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Abstract:  
It is common to argue that poverty is a multidimensional issue. Yet few studies have 
included the various dimensions of deprivation  to yield a broader and fuller picture of 
poverty. The present paper considers the multidimensional aspects of deprivation by 
specifying a poverty line for each aspect and combines their associated one-
dimensional poverty-gaps into multidimensional poverty measures. An application of 
these measures to compare poverty between Egypt and Tunisia is illustrated using 
robustness analysis and household data from each country. 
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1 Introduction

There is a widespread agreement that poverty is a multidimensional issue, includ-
ing a number of monetary and non-monetary deprivations. For instance, the basic
needs approach of Streeten (1981) perceives development as an improvement in
an array of human needs and not just as growth of income. To some extent, it
is sometimes true that income rise enables households to better reach their basic
needs. This fact presupposes, however, the presence of markets for all basic needs
which do not always exist. Further, empirical studies often reveal weak correlation
between income and other welfare variables.1

Given the rather loose relation between income (or expenditure) and welfare
in many contexts (like incomplete markets, presence of externalities and public
goods), it is irrelevant to look solely at income distribution to assess the extent of
poverty.2 In recent pioneer papers, Sen (1985, 1992, 1999) suggests to measure
welfare and povertydirectly by observing individuals’functioningsandcapabili-
ties, wherefunctioningsdeal with what a person can do andcapabilitiesindicate
the freedom that a person enjoys in terms offunctionings. Poverty indices have
then to capture the inability of individuals to achieve a minimal level of capa-
bilities to function (such as the inability to be healthy, well-nourished, educated,
sheltered, etc.).3

The fact that it is hard in practice to obtain individual data on the main welfare
variables has largely led researchers to follow anindirect approach, usually the
monetary one, to measure poverty. However, since the beginning of the 1990s,
data on attributes other than income and/or expenditures have become increasingly
available. The multidimensional approach is thus more than ever required to better
understand the performance of a given country in the combat against poverty in
all its aspects.

Once the dearth of data availability has been overcome, researchers are con-
fronted with a new challenge: How should the different attributes be integrated
to yield a broader and fuller picture of poverty? Should this measure focus on
the situation of those who are poor according to all attributes simultaneously, or

1On this, see for instance Klassen (2000) and Duclos et al. (2002).
2In reality, it is common in developing countries to base the monetary welfare measures on

total expenditures rather than on income. See for instance Slesnick (1998). Thus, for short, we
will often use the term ”income” instead of ”total expenditures”.

3The approach followed in this paper falls short of thecapabilityapproach suggested by Sen.
In reality, the multidimensional poverty yardsticks capture here thefunctioningsachieved and not
the freedom to achieve them.
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should it also account for the deprivation of those who do not reach the required
minimum for any one attribute?

In considering the aggregation problem, a distinction is made between two
different methods. The first sums across individuals, to form a synthetic index
for all individuals in one dimension, and then combines all the one-dimensional
indices to yield a multidimensional poverty measure.4 The second combines the
multiple indicators of deprivation at the individual level first, and then aggregates
them across individuals into an overall social index.

Holding the universal conviction that multidimensional poverty measures are
ethically and theoretically appealing, our purpose in this paper is to present the
main contributions to this literature. A distinction is made between whether or
not poverty measures are based on an axiomatic approach. An application of
these measures to compare multidimensional poverty between Egypt and Tunisia
is illustrated using household data.

Like in a one-dimensional setting, multidimensional poverty comparisons also
require the specification of multidimensional poverty lines and measures, a pro-
cedure which is ethically and empirically highly controversial. Although the lit-
erature dealing with issues of dominance in multidimensional context is still in its
embryonic stages, some dominance conditions under which distributions can be
ranked have been derived by Bourguignon and Chakravarty (2002) and Duclos et
al. (2002). Thus, it is possible to check whether multidimensional poverty com-
parisons between Egypt and Tunisia are robust to the multiple choices of poverty
lines and poverty measures.

The rest of the paper is structured as follows. Section2 develops the method-
ology followed by the UNDP (1997) to elaborate the human poverty index. Sec-
tion 3 presents the theoretical framework of certain multidimensional poverty
measures based on an axiomatic approach. Section4 implements the developed
methodologies to Egypt and Tunisia. Section5compares multidimensional poverty
between Egypt and Tunisia using robustness analysis. Finally, Section6 con-
cludes.

4An example of this is theHuman poverty Indexof the UNDP (1997).
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2 A Non-Axiomatic Approach: The Human Poverty
Index

A simple way to study multidimensional poverty is to examine several welfare in-
dices, separately. This path was followed by Adams and Page (2001), for example.
Using aggregate data from the World Bank that is available for several countries
in the Middle East and North Africa, these authors compare the performances
recorded for each indicator in several countries in this region. They observe that
there is no clear relationship between a reduction in monetary poverty and an im-
provement in other welfare indicators. A country may, for example, have a high
rate of monetary poverty alongside a high rate of education, and vice versa. Mul-
tidimensional poverty comparisons are thus hard to complete unless all indicators
are previously aggregated into an overall index.

