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Abstract

In this paper we analyze the performance of an equilibrium model of the term structure

of the interest rate under Epstein-Zin/Weil preferences in which consumption growth and

inflation follow a VAR process with logistic stochastic volatility. We find that the model can

successfully reproduce the first moment of yields and their persistence, but fails to reproduce

their standard deviation. The filtered stochastic volatility is a good indicator of crises and

shows high persistence, but it is not enough to generate a slowly decaying volatility of

yields with respect to maturity. Preference parameters are estimated to be about 4 for the

coefficient of relative risk aversion and infinity for the elasticity of intertemporal substitution.
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1 Introduction

The literature on equilibrium models of the term structure of interest rates has empha-

sized matching primarily three stylized facts of the yield curve as one way to evaluate the

performance of the models: 1) an upward sloping average term structure, 2) a slowly de-

caying volatility with respect to maturity, and 3) varying term premia. Examples include,

among others, Backus et al. (1989), Donaldson et al. (1990), Pennacchi (1991), Boudoukh

(1993), Backus and Zin (1994), Canova and Marrinan (1996), and, more recently, Piazzesi

and Schneider (2006), Wachter (2006), Gallmeyer et al. (2007), and Doh (2008). The more

recent literature focuses on incorporating alternative preferences with respect to the power

utility case. This study examines how good an equilibrium model of the term structure

of nominal interest rates is for reproducing the moments of yields under Epstein-Zin/Weil

preferences and persistent stochastic volatility in inflation.

We model consumption growth and inflation as a VAR(3) process with stochastic volatil-

ity in inflation (SV-VAR hereupon). We specify the lag order at three based on various

lag selection criteria, and justify volatility in inflation given the results of heteroscedasticity

tests performed on the homoscedastic version of the model. Volatility is modeled as a logistic

function of a unit root process like in Lee (2008). We estimate the model by maximum like-

lihood and, given the nonlinearity relating observables and non-observables, we numerically

integrate densities to obtain the likelihood function.

Park (2002) shows that a nonlinear nonstationary heteroscedasticity generated by an

asymptotically homogeneous function, like the logistic function, has a long memory. Another

property of this type of heteroscedasticity is that it generates sample kurtosis with truncated

supports, unlike an exponential stochastic volatility model in which volatility may explode

if the process is too persistent. By having this specification for volatility, we can incorporate

a persistent factor into the model to generate a slowly decaying volatility of yields with

respect to maturity, as pointed out by Gallmeyer, Hollifield, Palomino and Zin (2007) (GHPZ

hereupon). Additionally, we can generate varying term premia, as originally evidenced by
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Campbell and Shiller (1991). Given the form of the logistic function, volatility is bounded

between “high volatility” and “low volatility” regimes, with a transition stage corresponding

to a “middle volatility” regime in which agents can not anticipate with certainty where the

economy will end up. This setup is compatible with Epstein-Zin/Weil preferences, as noted

by Kim et al. (2008), because agents would prefer an early resolution of uncertainty under

certain value of preference parameters, as observed by Epstein and Zin (1991).

As noted in Piazzesi and Schneider (2006) (PS hereupon), negative linear relationships

between unanticipated inflation and consumption and between anticipated inflation and

consumption, along with recursive preferences, are needed to generate an upward sloping

yield curve. The SV-VAR is able to incorporate these possibilities, and results show a

negative correlation between unexpected inflation and consumption growth, as well as a

negative linear relationship between anticipated inflation and future consumption growth.

We feed the pricing kernel corresponding to Epstein-Zin/Weil preferences with estimates

from the SV-VAR to price bonds using the recursive pricing equation. Preference param-

eters, i.e., elasticity of intertemporal substitution and coefficient of relative risk aversion,

are estimated by the simulated method of moments where we use the average of historical

yields as moment conditions. Unlike previous studies where recursive preferences have been

incorporated, we do not assume an affine structure for the pricing kernel like in GHPZ and

Doh (2008), or a particular value for a preference parameter like in PS. In order to solve for

the conditional expectation to price bonds, we recur to numerically integrate this expression

using the approach shown in Tauchen and Hussey (1991).

Results show that the model can successfully reproduce the average term structure, the

10-year bond term premium, as well as the first order autocorrelation of yields, but fails to

reproduce their standard deviation. We argue that the reason for which the model does not

perform as expected with respect to the volatility of yields resides in the numerical integra-

tion technique. Since the integration uses Markov transition probabilities to compute the

expectation, and given that inflation and consumption growth follow a stationary VAR pro-
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cess, these transition probabilities are dominated by the stationary component even though

the stochastic volatility process is highly persistent.

