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Abstract:  
We approach the social choice problem as one of optimal statistical inference. If 
individual voters or judges observe the true order on a set of alternatives with error, 
then it is possible to use the set of individual rankings to make probability statements 
about the correct social order. Given the posterior distribution for orders and a 
suitably-chosen loss function, an optimal order is one that minimises expected 
posterior loss. The paper develops a statistical model describing the behaviour of 
judges, and discusses Markov chain Monte Carlo estimation. We also discuss criteria 
for choosing the appropriate loss functions. We apply our methods to a well-known 
problem : determining the correct ranking for figure skaters competing at the Olympic 
Games. 
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1 Introduction

The question of how best to aggregate individual preferences is one of the oldest and best-

known in the social sciences. This issue must be addressed in any setting in which decisions

are to be made by social groupings: the election of political leaders and the allocation of

communal resources are two of the best-known examples. The ranking of competitors in

some judged sports, such as figure skating, presents the same methodological difficulty. It is

well known, at least since Condorcet (1785), that it may be difficult to aggregate individual

preferences into a coherent collective order, that is, to avoid cycles. Some two centuries

later, Arrow (1963) crystallized this difficulty with his famous Impossibility Theorem, which

demonstrates that there is no way of transforming individual preferences into a coherent

social order, while respecting apparently innocuous prescriptions. This result does not imply

that the social choice problem is any less relevant - as is testified by the abundant literature

that his theorem has spurred.

If individual preferences are arbitrary, the Impossibility Theorem states that there is no

way of resolving disagreements. But if we suppose that individuals observe a true social order

with error, differences of opinion can be ascribed to random differences in perception. In

this case, it should be possible to use individual voters’ reported rankings to infer the correct

social order. That is, the social choice problem may be thought of as a statistical issue of

optimal inference. This approach is as old as the social choice literature itself, and forms

the basis for Condorcet’s justification of the majority principle. In this, he was certainly

inspired by Rousseau (1913) in his Social Contract, for whom the opinion of the majority is

legitimate because it expresses the “general will.”

When in the popular assembly a law is proposed, what the people is asked is
not exactly whether it approves or rejects the proposal, but whether it is in
conformity with the general will, which is their will. Each man, in giving his
vote, states his opinion on that point; and the general will is found by counting
votes. When therefore the opinion that is contrary to my own prevails, this
proves neither more nor less that I was mistaken, and that what I thought to be
the general will was not so. [Rousseau (1913), p. 93]
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Condorcet’s rigorous formulation of this proposition is one of the earliest applications

of the calculus of probability and of the maximum likelihood approach to inference. He

assumed that every voter chooses the best of two alternatives with a probability larger than

one half, and that this judgment is independent between pairs and voters. If the binary

relation obtained by applying the simple majority rule to each pair of alternatives is an

order, then it is the solution to the problem, that is, the most probable order.

Condorcet was perfectly aware that the binary relation resulting from his procedure may

contain cycles, a phenomenon sometimes referred to as the Condorcet paradox. He proposed

a method for breaking these cycles, but unfortunately this method gives consistent results

only for the case of three alternatives. Young (1988) shows that a correct application of the

maximum likelihood principle leads to the selection of rankings that have the minimal total

number of disagreements with those of the voters. In other words, they minimise a “distance”

proposed by Kemeny (1959) and for this reason, they are often called Kemeny orders. When

it exists, that is, in the absence of cycles in the majority relation, the Condorcet ranking is

the unique Kemeny ranking.

Drissi and Truchon (2004) relax the assumption that the probability of comparing cor-

rectly two alternatives is the same for any pair of alternatives. They let the probability

increase with the distance between two alternatives in the allegedly true ranking, thus al-

lowing for the possibility that it may be more difficult to correctly rank two competitors

who are ‘close’. They postulate a two-parameter probability function and they analyze the

behaviour of the maximum likelihood rule as a function of these parameters.

We extend the standard Condorcet-Kemeny-Young approach in three ways:

• First, we add a third parameter to the probability function of Drissi and Truchon to
take into account the possibility that judges may have a bias for alternatives with

certain features, such as a shared nationality.

• Second, we use the reported votes to estimate the parameters of this probability func-
tion.
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• Third, we formalize andmake explicit the optimal inference problem facing the decision-
maker. Towards this end, we propose a family of two-parameter loss functions, and we

discuss which parameter combinations might be most plausible in our application.

Concerning the third point, the maximum likelihood principle yields an optimal order

only for the special case in which the decision-maker’s loss function is degenerate, that is,

uniform throughout the space of incorrect orders. If the true order on the set {a, b, c, d} is
abcd, this loss function says that choosing dcba and abdc are equally costly. It is unlikely

that a decision-maker would view reversing the last two candidates as being as serious an

error as reversing the entire ranking.