The Human Development Report published by the UNDP (1997) states that,
while pointing to a crucial element of poverty, a lack of income only provides part
of the picture in terms of the many factors that impact on individuals’ level of
welfare (longevity, good health, good nutrition, education, being well integrated
into society, etc.). Thus, a new poverty measure is called for—one that accounts
for other welfare indicators, particularly:

1. An indicator that accounts for a short lifespan. DenotedHPI1, this reflects
the percentage of individuals whose life expectancy is less than 40 years.

2. A measure which is related to the problem of access to education and com-
munications. The proportion of the adult population that is illiterate, de-
notedHPI2, could be considered as an appropriate indicator.

3. A composite index capturing facets of the level of material welfare,HPI3.
This is computed as the arithmetic mean of three indicators: the percentage
of the population without access to health care (denotedHPI3,1), to safe
water (HPI3,2), and the percentage of children under age five suffering from
malnutrition (HPI3,3).

The proposed composite poverty index was elaborated by Arnand and Sen
(1997). It is written as follows:

HPI = (w1HPIθ
1 + w2HPIθ

2 + w3HPIθ
3 )

1
θ , (1)

with w1 + w2 + w3 = 1 andθ ≥ 1.
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Whenθ = 1, the three elements ofHPI are perfect substitutes. However,
whenθ tends to infinity, this index approaches the maximum value of its three
components, i.e.max (HPI1, HPI2, HPI3). In this event, theHPI will only fall
if its highest-valued component decreases. These two extreme cases are difficult
to advocate, so an intermediate value is sought for ordinal comparisons of poverty.

Estimates of theHPI, for θ = 3 and wi = 1
3
, have been performed by

the UNDP (1997) for the developing countries which have the required data.
These estimations show that human poverty affects more Egypt than Tunisia; with
HPI = 34.8 for the former and 24.4 for the latter. These findings set this two
countries at the middle of the ranking within the MENA regions. At the top of
the ranking we find Jordan, United Arab Emirates and Libya. At the bottom are
Sudan, Mauritania and Yemen.

Low levels of life expectancy, education, and health are of concern in their own
right, but they merit special attention when they accompany monetary deprivation.
TheHPI omits, however, this dimension of poverty, which is at least as important
as the aspects this index captures. Furthermore, this index does not account for
the correlation that may exist between its components. For instance, an illiterate
individual whose life expectancy is less than 40 years will be doubly counted.
Another drawback of this widely used index is that it does not provide information
on how attributes are distributed among the population. Therefore, it is possible
to have improvements in theHPI while large segments of society stagnate or
even worsen their situation. Finally, ordinal comparisons of poverty will be very
sensitive to the (arbitrary) values assigned towi andθ. An alternative approach
that allows for a better characterization of the weights assigned to each attribute
would certainly be more appropriate.

3 An Axiomatic Approach to Measuring Multidi-
mensional Poverty

Letxi, i = 1, 2, ..., n, be a vector ofk basic needs of theith person,X be a(n×k)-
matrix (whoseith row isxi) summarizing the distribution ofk attributes amongn
persons, andz = (z1, ..., zk) be ak-vector of the minimum levels of basic needs.
The most general form of a class of multidimensional poverty measures can be
given by the following equation:

P (X, z) = F [π (xi, z)] , (2)
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whereπ (·) is an individual poverty function that indicates how the many aspects
of poverty must be aggregated at the individual level. The functionF (·) reflects
the way in which individual poverty measures are aggregated to yield a global
poverty index.

Measuring poverty always raises ethical questions. For example, should we
consider a person who is well endowed with some attributes poor if she is un-
able to reach the minimum requirements for one basic need? The literature deal-
ing with multidimensional poverty distinguishes between measures based on the
unionof the various aspects of deprivation from those based on theirintersection.5

If we measure poverty in the dimensions of expenditure and housing, say, then the
poor people would be those who haveeither low expenditureor poor housing.
This is auniondefinition of multidimensional poverty andπ (·) will be:

π (xi, z)

{
= 0, if xi,j ≥ zj, ∀j = 1, 2, . . . , k,
> 0, otherwise,

.

Yet anintersectiondefinition would consider as poor those who have low ex-
penditureandpoor housing. In such case,π (·) will be:

π (xi, z)

{
> 0, if xi,j < zj, ∀j = 1, 2, . . . , k,
= 0, otherwise,

.

This diversity of opinions springs from the fact that poverty is not an objective
concept. Rather, it is a complex notion, the normative analysis of which may
be facilitated by adopting an axiomatic approach. Thus, the properties ofF (·)
andπ (·) will depend on the axioms that the poverty measures have to respect.
Some axioms having been developed in the literature on multidimensional poverty
measures are new, but others are simply generalizations of those inherent in the
construction of one-dimensional poverty measures.

Given the difficulty of obtaining precise data on fundamental needs, we may
reasonably require that a poverty measure be continuous with respect to them.6

This circumvents the problem of small errors of measurement causing draconian
changes in poverty readings. The following axiom fulfills this requirement:

Axiom 1 Continuity: The poverty measure must not be sensitive to a marginal
variation in the quantity of an attribute.

5More information about this is presented in Duclos et al. (2002).
6 See, for example, Donaldson and Weymark (1986).
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Individuals’ identity, or any other indicator that is irrelevant to measuring
poverty, should not affect the results of the analysis. This principle is summed
up in the following proposition:

Axiom 2 Symmetry (or Anonymity): All characteristics other than the attributes
used to define poverty do not impact on poverty.

