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Abstract:  
The literature on structural breaks focuses on ex post identification of break points 
that may have occurred in the past. While this question is important, a more 
challenging problem facing econometricians is to provide forecasts when the data 
generating process is unstable. The purpose of this paper is to provide a general 
methodology for forecasting in the presence of model instability. We make no 
assumptions on the number of break points or the law of motion governing parameter 
changes. Our approach makes use of Bayesian methods of model comparison and 
learning in order to provide an optimal predictive density from which forecasts can be 
derived. Estimates for the posterior probability that a break occurred at a particular 
point in the sample are generated as a byproduct of our procedure. We discuss the 
importance of using priors that accurately reflect the econometrician’s opinions as to 
what constitutes a plausible forecast. Several applications to macroeconomic time-
series data demonstrate the usefulness of our procedure. 
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1 Introduction

There is a considerable body of evidence that documents the instability of many im-
portant relationships among economic variables. Popular examples include the Phillip’s
curve, U.S. interest rates and the demand for money.2 An important challenge facing
modern economics is the modeling of these unstable relationships. For econometricians,
the difficulties involve estimation, inference and forecasting in the presence of possible
structural instability.

Classical approaches to the identification of break points are based on asymptotic
theory - see, for example, Ghysels and Hall (1990), Hansen (1992), Andrews (1993),
Dufour, Ghysels, and Hall (1994), Ghysels, Guay, and Hall (1997), and Andrews (2003)
- are based on frameworks in which both the pre-break and post-break data samples go
to infinity.3 Moreover, tests for multiple breaks such as those proposed by Andrews, Lee,
and Ploberger (1996), and Bai and Perron (1998) are also based on similar hypotheses.
In applications that make use of available finite data sets, the empirical relevance of such
an assumption may be suspect. Furthermore, the statistical properties of a forecasting
model based on classical breakpoint tests are far from clear, since such a model would
be based on a pre-test estimator.

In contrast, Bayesian approaches to the problem are theoretically simple, are based
on finite-sample inference, and typically take the form of a simple model comparison
exercise. Examples include Inclán (1994), Chib (1998), Wang and Zivot (2000), Kim,
Nelson, and Piger (2004) and Pasaran, Pettenuzzo, and Timmermann (2004) which
employ Markov Chain Monte Carlo sampling methods to make posterior inferences re-
garding the timing of break points in a given sample.

A feature that is common to both strands of the existing literature is the focus on the
ex post identification of structural breaks that may have occurred in the past. While this
question is of course important in itself, economists are more likely to be interested in
making forecasts when the the data generating process is unstable. This is the question
that we address here. More precisely, we focus on the question of how to make optimal
use of past data to forecast out-of-sample while taking into account the possibility that
breaks have occurred in the past, as well as the possibility that they may occur in the
future.

We present a general methodology for economic decision making based on a model
subject to structural breaks. Our analysis uses adaptive learning via Bayes’ rule in order
to make optimal use of past data to make forecasts. No assumptions concerning break
times or their impact on model parameters are made.4 As a byproduct, our procedure

2Stock and Watson (1996) suggest that the laws of motion governing the evolution of many important
macroeconomic time series appear to be unstable.

3The theory of Dufour, Ghysels, and Hall (1994) and Andrews (2003) only requires that the struc-
turally stable portion of the data goes to infinity.

4Pasaran, Pettenuzzo and Timmermann focus on forecasting in the presence of breaks. Extending
the work of Chib (1998) and Carlin, Gelfand, and Smith (1992), breaks are assumed to be governed by
a first-order Markov chain, while break parameters are drawn from a common distribution. Nonlinear
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also provides estimates for the posterior probability that a break point occurred any-
where in the sample, as well as the posterior distribution for the number of observations
that would be useful in making out-of-sample forecasts at any point in the sample.

The approach of this paper is most easily seen with a simple example. Consider the
observations yj, j = 1, ..., t and suppose that an analyst wishes to forecast the value of
yt+1. Let M denote the hypothesis that yt+1 will be drawn from the same process that
generated the previous observations. Conditional on M being true, then It ≡ {y1, . . . , yt}
can be used to to construct a predictive data density, denoted by p(yt+1|It,M). Suppose
now that the analyst wishes to take into account the possibility that M may not be
correct, and that yt+1 will be drawn from an entirely different distribution; denoted by
M∗, the hypothesis that a structural break will occur between t and t + 1. If M∗ is
correct, the past data contained in It will be useless in predicting yt+1, so the analyst
will be obliged to specify a predictive density of the form p(yt+1|M∗) using his subjective
judgment.

