion 

 

We now discuss the facts (JCE, CCE, common ratio, preference reversal …) along 

with the judgments obtained in Table 1 with numerical examples. Without loss of 

generality, a simple way to take qualities into account when evaluating a lottery is to 

modify the judgment function by introducing a parameter 2n* 2n 1*
J Jq q +α  that multiplies 

the value of one set v(Θ2n*), while letting the value of the other v(Θ2n+1*) unchanged. 

The judgment 2n* 2n 1*
J Jq qJ + (v(Θ2n*),v(Θ2n+1*)) becomes J( 2n* 2n 1*

J Jq q +α v(Θ2n*), 
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v(Θ2n+1*)). The choice of the set does not matter, so the parameter could multiply 

v(Θ2n+1*) instead of v(Θ2n*). In this paper, we focus on the qualities in (i) and (ii) 

below. For all other qualities 2n* 2n 1*
J Jq q +α  is equal to 1. From Table 1, we observe, in 

the last column, the qualities associated with each judgment function. The 

corresponding 2n* 2n 1*
J Jq q +α  and Θ2n* are either: 

i) αX+X–, αHL, or αRS, αRI when Θ2n* has respectively the qualities X–, H or R. 

ii) αHH, αLL, when Θ2n* contains the largest pi. 

 

In order to emphasize the role of qualities and remain close to the other models in 

the literature, the evaluation of a lottery (1,x1; p2,x2–x1) is represented by: 

 

 Π1 x1 + Π2 p2 (x2–x1) (1) 

 

where Π1 is the product of the parameter 2n* 2n 1*
J Jq q +α  that multiplies the values 

v(Θ2n*) of the OP, when 1 or x1 belong to Θ2n*, and Π2 is the product of the 

parameter 2n* 2n 1*
J Jq q +α  that multiplies the values v(Θ2n*) of the OP, when p2 or (x2 – 

x1) belong to Θ2n*. The role of each pertinent quality is then taken into account by 

Equation 1. Note that if qualities play no role all parameters 2n* 2n 1*
J Jq q +α  = 1 and the 

model is reduced to expected utility with risk neutrality. Many functions 2n* 2n 1*
J Jq qJ +  

(v(Θ2n*), v(Θ2n+1*)) can be used to obtain Equation (1) but we do not discuss all of 

them in this article since it is beyond its scope. An example of such function is 

presented in note 6. We now apply Equation 1 to the different tests. 
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Tests 1, 2 

 

The next example is about the comparison in the preference reversal paradox. In this 

section, we assume that p* = 4, the middle point in the interval [0.3,0.5] discussed in 

Section 3.1. 

 

Example 5.1 

In Tversky et al. (1990) we observe that 83% of the subjects choose (0.97,4) 

over (0.31,16). To explain the result we use the process of Test 1, so the 

judgments of the optimal process are JPX(JHL(p1, p2), JX+X+(x1,x2)). For the 

comparison of the two probabilities, the parameter αHL multiplies the highest 

probability 0.97 as we fixed above in (i) and Π2 = αHL. There is no other 

parameter, since αX+X+ and αPX are set equal to 1. For the evaluation of the first 

lottery, Equation 1 gives αHL (0.97 × 4) and for the second lottery we obtain 

(0.31×16). From the test result αHL (0.97 × 4) – (0.31×16) > 0 and αHL must be 

greater than 1.28 to obtain the desired result. We observe that the qualitative 

difference between elements of H and L increases the difference between the 

two pi, and Fact # 1 is explained. It is important to notice that the way we 

introduce the parameters does not affect the conclusion. If αHL would multiply 

the smallest probability 0.31 then αHL must be lower than 1/1.28 to explain the 

result. The parameter still increases the difference between probabilities. 

 

Example 5.2 

Kahneman and Tversky (1979) test sequentially a choice between (0.45, 6000) 

and (0.90, 3000) and another choice between (0.001, 6000) and (0.002, 3000). 