Given the decision-theoretic nature of the problem addressed here, Bayesian methods

provide a natural framework for our analysis. The decision-maker observes the ranking

reported by voters or judges and computes the conditional distribution of the correct ranking

conditional on this information. Given this distribution and a suitably-chosen loss function,

the optimal ranking is the order that minimises posterior expected loss.1

We apply our methods to a well-known - and occasionally notorious! - social choice

problem: ranking competitors in figure skating competitions. Most spectators are aware that

skaters are ranked from the scores that they receive from a panel of judges. However, fewer

may realise that, prior to the 2006 Olympics, these scores served only to obtain a ranking

for each judge, and that these rankings were then aggregated with one of two complex

procedures devised by the International Skating Union (ISU), the decision-maker in this

context. These two procedures are genuine social welfare functions in Arrow’s sense. One

of them has been studied extensively by Bassett and Persky (1994) and the two by Truchon

1The formulation of a ranking problem as an optimal statistical decision problem is not completely new.
Bühlmann and Huber (1963) formulate a ranking problem in a similar way, but they confine their analysis
to the degenerate loss function. We are not aware of other contributions along these lines. It is the case that
distances between rankings have been used to conceive ranking or aggregation rules: the Kemeny rule is one
example. Meskanen and Nurmi (2006) show that several other well known rules may be defined in the same
way, but with a different distance. Truchon (2005) offers a brief survey of ranking rules based on distances,
some of which have been derived in a unique way from a set of axioms. These distances are mostly used to
find a median or a mean ranking for the rankings making up a profile of preferences or votes.
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(2004). We compare the optimal rankings that we obtain with those given by the two ISU

rules, and with the Kemeny and the Borda rules.

The paper has six sections. Section 2 outlines the statistical model and describes how

the figure skating problem fits into our framework. We discuss our proposed loss function

in Section 3. Section 4 describes how the information contained in the rankings reported

by the various judges can be used to obtain the optimal ranking. Section 5 applies these

techniques to the Olympic figure skating example, and Section 6 concludes.

2 The model

2.1 Vote aggregation

Let A = {1, 2, . . . ,m} be a set of alternatives or candidates to be ranked. We denote by B the
set of binary relations on A, by B∗ the set of complete and asymmetric binary relations on A,
and by L the subset of (linear) orders (complete, transitive and asymmetric binary relations)
on A.2 An order on A can be represented by a vector r = (r1, r2, r3, . . .) or x = (x1, x2, x3, . . .)

where r1 and x1 are the rank of alternative 1, r2 and x2 the rank of 2, and so on.3

Let J = {1, 2, . . . , n} be the set of voters or judges. For each judge j, we have an order4
xj ∈ L, also called a vote. Equivalently, a vote xj can be represented by an (m×m) binary

matrix Xj =
£
xjst
¤
s,t∈A where:

xjst =

 1 if xjs < xjt

0 otherwise

2Withm alternatives, the cardinality of B∗ and L are 2m(m−1)
2 andm! respectively. The difference between

the two is the number of cyclic binary relations in B∗.
3Throughout, we shall use r to represent the true ranking on A and x to represent a vote on A.
4In figure skating, judges may give the same rank to two or more skaters but, for data reasons discussed

in Section 5.2, we limit ourselves to the case where votes are drawn from the space of linear orders.

4



Conversely, given a binary representation Xj of an order, we get the representation xj by

setting xjs = m−Pm
t=1 x

j
st.
5 We shall use the two representations interchangeably.

A profile of votes is an array X = (x1, . . . , xn) ∈ Ln. A profile may also be written in

the binary form X = (X1, . . . , Xn) . Once the voters or judges have cast their votes, the

problem is to aggregate these votes into a final order. We formalize this idea in the following

definition.6

Definition 1 An aggregation or ranking rule is a function Γ : Ln → L that assigns to each
profile X, a final order Γ (X) of the alternatives. Γs (X) represents the rank of alternative s

in the final order Γ (X) .

In order to define the minimum expected loss aggregation rule that we shall use in this

study, we need a few additional concepts. Given a true order r, suppose that profiles are

generated by a known distribution function f ( · |r) and that the decision-maker’s prior beliefs
about r can be described by a prior distribution function π ( · ) . The likelihood function L is

given by L(r;X) ≡ f (X|r) , which is the distribution function re-interpreted as a function
of r, given X.

If the profile X is observed, the decision-maker will revise the prior according to Bayes’

rule. The posterior distribution function π( · |X) on L is given by:

π (r|X) = f (X|r)π (r)P
s∈L f (X|s)π (s)

∝ L (r;X)π (r)

Definition 2 A loss function is a mapping d : L2 → R+ such that d (r, r̂) ≥ 0 ∀r̂ 6= r and

d (r, r) = 0 ∀r. The value d (r, r̂) is the loss resulting from the selection of order r̂ when r is

the true order.

5There is an abuse of notation in using xs to represent elements of a vector and xst to represent elements
of a matrix but, given the one-to-one correspondence between the xj and the Xj , this should entail no
confusion. Naming both judges and alternatives as 1, 2, 3, . . . is also an abuse of notation but this allows for
simpler notations.