Suppose that the analyst attaches a subjective probability λt+1 that M∗ is true.
Then the predictive density of yt+1 is the following mixture:

p(yt+1|It) = p(yt+1|It,M)[1− λt+1] + p(yt+1|M∗)λt+1,

from which any quantity of interest, such as predictive moments or quantiles, can be
calculated.5 The first term on the right hand side is the predictive density conditional on
no structural break (using all available data) weighted by the probability of no structural
break. The second term is the predictive density conditional on a structural break based
on the subjective beliefs of the analyst, weighted by the probability of a structural break.

After observing yt+1, the information set is updated so that It+1 = {It, yt+1}. The
probability that there was a structural break between t and t + 1 can be updated ac-
cording to Bayes’ rule:

p(M∗|It+1) =
λt+1p(yt+1|It,M∗)

[1− λt+1]p(yt+1|It,M) + λt+1p(yt+1|It,M∗)

and p(M |It+1) = 1−p(M∗|It+1). Conditional on M and M∗, the predictive distributions
for yt+2 can be updated to include the information contained in yt+1. If we denote by
M̃ the hypothesis that there is no structural break between t+ 1 and t+ 2, we note that

p(yt+2|It+1, M̃) = p(yt+2|It+1,M)p(M |It+1) + p(yt+2|It+1,M
∗)p(M∗|It+1).

models such as regime switching models (Hamilton (1989)), and time-varying parameter models (Kim
and Nelson (1999), Koop and Potter (2001), McCulloch and Tsay (1993) , Nicholls and Pagan (1985))
allow for changes in the form of the conditional density of the data, but these are assumed to evolve
according to a fixed law of motion. Parameters change over time, but in a predictable way.

5From a Bayesian perspective all inferential information regarding future outcomes of yt+1, condi-
tional on It and a model, is contained in the predictive density.
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Suppose now that the econometrician wishes to take into account the hypothesis,
denoted by M̃∗, that there may be a structural break between t + 1 and t + 2. In this
case, he would specify a predictive distribution of the form p(yt+2|M̃∗) and a subjective
probability 0 ≤ λt+2 ≤ 1 that M̃∗ is correct, and the above exercise would be repeated.6

At each data point, a new model is introduced and standard results from Bayesian
model averaging provide predictive quantities as well as model probabilities. Since a
model is defined by the time period it starts, their probabilities can be used to identify
breaks in the past. As the empirical examples illustrate, our method provides a rich
set of information with regard to model probabilities, posterior parameter densities,
and forecasts, all as a function of time. By construction, forecasts incorporate both
parameter uncertainty and model uncertainty.

Several applications of the theory to simulated, and macroeconomic time-series data
are discussed. In comparison to a model that assumes no breaks, we find the method
produces very good out-of-sample forecasts, accurately identifies breaks, and performs
well when the data do not contain breaks. In particular, the examples demonstrate that
a break can result in a large jump in the predictive variance, which quickly reduces as
we learn about the new parameters. However, models that ignore breaks, may have a
long-term rise in the predictive variance. As a result, our method can be expected to
produce more realistic moments, and quantiles of the predictive density.

We consider predictions of real U.S. GDP and document the reduction in variability
discussed in Stock and Watson (2002) among others. Rather than a one time break in
volatility, our results point to a gradual reduction in volatility over time with evidence
of 3 separate regimes. The model is particularly useful in forecasting the probability of
expansions. A second application considers a forecasting model of inflation motivated
from a Phillips curve relationship. There are several breaks in this model and a consid-
erable amount of parameter instability. By accounting for these breaks in the process,
our approach delivers improved forecasting precision for inflation. The identified breaks,
which are not exclusively associated with oil shocks, indicate that the Phillips curve
we use is far from stable. However, the structural break model optimally extracts any
predictive value from this unstable relationship.

This paper is organized as follows. Section 2 provides a more detailed explanation of
the approach, as well as a description of techniques that can be used to implement the
procedure. Section 3 applies these methods to simulated data, growth rates in US GDP
and to a Phillips curve model of inflation. Section 4 discusses results and extensions.

2 Learning about structural breaks

In this section we provide details of the structural break model and how to forecast in
the presence of breaks as well as various posterior quantities that are useful in assessing
the impact of structural breaks on a model. In the following we consider a univariate

6In the empirical applications we repeat this exercise for all observations in the sample.
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time-series context, however, the calculations generalize to multivariate models with
weakly exogenous regressors in the obvious way. As in the Introduction, let yt be an
observation, and It = {y1, ..., yt}, the information set available at time t.

The first step in making the approach operational is to introduce the role of param-
eters in learning and forecasting in the presence of structural breaks. Let p(yt|θ, It−1)
denote the predictive density from a model, conditional on past data It−1, and condi-
tional on a parameter vector θ. For simplicity, we assume that the form of this density
is constant throughout the exercise, and that structural breaks are characterized by un-
predictable changes in the value of θ. Extensions to the case where the conditional data
density changes over time are straightforward, as noted in Section 2.1 below.