86% of the subjects select the second lottery in the first task but 73% select the 

first lottery in the second task. This is the common ratio paradox. By using the 

same process of Example 5.1 with the parameter αHH, we obtain: αHH0.90 × 

3000 > 0.45 × 6000 and with the parameter αLL we obtain αLL0.002 × 3000 < 

0.001 × 6000 Consequently, we must have αHH > 1 > αLL to solve Fact # 2. 
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The next example is about the JCE (Fact # 3). 

 

Example 5.3 

Birnbaum et al. (1992) obtained that the JCE of the lottery (0.95,96) has a 

value around 70. From Table 1, the JCE for this type of lottery is obtained from 

Test 2, where the judgments of the OP are JPX(JRS(p1, bp1), x1).There is only 

one relevant parameter, since P and X are not taken into account by (i) and (ii). 

From JRS(p1, bp1), we have that αRS multiplies p1x1. We obtain αRS 0.95 × 96 = 

70, which implies that αRS = 0.77. For a small probability, the lottery is 

overestimated and then the αRI > 1. This solves Fact #3. Consequently, the 

judgment of probabilities with boundaries is similar to the inversed S–shape 

used by Prelec (1998), Tversky and Kahneman (1992) and Wu and Gonzalez 

(1996). See note 7. If we combine Test 2 and Test 1 (with the qualities of H 

and L), we explain the existence of the preference reversal paradox (Tversky et 

al. 1990). 

 

The use of qualities to obtain an OP for Test 2 leads to almost the same judgment of 

probabilities as the one in NEU. However, for this test, we use judgments with 

boundaries instead of the function w(pi). As the proof of Test 2 shows in Appendix, 

it is optimal, in our model, to judge a probability with a boundary to obtain the JCE. 

In contrast, in Test 1 the judgment with boundaries was not shown to be optimal, 

since no boundary satisfies the condition. An example of judgment of two pi is to be 

found in Ranyard (1995), where the subject says: “I’ve chosen option 2 because 

there’s more chance of winning a smaller amount…” Then the agent clearly 

compares the two chances of winning or the two probabilities according to Test 1. 

Consequently, qualities play an important role in defining an OP by allowing both 

kinds of judgment and by identifying when it is optimal to use one type of judgment 

(with a boundary) instead of the other (without a boundary). 
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The inverse S–shaped function w(pi) does not fit the data for the comparison of two 

probabilities with the risky quality. In fact, Alarie and Dionne (2001) show that a 

one parameter w(pi) function cannot take into account simultaneously the next three 

comparisons of lotteries: JLL(p1, p2), JHH(p1, p2) and JHL(p1, p2). Examples 5.1 and 5.2 

clearly show that the model presented in this paper can solve these three 

comparisons of lotteries. The judgments that consider HL along with both SR and 

IR are also very difficult to explain with the inverse S–shaped function w(pi). In 

summary, the above discussion uses five different judgment functions JRI(p1,0), 

JRS(p1,1), JHH(p1,p2), JLL(p1,p2) and JHL(p1,p2) to explain Fact #1 to Fact#3.  

 

Since the main tool for explaining paradoxes with positive monetary amounts is the 

judgment of probabilities, inverse results will then be obtained for negative 

monetary amounts. This explains Fact #6. 

 

Tests 3, 4 

 

Another important group of facts concerns the difference between the CCE and the 

JCE (Fact #3). Tversky et al. (1990) introduced the CCE in order to obtain a lottery 

price from a comparison with a sure monetary amount. As Bostic et al. (1990) have 

pointed out, this procedure is closer to the comparison of two lotteries than the JCE 

and can thus reduce the number of reversals. We will see that this is not necessarily 

the case. 

 

Example 5.4 

Test 3 and Test 4 are about Fact #5. The judgments of the optimal process are 

JPX(JRS(p1,1), JX+X+(x1,x2)) for Test 3 and the evaluation of the lottery is given 

by αRSp1x1 as in Test 2. So there is no difference between the JCE and the CCE 

for high probabilities. 
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The optimal process of Test 4 is JPX((JRS(JRI(p1,bp1),1), JX+X+(x1,x2)) and the 

evaluation of the lottery is given by αRS αRI p1x1 = CCE. The first parameter 

αRS comes from JRS(•) and the second αRI from JRI(•). If the agent now uses 

JCE instead of CCE for low probabilities, Test 2 implies that JCE = αRI p1x1 

and then CCE = αRSJCE. Since αRS < 1 the JCE is larger than the CCE. 