6Again, we neglect the fact that some agregation rule may yield rankings with ties.
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Definition 3 Given a posterior distribution function π( · |X) on L and a loss function d, an
order r∗ that belongs to

argmin
r̂

X
r̃∈L

π(r̃|X)d(r̃, r̂) (1)

is an optimal order with respect to π and d. The correspondence MEL ( · ;π, d) : Ln → R
that assigns to each profileX, the subset argmin

r̂

P
r̃∈L π(r̃|X)d(r̃, r̂) is theminimum expected

loss rule.

Remark 1 An interesting special case is obtained by considering an “all-or-nothing” or

naive loss function of the form

dN(r̂, r) =

 κ if r̂ 6= r

0 if r̂ = r
(2)

for some κ > 0. In this case, the minimum in (1) is obtained by setting r∗ equal to the mode

of the posterior distribution π ( · |X) ; see Poirier (1995, pp 302-304). If the prior distribution
π ( · ) is uniform throughout L, then the posterior π ( · |X) is proportional to the likelihood
function L( · ;X). In this special case, the problem in (1) reduces to the maximisation of the
likelihood function. Put differently, the MEL rule turns out to be the maximum likelihood

rule.

2.2 Statistical models of voter choice

This study adopts the Condorcet approach to the social choice problem and its extension

by Drissi and Truchon (2004) in supposing that the true social order exists, but that judges

observe it with error. Formally, we assume that there exists a non-decreasing function

p : {1, . . . ,m− 1} → ¡
1
2
, 1
¢
such that if r ∈ L is the true social order on A, then the vote

of judge j on a pair of alternatives (s, t) is a random variable x̃jst ∈ {0, 1} with marginal
distribution:

Pr
¡
x̃jst = 1 | r

¢
=

 p (rt − rs) if rs < rt

1− p (rs − rt) if rs > rt
(3)

Pr
¡
x̃jst = 0 | r

¢
= 1− Pr ¡x̃jst = 1 | r¢
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Put simply, p (rt − rs) is the probability that a judge orders alternatives s before t when s

has a higher rank than t in the true order, that is, when rs < rt.

If the votes Xj are taken from B∗, that is, if cycles are permitted but not ties, and if the
elements of the binary matrix Xj are independently distributed, then the distribution of the

whole matrix Xj is: cPr ¡Xj | r,B∗¢ = Y
s,t∈A
rs<rt

Pr
¡
x̃jst = xjst | r

¢
(4)

If we denote by Pr(L|r) the probability of generating an order from (4), then:

Pr(L|r) =
X
Xj∈L

cPr(Xj|r,B∗)

The probability of drawing an order from L is therefore:

Pr(Xj|r,L) =


Pr(Xj|r,B∗)
Pr(L|r) if Xj ∈ L

0 if Xj ∈ B∗\L
(5)

Restricting the sample space to L, that is, imposing transitivity, implies that the elements
of Xj are no longer independently distributed, even though the joint probabilities are still

based on the product of the individual marginal probabilities. Consider the case wherem = 3

and where we know that a judge has ranked alternative s ahead of t and t ahead of u. Even

if the marginal probability of ranking u ahead of s is some 0 < p̂su < 1, transitivity implies

that the conditional probability that the judge will rank s in front of u is equal to one.

A more satisfactory approach might have consisted in specifying a probabilistic model

on L directly. Given the number of alternatives that we shall consider, this would have
represented a daunting task. The binary approach, which is often used in the literature on

social choice, together with the elimination of incoherent relations, is adopted for practical

reasons.7 As we shall see in subsection 2.3, this choice allows us to specify and estimate a

parsimonious parametric model.

7On this point, see also Remark 2 in Drissi and Truchon (2004).
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Finally, we suppose that judges produce their orders independently according to (3-5 ),

so that the probability of a given profile X is:

f(X|r) =
nY

j=1

Pr(Xj|r,L) (6)

2.3 The parameterised model of voter choice

We adopt the logistic probability function8 of Drissi and Truchon (2004) and Truchon and

Gordon (2006). That is, we let the term p (rt − rs) in (3), which is the probability that a

judge j ranks s before t when rs < rt, take the form

pαβst (r) =
exp(α+ β(rt − rs − 1))

1 + exp(α+ β(rt − rs − 1)) (7)

with α > 0 and β ≥ 0. If β > 0, the probability increases with the distance between s

and t in the true order, measured by rt − rs.
9 When β = 0, the probability is constant.10

Larger values of α are associated with higher probabilities of correctly ordering two adjacent

alternatives.

We denote the parameterised version of the votes distribution (6) by

f(X|r, λ) (8)

where λ = (α, β) is the vector of parameters.