Let Mi be a model in which it is supposed that a structural break occurred between
periods i − 1 and i7, while p(θ|Mi) is the prior distribution for θ conditional on the
hypothesis that model Mi is correct. In the case of model Mi, data before the break,
y1, ..., yi−1 is not useful in parameter estimation, so the posterior p(θ|It−1,Mi) is obtained
according to

p(θ|It−1,Mi) =
p(yi, ..., yt−1|θ,Mi)p(θ|Mi)∫
p(yi, ..., yt−1|θ,Mi)p(θ|Mi) dθ

, i < t (1)

p(θ|It−1,Mi) =p(θ|Mi), i = t. (2)

Given the conditional data density p(yt|θ, It−1,Mi) and the posterior p(θ|It−1,Mi),
the predictive density is

p(yt|It−1,Mi) =

∫
p(yt|θ, It−1,Mi)p(θ|It−1,Mi) dθ. (3)

Since no structure has been put on the form or the rate of arrival of structural breaks,
the econometrician is obliged to make a subjective assessment about the probability
that a break will occur between t − 1 and t. This subjective probability is denoted
by 0 ≤ λt ≤ 1; λt may vary as the econometrician’s assessment of the rate of arrival
of breaks evolves over time. If λj > 0, j = 1, .., t − 1 there will be a total of t − 1
models available at time t− 1, and whose relative weights will have updated over time
according to Bayes’ rule. The predictive density for yt is obtained by integrating across
the available models:

p(yt|It−1) =

[
t−1∑
i=1

p(yt|It−1,Mi)p(Mi|It−1)

]
(1− λt) + λtp(yt|It−1,Mt). (4)

The final term on the right-hand side of (4) is the probability of a break multiplied by
the predictive density conditional on a break occurring between t− 1 and t. Therefore,
p(yt|It−1,Mt) is based only on the prior p(θ|Mt), and not a function of past data. How-
ever, future data {yt+1, yt+2, ...}, is used to learn about the new value of θ. If λt = 0,
then model Mt receives no weight.

7In other words yi−1 and yi are drawn from different data generating processes.
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After observing yt, model probabilities can be updated through Bayes’ rule. For
instance,

p(Mi|It) =
(1− λt)p(yt|It−1,Mi)p(Mi|It−1)

p(yt|It−1)
, 1 ≤ i < t (5)

p(Mt|It) =
λtp(yt|It−1,Mt)

p(yt|It−1)
i = t. (6)

At time t there are a maximum of t models that are being entertained. Any feature
of the posterior distribution of θ can be calculated by Bayesian model averaging. For
example, if h(θ) is a function of the parameter vector then its expected value is

E[h(θ)|It] =
t∑
i=1

E[h(θ)|It,Mi]p(Mi|It). (7)

Similarly, there are t+1 models that contribute to the predictive density, and if g(yt+h), h ≥
1, is a function of yt+h then8

E[g(yt+h)|It] =
t∑
i=1

E[g(yt+h)|It,Mi]p(Mi|It)(1− λt+1) + E[g(yt+h)|It,Mt+1]λt+1. (8)

Note that with the appropriate definition of h(·) and g(·), we can recover any moment
of interest or probability. Quantiles can be calculated through simulation. In this case,
a draw from the models, based on the model probabilities is first taken before a model
specific feature is sampled such as a parameter or the simulation of a future observation.
Collecting a large number of draws and ordering them allows for the estimation of a
quantile.

Since models are identified with particular start-up points, they represent break
points. That is, models with high posterior probability identify structural breaks points.
For example, if model Mi has a large model probability among all candidate models, it
suggests that a break occurred at time i. A plot of the maximum model probability as
a function of time may be informative as to when breaks occurs and how confident we
are in the new model. Similarly, a time series plot of E[θ|It] presents evidence regarding
structural change of the parameter θ through time.

Another useful posterior summary measure of structural breaks is mean useful ob-
servations (MUO). For instance, if there were 100 data points and it was known that a
break occurred in the past at observation 45 then only 55 observations would be useful
in estimating the post break model. Mean useful observations is a plot of the expected
number of useful observations at a point in time and is calculated at time t as,

MUOt =
t∑
i=1

(t− i+ 1)p(Mi|It). (9)

8Note that we have implicitly assumed one break occurs over the forecast horizon, however, it is
possible that multiple breaks occur at t+1, t+2, ..., t+h. This can be accounted for, as in Equation (8),
by integrating over all possible break permutations.
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In the circumstance where no breaks occur, MUOt as a function of time would be a 45
degree line. However, when a break occurs MUOt drops below the 45 degree line.