 

One can note that the reason why the use of the CCE decreases the number of 

reversals is not, in this paper, because the CCE is closer to the comparison of 

lotteries than the JCE. It is because there is an additional RxS effect: For p1 ∈ H, the 

judgment of p1 is with the probability 1 in both cases (Tests 2 and 3). However, for 

p1 ∈ L, when we test the CCE, the agent first judges the probability, as in the JCE, 

and compares the result to the sure probability which involves another judgment that 

considers the qualities R and S (Test 4). So JCE > CCE. 

 

Tests 5, 6, 7 

 

Test 5 gives an optimal way to compare a lottery where x1 > 0 with a lottery where 

x1 = 0. Note that, in all tests, (1,x1;p2,x2–x1) is preferred to (p2,x2) in a direct choice. 

This test result obtained by Birnbaum and Sutton (1992) is foreseeable since, for 

both lotteries, you can win x2 with probability p2 and you can win x1 with 

probability 1 − p2 for the first lottery and 0 with probability 1–p2 for the second one. 

Test 5 gives x1 + αRS p2(x2–x1) for the first lottery and, for the second one, αRS p2x2. 

So the difference in evaluation between the two lotteries is x1 − αRS p2x1 > 0. This is 

positive because both αRS and p2 are smaller than 1. This explains Fact #8. When we 

consider the pricing of these lotteries, Birnbaum and Sutton (1992) obtained the 

surprising result discussed below. 
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Example 5.5 

Birnbaum and Sutton (1992) obtained that JCE of (p2,x2 ) > JCE of (1,x1;p2,x2–

x1) for the lotteries (1,x1;p2,x2–x1) and (p2,x2) where x2 = 96, x1 = 24 and p2 = 

0.8. 

We now show that this contradictory result can be rationalized. This test result 

is difficult to accept intuitively because the expected value of the lottery with 

the higher JCE is lower than the one for the other lottery p2x2 < p2x2 + (1–p2)x1. 

In fact for the JCE of (p2,x2) we have αRS p2 x2, and for the JCE of (1,x1;p2,x2–

x1) we use Test 6 and obtain JRS(JPX(1,x1),JPX(JRS(p2,bp2),x2–x1)). So the 

evaluation of this lottery is x1 + αRS αRS p2(x2–x1). From Birnbaum and Sutton 

(1992) data, x1 = 24, x2 = 96 and p2 = 0.8. So we have (Fact #7) x1 + αRS αRS 

p2(x2–x1) < αRS p2x2 when αRS ∈]1/2,5/6[. This interval contains αRS = 0.77 

which corresponds to the value found for the test in Example 5.3 (Birnbaum et 

al., 1992). This result (Test 6), along with Test 5, involves a second reversal of 

preferences explained by the model. The first was explained by Tests 1 and 2 

together. 

For the lottery (1,24;p2,72) where the agent can win 96 with probability p2 and 

24 otherwise, Birnbaum and Sutton (1992)8 pointed out that the JCE of 

(1,24;p2,72) is different from 24 + JCE of (p2,72). Moreover, the spread 

between the two JCE decreases when the probability increases (Fact # 9). We 

can explain this result by taking the derivative of (JCE of (1,x1;p2,x2–x1) – JCE 

of (p2,x2 –x1)) with respect to p2 where p2 ∈ H. The difference between the two 

JCE is equal to x1 + αRS αRS p2(x2–x1) – αRS p2(x2–x1) and the derivative with 

respect to p2 yields (αRS – 1) αRS (x2–x1) < 0, since αRS < 1 and x2 > x1 > 0. For 

p2 ∈ L we obtain (αRS – 1) αRI (x2–x1) < 0 since αRI > 1 and αRS < 1. 