8This function is widely used in empirical studies of binary data.
9See Marcus (2001) for another approach that uses a similar distance measure in determining rankings.
10In Remark 1, we pointed out that, with a uniform prior and the naive loss function dN , the MEL rule

simplifies to the maximum likelihood rule. If, in addition, we use the function defined by (7) with β = 0 to
generate the distribution f ( · |r) on L, then the MEL rule turns out to be the Kemeny rule. As shown by
Young (1988), in the constant probability case, this rule is the same as the maximum likelihood rule.
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3 Loss functions

Before we can formulate a meaningful answer to the question of whether or not a given order

is better than another, we must first establish criteria for evaluating orders. If all incorrect

orders have the same consequences, then the optimal strategy is to select the most probable

order. Although choosing the most likely order may seem a plausible strategy, a loss function

of the form (2) may be difficult to justify. For example, (2) states that reversing the entire

order for 10 competitors has the same cost as reversing the ranks of the 9th- and 10th-place

competitors. It is difficult to imagine situations in which loss functions of the form (2) can

be said to genuinely represent the costs of choosing an incorrect order. This is especially

true in figure skating.

There is no loss function, and consequently no single aggregation rule, that will be ap-

propriate for all problems. For example, if the object of the exercise is to select the best

candidate among a set of alternatives, there may be no loss in reversing the order of the

second-place and last-place alternatives, as long as the highest-ranked competitor is cor-

rectly identified. On the other hand, there are many applications - such as research grant

competitions - in which resources are allocated as a function of the final order. In this case,

reversing the order of any two candidates would have real costs. In figure skating, an obvi-

ous priority is to make sure that the gold, silver and bronze medals are given to those who

deserve them. But the allocation of medals is not the only consideration; there are several

reasons for concluding that the loss function should be concerned with the entire order:

• From the athlete’s point of view, there may be monetary losses associated with incorrect
rankings. It is typically the case that the financial support that athletes receive and
their participation in future competitions are contingent on success in international
competitions; a low ranking may result in a reduction of funding.

• From the point of view of the various national figure skating agencies, the number
of competitors that a country may send to international competitions, as well as the
right to nominate judges, depends on the previous performance of their skaters; see
Zitzewitz (2006). If a skater from a given country receives a low ranking, it may result
in reduced participation in future international competitions.
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3.1 A generalised Kemeny loss function

The Kemeny metric is a sensible place to start in specifying a loss function. Let γst : L2 → R,

be a function defined for every couple of alternatives (s, t) and every pair of orders (r, r̂) by:

γst (r, r̂) =

 1 if rs < rt and r̂s > r̂t

0 otherwise

Then the Kemeny metric on L is the function dK : L2 → R defined by:

dK (r, r̂) =
X
s∈A

X
t∈A

γst (r, r̂) (9)

Since the Kemeny distance between r and r̂ increases with the number of inversions

between two orders, it certainly represents an improvement over the naive distance (2). But,

going back to our ten competitors example, the Kemeny metric does not distinguish where

in the order the inversions take place: reversing the first two candidates or the last two in

the true order has the same effect on the Kemeny metric. In many situations, an error on

a bottom ranked alternative in the true order would be of less consequence than the same

error on a top ranked alternative.

A more plausible loss function would be decreasing with respect to rs itself, that is, the

rank of alternative s in the true order, for a fixed value of
P

t∈A γst (r, r̂) .
11 In addition to

being increasing with respect to
P

t∈A γst (r, r̂) and decreasing with respect to rs, we may

wish that d be concave, that is, increase at a decreasing rate, with respect to
P

t∈A γst (r, r̂),

or alternatively be convex. We may have similar desiderata for the change with respect to

rs.

We define a class of parametric functions that offer much latitude in this respect. The

members of this class are the functions dηθ defined as follows:

dηθ (r, r̂) =
X
s∈A

ÃX
t∈A

γst (r, r̂)

!η

(m− rs + 1)
θ , η ≥ 0, θ ≥ 0

11If m = 4 and r = (1, 2, 3, 4) , then
P4

t=1 γ2t (r, r̂) = 2 with r̂ = (3, 4, 2, 1) as well as with r̂ = (4, 3, 2, 1) .
Thus, the fact that alternatives 1 and 2 are correctly ranked in the first r̂ while their order is reversed in the
second is not taken into account in this partial sum. However, it is accounted for in the complete sum.
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With these more general loss functions12, the rate at which the loss increases with the

partial sum
P

t∈A γst (r, r̂) is controlled with the parameter η. Moreover, this number is

weighted by the term (m− rs + 1)
θ . Note that d1,0 = dK and, with the convention 00 = 0,

d00 = dN , where dK and dN are defined by (9) and (2) respectively.

Remark 2 If r = (r1, . . . , rm) is the true order, the maximum distance under dηθ is always

attained for r̂ = (rm, . . . , r1) , whatever the values of the parameters. Indeed, each termP
t∈A γst (r, r̂) reaches its maximal value for r̂ = (rm, . . . , r1) , that is, by completely reversing

the true order. In particular, d1,0 (r, r̂) = dK (r, r̂) =
(m− 1)m

2
.

Remark 3 As is well known, Kemeny (1959) also defines a “distance” δK between an order

x and a profile X by: δK (r,X) =
Pn

j=1 d
K (r, xj) . The rule that he proposes and that bears

his name consists in minimizing
Pn

j=1 d
K (r, xj) . As recalled in footnote 10, Young (1988)

shows that, in the constant probability case, minimising this “distance” is equivalent to

maximising the likelihood function.