2.1 Prior specification

A coherent model of learning requires that the predictive density for each model Mi must
be a proper density. In the current context, where the predictive density p(yt+1|It,Mi)
defined by the mixture in (3) above, this condition will be satisfied if p(θ|It,Mi) is a
proper density. If at time t, the number of observations since the breakpoint associated
with model i, that is the difference t−i is sufficiently large, then p(θ|It,Mi) will generally
be proper even if the original prior p(θ|Mi) is an improper ’ignorance prior’.

The use of improper priors or even highly diffuse priors is clearly inappropriate here.
It may take many observations before p(θ|It,Mi) is concentrated enough to generate
predictive distributions that would receive any significant support. For an econometri-
cian who is trying to generate forecasts using available data, there are significant gains
in being able to respond more quickly to the possibility that a break may have occurred
recently. Our approach is to adopt proper priors that produce reasonable predictive
distributions. Simulating a model based on the prior, and considering the empirical
moments is often helpful in selecting prior parameters.

We find it convenient to use the same form for p(θ|Mi) at each data point in the
empirical applications below, but this restriction can be relaxed. For example, if the
parameter vector θ can be decomposed according to θ = (θ0, θ1), and if the analyst
believes that any potential instability can be attributed to changes in θ0 - that is, the
analyst believes that θ1 is stable - then an appropriate prior might be one where the
marginal prior p(θ1|Mi) resembles the marginal posterior p(θ1|Ii).

Similarly, there is no obvious reason why an analyst should insist on using the same
value for the λt in every period. If, in his subjective judgment, his model has been
producing satisfactory forecasts, and if nothing has occurred that would suggest a recent
break, he may choose an extremely low value of λt. On the other hand, if he sees a marked
decline in the quality of his forecasts, then he might think it appropriate to set λt at a
larger value. In our inflation example below, we find that an ad hoc rule in which λt is
modeled as an increasing function on the size of past forecast errors does quite well.

The approach discussed in the previous section can also be adapted to the case where
the structural instability of the data-generating process is manifested by changes in the
form of the conditional data density itself, as noted above. The simplest way would
be to simply introduce more than one data density in each period. Suppose that the
analyst believes that if there is a break after period t, there are K possibilities for the
data density in period t+ 1, denoted by pk(yt+1|θk,Mk

t+1), each accompanied by a prior
p(θk|Mk

t+1). Suppose also that the analyst assigns the probability λkt+1 to Mk
t+1. In this

context, the hypothesis Mt+1, that there was a break immediately following period t,
is defined by Mt+1 ≡ {Mk

t+1}Kk=1, and its prior probability is λt+1 =
∑K

k=1 λ
k
t+1. The
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predictive distribution conditional on a break, is the mixture

p(yt+1|Mt+1) =
K∑

k=1

[∫
p(yt+1|θk,Mk

t+1)p(θk|Mk
t+1) dθk

]
(λkt+1/λt+1).

After yt+1 is observed, the model probabilities p(Mk
t+1|It+1) and distributions p(θk|Mk

t+1, It+1)
are updated in the usual way. Note also that there is no reason to restrict attention to
the case where the number of potential models is fixed over time.

2.2 Computational Issues

For many econometric models, all of the quantities discussed in the previous subsection
can be calculated using standard Bayesian simulation methods. For an introduction to
Markov chain Monte Carlo (MCMC) see Koop (2003) while Chib (2001), Geweke (1998)
Robert and Casella (1999) provide a detailed survey of MCMC methods.

The following steps are required for model estimation at time t:

1. Obtain a sample from the posterior of model Mi, i = 1, ..., t+1. Calculate posterior
quantities for each of the t models or predictive features of interest for the t + 1
models. Note that Mt+1 is the prior and an input onto forecasting.

2. Calculate model probabilities, p(Mi|It), i = 1, ..., t.

3. Perform model averaging on quantities of interest, forecasts, etc., using equations
(7) and (8). λt coupled with the model probabilities from step 2 give the t + 1
model probabilities used in forecasting.

Typically, and in our applications, we repeat the above steps for all observation t =
1, ..., T . However, various schemes in which breaks are permitted at periodic times
could be considered by setting the appropriate subset of {λt}Tt=1 to 0.

In the special case of the linear model with a conjugate normal-gamma prior an
analytical solution is available for the posterior in Step 1. In other cases, Gibbs or
Metropolis-Hasting sampling can be used to obtain a sample from the posterior. There
are several approaches that can be used to calculate the marginal likelihood and therefore
the model probabilities. These include Chib (1995), Gelfand and Dey (1994), Geweke
(1995), and Newton and Raftery (1994).