 

One can note that we have a comparison with the boundaries as in the cases where 

x1 = 0. This is the reason why the evaluation of these lotteries as a function of p2 still 

has an inverse S–shaped curve, as discussed in footnote 7 (Fact # 9). 
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When xi, xi–1 > 0 and pi ∈ L, the process for Test 7 gives CCE= x1 + αRS αRI p2(x2–

x1). Test 6 gives JCE = x1 + αRS αRI p2(x2–x1) and CCE = JCE for low probabilities. 

We have the same result when pi ∈ W. Then, for this type of lottery, there is no 

difference between JCE and CCE for all probabilities (Fact #10). 

 

Tests 8, 9, 10, 11 

 

These tests consider lotteries where xi–1 < 0 < xi. We first discuss the JCE and CCE. 

The judgments of Tests 8, 10 and 11 are: 

 

Test 8)  JX–X+(JPX(1,–x1), ((JPX(JRS(p2,bp2), x2+x1)) 

Test 10)  JX–X+(JPX(1,–x1), ((JPX(JRS(p2,1), JX+X+(x2+x1,x3))) 

Test 11)  JX–X+( JPX(1,–x1), JPX(JRS(JRI(p2,bp2), 1), JX+X+(x3, x2+x1))) 

 

For these three OP, the judgment JX–X+ has two parts. The first ones JPxX(1,–x1) are 

the same for all processes and only the second parts differ. These second parts are 

identical to those of Tests 2, 3, and 4 respectively, where a monetary amount is 

equal to 0. So, for p2 ∈ W, the JCE = CCE (Test 8 vs Test 10) and, for p2 ∈ L, the 

JCE ≠ CCE (Test 8 with the boundary 0 vs Test 11) for the same reasons that apply 

for those used to explain Tests 2, 3 and 4. This explains why the test results obtained 

by Bostic et al. (1990) are the same as those in Fact #14 (Tversky et al., 1990). 

 

Bostic et al. (1990) and Luce et al. (1993) use four pairs of lotteries taken from 

Lichtenstein and Slovic (1971). These tests are very difficult to explain since, 

contrary to the cases where x1 = 0 or x1 > 0 (Facts #7 and #8), the reversal does not 

occur systematically. So the value of each parameter is important. These tests also 

provide an opportunity to check if the values of the parameters obtained from all 

preceding examples are correct. 
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Example 5.6 

For the comparison of pairs of lotteries in Bostic et al. (1990), we use Test 9 

JX+X–(JPX(JHH(1,1),JX–X–(–x1,–x3)), JPX(JHL(p2,p4), JX+X+(x2+x1, x4+x3))). For the 

parameter that takes into account the difference between a positive and a 

negative monetary amount, Tversky and Kahneman obtained a value around 

2.25. So we use αX+X– = 2.25. We also use αHL = 1.19, since this is the average 

of the 14 tests in Tversky et al. (1990). We set 1/αRI = αRS = 0.77, which 

corresponds to the values in the preceding examples. For the comparison (Test 

9), we have αX+X– (x2–x3) + p2(x2–x1) – αHL p4(x4–x3). The JCE (Test 8) for 

lotteries with low probabilities and high probabilities are respectively: 

αX+X– xi–1 + αRI pi(xi–xi–1) 

αX+X– xi–1 + αRS pi(xi–xi–1) 

 

Table 2 shows the results for the four cases where in each case A–B measures the 

difference between the lotteries A and B when they are compared. For these lotteries 

you can win x1 with probability p1 and x2 with probability 1–p1. 

 

(Table 2 here) 

 

So the lottery with the x1 (x1 < 0) closer to 0 is always selected in a direct 

comparison (Fact #12) and the reversals occur for lotteries 1 and 4 (Fact #13). The 

parameters we use fit the data well, in particular αX+X– = 2.25 taken from Tversky 

and Kahneman (1992) which is the most significant (Fact #11). 
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6. CONCLUSION 

 

We have seen that the concept of qualities is useful in two different ways. First the 

qualities settle the optimal process and, second, they are taken explicitly into 

account in the judgments. So the role played by qualities seems strong enough to 

justify the necessity of using them. As shown in Section 5, they serve as a powerful 

instrument in solving the fourteen facts in the literature (Section 2), which are the 

most significant for two–point lotteries. 