3.2 Discussion

In order to get some intuition for plausible choices of η and θ, we consider the case where

there are four alternatives. The errors associated with incorrectly reversing the first- and

second-ranked, the second- and third-ranked and the third- and fourth-ranked alternatives

are presented in Figure 1. In order to keep a common scale, the loss associated with reversing

the true order (that is, getting each of the 6 possible pairwise orders wrong) is normalized

to 1.

The parameter η determines the level of the curves drawn in Figure 1 while θ determines

their slopes. For a given value of θ, an increase in η reduces the relative cost of making

a particular inversion error. This is because increasing η increases the cost of completely

reversing the true order proportionally more than is the case with any other error.

12These functions do not necessarily satisfy the axioms of a distance.
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Figure 1: Losses associated with choices of η and θ
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In our context, values of η greater than 2 are clearly implausible; we believe that the

costs of making a mistake at the top end of the ranking are higher than what large values of

η would seem to imply. For the reasons described above, low values of θ are also probably

less plausible in our context.13

We believe that the (η, θ) combinations listed in Table 1 cover the plausible range, and

these values will be used in the rounds of estimation below. Recall that (0, 1) corresponds to

the Kemeny metric. Our preferred combination is (1, 1). However, we make no claims about

the general applicability of our choice for other applications; other decision-makers facing

other problems would make other choices.14

13For more on the choice of the loss function, see Truchon (2005).
14In certain contexts, where we observe both the data and the analyst’s decisions, it may be possible to

infer which combination of loss function parameter values are most consistent with the analyst’s behaviour.
For example, Drissi (2002) includes an attempt to identify a loss function that would be consistent with the
ISU-94 rule.
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Table 1: Loss function parameters and implications for costs of errors

Parameters Ranking error
η θ 1st ↔ 2nd 2nd ↔ 3rd 3rd ↔ 4th

0.5 1.0 0.304 0.228 0.152
1.0 0.0 0.167 0.167 0.167
1.0 0.5 0.184 0.159 0.130
1.0 1.0 0.200 0.150 0.100
1.0 2.0 0.229 0.129 0.057

4 Posterior inference

The posterior distribution of interest for choosing the optimal order is π(r|X) - that is, the
distribution of r conditional on the data, but unconditional on the parameters. If we apply

Bayes’ rule to the data distribution in (8), we obtain the joint distribution:

π(r, λ|X) ∝ f(X|r, λ)π(r, λ) (10)

The distribution of interest is derived by integrating (10) with respect to the vector of

fixed parameters λ = (α, β) . Since r takes on m! discrete values, calculating the posterior

probabilities for each order would require m! rounds of numerical integration.

In the constant probability model (that is, with β = 0), this problem can be circumvented.

Indeed, if the priors are uniform, the Kemeny rule yields an order, say r̂ML, that maximises

the posterior distribution (10) for all values of α > 0, that is, for all p > 0.5. It follows that

r̂ML is a most probable order a posteriori, so if the loss function has the “all-or-nothing” or

degenerate form (2), then r̂ML is an optimal order.15

No similar results are available for variable probability models or for more general loss

functions. The development of Bayesian Markov chain Monte Carlo (MCMC) techniques

15This point is a reformulation of footnote 10.
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provides a convenient method for estimating π(r|X) in the variable probability model. Con-
sider the sequence {rj, λj}Jj=1 simulated according to:

rs ∼ π(rs|r−s, λ,X), s = 1, . . . ,m

λ ∼ π(λ|r,X)
(11)

where r−s is the order obtained by excluding the component rs from r. Given certain regu-

larity conditions that are satisfied in our application16, it can be shown that the sequence

(rj, λj) generated by (11) converges to the stationary distribution π(r, λ|X). A more detailed
exposition is presented in the Appendix.

Let I[r̂,r] denote the indicator function:

I[r̂,r] =

 1 if r̂ = r

0 if r̂ 6= r

Given J draws, r1, . . . rJ , from the posterior distribution π(r|X), the estimator

π̂(r = r̃|X) = J−1
JX

j=1

I[r̃,rj ]

is a simulation-consistent estimator for π(r = r̃|X). Thus, the estimate for the set17 of
optimal orders (1) takes the form:

argmin
r̂

X
r̃∈L

d(r̃, r̂)π̂(r = r̃|X) (12)

5 An application to figure skating

The data used in this study come from the 1994 and 2002 Winter Olympic figure skating

competitions. In these competitions, judges were asked to provide two sets of scores between

0 and 6 for each competitor, one for technical merit and the other for artistic presentation.

These two scores were added and the sums sorted to produce the judge’s ranking of all the

16See Roberts and Smith (1994). The algorithm satisfies the sufficient condition that the conditional
distributions in (11) have positive mass everywhere in the admissible region.
17In practice, this set is a singleton.

14



competitors. The final ranking was determined by the application of a rule set out by the

International Skating Union (ISU). Two different sets of rules were used in 1994 and 2002.