The structure of this document is as follows: Section 2 describes the model to price bonds

in equilibrium, Section 3 shows the estimation methodology of the SV-VAR and estimation

results, Section 4 explains the methodology to estimate preference parameters along with the

numerical integration technique, the way to simulate yields, and discusses results. Finally,

Section 5 concludes. Details of derivations are shown in an Appendix.

2 The Model

We consider an endowment economy populated by a representative investor in which

endowment (et) and inflation (πt) are exogenously given. This section illustrates the setup

for the valuation of real and nominal bonds under recursive preferences and under a stochastic

volatility VAR(p) specification for the exogenous processes.

2.1 Preferences

We assume an exchange economy in which a representative agent chooses her consumption

level to maximize the recursive utility function proposed by Epstein and Zin (1989). Given a

sequence of consumption {ct, ct+1, ct+2, ...} with random realizations of future consumption,

the intertemporal utility function, Ut, is the solution to the recursive equation,

Ut = [(1− β)cρ
t + βµt(Ut+1)

ρ]1/ρ,

where 0 < β < 1 is the discount factor, ρ 6 1 is a preference parameter measuring the degree

of intertemporal substitution (the elasticity of intertemporal substitution, EIS hereupon, for

a deterministic flow of consumption is given by 1/(1 − ρ)), and the certainty equivalent of
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random future utility is

µ(Ut+1) ≡ Et[U
α
t+1]

1
α ,

where α 6 1 measures the risk aversion in a static framework (the coefficient of relative risk

aversion for static lotteries is 1−α). The intertemporal marginal rate of substitution, Mt+1,

is given by

Mt+1 = β

(
ct+1

ct

)ρ−1 (
Ut+1

µt (Ut+1)

)α−ρ

. (1)

Notice that when the coefficient of relative risk aversion is equal to the inverse of the EIS,

i.e., α = ρ, the marginal rate of substitution reduces to the one obtained under power utility.

2.2 Exogenous processes setup

We consider a VAR(p), with p finite, as the specification of the stochastic process for

the rate of growth of the endowment and inflation. We also introduce stochastic volatility

in the innovations of the VAR(p). Following Boudoukh (1993), we assume that there is

stochastic volatility in inflation only. This assumption is consistent with the analysis shown

in PS about expected and unexpected inflation being a carrier of bad news, and the effect

of inflation on bond prices. Denote

zt+1 =




gt+1

πt+1


 .

Then our assumptions imply

zt+1 = Φ0 +

p∑

l=1

Φlzt+1−l + ε∗t+1,
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where Φ0 is a 2 × 1 vector of parameters, Φl is a 2 × 2 matrix of parameters for l =

1, 2, . . . , p, and ε∗t+1 = [ε∗g,t+1, ε
∗
π,t+1]

′ are the innovations in endowment growth and inflation,

respectively. Here we assume that vart(ε
∗
t+1) is not constant and that it depends on a non

observable nonstationary factor. More specifically, we assume

F(yt) =




σg 0

0
√

f(yt)


 ,

and follow Lee (2008) to make f(y) = θ0 + θ1

1+exp (−λy)
, with θ0 > 0, θ1 > 0, λ > 0, yt+1 =

yt + ut+1, and




εg,t+1

επ,t+1

ut+1



|Ft ∼ iidN







0

0

0




,




1 ν 0

ν 1 0

0 0 1







, (2)

where ε∗t+1 = F(yt)εt+1, with εt+1 = [εg,t+1, επ,t+1]
′, Ft = σ({zs}t

s=0) is the information

available at time t, and |ν| ≤ 1.

Under this stochastic volatility setup, we model volatility as a logistic function of a unit

root process, which implies that volatility is bounded and has a smooth transition between

two regimes: low volatility (θ0) and high volatility (θ0 + θ1), while the smoothness of the

transition is measured by the coefficient λ. Lee (2008) mentions this characteristic as opposed

to what happens with an exponential stochastic volatility model, in which volatility would

explode if there is enough persistence in it. Also, the smooth transition along with the

nonstationary latent factor {yt} allow for volatility clustering. Additionally, Park (2002)

shows that this type of nonlinear heteroscedasticity has sample kurtosis with truncated

supports. On a related matter, Kim et al. (2008) points out that since agents dislike the

uncertainty that arises when volatility is in between of the two regimes, because they would

prefer an early resolution of uncertainty (when γ > 1
ψ
), the recursive preferences specification

in this work is compatible with our setup for volatility.
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The SV-VAR has some advantages with respect to other models used in the literature of

term structure of interest rates with recursive preferences and/or stochastic volatility. First,

we assume that the lag order of the VAR is finite, as opposed to the invertible VARMA(1,1)

proposed by PS. Second, we allow for the lag order of SV-VAR to be greater than one,

extending the setup in Boudoukh (1993).