 

This model can be extended to n point lotteries. Another way to continue the 

research is to try to explain the difference between the buying and selling prices. 

Ambiguity is another interesting problem and the explanations of these last two 

problems seem to be closely related. 
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Notes 

1. For x1 < 0 < x2 Kahneman and Tversky (1979) do not use segregation. This 
procedure of doing would not affect the result of this paper. Perhaps the best way 
is not to use segregation when x1 and x2 have almost the same size and to use it 
when they are very different. 

2. p* is such that for p∈]0,1[ w(p) < p if p > p* and w(p) > p if p < p*. 

3. For the partition Θ1 = {p1,x1,x2} and Θ2 = {p2}, the first quality of Q(Θ1) ∩ 
Q(Θ2) is P and  for the partition Θ3 = {x1,p1,p2} and Θ4 = {x2} the first quality of 
Q(Θ3) ∩ Q(Θ4) is X. So X⊄P, P⊄X and P≠X and comparability fails. 

4. There exists a unique OP, because for each set considered there is only one 
optimal partition. When #Θn = 2 the result is obvious. When #(Θn ∩ li) > 2 each 
set contains at least one element pi and one xi and the first quality is P∪X for 
each set. So if some elements have the quality X– and others have X+ then 
putting each xi in one set according to these qualities is optimal. If all xi have the 
same quality then splitting them into two sets, according to R and S qualities, is 
optimal. This last splitting is always possible, since when a lottery has more than 
two elements there is always one pi with the quality R and another one with the 
quality S. So only one optimal partition is obtained by considering the first 
different qualities. 
When #(Θn ∩ li) ≤ 2 and #Θn > 2 there is always at least one pi and one xi. Since 
there is no restriction, splitting by using the first different qualities P and X will 
be optimal. 

5. We make this assumption to emphasize the role of probabilities. This is 
equivalent to assuming a linear utility function. This procedure simplifies the 
discussion. In other words, a non−linear u(xi) function (obtained from a 
judgment with another boundary xi= 0, pointed out in Kahneman and Tversky 
(1979)) would not affect the results in this paper. However, as in Tversky and 
Kahneman (1992), there is a difference between strictly positive and strictly 
negative monetary amounts. 

6. Many other judgment functions can lead to Equation 1. For example, in the 
absence of qualities, when a lottery A is compared to a lottery B we can have: 

1) J1(pi,xi) = sgn pixi. sgn = + if pi and xi ∈ A and sgn = – if not. 
2) J2(p1,p2) = (p1–p2) (x1 + x2)/2 when p1 ∈ A and p2 ∈ B. 
3) J3(x1,x2) = (x1–x2)(p1 +p2)/2 when xi ∈ A and x2 ∈ B. 
4) J4(v(θ1), v(θ2)) = v(θ1) + v(θ2) when #(θ1), #(θ2) > 1. 
5) J5(pi, bpi) = pi 

The first equation is standard, while when we put together the result of (2) and 
(3) by using (4) we obtain p1x1–p2x2. So these judgments lead to expressions 
with terms pixi even though the agent is allowed to compare two pi or two xi and 
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the evaluation of a lottery is given by Σpixi. In Equation 5, the pi is judged by 
considering the boundary, in order to obtain a judged value of pi. Other functions 
could be used, such as J2(p1,p2) = p1/p2, for example. To obtain Equation 1, we 
consider qualities by taking into account (i) and (ii). The average of xi used in (2) 
and the one of pi used in (3) is also obtained by considering qualities. 

7. As Prelec (1998) has pointed out, the closer the probabilities are to boundaries 
the greater the effect of RS or RI. We can take this fact into account by setting: 
αRS(p*)=1 and dαRI/dp < 0 for p < p* dαRS/dp > 0 for p > p*. The same idea 
could be applied to other parameters such as αHH for example. 