We refer to the first as the ISU-1994 rule and to the second as ISU-98 rule18. These rules, as

well as the well-known Kemeny and the Borda rules, will be used as a basis for comparison

with the MEL rule defined by (12).

An important feature of the ISU rules is that once a judge’s ranking has been determined,

the actual scores are irrelevant in the determination of the final ranking. We assume that

the judges are well aware of this fact and that data take the form of the rankings associated

with each judge’s scores.

5.1 National bias

An additional factor that should be taken into account is the potential bias that judges

may have in favour of competitors from their own home country. This sort of bias need not

take the form of a conscious effort to manipulate the voting process; it may simply reflect

variations in national styles. If a judge and a competitor have similar backgrounds, then it

would be natural for the competitor to excel in aspects that were emphasised during his or

her training, and for the judge to reward it. This bias is denoted by Bi
st, where:

Bi
st =



1 if judge i and competitor s are from the same country and t is not

−1 if judge i and competitor t are from the same country and s is not

0 if neither s nor t are from the same country as judge i

0 if both s and t are from the same country as judge i

The possibility for national bias is incorporated into the model by modifying (7) according

to

pλst (r) =
exp(α+ β(rt − rs − 1) + γBst)

1 + exp(α+ β(rt − rs − 1) + γBst)
(13)

where λ = (α, β, γ) is the new parameter vector.

18It was adopted in 1998. The judging process was extensively modified for the 2006 Olympics.
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5.2 Parameter estimates

We apply our model to 12 competitions: the short and long programs for the Men’s, Women’s

and Pairs competitions at the 1994 and 2002 Olympics. We make use of priors that are

uniform in both λ and r, and we assign zero prior probability to parameter combinations

that violate the regularity conditions α > 0, β ≥ 0.
A feature of this data that has not yet been discussed are ties; we have assumed so far that

judges are always able to clearly distinguish between two alternatives. But in our data set,

judges do occasionally give identical scores to two competitors. The simplest way of dealing

with ties is to treat them as missing data.19 If voter i reports a tie between alternatives s

and t, we say that xist is a missing data point. These missing data points require only a

minor modification to the estimation algorithm (11); see the Appendix for further details.

Our results are based on 6000 draws from the posterior (10) generated by (11); the first 1000

draws are discarded.20

Table 2 lists estimates for the posterior means and standard deviations for the fixed

parameters α, β and γ. Estimates for α range from 0.4479 to 1.1118. In the short programs,

most estimates for β are quite small, suggesting that, when two competitors are far apart

in the true order, it does not make it much easier for judges to correctly rank them. By

comparison, in the long programs, the estimates for β are on average three times larger but

by no means large. As for γ, those who are familiar with the controversies in figure skating

judging will not be surprised to learn that this national bias parameter has a positive sign.

19Another way of incorporating ties would be to suppose that judges rank two candidates according to
(3), that is without tie, with a certain probability ψ, and tie them with a probability of 1−ψ. Although this
completes the statistical model, it introduces an extra parameter ψ that is difficult to interpret: why would
a voter report a tie? If ties are assigned to alternative pairs that are ‘too close to call’, then ψ would be an
increasing function of d(s, t), thus requiring a further complication of the model. Preliminary attempts to
model ties were abandoned when it became clear that there were too few ties to identify the parameters of
the ties model with any degree of precision - indeed, some competitions had no ties at all.
20The numerical standard errors are about 1% of the estimates in Table 2; longer runs for selected com-

petitions yielded virtually identical results.

16



Table 2: Parameter Estimates

Year Competition α β γ
1994 Men’s Short 0.7466 0.1979 0.3164

(0.16) (0.07) (0.18)
Men’s Long 0.8891 0.3105 0.6457

(0.17) (0.14) (0.25)
Women’s Short 0.7618 0.0175 0.1851

(0.09) (0.02) (0.12)
Women’s Long 1.0877 0.0758 0.5631

(0.13) (0.05) (0.22)
Pairs Short 1.0817 0.5994 0.7876

(0.18) (0.14) (0.30)
Pairs Long 1.0690 0.2113 0.4625

(0.19) (0.14) (0.25)
2002 Men’s Short 0.7938 0.0143 0.2415

(0.08) (0.01) (0.15)
Men’s Long 0.7865 0.2244 0.3541

(0.16) (0.07) (0.22)
Women’s Short 0.7220 0.0244 0.2080

(0.10) (0.02) (0.13)
Women’s Long 0.8933 0.1001 0.7710

(0.14) (0.04) (0.22)
Pairs Short 1.1944 0.0826 0.2930

(0.15) (0.06) (0.18)
Pairs Long 1.4733 1.0254 1.0220

(0.18) (0.22) (0.43)

We now turn to the implications for these estimates on the choice probabilities. Figure

2 graphs the estimates from the 1994 long program for Pairs. These estimates are fairly

representative of the range of variation in Table 2. Figure 2 suggests that the probability

that an unbiased judge will properly rank two competitors who are adjacent in the true order

is about 0.75, which appears plausible. This probability falls to 0.65 if he is biased against

the higher-ranked skater, an effect that seems surprisingly small, although they are similar

to what Campbell and Galbraith (1996) obtain.
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Figure 2: Probability of reporting the correct binary relation
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5.3 Rankings estimates

Theoretically, the solution to (12) requires searching across the m! possible values for r. In

our data, m ranges from 17 to 28, so this would mean evaluating the expected loss of at

least 3.6× 1014 possible orders - a daunting task. In order to simplify our analysis, we limit
attention to the set of orders that were visited by the MCMC algorithm.