2.3 Pricing bonds

In this section we use the intertemporal marginal rate of substitution to price bonds

under the SV-VAR specification for endowment growth and inflation rates. It is important

to point out that we do not make any assumption about the value of the EIS, as opposed to

PS, who set this coefficient to unity.

2.3.1 Real bond pricing

Recalling the pricing equation for bonds, we have that if the price, in consumption units,

at t of a bond of maturity n is denoted by Qn,t, then

Qn,t = Et(Mt+1Qn−1,t+1) (3)

In equilibrium, the real pricing kernel is given by (1) with ct = et and Vt being the value of

utility. Consequently, the (log of the) pricing kernel in equilibrium is given by

ln Mt+1 = ln β + (ρ− 1) gt+1 + (α− ρ) (ln Vt+1 − ln µt (Vt+1)) , (4)

where gt+1 ≡ ln(et+1/et) is the endowment growth rate between t and t + 1. To obtain a

fully parametric (and able to be simulated) expression for the (log of the) pricing kernel, we

follow GHPZ. We obtain the following result, whose derivation appears in the Appendix:

ln Mt+1 ≈ ln β − (α− ρ) At + [(ρ− 1) + (α− ρ) (1 + v1)] gt+1 + (α− ρ) [w1πt+1 + vff (yt+1)], (5)
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where the approximation follows because of the linear approximation that we made to the

logistic function. At is an expression that includes preference parameters, parameters from

the SV-VAR and variables at t. v1, w1 and vf are parameters from the (log of the scaled)

value function which, in turn, are functions of the preference parameters and parameters from

the SV-VAR. Again, if α = ρ, we return to the conventional real pricing kernel obtained

from a power utility setup.

2.3.2 Nominal bond pricing

Since the pricing equation (3) must hold for real prices of nominal bonds, we have

Q$
n,t

Pt

= Et

(
Mt+1

Q$
n−1,t+1

Pt+1

)
,

where Q$
n,t denotes the nominal price at t of a bond maturing n periods ahead, and Pt denotes

the price of the consumption good at t. Therefore, we can write

Q$
n,t = Et

(
M$

t+1Q
$
n−1,t+1

)
, (6)

where the (log of the) nominal pricing kernel is given by

ln M$
t+1 = ln Mt+1 − πt+1.

From the structures of the real and the nominal pricing kernels, we can see that the properties

of inflation influence the price of nominal bonds. Let us analyze the effects of inflation on

the real pricing kernel (5). First, under the power utility setup, the effect of inflation on

the pricing kernel is weighted by the EIS only (or the coefficient of relative risk aversion).

Second, under recursive preferences, inflation not only enters the pricing kernel weighted by

the EIS, but also by the difference between the coefficient of relative risk aversion and the

EIS. Third, stochastic volatility is also a determinant of the pricing kernel and its weight
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is determined by the difference between the coefficient of relative risk aversion and the EIS

too.

3 SV-VAR Estimation

In this section we proceed to estimate the parameters of the SV-VAR which will serve as

inputs for the estimation of preference parameters which, in turn, will allow us to simulate

the term structure of interest rates.

To estimate the model presented in section 2.2 we use annualized quarterly consumption

growth and inflation covering the period 1952:1 - 2008:3. We specify consumption as real

per capita consumption of nondurables and services as reported by the Bureau of Economic

Analysis. Data on the consumer price index (CPI) are from the Bureau of Labor Statistics

of the U.S. Department of Labor.

3.1 VAR lag selection and heteroscedasticity

In order to proceed with the estimation of the SV-VAR model we need to offer an adequate

specification for the conditional mean vector of consumption growth and inflation. Table 1

reports values of four different lag order selection criteria of a homoscedastic VAR: Sequential

Modified LR, Akaike IC, Schwarz IC and Hannan-Quinn IC. The optimal lag order is 3,

according to all the criteria used. Additionally, with this lag order we do not reject the null

hypothesis of absence of serial correlation in the error term at the 1% level of significance.

With the lag order set to 3 we proceed to estimate a homoscedastic VAR in order to

test for varying conditional variance. Table 2 shows results of the estimation as well as the

heteroscedasticity tests performed: ARCH LM test in each equation of the VAR, single-

equation White test, and joint White test. The first two tests reject the null hypothesis

of homoscedasticity in inflation but not in consumption growth at conventional significance

levels. The joint White heteroscedasticity test also rejects constancy of the VAR’s conditional
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variance covariance matrix. All these results support our setup for the SV-VAR model with

respect to the assumption of including stochastic volatility in the inflation equation only.