8. They use the seller’s point of view and not the neutral’s one, but the result 
remains valid. 
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APPENDIX 
 
Test 1 

Let (p1,x1) be compared to (p2,x2), where Q(p1) = (P,∅,R,H) = Q(p2). Then the 
judgments of the optimal process are JPX(JHH(p1, p2), JX+X+(x1,x2)). 

Proof: Since #(Θ1 ∩ lk) = 2 there is no restriction, except the one where a set must 
not be equal to the empty set. Let the partition {{p1,p2}, {x1,x2}} then Q(p1,p2) ∩ 
Q(x1,x2) = (P,∅,R,H) ∩ (X,X+,∅,∅) = (∅,∅,∅,∅). For all other partitions that 
consider sets of two elements, we have that the intersection is equal to 
(X∪P,X+,R,H) and (∅,∅,∅,∅)p L (X∪P,X+,R,H). For partitions where one set 
contains one element, the q1 is different from ∅ and none of these partitions are 
chosen. We have Q(p1,p2) = (P,∅,R,H) and Q(x1,x2) = (X,X+,∅,∅) and since P≠X, 
we use JPX(·).Since Q(p1,p2) p L Q(pi,bpi) for all i, we do not use the boundaries. 
Since Q(p1) = Q(p2) = (P,∅,R,H), we use JHH(p1,p2). Since Q(x1) = Q(x2) = 
(X,X+,∅,∅), we use JX+X+(x1,x2). � 
 
Test 2 

Suppose (p1,x1) has to be evaluated where Q(p1) = (P,∅,R,H). Then the judgments 
of the optimal process are JPX(JRS(p1,bp1), x1). 

Proof: There is only one partition {{p1},{x1}}. We have Q(p1) = (P,∅,R,H) and 
Q(x1) = (X,X+,∅,∅) and since P≠X, we use JPX(·). Since Q(p1,bp1) = (P,∅,P,H) p� L 
(P∪X,X+,R,H) = Q(p1,x1) we use boundaries. Since Q(p1) = (P,∅,R,H) and Q(1) = 
(P,∅,S,H) we use JRS(p1,bp1). The value of x1 is x1 and we obtain JPX(JRS(p1,bp1),x1).
 � 
 
Test 3 
Let a lottery (p1,x1) be compared to a sure monetary amount (1,x2), where Q(p1) = 
(P,∅,R,H). Then the judgments of the optimal process are JPX(JRS(p1,1), JX+X+(x1,x2). 

Proof: The partition {{p1,1}, {x1,x2}} is optimal as in Test 1. Since Q(p1,1) = 
Q(p1,bp1) we do not use boundaries. The judgments are the same as the ones in Test 
2 except for JX+X+(x1,x2). � 
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Test 4 
Let a lottery (p1,x1) be compared to a sure monetary amount (1,x2), where Q(p1) = 
(P,∅,R,L). Then the judgments of the optimal process are JPX(JX+X+(x1,x2), 
(JSR(JRI(p1,bp1), 1). 

Proof: As in test 1, the optimal partition is {{1,p1},{x1,x2}}. The optimal qualities 
for the probabilities are RS and X+X+ for the monetary amounts. Since Q(p1) ∩ Q(1) 
= (P,∅,∅,∅) p L (P,∅,∅,L) = Q(p1) ∩ Q(bp1), we use the boundary. We have Q(p1) 
= (P,∅,R,L) and Q(bp1) = (P,∅,I,L) so the qualities used are I and R. � 
 

Test 5 

Let (1,x1;p2,x2–x1) be compared to (p3,x3), where Q(p2) = (P,∅,R,H) = Q(p3). Then 
the judgments of the optimal process are JSR(JPX(1, x1), (JPX(JHH(p2, p3), JX+X+(x3,x2–
x1)). 
Proof: Since the first lottery has four elements, each pi and xi belong to the same set. 
Since Q(1,x1) ∩ Q(p2,x2–x1,p3,x3) = (X∪P,X+,∅,H) p L (X∪P,X+,R,H) = 
Q(1,x1,p3,x3) ∩ Q(p2,x2–x1) = Q(1,x1,p2,x2–x1) ∩ Q(p3,x3) the first partition is 
optimal. The partition of {p2,x2–x1,p3,x3} is as in Test 1 and there is only one 
partition for {1,x1}. We use the qualities R and S for the judgment of these two sets 
together. � 
 

Test 6 

Suppose (1,x1;p2,x2–x1) has to be evaluated where Q(p2) = (P,∅,R,L). Then the 
judgments of the optimal process are JRS(JPX(1, x1), ((JPX(JRI(p2, bp2), x2–x1)). 