As we noted earlier, the optimal order for a given problem will generally depend on

the choice of the loss function. In the application at hand, the loss functions that we

consider generally produce similar results. In what follows, we present results based on the

combination (η, θ) = (1, 1).

Table 3 compares the optimal order r∗ generated by (12) and those that were obtained

in the 1994 Olympics. In general, the two sets of rankings are quite similar: for example,

they all yield identical rankings for the top three competitors. But there are a number of
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inversions in the top ten. As noted in Section 3.1, these may have important consequences.

Table 4 presents the same comparison for the 2002 Olympics.

We next turn to the question of the possible ex post costs of committing to a fixed

aggregation rule before the votes are observed. In principle, any fixed rule should fare worse

- or at least, no better - than the solution to (12). But in practice, it is possible that our

approach of limiting attention to the orders visited by the algorithm (11) may not yield a

global optimum, for two reasons. Firstly, it may simply be that the MCMC algorithm did not

run long enough to visit the global optimum; 5000 draws is a very small number compared

to the m! possible orders.21 Secondly, our statistical model excludes the possibility of ties,

and it could be that a ranking in which two or more candidates are ranked equally is in fact

the solution to (12).

Tables 5 and 6 report the ex post expected losses associated with the ISU-94, ISU-98,

Kemeny and Borda rules22 for the two sets of competitions, expressed as a percent change

from the minimum in (12). Although there are several cases where using one of these

benchmark rules provides slight gains, none of them consistently outperforms the minimum

expected loss rule.

Nonetheless, it would appear that our strategy of limiting attention to the orders visited

by our MCMC algorithm was perhaps too restrictive. Finding a way of extending the search

in (12) to a larger - but still tractable - subset of L in order to increase the chances that (12)
yields a global minimum would be a useful direction for future research.

21The computational burden of the MCMC algorithm being considerable, significantly longer runs are not
feasible with the computing technology available to us.
22The first three rules can give multiple orders. When this happened, an order yielding the smallest

expected loss was chosen. The Borda ranking is unique but can have ties. The ties were broken so as to
yield an order giving the smallest expected loss.
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6 Conclusion

The main argument of this study is that in the Condorcet context -that is, where it is

assumed that there is a true order that is observed with random error by voters - the social

choice problem is one of optimal inference. Such a problem requires the specification of a

well-defined statistical model, a loss function, and a method for identifying the order that

minimises expected loss. The probability distribution used to evaluate this expectation will

depend on the context. In this study, we focus on the posterior probability for the correct

order, conditional on the observed votes.

Given the complex nature of the posterior in our application, we make use of standard

Markov chain Monte Carlo techniques to simulate draws from the posterior distributions of

interest, and these draws are used to calculate estimates for expected posterior loss. We find

that this procedure produces plausible estimates for both the parameters of the probability

distribution and the optimal order. Moreover, it is applicable to a broad class of vote

distribution functions: it need not be supposed that the probability that a judge makes the

correct pairwise ranking is constant in all contexts.

Our focus here is to illustrate some of the practical issues involved in an application

of optimal inference methods to the social choice problem. The techniques developed here

are fairly computationally-intensive, and ‘real-time’ results would only be available for low-

dimension problems. Given the current state of computer technology and the number of

competitors in a typical figure skating competition, the MEL estimator developed here is

not yet a serious competitor for the other rules currently used.

Although the application in this paper is based on the ex post distribution p(r|X) —
that is, after observing the data — our approach can also be extended to ex ante inference

problems in which the decision-maker is interested in the behaviour of a given aggregation

rule in repeated samples. This issue is taken up in Truchon and Gordon (2006).
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Table 3: Optimal and ISU rankings: 1994

Men Women Pairs
r∗ Short Long Short Long Short Long
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 5 4 4 4 4
5 5 4 5 5 5 5
6 6 6 6 6 6 6
7 7 7 7 7 7 8
8 8 8 8 8 8 7
9 9 9 10 9 9 9
10 10 10 9 10 10 11
11 11 11 11 11 11 10
12 12 12 12 13 12 13
13 14 13 14 12 13 12
14 13 14 13 14 14 14
15 15 15 17 15 16 16
16 17 16 16 17 15 15
17 16 18 18 16 17 17
18 18 17 19 18
19 19 20 20 20
20 20 21 21 21
21 21 19 24 22
22 22 22 22 23
23 23 23 23 24
24 24 24 15 19

Note: In each competition, candidates are ordered according to the ranking generated by (12).