3.2 Maximum likelihood estimation of the SV-VAR

We estimate parameters of the SV-VAR by maximum likelihood, using a nonlinear

Kalman filter to obtain the appropriate densities. Tanizaki (1996) shows how to construct

the prediction, updating and smoothing steps. First, notice that

zt+1|yt, Ft, Θ ∼ N

(
Φ0 +

3∑

l=1

Φlzt+1−l, Ω(yt)

)
(7)

yt|yt−1,Ft, Θ
d
= yt|yt−1, Θ ∼ N(yt−1, 1),

where Ω(yt) = F(yt)ΓF(yt), Θ is the parameter space, and Γ is the upper left 2× 2 block of

the variance-covariance matrix in (2).

The maximum likelihood estimator is given by

Θ̂ = arg max
Θ

l (z1, . . . , zn|Θ),

where l (z1, . . . , zn|Θ) =
n∑

t=1

ln p (zt|Ft−1, Θ), and

p (zt|Ft−1, Θ) =

∫
p (zt, yt−1|Ft−1, Θ) dyt−1

=

∫
p (zt| yt−1,Ft−1, Θ) p (yt−1|Ft−1, Θ) dyt−1.

In order to integrate out the non observable and non stationary variable yt, we proceed to

numerically integrate the densities in which it appears. To that end, we apply the approach

used in Lee (2008) and described in extent in the Appendix along with details about the

prediction and updating steps of the filter. Results of the estimation are shown in Table 3.

We can see that the parameters corresponding to the conditional mean of the SV-VAR(3)
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are very similar to those obtained from the homoscedastic VAR(3) in Table 2. Regarding

parameters of the conditional volatility, all of them are statistically significant (positive) at

the 5% level of significance. In particular, given these estimates, the shape of the logistic

function is shown in Figure 1. The figure shows the smooth transition from the low volatility

regime to the high volatility one. The transition is determined by the parameter λ, which

is close to one, implying a transition smooth enough to make agents dislike a scenario of

moderate volatility because they do not know where the economy will end up, as mentioned

previously.

From the estimation of the SV-VAR, and by making use of a non linear Kalman filter,

we obtain the filtered volatility, which appears in Figure 2 along with the short rate and the

NBER recession periods. The graph shows that volatility is indeed highly persistent. It also

shows a highly volatile period between the second half of the 1970s and during the 1980s.

There is also a low volatility regime which corresponds to the period between the early 1990s

until the early 2000s. It is also evident an increase in volatility at the end of the present

decade due to the effects of the current crisis. In fact, volatility increases every time that a

recession affects the economy, except for one crisis episode at the beginning of the sample.

When comparing time series of the filtered volatility with those of the short-term nominal

interest rate, we can see that there is a positive covariation between them, except for the

period between the early 1990s and the mid 2000s. This is a sign that our volatility setup

could help capture salient features of interest rates 1 along with the other factors used here,

namely, consumption growth and inflation.

4 Implications for bond yields

We describe the methodology for preference parameters estimation as well as comparisons

with results in other studies of equilibrium modeling of the term structure in Section 4.1. In

Section 4.2 we discuss the term structure implications of the model. In Section 4.3 we show

1And it could also explain features of the equity premium, as explored in Kim et al. (2008).
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the model performance with respect to reproducing time series characteristics of the short

term yield and the yield spread. Here we use yields of maturities 1, 4, 8, 12, 20, 28 and 40

quarters. Data up to 1991 are from McCulloch and Kwon (1993), then we use yields on U.S.

Treasury securities at constant maturities reported by the Federal Reserve Bank.

4.1 Preference parameter estimation

Besides parameters involving preferences towards risk (α) and preferences towards in-

tertemporal allocations of consumption (ρ), we have additional parameters involved in the

(log of the) pricing kernel. The parameters under discussion include the discount factor, β,

and other parameters related to the (log of the scaled) value function, namely, v1, w1, and

vf , as well as other that appear in At and that are related to the value function too (they are

denoted v2, v3, w2, and w3). Given α and ρ, these eight additional parameters are obtained

from a system of nonlinear equations designed to match the mean of the short-term interest

rate. The system of equations is shown in detail in the Appendix.

Regarding the preference parameters α and ρ, we estimate them so that the mean of

the yields produced by our model match as closely as possible the observed average term

structure. To that end, we make use of the simulated method of moments firstly introduced

by Lee and Ingram (1991), and extended by Burnside (1993) to the numerical solution to

asset pricing models proposed by Tauchen and Hussey (1991).