Proof: Since the first lottery has four elements, pi and xi belong to the same set and 
we have only one admissible partition {{1,x1},{p2,x2–x1}}. Since Q(1,x1) = 
(P∪X,X+,S,H) and Q(p2,x2–x1) = (P∪X,X+,R,L), we use the qualities R and S. The 
boundary is used to obtain the value of p2. � 
 

Test 7 

Let (1,x1;p2,x2–x1) be compared to (1,x3), where Q(p2) = (P,∅,R,L). Then the 
judgments of the optimal process are JRS(JPX(JHH(1,1),JX+X+(x1,x3)), JPX(JRI(p2,bp2), 
x2–x1). 
Proof: Since the first lottery has four elements, pi and xi belong to the same set. 
Q(1,1,x1,x3) ∩ Q(p2,x2–x1) = (X∪P,X+,∅,∅) p L (X∪P,X+,S,H) = Q(1,x1) ∩ 
Q(1,x3,p2,x2–x1) = Q(1,x3) ∩ Q(1,x1,p2,x2–x1).The partition of the first set is as in 
Test 1 and that of the second set is as in Test 2. � 
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Test 8 

Suppose (1,–x1;p2,x2+x1) has to be evaluated and Q(p2) = (P,∅,R,H). Then the 
judgments of the optimal process are JX–X+(JPX(1, –x1), ((JPX(JRS(p2, bp2), x2+x1)). 

Proof: Since the first lottery has four elements, pi and xi belong to the same set and 
there is only one partition. Since Q(1,–x1) = (P∪X,X–,S,H) and Q(p2,x2+x1) = 
(P∪X,X+,R,H) we use the qualities of X+ and X–. The boundaries are used for p2. � 
 

Test 9 

Let (1,–x1;p2,x2+x1) be compared to (1,–x3;p4,x4+x3), where Q(p2) = (P,∅,R,L) and 
Q(p4) = (P,∅,R,H). Then the judgments of the optimal process are JX–X+(JPX(JHH(1, 
1),JX–X–(–x1,–x3)), (JPX(JLH(p2, p4), JX+X+(x2+x1, x4+x3))). 
Proof: Since the first lottery has four elements, pi and xi belong to the same set. We 
have that the partition {{p4, p2,x4+x3,x2+x1}, {1,1,–x1,–x2}} is optimal since this is 
the only partition where the intersection implies q2 = ∅. The partition of each set is 
as in Test 1. Since Q(1,1,–x1,–x2) = (P∪X,X–,S,H), and Q(p4, p2,x4+x3,x2+x1) = 
(P∪X,X+,R,L) we use the qualities of X+ and X–. � 
 

Test 10 

Let (1,–x1;p2,x2+x1) be compared to (1,x3), where Q(p2) =(P,∅, R,H). Then the 
judgments of the optimal process are JX–X+(JPX(1,–x1), ((JPX(JRS(p2,1), 
JX+X+(x2+x1,x3))). 
Proof: Since the first lottery has four elements, pi and xi belong to the same set and 
the partition {1,–x1} and {p2,x2+x1, 1,x3} is optimal. The partition of the second set 
is as in Test 3. � 
 

Test 11 

Let (1,–x1;p2,x2+x1) be compared to (1,x3) where Q(p2) = (P,∅,R,L). Then the 
judgments of the optimal process are JX–X+(JPX(1,–x1), JRS(JPX(1,x3), JPX(JRI(p2,bp2), 
x2+x1)). 
Proof: Since the first lottery has four elements, pi and xi belong to the same set. We 
have that{1,–x1} and {p2,x2+x1, 1,x3} is optimal since (P∪X,∅,S,H) p L 
(P∪X,X+,∅,∅) which is the one of {1,–x1,1,x3} and {p2,x2+x1}. The partition of the 
second set is as in Test 4. �
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Table 1 

This table lists the 11 tests used to explain the 14 facts documented in Section 2. 
Lottery 1 is compared to Lottery 2 in eight tests or is priced in Tests 2,6,8 (neutral case in Birnbaum et al. 1992). 