Generally, ordinal poverty comparisons occur between populations of differ-
ent sizes, whence the necessity of this axiom:

Axiom 3 The Principle of Population: If a matrix of attributes is replicated sev-
eral times, global poverty remains unchanged.

Chakravarty (1983) and Thon (1983) have introduced this axiom into poverty
analysis from the income inequality literature.7 Since the two different-sized ma-
trix of attributes can be replicated to the same size, their poverty levels can then
be directly compared.

Similarly, Egypt and Tunisia that are subject to an ordinal comparison of
poverty use, for instance, different currencies. Hence, it is useful that poverty
indices are independent of the units of measure. The following axiom expresses
this requirement:8

Axiom 4 Scale Invariance: The poverty measure is homogeneous of degree zero
(0) with respect toX andz.

This axiom will be fulfilled if any attribute is normalized by its corresponding
poverty line. The individual poverty function will then have the following form:

π (xi, z) = π

(
xi,1

z1

, . . . ,
xi,j

zj

, . . . ,
xi,k

zk

)
. (3)

Axiom 5 Focus: The poverty measure does not change if an attributej increases
for an individuali characterized byxi,j ≥ zj.

7 One of its consequences is that the poverty measure falls with increases in the size of the
non-poor population.

8Blackorby and Donaldson (1980) distinguish this axiom from another, Transformation Invari-
ance. This suggests that

P (X + T, z + t) = P (X, z) .

We have not retained this latter axiom, because it has only been used by Tsui (2002) in a multidi-
mensional analysis.
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Using this axiom, we should find:

∂π

∂xi,j

= 0 if xi,j ≥ zj. (4)

Thus, the iso-poverty curves for a poor individual run parallel to the axis of
thej-th attribute whenxi,j ≥ zj.9

Some multidimensional poverty indices, like theHPI index, are not com-
pletely satisfying as they violate the following property:

Axiom 6 Monotonicity: The poverty measure declines, or does not rise, following
an improvement affecting any of a poor individual’s attributes.10

The consequence of this axiom is that iso-poverty curves are not increasing,
i.e.

∂π (xi, z)

∂xi,j

≤ 0 if xi,j < zj. (5)

Like for one-dimensional measures, it is desirable that multidimensional poverty
measures be sensitive to the welfare levels of different segments of the population
with homogeneous characteristics, such as age, gender, place of residence, etc.
Foster and Shorroks (1991) spell out this property for a situation in which the to-
tal population can be decomposed into two subgroups (denoted respectively bya
andb):

Axiom 7 Subgroup Consistency: LetX

[
Xa

Xb

]
andY

[
Y a

Y b

]
with Xa andY a

(Xb and Y b) beingna × k
(
nb × k

)
matrices. IfP (Xa, z) > P (Y a, z) while

P
(
Xb, z

)
= P

(
Y b, z

)
, then

P (X, z) > P (Y, z) .

A trivial implication of the preceding axiom is that a multidimensional poverty
index can be formulated as:

P (X, z) = F

[
1

n

n∑
i=1

π (xi, z)

]
. (6)

9 An iso-poverty curve indicates the various vectorsxi that yield the same level of individual
poverty, i.e.π (xi, z) = π̄.

10For example, the multidimensional poverty incidence and theHPI index may violate this
axiom. Indeed, if malnutrition becomes worse among children already affected by that problem,
the value of the multidimensional poverty incidence and theHPI index remain unchanged.
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WhenF (·) is additive, the poverty measureP (X, z) also respects thedecom-
posabilityaxiom:

Axiom 8 Subgroup Decomposability: Global poverty is a weighted mean of poverty
levels within each subgroup:

P (X, z) =
1

n

n∑
i=1

π (xi, z) .

Poverty measures that satisfyDecomposabilityenable the evaluation of each
population segment’s contribution to total poverty. This makes possible the con-
ception of poverty-fighting programs that are more focussed on the most vulnera-
ble.11

In addition to decomposing the population by subgroup, Chakravarty et al.
(1998) also support a decomposition by attribute:

Axiom 9 Factor Decomposability: Global poverty is a weighted mean of poverty
levels by attribute.12

According to Chakravarty et al. (1998), this double decomposition makes
easy the design of inexpensive and efficient programs to curb poverty. It is thus
particularly useful when financial constraints preclude poverty removal in an en-
tire population segment or by a specific attribute. If the double decomposition is
retained, then multidimensional poverty measures take the following form:

P (X, z) =
1

n

n∑
i=1

k∑
j=1

πj (xi,j, zj) . (7)

In the event thatπ (xi, zj) assumes of the following forms:

π (xi, z) =
k∑

j=1

aj

(
zj − xi,j

zj

)α

, (a)

we obtain a multidimensional extension of the Foster, Greer and Thorbeke (1984)
poverty measures suggested by Chakravarty et al. (1998). Many others forms of

11 More detail on the usefulness of this axiom can be found in Chakravarty et al. (1998), Tsui
(2002), and Bourguignon and Chakravarty (2003).

12Bourguignon and Chakravarty (2003) show that, under certain conditions, a decomposition
by factors necessarily arises.
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π (xi, zj) respecting thefactor decomposabilityare also possible, like the follow-
ing one:

π (xi, z) =
k∑

j=1

aj ln

[
zj

min (xi,j, zj)

]
, (b)

in which case, we obtain a multidimensional extension of the Watts (1968) poverty
index.