Before proceeding to the estimation of preference parameters we notice that, given the

nature of the logistic function assumed for volatility, we can define the process {ft+1}∞t=−∞ ≡
{f(yt+1)}∞t=−∞ with a well defined conditional density function, p(ft+1|ft), since the Markov

property of the process {yt}∞t=−∞ is inherited by {ft+1}∞t=−∞ because f(·) is bijective. We

show the expression for p(ft+1|ft) in the Appendix. This step is important because it allows

us to restrict the range of an integration from (−∞,∞) to an integration on (θ0, θ0 + θ1),

which is bounded.

Now, by defining st ≡ {zt, zt−1, zt−2}, we notice that, since the real pricing kernel in (5)
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is a function of zt+1, ft+1, st, and ft, the nominal pricing kernel is also a function of these

variables. We write M$(zt+1, ft+1, st, ft) to express the dependence of the nominal pricing

kernel on the mentioned variables. Therefore, the pricing equation (6) implies that nominal

bond prices are functions of st and ft only:

Q$
n,t = Hn(st, ft),

with H0(st, ft) = 1 ∀t, and

Hn(st, ft) = EtM
$(zt+1, ft+1, st, ft)Hn−1(st+1, ft+1) (8)

=

∫ ∞

−∞

∫ θ0+θ1

θ0

M$(zt+1, ft+1, st, ft)Hn−1(st+1, ft+1)p(zt+1, ft+1|st, ft) dft+1 dzt+1.

Further, we notice that the conditional density involved in the integration can be written as

follows:

p(zt+1, ft+1|st, ft) = p(zt+1|st, ft, ft+1)p(ft+1|st, ft)

= p(zt+1|st, ft)p(ft+1|ft),

where passing from the first to the second identity is done because zt+1|Ft, ft is independent

of ft+1, as shown in (7), and because {ft+1}∞t=−∞ is first-order Markov.

We also point out that there is an integration across three dimensions involved in (8).

Tauchen and Hussey (1991) suggests using a Gaussian quadrature method to discretize the

space of the state variables in order to write

Hn(sj, fl) =
Nz∑
i=1

Nf∑

k=1

M$(zi, fk, sj, fl)Hn−1(si, fk) Πji,l Πlk, (9)
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with

Πji,l = Prob{zt+1 = zi|st = sj, ft = fl}

Πlk = Prob{ft+1 = fk|ft = fl},

where j = 1, 2, . . . , N̂z, l = 1, 2, . . . , Nf , and N̂z = Nz
3. Here Nf and N̂z denote the number

of quadrature abscissa points.2 We assume the same number of abscissa points for each of the

variables in the VAR, which is 5, making Nz = 25 and N̂z = 15, 625. Furthermore, we assume

Nf = 6, making the total number of abscissa points N̂z×Nf = 93, 750. In the Appendix we

discuss the approach of Tauchen and Hussey to obtain the transition probabilities.

In order to obtain an extension from the discrete-space solution (9) to the continuous-

space solution, we use step functions. Burnside (1999) points out that any Gaussian quadra-

ture rule divides the real line for each of the variables into non-overlapping segments, there-

fore we can extend the discrete-space solution to any s ∈ R3 and f ∈ (θ0, θ0 + θ1). In the

Appendix we discuss how to obtain this result.

Once we are able to obtain yields for different maturities from the model, we proceed to

estimate preference parameters by the simulated method of moments whose setup is shown

in the Appendix. For the moments we choose the means of yields, that is, we have 7 moment

conditions. Results of the estimation are shown in Table 4.

These results imply that the coefficient of relative risk aversion is approximately 4, while

the EIS is infinite. As mentioned before, β is estimated to match the average short-term

interest rate. The value of the coefficient of risk aversion is lower (and significantly lower in

some cases) compared to those obtained in the literature of term structure modeling with

recursive preferences. Values range from 5-7 in GHPZ, 16-17 in Doh (2008), and 43-85 in

PS. The value of the coefficient of EIS in this study is the same as the one obtained in

2Notice that the value for the abscissa points as well as the weights of the quadrature depend on the
number of abscissa points, but we omit them here from the discretization expressions to avoid excess of
notation.
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GHPZ, much higher than the unity coefficient assumed in PS, and the estimated coefficient

in Doh (2008), which is in the range 1.4-1.6. We notice that, since γ > 1
ψ
, meaning that

agents prefer an early resolution of uncertainty, our volatility setup is compatible with the

preferences used in this study.

PS needs the risk aversion coefficient to be in the mentioned range because, given that

the EIS is set to unity, the only way to generate a positive expected excess return is by

giving an important weight to the negative covariance between inflation and expected future

consumption growth. The mechanism that allows PS and our work to have a positive excess

return has to do with the fact that higher inflation rates (that affect real payoffs of nominal

bonds, particularly long bonds) bring news about lower expected consumption growth rates

and, since the real payoff of long bonds is lower in bad times and agents prefer an early

resolution of uncertainty, the required premium on these bonds increases compared to short

bonds.