Tests Facts Lottery 1 Lottery 2 Judgments of Optimal Processes 

1) Tversky et al. (1990) 1,2,4,6 (p1,x1), p1 ∈L (p2,x2), p2 ∈H JPX(JHL(p1,p2), JX+X+(x1,x2)) 

2) Birnbaum et al. (1992) 3,6,7 (p1,x1), p1 ∈H  JPX(JRS(p1,bp1),x1) 

3) Tversky et al. (1992) 5,6 (p1,x1), p1 ∈H (1,x2) JPX(JRS(p1,1), JX+X+(x1,x2)) 

4) Tversky et al. (1992) 5,6 (p1,x1), p1 ∈L (1,x2) JPX(JRS(JRI(p1,bp1),1), JX+X+(x1,x2)) 

5) Birnbaum and Sutton 
(1992) 

8 (1,x1;p2,x2–x1), p2 ∈H (p3,x3), p3 ∈H JRS(JPX(1,x1),JPX(JHH(p2,p3), JX+X+(x3,x2–x1)) 

6) Birnbaum et al. (1992) 7,9,10 (1,x1;p2,x2–x1), p2 ∈L  JRS(JPX(1,x1), JPX(JRI(p2,bp2), x2–x1)) 

7) Birnbaum (1992) 10 (1,x1;p2,x2–x1), p2 ∈L (1,x3) JRS(JPX(JHH(1,1),JX+X+(x1,x3), JPX(JRI(p2,bp2), x2–x1)) 

8) Lichtenstein and Slovic 
(1971) 

11,13, 14 (1,–x1;p2,x2+x1), p2 ∈H  JX–X+(JPX(1,–x1), JPX(JRS(p2,bp2), (x2+x1)) 

9) Lichtenstein and Slovic 
(1971) 

12,13 (1,–x1;p2,x2+x1), p2 ∈L (1,–x3;p4,x4+x3), 
p4 ∈H 

JX–X+(JPX(JHH(1,1),JX–X–(–x1,–x3)), JPX(JLH(p2, p4), 
JX+X+(x2+x1, x4+x3))) 

10) Bostic et al. (1990) 14 (1,–x1;p2,x2+x1), p2 ∈H (1,x3) JX–X+(JPX(1, –x1), JPX(JRS(p2,1), JX+X+(x2+x1,x3))) 

11) Bostic et al (1990) 14 (1,–x1;p2,x2+x1), p2 ∈L (1,x3) JX–X+( JPX(1,–x1), JPX(JRS(JRI(p2,bp2),1) JX+X+(x3, x2+x1)) 
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Table 2 
Gambles used by Luce et al. (1993) 

Case x1 p1 x2 A−B JCE Reversal 
1A 16 0.3056 –1.5 3.58 
1B 4 0.9722 –1.0 –1.56 1.49 Yes 

2A 9 0.1944 –0.5 1.28 
2B 2 0.8056 –1.0 0.10 –0.38 No 

3A 6.5 0.5000 –1.0 0.64 
3B 3 0.9444 –2.0 0.38 –0.86 No 

4A 8.5 0.3889 –1.5 1.68 
4B 2.5 0.9444 –0.5 –1.63 1.05 Yes 

 
Contrary to the case where x1 = 0 and x2 > 0, the reversals do not occur 
systematically. The calibration of the parameters obtained from other tests 
explains the reversals for lottery pairs 1 and 4 and consistent preferences for 
pairs 2 and 3, where αHH = αHL = 1.19. 