3 Empirical Examples

In this section we present results from simulated data and two examples in macroeco-
nomics. In both cases we consider the following linear model,

yt = Xt−1β + εt, εt ∼ N(0, σ2) (10)
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where yt is the variable of interest that is assumed to be related to k regressors Xt−1 avail-
able from the information set It−1. Independent priors β ∼ N(µβ, Vβ), σ2 ∼ IG(v0

2
, s0

2
)

rule out analytical results, so we use Gibbs sampling to obtain draws from the posterior
distribution.9 If θ = [β σ2], then Gibbs sampling produces a set of simulated draws
{θ(i)}Ni=1 from the posterior distribution after discarding an initial burnin period. In the
following examples N = 5000, which are collected and the first 100 draws are dropped.
To calculate the marginal likelihood of a model and therefore model probabilities we use
the method of Geweke (1995) which uses a predictive likelihood decomposition of the
marginal likelihood. That is,

p(y1, ..., yt|Mi) =
t∏

k=1

p(yk|Ik−1,Mi). (11)

Each of the individual terms in (11) can be estimated consistently as

p(yk|Mi) ≈ 1

N

N∑
i=1

p(yk|θ(i), Ik−1,Mi), (12)

which can be conveniently calculated at the end of a MCMC run along with features of
the predictive density, such as forecasts.

3.1 Change-points in the mean

As a simple illustration of the theory presented, consider data generated according to
the following model,

yt = µ1 + εt, t < 75 (13)

yt = µ2 + εt, 75 ≤ t < 150 (14)

yt = µ3 + εt, t ≥ 150 (15)

with µ1 = 1, µ2 = .1, µ3 = .5, εt ∼ NID(0, .3), and t = 1, ..., 200. Priors were set to
µ ∼ N(0.2, 9), σ2 ∼ IG(25, 10), λt = 0.01 for t = 1, ..., 200.

Figure 1 displays a number of features of the model predictions. We compare the
break model to a nobreak alternative, both with identical priors.10 Panels A and B show
the predictive mean along with the 95% highest density region (HDR) from the predictive
density one period out-of-sample. This interval was obtained through simulation from
the predictive density based on 5000 draws, which is described as follows. First, a model
was randomly chosen based on the model probabilities at time t− 1, next a parameter

9See Koop (2003) for details on posterior sampling for the linear model with independent but con-
ditionally conjugate priors.

10For convenience we label the structural break model as the break model and refer to a model that
assumes no breaks as the nobreak model.
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vector was sampled from the posterior simulator and used to simulate the model ahead
one observation. The smallest interval from the ordered set of these draws that has 95%
probability gives the desired confidence interval

Both sets of confidence intervals are similar before the break at t = 75 with the
exception of a large positive outlier that the break model briefly interprets as a break.
However, after the first break, panel C shows a quick reduction in the predictive mean
from the break model while the predictive mean from the nobreak model remains high
for a long time. Also note that the confidence intervals for the nobreak model appear
to be uncentered relative to the data after the first break.

Similarly, panel D shows the nobreak model to understate the dispersion in the
predictive density just after the first break point. On the other hand, the break model
correctly identifies a break and consequently has a large increase in the uncertainty
about future observations. The second break point is much harder to detect and we only
observe a gradual increase in the predictive mean, and predictive standard deviation.

These figures suggest that predictions from the break model should be superior to
models that ignore breaks. Table 1 show the improvements in terms of forecasting preci-
sion and the log marginal likelihood of both models. We include the root mean squared
error (RMSE) and mean absolute error (MAE) based on the predictive mean.11 Out-of-
sample forecasts are included for all observations.12 Besides the improved forecasts, the
estimates for the log marginal likelihoods indicate a log Bayes factor of 22.6 in favour of
the break model.

Finally Figure 1E displays the model probabilities through time. This is a 3-dimensional
plot of (5) and (6). The model axis displays the models, identified by their starting ob-
servation. Note that the number of models is linearly increasing with time. The model
probabilities at a point in time can be seen as a perpendicular line from the time axis.
At t = 1 there is only one model which receives all the probability, at t = 2 there are
2 models etc. It can be seen that up until observation 75 model M1, receives almost
probability 1.13 However, after observing the first break at t = 75, model M75, has a
probability of .94 which allows the model to quickly adjust to the new data generating
process. After this the probability of M1 drops to zero and M75 continues to receive a
high probability until the latter part of the sample. The difficulty in detecting the final
break at t = 150 is clearly seen in this figure with the low hump and dispersed model
probabilities in this region.

In additional experiments, we simulated from a structurally stable model (13) for 200
observations. The break model produced very similar results to a no break model. For
instance, from one of the simulations, the RMSE for the predictive means was .5622 for
the break model and .5604 for the no break model. Other results were very similar across

11Based on a quadratic loss function the predictive mean is the Bayes optimal predictor.
12The 1st prediction is based only on the prior. Evaluating forecasts based on data in the latter half

of the sample, for this example and others, produced the same ranking among models.
13From the figure it can just be seen that there is a one time spike in M64 at observation t = 64

associated with a positive outlier of 2.8456 previously mentioned.
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models. This suggests that the approach can be confidently used even when no breaks
are present in the data. The next two subsections consider application to forecasting
real output and inflation.