With respect to the EIS parameter, we point out that the higher it is, the less demand

for smoothing consumption over time. Increasing the EIS decreases the demand for long-

term real bonds to smooth consumption, leading to a higher required real premium on these

bonds. The fact that the EIS is high allows us to reproduce more satisfactorily the slope of

the term structure. Epstein and Zin (1991) mentions the infinite-elasticity case as the case

in which the C-CAPM reduces to the static CAPM, and points out that the static CAPM

emerges due to the perfect substitutability of consumption across time.

4.2 Term structure implications

We obtain time series for each of the yields with the same time horizon as the sample

data, 1952:1 to 2008:3, using the same step functions that allowed us to extend the discrete-

space solution to the continuous-space one. That is, we consider the consumption growth

rate, inflation rate and filtered volatility of a particular quarter and choose the yield for

which each of the variables lay in one of the intervals given by the step function. In Table 5
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we show averages, standard deviations and first order autocorrelations of yields. The model

reproduces satisfactorily the average term structure but fails to reproduce the volatility of

yields. Particularly, the simulated yields’ volatilities decay in an exponential fashion with

respect to maturity, as opposed to the slowly decaying volatilities of observed yields. This

sharp decay is observed despite the introduction of a persistent factor for explaining yields,

which is the stochastic volatility. Figure 3 and Figure 4 show the average term structure and

the standard deviation of yields of both the observed and simulated data. The persistence of

the different yields, however, is satisfactorily reproduced by the model and here persistence

of the stochastic volatility process plays a fundamental role.

The reason for which the model is incapable of reproducing the slowly decaying stan-

dard errors of yields lies in the way the pricing equation (8) is computed. Here we use the

numerical integration technique suggested by Tauchen and Hussey (1991) and divided the

conditional density inside the integration into the product of two conditional densities: the

conditional density for the stationary processes, namely consumption growth and inflation,

and the conditional density for stochastic volatility, which is highly persistent. When com-

puting the numerical integral, we transform these densities into transition probabilities, and

the transition probabilities corresponding to consumption growth and inflation dominate the

transition probabilities for stochastic volatility, making the solution look like as if it came

from a purely stationary exogenous process. This situation can be more easily seen when

looking at equation (9), where the product of the two transition probabilities appears explic-

itly. Affine models of the term structure of interest rates under Epstein-Zin/Weil preferences

do not have this kind of problem because they can be solved explicitly by either assuming

that no correlation exists between consumption growth and inflation like in GHPZ, or by

assuming an affine functional form for the return on consumption claims, like in Doh (2008).
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4.3 Time series implications

Figure 5 shows time series of the nominal yield on the three-month bond obtained from

the model and from observed data (both de-meaned). The simulated rate (dashed line) shows

more variability than the observed rate (solid line), but the model is able to satisfactorily

reproduce many of the movements in the short interest rate, except for a slight deviation

at the beginning of the 1990s and also at the end of the considered sample. The overall

correlation between the observed and the simulated rate is 0.73.

In Figure 6 we show the term spread of the 10-year bond with respect to the 3-month

bond. The simulated yield spread is more variable than the observed spread and the model

predicts a higher spread before the 1970s and a lower term spread during the 1970s than

what is observed. However, towards the end of the sample the model does a reasonable job

describing movements in the term spread. The overall correlation between the observed and

the simulated term spread is 0.14.

5 Conclusions

This paper presents an equilibrium model of the term structure of interest rates with

Epstein-Zin/Weil preferences and an exogenous process that includes logistic stochastic

volatility. The model’s performance is very reasonable with respect to matching the first

moment of the term structure of interest rates and the persistence of yields. The model,

however, is not good at reproducing the slowly decaying standard errors of yields with respect

to maturity. This last shortcoming occurs despite of the highly persistent stochastic volatil-

ity introduced as an additional factor to explain yields. The reason for the failure of the

model at explaining the standard deviation of yields lies in the way the numerical integration

to solve for the pricing equation is performed. Since the joint density inside the integration

can be split into the product of the conditional density for the stationary processes, namely

consumption growth and inflation, and the density for the stochastic volatility, the product
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of the two is dominated by the first stationary conditional density, regardless of volatility’s

persistence.

The estimated preference parameters imply an infinite elasticity of substitution between

present and future consumption, whereas the coefficient of relative risk aversion toward static

lotteries is about 4. These estimates can be seen as an argument in favor of our volatility

specification (given that γ > 1
ψ
), since agents prefer an early resolution of uncertainty and

our volatility function does not reveal the ending state if the initial volatility state is of

medium uncertainty.