Conversely, the following multiplicative extension to the FGT class:

π(xi, z) =

j∏
j=1

(
zj − xi,j

zj

)αj

, (c)

whereαj is a parameter reflecting poverty aversion with respect to attributej,
does not respectdecomposability by factor. Moreover, in this case, poverty is
measured across theintersectionof various dimensions of human deprivation. In
fact, an individual having the minimum required for a single attribute, but less than
the minimum for all others, will not be considered part of the deprived population.

It is clear thatfactor decomposabilitynecessarily leads to poverty measures
based on theunionof different dimensions of poverty—but the converse is not al-
ways true. For example, the index suggested by Tsui (2002), though not compat-
ible with factor decomposability, is based on theunionof the various dimensions
of poverty:13

π(xi, z) =

j∏
j=1

[
zj

min(xi,j, zj)

]βj

− 1. (d)

Sen (1976) suggests that poverty measures should be sensitive to inequalities
within the less well-off members of society. In other words, a Dalton transfer from
a relatively less poor individual to a poorer one should reduce the poverty index.14

This principle was applied by Kolm (1977) to study the problem of inequality in a
multidimensional context. For a multidimensional poverty measure, Tsui (2002)
introduced the following axiom:

Axiom 10 Transfer: Poverty is not increased with matrixY if it is obtained from
matrix X by simply redistributing the attributes of the poor using a bistochastic

13 This is a multidimensional extension of Chakravarty’s (1983) measure. Aside from decom-
posability by factor, this measure obeys all the axioms developed so far.

14Dalton (1920) observed that a transfer from a non-poor individual to a poor one improves
social welfare as long as there is no reclassification of the two individuals.
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transformation (and not permutation) matrix.15

Intuitively, the distribution reflected by matrixY is more egalitarian than that
in matrix X if extreme solutions are replaced with more mid-range ones. For
example, assume two attributes such thatz1 = 10 andz2 = 12. Let the initial
distribution be characterized byx1 (2, 10) andx2 (8, 2). If Y is obtained fromX
using a bistochastic matrixB all of the elements of which are equal to0.5, the two
individuals will havey1 (5, 6) andy2 (5, 6), respectively. Clearly, the distribution
Y is more egalitarian thanX, which explains why it must contain less poverty.
Thus, this property implies that the iso-poverty curves must be convex, or

∂2π(xi, z)

∂xij∂xi,j

≥ 0, ∀xi,j < zj. (8)

We can confirm that thetransferaxiom is satisfied by the Watts (1968) mea-
sure, the FGT measures whenα > 1, and the Tsui (2002) measures whenβj > 0.

There is an inequitable type of transfer that is not covered by the preceding
developments. Assume always thatk = 2, z1 = 10, andz2 = 12. Let x1 (1, 2),
x2 (5, 3), andx3 (2, 7), and assume that after a transfer we havey1 (1, 2), y2 (2, 3),
andy3 (5, 7). The correlation between the attributes increases subsequent to this
transfer, i.e. an individual having more of one attribute also has more of the other
attribute. Intuitively, poverty must increase, or at least not decrease, after this type
of transfer. 16 The following axiom, proposed by Tsui (2002), imposes that a
poverty measure should not decrease after this type of transfer:

Axiom 11 Nondecreasing Poverty Under a Correlation Increasing Switch: Let
Y be obtained fromX following a series of transfers within the poor population.
Let these transfers increase the correlation between attributes while no individual
ceases to be poor, then

P (Y, z) ≥ P (X, z) .

Bourguignon and Chakravarty (2003) point out that this axiom is valid for
substitutable attributes. In this situation, substitutability must be understood in
terms of closeness in the nature of the attributes. In light of this, if we let, for
instance, expenditure and housing be two attributes with similar natures, then the

15The values of the elements of a doubly stochastic transformation matrix are between zero (0)
and one (1). Each row (column) of such a matrix sums to one (1).

16Atkinson and Bourguignon (1982) suggest that a measure of social welfare must not increase
after this type of transfer.
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poverty of individual3 does not decline by very much when expenditure increases,
because her housing area is important. The decrease would have been greater had
she been less housing area. It is important that the expected fall not offset the
increase in poverty of individual2, whose expenditure has decreased while his
housing area is low. Analytically, when attributes are substitutable, we have

∂2π(xi, z)

∂xij∂xi,k

≥ 0, ∀xi,j < zj. (9)

We ought to point out that poverty measured by twice-decomposable indices
will remain unchanged subsequent to any transfer increasing the correlation be-
tween attributes. The Tsui (2002) poverty measure will necessarily increase if
βjβk > 0.

However, when two attributes are deemed complementary, the fall in poverty
of individual 3 must be greater, at least to the point of compensating for the
increase in poverty of individual2. The following axiom, introduced by Bour-
guignon and Chakravarty (2003), generalizes the preceding one:

Proposition 12 Poverty is nondecreasing (nonincreasing) subsequent to a rise
in the correlation between two attributes when these attributes are substitutes
(complements).