3.2 Real Output

A recent literature, beginning with Kim and Nelson (1999), and McConnell and Perez-
Quiros (2000), documents a structural break in the volatility of GDP growth (see Stock
and Watson (2002) for an extensive review). We consider model estimates and forecasts
from an AR(2) in real GDP growth. Let yt = 100[log(qt/qt−1) − log(pt/pt−1)] where qt
is quarterly U.S. GDP seasonally adjusted and pt is the GDP price index. Data range
from 1947:2 - 2003:3, for a total of 226 observations. The model is

yt = β0 + yt−1β1 + yt−2β2 + εt, εt ∼ N(0, σ2). (16)

Realistic priors were calibrated through simulation14 and are µβ = [.2 .2 0]′, Vβ =
Diag(1 .03 .03), v0 = 15, s0 = 10.15 We set λt = .01, t = 1, ..., 226 which implies
an expected duration of 25 years between breaks points The results presented impose
stationarity; removing this constraint produces similar results.

Figures 2 - 4 display several features of the estimated model, and Table 2 reports
out-of-sample forecasting results. Panels A and B of Figure 2 present the data along
with the predictive mean and the associated HPD interval for the break and nobreak
AR(2) model, both with the same prior specification. Both models produce very similar
predictions as can be seen in panel C of this figure. However, the confidence interval
from 1990 onward is noticeably narrower for the break model. The differences in the
predictive standard deviations are easily seen in Figure 2D. There is a clear reduction in
the standard deviation beginning from the end of the 1980s for the break model, as well
as a less pronounced reduction in the 1960s. In contrast the nobreak model estimates
the predictive standard deviation as essentially flat with only a slight reduction over
time.

The evidence for structural breaks can be seen in Figure 2E. For instance, there is
some weak evidence of a break in the 1960s, however as we add more data the probability
for a break during this period diminishes. Notice, however, that from the 1960s on, there
is always some uncertainty about a break as new models are introduced. This can be
seen from the small ridges on the 45 degree line between Models and Time. The final
ridge in this plot is associated with a break in 1983:3. This is more clearly seen in
Figure 3 which shows the very last line of the model probabilities in Figure 2E based
on the full sample of data. There is some uncertainty as to when the break occurs with

14When we simulated artificial data using this prior, the 95% confidence regions for the unconditional
mean, standard deviation, and the 1st order autocorrelation coefficient are (-2.05,2.71), (0.64,1.27), and
(-0.10,.52) respectively.

15The priors are conservative, but not unduly so. The proportion of realized observations that lie
within the predictive density 95% confidence region, when the posterior always equals the prior, is 0.978.
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the maximum probability being associated with model 1983:3. Kim and Nelson (1999),
and McConnell and Perez-Quiros (2000) find evidence of a break in 1984:1.16

Figures 4A and 4B plot the evolution of the unconditional first and second moment
implied by the model. The unconditional mean shows some variability but mostly stays
around 1. In other words, the structural breaks do not appear to affect the long-run
growth properties of real GDP. In contrast, Figure 4B shows 3 distinct regimes in the
unconditional variance. Ignoring the transition periods, the unconditional variance val-
ues are 1.8 (1951-1962), 1.2 (1965-1984), and .40 (1990-2003). Rather than a one time
break in volatility, our results point to a gradual reduction in volatility over time with
evidence of 3 separate regimes.

Table 2 displays out-of-sample results for one-period ahead forecasts. In addition
to a quadratic loss function, optimal forecasts are computed for the linear exponen-
tial (LINEX) loss function discussed in Zellner (1986). This loss function, L(y, ŷ) =
b[exp(a(ŷ − y) − a(ŷ − y) − 1)] where ŷ is the forecast and y is the realized random
variable ranks overprediction (underpredictions) more heavily for a > 0 (a < 0). The
table includes b = 1 with a = −1, and a = 1. We report the MAE and RMSE for
the predictive mean and for the probability of positive growth next period, I(yt+1 > 0),
where I(yt+1 > 0) = 1 if yt+1 > 0 and otherwise 0.17 Based on our previous discussion it
is not surprising that the MAE or RMSE for both models are very close; neither of these
two criteria are affected by the possibility that the predictive variance might be unstable.
When the LINEX loss function is used, the break model’s ability to capture variations
in higher moments provides small gains. On the other hand, the break model produces
a 10% reduction in the MAE when forecasting future positive growth as compared to
the nobreak model. We also computed longer horizon forecasts (not reported) which
provide a similar ranking among the 2 models. Finally, estimates for the log marginal
likelihoods indicate a log Bayes factor of 15.6 in favour of the break model.