One future line of research is to consider a semi-affine specification for the pricing kernel,

in the line of Duarte (2004), which is a flexible form that would allow us to incorporate

the covariance between consumption growth and inflation and, at the same time, avoid a

numerical integration to price bonds.

Another future line of research is to incorporate specifications of monetary or fiscal policy

that introduce persistence in the volatility of yields, in the line of GHPZ.

18



6 Appendix

6.1 Derivation of the pricing kernel

In order to obtain equation (5), we need to make a linear approximation of the logistic
function around some value f̄ ∈ (θ0, θ0 + θ1). We obtain

f (yt+1) ≈ f (yt) + θ̄ut+1,

where θ̄ =
λ(f̄−θ0)

θ1

(
θ0 + θ1 − f̄

)
> 0. Also

√
f (yt) ≈ 1

2

(√
f̄ +

f (yt)√
f̄

)
.

From here on, we follow Gallmeyer et al. (2007) in the derivations. By homogeneity of
µt (·) we can write

Vt

et

=

[
(1− β) + βµt

(
Vt+1

et+1

× et+1

et

)ρ] 1
ρ

.

Taking logs and defining vt = ln (Vt/et), we have

vt =
1

ρ
ln [(1− β) + β exp (ρµ̃t)] ,

where µ̃t ≡ ln (µt (exp (vt+1 + gt+1))).
Approximating vt around µ̃t = m̄ yields

vt ≈ η0 + η1µ̃t,

where

η0 =
1

ρ
ln [(1− β) + β exp (ρm̄)]− β exp (ρm̄)

1− β + β exp (ρm̄)
m̄,

η1 =
β exp (ρm̄)

1− β + β exp (ρm̄)
, 0 < η1 < 1.

If we evaluate at m̄ = 0, these expressions imply η0 = 0, η1 = β.
In order to parameterize the log of the value function, conjecture that

vt = v̄ + v1gt + v2gt−1 + v3gt−2 + w1πt + w2πt−1 + w3πt−2 + vff (yt) , (10)
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which implies that

vt+1 + gt+1 = v̄ + (1 + v1) gt+1 + v2gt + v3gt−1 + w1πt+1 + w2πt + w3πt−1 + vff (yt+1)

≈ v̄ + (1 + v1) gt+1 + v2gt + v3gt−1 + w1πt+1 + w2πt + w3πt−1 + (11)

+ vf

(
f (yt) + θ̄ut+1

)
.

Taking conditional expectation and variance on (11), we obtain

Et (vt+1 + gt+1) ≈ v̄ + (1 + v1)Etgt+1 + v2gt + v3gt−1 + w1Etπt+1 + w2πt + w3πt−1 + vff (yt) ,

vart (vt+1 + gt+1) ≈ (1 + v1)
2 σ2

g + w2
1f (yt) + 2 (1 + v1) w1νσg

√
f (yt) + v2

f θ̄
2

≈ (1 + v1)
2 σ2

g + w2
1f (yt) + (1 + v1) w1νσg

(√
f̄ +

f (yt)√
f̄

)
+ v2

f θ̄
2

= (1 + v1)
2 σ2

g +

(
w2

1 +
(1 + v1) w1νσg√

f̄

)
f (yt) + (1 + v1) w1νσg

√
f̄ + v2

f θ̄
2.

Since vt+1 + gt+1 is normally distributed conditional on the information available at t, we
have

µ̃t = Et (vt+1 + gt+1) +
α

2
vart (vt+1 + gt+1) ,

then

µ̃t ≈ v̄ + (1 + v1) Φ01 + w1Φ02 +
α

2

[
(1 + v1)

2 σ2
g + (1 + v1) w1νσg

√
f̄ + v2

f θ̄
2

]
+

+
[
(1 + v1) Φ

(1)
11 + v2 + w1Φ

(1)
21

]
gt +

+
[
(1 + v1) Φ

(2)
11 + v3 + w1Φ

(2)
21

]
gt−1 +

+
[
(1 + v1) Φ

(3)
11 + w1Φ

(3)
21

]
gt−2 +

+
[
(1 + v1) Φ

(1)
12 + w1Φ

(1)
22 + w2

]
πt +

+
[
(1 + v1) Φ

(2)
12 + w1Φ

(2)
22 + w3

]
πt−1 +

+
[
(1 + v1) Φ

(3)
12 + w1Φ

(3)
22

]
πt−2 +

+

[
vf +

α

2

(
w2

1 +
(1 + v1) w1νσg√

f̄

)]
f (yt) ,

where Φ
(l)
ij is the element (i, j) of Φl for i = 0, 1, 2, j = 1, 2, and l = 0, 1, 2, 3. Now, by using

vt ≈ η0 + η1µ̃t, (10), and η0 = 0, η1 = β, we can get v̄, v1, v2, v3, w1, w2, w3.
Recall that