Analytically, when the attributes are complements, we have

∂2π(xi, z)

∂xij∂xi,k

≤ 0, ∀xi,j < zj. (10)

Bourguignon and Chakravarty (2003) put forward an extension to the FGT
class of measures that, in addition to respecting all the axioms developed above,
also allows for substitutability and complementarity among attributes:17

Pα,γ(X, z) =
1

n

n∑
i=1

[(
z1 − xi,1

z1

)γ

+ b
γ
α

(
z2 − xi,2

z2

)γ]α
γ

, (11)

whereα ≥ 1, γ ≥ 1, andb > 0. α ≥ 1 ensures that the transfer principle for a
single attribute is respected for poor people. Whenα ≥ 1, γ ≥ 1 ensures that this
principle extends to individuals who are poor in two attributes simultaneously.
As the value ofγ increases, the iso-poverty curve becomes more convex. The

17To keep the presentation tractable, we use thek = 2 case.
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elasticity of substitution between the two poverty deficits is1
γ−1

. The (positive)
magnitude ofb reflects the relative weight of the second attribute vis-à-vis the
first. Whenα ≥ γ ≥ 1, the two attributes are substitutes and the measure given by
Pσ,γ (X, z) respects the property thatpoverty is nondecreasing after an increase in
correlation between the attributes. Conversely, whenγ ≥ α, the two attributes are
complements, andPα,γ (X, z) satisfies the condition thatpoverty is nonincreasing
subsequent to a rise in the correlation between the two attributes. Whenγ =
1, the iso-poverty curves are linear for these two attributes in the case of poor
individuals. Finally, as the value ofγ becomes very large, the measurePα,∞ (X, z)
can be written as follows:

Pα,∞(X, z) =
1

n

n∑
i=1

[
1−min

(
1,

xi,1

z1

,
xi,2

z2

)]α

, (12)

in this case, the two attributes are complementary and the iso-poverty curves as-
sume the shape of Leontief curves.

4 Implementation to Egypt and Tunisia

Household budget surveys, which collect data on several households’ attributes
are required to implement the preceding measures as well as the theoretical frame-
work behind them. In the MENA regions, only Egypt, Jordan, Morocco, Tunisia,
and Palestine have conducted regular household surveys. These surveys are na-
tionally representative, which is essential for ordinal poverty comparisons. Most
of these countries, however, have not enabled satisfactory access to the collected
data.

For this reason, we compare the multidimensional poverty level only between
Egypt and Tunisia. Micro data from the Egyptian (Tunisian) household survey for
the year 1997 (1990) are being used. These are multipurpose household surveys
which provide information on expenditures as well as on many other dimensions
of households characteristics including education, housing, region of residence,
and demographic information. The 1997 Egyptian household survey, which was
done by the International Food Policy Research Institute (IFPRI), includes 2451
households: 1123 urban and 1328 rural households. In Tunisia, the 1990 house-
hold survey was conducted by theInstitut National de la Statistique(INS). 7734
households were surveyed: 4477 urban and 3257 rural households.

For expositional simplicity, we focus on two dimensions of individual well-
being, namely the total expendituresper capita(labelled asxi1) as a proxy of
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monetary dimension of poverty, and the number of roomsper capita(labelled
as xi2) as a proxy of housing deprivation. The reason for choosing these two
attributes is also related to data availability. For instance, there is no information
on access to health services or safe water in these two surveys. Further, data
on educational attainment are restricted to the highest level of schooling in the
Tunisian data while Egyptian one provides the years number of schooling too.

Poverty is measured at the individual level. Each individual is given the to-
tal expenditureper capitawithin the household he/she belongs to. The income
poverty line,z1, in Egypt (Tunisia) is set at 1297 Egyptian pounds (218 Tunisian
dinars) for the urban area and 857 Egyptian pounds (185 Tunisian dinars) for the
rural areaper capita per year. 18 The housing deprivation threshold,z2, is set at
0.5 roomsper capitafor both countries.19

These country specific income poverty lines reveal that the income incidence
of poverty is greater in Egypt than in Tunisia. In Tunisia, simply 7.4 percent of the
population lives below the income poverty line but this ratio attains 24.5 percent in
Egypt. Conversely, the housing incidence of poverty appears really important in
both countries, even if it is lower in Egypt. Indeed, 59.3 percent of the population
in Tunisia has less than 0.5 roomsper personwhilst the housing headcount in
Egypt stands at 51 percent.20

Since income poverty is more important in Egypt while housing poverty is
higher in Tunisia, it is now instructive to use the different multidimensional poverty
measures, presented in the previous section, to check whether the difference in one
dimension of poverty could offset the asymmetric difference in the other dimen-
sion. 21 Table1 in appendix presents estimates of theintersectionbi-dimensional
incidence of poverty,unionbi-dimensional headcount ratio, as well as many oth-
ers bi-dimensional poverty indices developed above.

Table1 shows that the proportion of individuals in poverty in both of the two
dimensions is closely equal to the income incidence of poverty, mainly in Tunisia.
This means that most of those in income poverty live in a shabby house. This ex-

18These poverty lines are estimated by El-Laithy et al. (1999) for Egypt and the World Bank
(1995) for Tunisia using a very similar method.

19We have considered only half of the rooms whenever a household lives in an unsuitable home,
like in a hovel.

20If we relax the adjustment of the rooms number of the indecent dwelling, these ratio will
equalize 58.9 percent in Tunisia and falls to 35.1 percent in Egypt.