3.3 Inflation

Another well-known economic relationship that exhibits structural breaks is the Phillips
curve, which in its most basic form posits a negative relationship between inflation and
unemployment. This structural model has motivated a number of empirical studies that
forecast inflation, and many studies have questioned the stability of this relationship
(see Stock and Watson (1999) and references therein). It is therefore of interest to see
if we can exploit information from this relationship in the presence of model instability.

Define quarterly inflation as πt = 100 log(pt/pt−1), where pt is the GDP price index,

16There are of course some important methodological differences between their work and our ap-
proach. Kim and Nelson (1999) use Bayesian methods but only consider one break while McConnell
and Perez-Quiros (2000) is based on the asymptotic theory of Andrews (1993) and Andrews, Lee, and
Ploberger (1996).

17EiI(yt+1) = p(yt+1 > 0|It).
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and consider the following model for predicting h-period ahead inflation

πt+h = β1 + πtβ2 + ytβ3 + Utβ4 + εt+h, εt+h ∼ N(0, σ2) (17)

where yt is the growth rate of real GDP, Ut is the unemployment rate, and h = 1, 2, 3, 4.
The prior is µβ = [.5 .5 0 0]′, Vβ = Diag(1 .2 .1 .1), v0 = 15, s0 = 5, λt = .01.18

Table 3 reports out-of-sample forecasting performance, while Figure 5 displays predictive
features of the models, model probabilities, and Figure 6 records the model parameter
estimates over time.

Panels A – C of Figure 5 show the predictive mean and associated predictive confi-
dence regions for the break and nobreak models with h = 4. As expected, both models
clearly lag in responding to inflation, but the break model tends to produce a tighter
confidence interval during the 1960s and 1990s. Panel B also shows that the break model
does better in adjusting to the increase in inflation during the 1970s following from the
oil shock. Note also that the forecasts from the nobreak model in panel A hardly respond
during this period. The success of the break model lies in the identification of a break in
the process at 1972, as seen in panel D. For instance, based on observations through to
1973, models associated with 1972:1, 1972:2, and 1972:3 receive model probabilities of
0.62, 0.13, and 0.12. Other breaks occur around 1950:2 as a result of the an increase in
primary commodity prices and the outbreak of the Korean war, and during the 1981-82
recession that followed the Federal Reserve’s decision to target the rate of growth of the
monetary base.19

The implications for parameter change due to the 3 main breaks that we have iden-
tified are found in Figure 6. This figure reports the posterior mean of the break model
parameter as a function of time. The most significant changes in the parameters appear
to be a temporary increase in the intercept, accompanied by a decrease in the coefficient
on unemployment. Estimates for the variance coefficient σ2 increase during the episodes
of high inflation. In addition, there has been a gradual increase in the importance of
lagged inflation, β2, which by the end of the sample achieves a value of 0.5. Finally, note
that except for the early part of the sample there is very little evidence that real growth
rates or unemployment are important factors in predicting inflation.

Table 3 illustrates the benefits of explicitly dealing with these structural breaks. For
each forecast horizon h = 1, ..., 4, the structural break model improves on the MAE and
RMSE of the nobreak model. In addition, to forecasts of yt+h, we report forecasts of
I(yt+h > 1), which on an annual basis is the probability of inflation being in excess of
4%: this may be a useful indicator of high inflation and a quantity of interest to policy
makers. As in Tables 1 and 2, we report results for the case where λt = 0 (the nobreak
case) and where λt = 0.01, ∀t. We also include results where the subjective probability
of a break is an increasing function of the standardized forecast error observed in the

18This prior specification provides a very conservative predictive density: the proportion of realized
observations that lie within the predictive density 95% confidence region, when the posterior always
equals the prior is 1, for h = 1, ..., 4.

19Recall that we are discussing the h = 4 case which may affect the identified break point by a year.
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previous period, defined by et ≡ (yt − E[yt|It−1])/
√
V [yt|It−1]. We adopt the following

ad hoc rule for the choice of λt:

λt = [1 + exp(4.5− |et−1|)]−1 (18)

When et−1 = 0, (18) generates λt = 0.01. As et−1 increases in absolute value, so does λ:
for |et−1| = 1, 2, 3, 4, we obtain λt = 0.03, 0.18 and 0.38, respectively. We refer to this as
the flexible break model, while the case in which λt is constant is the fixed break model.

Given the above discussion and the existing empirical literature on the instability of
the Phillips curve, it is probably not surprising that the nobreak model is clearly domi-
nated by the two break models. There are significant gains - in both MAE and RMSE
- for using either of the break models to forecast yt+h and I(yt+h > 1) at all forecast
horizons considered here. Furthermore, the log Bayes factors - which range between 40
and 80 in favour of the break models - indicate that the data provide overwhelming
evidence against the hypothesis that the relationship in (17) is stable over time.