The ISU ranking uses the ISU-94 rule, which was used in this competition.
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Table 4: Optimal and ISU rankings: 2002

Men Women Pairs
r∗ Short Long Short Long Short Long
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6
7 7 7 7 7 7 7
8 8 8 8 8 8 8
9 9 9 11 10 10 9
10 10 10 9 11 9 10
11 11 11 12 9 11 11
12 13 12 13 13 14 12
13 14 13 10 14 15 13
14 15 14 14 12 16 14
15 16 15 15 15 13 15
16 17 16 16 16 12 16
17 18 17 17 17 17 17
18 19 18 18 18 18 18
19 21 19 19 19 19 19
20 22 20 20 20 20 20
21 24 21 22 21
22 25 23 23 22
23 26 22 24 23
24 23 24 25
25 27 21
26 20 26
27 28 27
28 12

Note: In each competition, candidates are ordered according to the ranking generated by (12).

The ISU ranking uses the ISU-98 rule, which was used in this competition.
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Table 5: Costs of using a fixed rule: 1994

Competition ISU-94 ISU-98 Kemeny Borda
Men Short 33.0 -1.8 -1.8 29.3
Men Long 10.9 0.8 8.0 20.0
Women Short 22.8 10.3 -0.3 6.9
Women Long 46.9 17.6 19.5 32.8
Pairs Short 43.6 0 0 80.3
Pairs Long 14.7 26.0 8.7 2.6

Increase in expected posterior loss as a percentage of the loss associated with r∗.

Table 6: Costs of using a fixed rule: 2002

Competition ISU-94 ISU-98 Kemeny Borda
Men Short -7.9 -8.4 -8.4 -4.0
Men Long 17.1 -0.6 10.3 48.3
Women Short 17.8 -4.9 -6.7 5.5
Women Long 77.1 59.7 59.7 76.2
Pairs Short 88.0 88.0 111.8 94.3
Pairs Long -5.6 -5.6 -5.6 7.7

Increase in expected posterior loss as a percentage of the loss associated with r∗.
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Appendix: Estimation algorithm

The discussion in Section 4 assumed that all the reported binary relations in X are observed.

However, in our data set, we have several ties, which we treat as missing data. Let Xo denote

the profile of observed binary orders, and let Xu represent the unobserved data (that is, the

tie votes), so that X ≡ {Xo,Xu}. Since both Xu and λ are unobserved features of the

statistical model, we treat Xu as another variable to be estimated, requiring an extra step in

(11). The results in this study are based on the random sequence {rj, λj, Xj
u}Jj=1 generated

by:
rjs ∼ π(rs|rj−1−s , λ

j−1, Xj−1
u ,Xo), s = 1, . . . ,m

λj ∼ π(λ|rj,Xj−1
u ,Xo)

Xj
u ∼ f(X|rj, λj, Xo)

(14)

We now turn to the question of how to simulate draws from the various distributions in (14)

As noted earlier, simulating draws directly from π(r|λ,Xu,Xo) would require evaluating 24!

probabilities; it is much faster to consider the orders on set of various alternatives in sequence.

If r−s is the vector of ranks of the m − 1 alternatives other than s, then the combination

{rs = i, r−s}, i = 1, . . . ,m is an order for all m alternatives. Since we use uniform priors,

the individual order rs can be simulated from the discrete distribution defined by

Pr(rs = i|r−s, λ,Xu, Xo) =
f({Xu, Xo}|λ, {rs = i, r−s})Pm
i=1 f({Xu,Xo}|λ, {rs = i, r−s}) (15)

where f({Xu, Xo}|λ, {rs = i, r−s}) is simply f(X|λ, r) defined by (6), where X = {Xu,Xo}
and r = {rs = i, r−s}. The entire order r is obtained by simulating draws from (15) for each
s = 1, . . . ,m. Draws for the fixed parameters λ = (α, β, γ)0 are generated by the random-walk

version of the Metropolis-Hastings algorithm. If αj−1 is generated by the previous iteration,

a candidate α̂j is generated by a N(αj−1, σ2α) proposing distribution. Define:

φα = min

½
f({Xj−1

u , Xo}|α̂j, βj−1, γj−1, rj)

f({Xj−1
u ,Xo}|αj−1, βj−1, γj−1, rj)

, 1

¾
The value for αj is determined by the rule:

αj =

(
α̂j with probability φα

αj−1 with probability 1− φα

Draws for β and γ are done sequentially, with acceptance probabilities φβ and φγ defined in

an analogous manner. Since the prior is set to zero when the conditions α > 0, β ≥ 0 are
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not satisfied, the acceptance probabilities for candidates violating these conditions is zero.

After some preliminary calibrations, we found that setting the standard deviations of the

proposing distributions to σα = 0.15, σβ = 0.02, and σγ = 0.5 generated paths that mixed

well, and with acceptance rates between 0.4 and 0.5. Finally, given the order r and the

parameters λ, the missing data points in Xu are simulated according to (6).
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