21This issue of the trade-off between these two particular dimensions of poverty would also
arise in very different contexts. For instance, designing anti-poverty policies in each country may
require deciding whether it is better to reduce more income or housing privation.
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plains why theintersectionbi-dimensional incidence of poverty is 2.6 times more
important in Egypt than in Tunisia. Nonetheless, the higher housing deprivation
in Tunisia is behind the greaterunionbivariate headcount ratio in this country.

Both intersectionandunion bi-dimensional headcount ratio violate many of
the desirable properties developed above. If we focus onunionpoverty measures
that are distribution-sensitive, table1 shows that bi-dimensional poverty remains
more important in Egypt as long as the double decomposability is respected or the
attributes are substitutes. Yet whenever attributes are assumed to be complements,
the difference in poverty becomes either insignificant or slightly less important in
Egypt.22

5 Robustness Analysis

In the light of the analysis conducted above, we know that some poverty measures
rank Egypt and Tunisia differently to others. Ordinal poverty ranking could also
be mitigated by an alternate choice of poverty lines. Thus, the stochastic dom-
inance approach turns out to be indispensable to establish the conditions under
which poverty comparisons are robust within a plausible range of poverty lines
and across a pre-defined family of poverty measures. The principal findings of
stochastic dominance theory in a single dimension are:23

Poverty decreases, or does not increase, for any possible choice ofzj ∈
[
0, z∗j

]
,

when moving from a distributionA to a distributionB of attributej, if the inci-
dence of poverty under distributionA is never greater than that under distribu-
tion B. If this condition is observed, then the condition for first-order stochastic
dominance holds. Otherwise, it is possible to establish a weaker condition, that
of second-order stochastic dominance. This requires that poverty, as measured
by the normalized poverty deficit, does not increase for any possible choice of
zj ∈

[
0, z∗j

]
, when moving from a distributionA to a distributionB.

While the literature dealing with issues of dominance in a one-dimensional
environment (based on an axiomatic approach) is well developed, research into the
multidimensional aspect is scarcely beginning, and remains an important avenue

22If we relax the adjustment of the rooms number of the indecent dwelling, the most poverty
measures will show less poverty in Egypt than in Tunisia. This means that designing an anti-
poverty policy based on the rehabilitation of the indecent dwellings is an effective way to reduce
consistently the bi-dimensional poverty in Egypt.

23For more information on one-dimensional robustness analysis, see Atkinson (1987) and Foster
and Shorroks (1988).
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of exploration.
Bourguignon and Chakravarty (2002) seek to establish conditions for the ro-

bustness of a given ordinal ranking, givenX andz, under the assumption that
the upper poverty line for each attribute remains fixed. They also assume that the
poverty measure respects theaxioms of Focus, Symmetry, Principle of Population,
and Subgroup decomposability.

The distribution of attributesxi (xi,1, xi,2) is now replaced by the cumulative
distribution functionH (x1, x2), defined on[0, a1] × [0, a2]. The goal is to com-
pare two distributions:H andH∗. Given theaxiom of decomposability, poverty
associated with the distributionH can be written as:

P (H, z) =

∫ a1

0

∫ a2

0

πz(x1, x2)dH, (13)

whereπz (x1, x2) is the level of poverty associated with an individual having at-
tributes(x1, x2). The poverty differential betweenH andH∗ is given by

∆P (z) =

∫ a1

0

∫ a2

0

πz(x1, x2)d∆H, (14)

where∆H = H (x1, x2) − H∗ (x1, x2). DistributionH (weakly) dominatesH∗

if ∆P is negative (nonpositive) for allπz (x1, x2) belonging to a given class of
measuresP (·).

Bourguignon and Chakravarty (2002) study multidimensional families of poverty
measures that are in line with themonotonicityaxiom. They distinguish between
classes of measures with two substitutable, complementary, or independent at-
tributes. They show that:

• When two attributes are substitutable, i.e.δ2πx(x1,x2)
δx1,δx2

> 0, stochastic domi-
nance requires first-order dominance in each dimension of poverty,

∆P (xj) =

∫ xj

0

d∆Huj
(uj) ≤ 0, ∀xj ≤ zj, (15)

and first-order dominance across theintersectionof the two dimensions of
poverty,

∆P (x) =

∫ x1

0

∫ zx2

0

d∆H(u1, u2), ∀xj ≤ z. (16)
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• When the two attributes are complements, i.e.δ2πx(x1,x2)
δx1,δx2

< 0, stochastic
dominance also requires the first-order robustness of each dimension of
poverty. Among other things, first-order dominance across theunion of
the two dimensions of poverty is required:

∆P (x) =

j=2∑
j=1

∫ xj

0

∆Huj
(uj)duj −

∫ x1

0

∫ zx2

0

d∆H(u1, u2) (17)

≤ 0, ∀xj ≤ zj.

• When the two attributes are independent: i.e.δ2πx(x1,x2)
δx1,δx2

= 0, the selected
poverty measures are twice decomposable. First-order dominance only re-
quires the condition described by equation (15).

Figure 1 in appendix illustrates these findings where a positive difference
means that there is more poverty in Egypt than in Tunisia. For Expositional
simplicity, the distribution of(xi1, xi2) is normalized so asxij = 100 whenever
xij = zj in each country. Hence, by plotting the cumulative percentages dif-
ference of the population below various income poverty lines (z1) and housing
poverty lines (z2), figure1 shows that Tunisia first-order-dominates (FOD) on the
income ground but Egypt FOD on the housing ground. First-order dominance is
then inconclusive and it is necessary to test higher order dominance to check an
unambiguous ordinal ranking.