The advantages of using the flexible break model over the fixed break model are less
clear. The flexible break model has consistently lower RMSE and MAE when forecasting
yt+h at all forecast horizons, but the gains are nowhere near as important as those asso-
ciated with abandoning the nobreak model. For values of h = 1, 2, the fixed break model
outperforms the flexible break model in predicting I(yt+h > 1). The log Bayes factors
in favour of the flexible break model range from -1.9 to 3.2, so few strong conclusions
can be made about the relative merits of the two break models.

4 Discussion

This paper provides a very general approach to dealing with structural breaks for the
purpose of model estimation, inference and forecasting: it imposes no structure on the
arrival rate of breakpoints, nor does it specify how breaks affect the data generating
process. Our empirical examples suggest that being able to quickly identify breakpoints
generates significant forecasting efficiency gains in the period immediately following a
break. We make a particular emphasis on careful prior elicitation; the focus of interest
when specifying priors should be their implications for the predictive distribution of
observables. The form of these priors can vary over time, as the analyst learns more
non-data-based information. Developing tools for prior elicitation in various forecasting
contexts along the lines of the extensions discussed in Section 2.1 will be the subject of
future research.

There are also numerical issues that will have to be addressed. In our examples, the
number of models is equal to the sample size, but the computational burden is quite
modest: computing all the results (including the HPD regions reported for GDP growth
rates took just under 25 minutes on a modern Pentium chip based computer. Of course
for forecasting in real time, only the models available at time t (in our case, t+1 models)
need to be estimated at time t, and importance sampling techniques may further reduce

13



these computations by efficiently using past draws from the posterior simulator (Geweke
(1995)). In other settings, such as in finance or labor econometrics, the datasets are
much larger, and it may be impractical to entertain such a large number of models. In
this case, allowing for periodic breaks to occur - for example, at a seasonal frequency -
may be a practical alternative.
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Table 1: Simulation Example

Model λt MAE RMSE log ML
yt+1 yt+1

no break 0.57251 .71365 -219.1259
break 0.01 0.50711 .63119 -196.5148

This table reports mean absolute error (MAE), and root mean squared error (RMSE)
for the predictive mean forecast one-period ahead, and the log marginal likelihood
estimate. The out-of-sample period is based on all 200 observations.

Table 2: Out-of-Sample Forecasting Performance for US Real Output

Model λt MAE RMSE LINEX log ML
yt+1 I(yt+1 > 0) yt+1 I(yt+1 > 0) a=-1 a=1

no break .74514 .29947 1.0187 .3616 .6549 .5478 -321.3516
break .01 .75791 .26945 1.0276 .3546 .6534 .5316 -305.6682

This table reports mean absolute error (MAE), and root mean squared error (RMSE)
for the forecasts based on the predictive mean for one-step ahead real GDP growth
yt+1, and the positive growth indicator, I(yt+1 > 0), where I(yt+1 > 0) = 1 if yt+1 > 0
and otherwise 0. In addition average LINEX loss function is reported with b = 1, as
well as the log marginal likelihood estimate. The out-of-sample period ranges from
1947:4-2003:3 (224 observations).
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Table 3: Out-of-Sample Forecasting Performance for Inflation

Model λt MAE RMSE log ML
yt+h I(yt+h > 1) yt+h I(yt+h > 1)

h=1
no break .29709 .28514 .4299 .3488 -121.0422
break .01 .26257 .22854 .4019 .3238 -76.3327
break [1 + exp(4.5− |et−1|)]−1 .26083 .23001 .4016 .3221 -78.2037

h=2
no break .36562 .31436 .4931 .3775 -146.3510
break .01 .30828 .26090 .4414 .3485 -105.4318
break [1 + exp(4.5− |et−1|)]−1 .30360 .26185 .4393 .3463 -106.3143

h=3
no break .38128 .32999 .5343 .3882 -164.6276
break .01 .32086 .24752 .4986 .3403 -108.3239
break [1 + exp(4.5− |et−1|)]−1 .30494 .24349 .4624 .3306 -105.1382

h=4
no break .43680 .36440 .5801 .4264 -183.7457
break .01 .30978 .25864 .4481 .3480 -105.3295
break [1 + exp(4.5− |et−1|)]−1 .30108 .25809 .4384 .3410 -105.1615

This table reports mean absolute error (MAE) and root mean squared error (RMSE)
for the forecasts of h-period ahead inflation, yt+h, and a high inflation state indicator
I(yt+h > 1), where I(yt+h > 1) = 1, and otherwise 0, based on the predictive mean.
The out-of-sample period ranges from 1948:2-2003:1. For the break model two cases
are presented. In the first, λt = .01 for all data, and the second allows λt to be a
function of the lagged standardized prediction error et−1.
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Figure 1: Simulated Data
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Figure 2: Real GDP Growth Rates
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Figure 3: Model Probabilities
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Figure 5: Inflation, h=4
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Figure 6: Parameter Estimates through Time, h=4
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