Whenever it is desirable for poverty measures to further respect thetransfer
axiom, Bourguignon and Chakravarty (2002) argue that it is hard to apply the
findings of the second-order dominance analogously. In reality, this analysis re-
quires restrictions on the signs of the second and third derivatives of the poverty
function, the interpretation of which is unclear in the context of bi-dimensional
poverty.24

Fortunately, Duclos et al. (2002) establish conditions for robustness that do
not require restrictive conditions on the intervals of variation of the differentzj-s.
They define the individual welfare function as:

λ(x1, x2) : <2 → <
∣∣∣∣
∂λ(x1, x2)

∂x1

≥ 0,
∂λ(x1, x2)

∂x2

≥ 0. (18)

24When the chosen measures are additive over attributes and population subgroups, Bour-
guignon and Chakravarty (2002) show that second-order robustness simply requires second-order
dominance for each attribute for allxj ≤ zj .
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They assume that an unknown poverty frontier separates the poor from the non-
poor population. This frontier is implicitly defined byλ (x1, x2) = 0. The set of
the poor is then defined by:

Λ(λ) = {(x1, x2) |λ(x1, x2) ≤ 0} . (19)

Consequently, a two-dimensional poverty measure satisfying thesubgroup de-
composabilityaxiom can be written as:

P (λ) =

∫ ∫

Λ(λ)

π(x1, x2, λ)dH(x1, x2), (20)

whereπ (x1, x2, λ) is the contribution of an individual characterized by the pair
(x1, x2) to global poverty. By thefocusaxiom, this function is

π(x1, x2, λ) ≥ 0 if λ(x1, x2) ≤ 0, (21)

= 0 otherwise.

Depending on the analytical form chosen, the functionπ (x1, x2, λ) measures
poverty across theintersection, theunion, or an intermediate combination of the
two selected dimensions.

For purposes of robustness analysis, Duclos et al. (2002) consider the follow-
ing multidimensional extension of the FGT class of measures:

Pα1,α2(X, z) =

∫ z1

0

∫ z2

0

(
z1 − x1

z1

)α1
(

z2 − x2

z2

)α2

dH(x1, x2). (22)

This index plays an important role in the ordinal robust comparisons of poverty,
even though it measures poverty across theintersectionof the two dimensions
considered. These comparisons will be based on dominance orderr1 = α1 + 1
in spacex1, andr2 = α2 + 1 in spacex2. P0,0 (X, z) is the bi-dimensional inci-
dence of poverty, i.e. the proportion of the population that is poor in both of those
attributes simultaneously.P1,0 (X, z) aggregates thex1 poverty deficit of poor in-
dividuals with respect to the second attribute.P1,1 (X, z) aggregates the products
of the poverty deficits, normalized by the size of the population.

Rather than selecting arbitrary poverty lines and measures, Duclos et al. (2002)
begin by characterizing a class of poverty measures, then specify the necessary
conditions for a distribution,A, to dominate another,B, for all poverty measures
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belonging to the defined class. They first consider the following class of poverty
measures:

Π1,1(λ
∗) =





P (λ)

∣∣∣∣∣∣∣∣

Λ(λ) ⊂ Λ(λ∗)
π(x, λ) = 0 if λ(x1, x2) = 0

πxj ≤ 0, ∀xj

πxjxk ≥ 0, ∀xj, xk,





, (23)

whereπxj (πxj ,xk) corresponds to the first (cross) derivative of the functionπ (x, λ)
with respect toxj (xj andxk). The first row of equation (23) defines the upper
limit of the two poverty lines. The second indicates that poverty measures of
Π1,1 (λ∗) are continuous all along the frontier separating the poor from the non-
poor segments of the population.25 The third row stipulates that poverty measures
in this class satisfy themonotonicityaxiom. Finally, the fourth row reveals that
measures in this class are compatible with the axiom underlying the substitutabil-
ity of attributes.26 Depending on the choice of functional form forπ (x, λ), this
class may include poverty measures based on theintersection, theunion, or any
intermediary form of the two dimensions of poverty.

Relying on Duclos et al. (2002) framework, we can assert that poverty, as
measured by any bi-dimensional index of the classΠ1,1 (λ∗) will be higher in
Egypt than in Tunisia if the following condition is fulfilled:

∆P0,0 (x1, x2) > 0, ∀ (x1, x2) ∈ Λ (λ∗) . (24)

In other words, robustness of order(1, 1) requires that the percentage of the
population that is poor in both attributes simultaneously be larger in Egypt, and
that this holds for all ordered pairs(z1, z2) ∈ [0, z∗1 ] × [0, z∗2 ]. Whenever this
condition is fulfilled, any poverty index of classΠ1,1 (λ∗) will indicate that there is
more poverty in Egypt than in Tunisia, regardless of whether this index measures
poverty across theintersection, theunion, or any intermediary specification.

Figure2 in appendix illustrates the relationship of bi-dimensional poverty dif-
ference between Egypt and Tunisia to (1,1)-order dominance and the cumulative
share difference of the population that is poor in both attributes. This figure clearly
shows that if we admit that the income poverty line could never exceed 175 per-
cent of the specificz1 of each region, then we could state that poverty is unam-
biguously higher in Egypt than in Tunisia for all poverty yardsticks which belong

25This naturally precludes a two-dimensional incidence of poverty.
26Unlike Bourguignon and Chakravarty (2002), Duclos et al. (2002) reject the axiom underlying

the complementarity of attributes.
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to Π1,1(λ
∗). Otherwise, the sign of∆P0,0 (x1, x2) appears sensitive to the choice

of zj and testing for higher orders of dominance for one of the two dimensions,
such as(2, 1) or (1, 2), or for both simultaneously,(2, 2), becomes appealing.

Hence, because it is desirable for poverty to diminish following an equalizing
(Daltonian) transfer ofx1 at a given value ofx2, and that this effect is decreasing in
the value ofx2, the following class of measures becomes of particular pertinence:

Π2,1 (λ∗) =



P (λ)

∣∣∣∣∣∣

P (λ) ∈ Π1,1 (λ∗) ,
πx1,x1 ≥ 0, ∀x1,

πx1x1x2 ≤ 0, ∀x1, x2.



 . (25)

A necessary and sufficient condition for poverty, as measured by any index of
the classΠ2,1 (λ∗), to be unambiguously bigger in Egypt than in Tunisia, is that
the poverty gap inx1 for those individuals who are poor inx2 be higher in Egypt,
and that, for all the range variation ofzj ∈

[
0, z∗j

]
. Analytically, the condition for

stochastic dominance of order(2, 1) requires that:

∆P1,0 (x1, x2) > 0, ∀ (x1, x2) ∈ Λ (λ∗) . (26)

Figure3 in appendix provides evidence that the sign of∆P1,0 (x1, x2) is al-
ways positive. Thus, the(2, 1)-order stochastic dominance condition is met, no
matter what the income and the housing poverty line are, so that any index of
Π2,1 (λ∗) will show more deprivation in Egypt than in Tunisia. Nonetheless, the
outcomes illustrated by figure4, which is linked to the(1, 2)-order dominance, are
very similar to those provided by figure2. This should mean that as the focus on
income dimension of poverty rises, the fact that there is more multidimensional
poverty in Egypt will be enhanced. This idea, nevertheless, will be moderated,
mainly for a high level of income poverty line, if more attention is set on the
housing deprivation.

6 Conclusion

Although poverty is a multifaceted issue, the literature on poverty comparisons
has been largely concerned with single dimensioned indices. However, there is a
clearly need among policymakers and international agencies for meaningful de-
scriptive and normative measures of multidimensional deprivation. This paper
surveys the main contributions to the literature on multidimensional poverty com-
parisons by means of complete and partial rankings. Poverty indices yield com-
plete orderings because they enable to rank all pairs of multivariate distributions.
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Partial poverty orderings, which are linked to robustness analysis, require unani-
mous poverty ranking for a set of poverty lines and a class of poverty measures.

The use of these approaches is illustrated using households’ data from Egypt
and Tunisia. We have considered the case in which poverty is measured on two
dimensions, households’ expendituresper capitaas a proxy of income depriva-
tion and the number of roomsper capitaas a proxy of housing deprivation. The
main findings are: Poverty is higher in Egypt than in Tunisia whenever income
and housing attributes are deemed to be substitutes. Robustness analyses vali-
date this outcome as long as housing attribute is not more weighted than income
attribute. Nevertheless, if attributes are considered to be independents or com-
plements, some bi-dimensional poverty indices show more poverty in Tunisia but
some others yield an opposite outcome. The weak income poverty in Tunisia and
the large housing poverty in both countries are behind such results.

It may be thought that going beyond the monetary approach of deprivation
could make the combat against poverty more complex than it already is. Indeed,
multivariate poverty comparisons are not as developed as that of the monetary
approach because new complexities that are inherent make difficult to find ro-
bust results, something that we have faced in the empirical implementation of this
paper. Notwithstanding, the bi-dimensional picture of deprivation has enabled
a better characterization of this issue and should let, on the contrary, the fight
against poverty less complex. Such as, in the light of the poverty characterization
in Tunisia, designing anti-poverty policy should mainly focus on housing depri-
vation rather than on the income one.27 But, in Egypt, the focus should be made
on the rehabilitation of the indecent dwellings together with the alleviation of the
income deprivation.
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7 Appendix

Table 1:Bi-dimensional poverty comparisons

Egypt Tunisia ∆P (X, z)
Intersectionheadcount ratio 18.53 7.08 11.45

Unionheadcount ratio 57 59.65 -2.65
Chakravarty et al. (1998),αj = 1 28.78 27.14 1.64
Chakravarty et al. (1998),αj = 2 14.44 13.88 0.55

Watts (1968) 41.87 39.93 1.94
Tsui (2002),βj = 1 86.5 74.3 12.2

Pα,γ(X, z), α = 3, γ = 2, (Substitutes) 9.29 8.45 0.84
Pα,γ(X, z), α = 3, γ = 4, (Complements) 7.98 7.97 0.01

Pα,γ(X, z), α = 3, γ = ∞, (Leontief) 7.61 7.85 -0.24

N.B. A positive sign of∆P (X, z) indicates that bi-dimensional poverty is higher
in Egypt than in Tunisia. Further, for the additive bi-dimensional poverty indices,
the same weight,aj = 1, is given to the two attributes.
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Figure 1:Egypt minus Tunisia Income vs Housing FOD
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