µ̃t ≈ v̄ + (1 + v1)Etgt+1 + v2gt + v3gt−1 + w1Etπt+1 + w2πt + w3πt−1 + vff (yt) +

+
α

2

[
(1 + v1)

2 σ2
g + w2

1f (yt) + 2 (1 + v1) w1νσg

√
f (yt) + v2

f θ̄
2
]
,
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and
ln Vt+1 − ln µt (Vt+1) = vt+1 + gt+1 − µ̃t,

therefore we have

ln Vt+1 − ln µt (Vt+1) ≈ (1 + v1) (gt+1 − Etgt+1) + w1 (πt+1 − Etπt+1) + vf (f (yt+1)− f (yt))−
−α

2

[
(1 + v1)

2 σ2
g + w2

1f (yt) + 2 (1 + v1) w1νσg

√
f (yt) + v2

f θ̄
2
]
. (12)

Replacing (12) into (4) we obtain the real pricing kernel

ln Mt+1 ≈ ln β − (α− ρ) At + [(ρ− 1) + (α− ρ) (1 + v1)] gt+1 + (α− ρ) [w1πt+1 + vff (yt+1)] ,

where

At = (1 + v1)Etgt+1 + w1Etπt+1 + vff (yt) +

+
α

2

[
(1 + v1)

2 σ2
g + w2

1f (yt) + 2 (1 + v1) w1νσg

√
f (yt) + v2

f θ̄
2
]
,

To obtain the nominal short-term interest rate, we need to get expressions for Et(ln Mt+1−
πt+1) and vart(ln Mt+1 − πt+1) which, by the log-normality of the pricing kernel, allow us to
write

r$
t+1 ≈ − ln β + (1− ρ)Etgt+1 + Etπt+1 −

−1

2
{σ̃2

t − (α− ρ)α[(1 + v1)
2σ2

g + w2
1f(yt) + 2(1 + v1)w1νσg

√
f(yt) + v2

f θ̄
2]},

where

σ̃2
t = [(ρ− 1) + (α− ρ) (1 + v1)]

2 σ2
g + [(α− ρ) w1 − 1]2 f (yt) + (α− ρ)2 v2

f θ̃
2 +

+2 [(ρ− 1) + (α− ρ) (1 + v1)] [(α− ρ) w1 − 1] νσg

√
f (yt).

6.2 Filtering procedure for the SV-VAR estimation

For the prediction step, we have3

p(yt|Ft, Θ) =

∫
p(yt, yt−1|Ft, Θ) dyt−1

=

∫
p(yt|yt−1, Ft, Θ)p(yt−1|Ft, Θ)|, dyt−1

=

∫
p(yt|yt−1, Θ)p(yt−1|Ft, Θ) dyt−1.

3Notice that, due to the nature of how the information is revealed, p(yt|Ft) refers to the density of
the prediction, while p(yt|Ft+1) is the density for the updating step, once zt+1 (and its variance) has been
observed.
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For the updating step, we have

p(yt|Ft+1, Θ) = p(yt|zt+1, Ft, Θ)

=
p(yt, zt+1|Ft, Θ)

p(zt+1|Ft, Θ)

=
p(zt+1|yt,Ft, Θ)p(yt|Ft, Θ)

p(zt+1|Ft, Θ)
.

Regarding the estimation strategy, we need to numerically integrate the densities in
order to proceed to the maximization of the log-likelihood function. However, since the state
variable may show high persistence, we will follow Lee (2008) to make the Gauss-Legendre
quadrature rule depend on the previous value of the state. For the prediction step, we
assume that p(yt−1|Ft) is being integrated over [−c + yt−1|t−1, c + yt−1|t−1] for some c > 0,
where yt−1|t−1 ≡ E(yt−1|Ft−1) is the prediction of yt−1. Then we have,

p(yt|Ft) =

∫
p(yt|yt−1)p(yt−1|Ft) dyt−1

≈
∫ c+yt−1|t−1

−c+yt−1|t−1

p(yt|yt−1)p(yt−1|Ft) dyt−1

for t = 1, ..., n, with y0|1 to be estimated, and p(y0|F1) = 1 at y0|F1 = y0|1.
For the updating step we need p(zt+1|Ft), which can be approximated as follows:

p(zt+1|Ft) =

∫
p(zt+1|yt, Ft)p(yt|Ft) dyt

=

∫ ∫
p(zt+1|ytFt)p(yt|yt−1)p(yt−1|Ft)dyt−1dyt

≈
∫ c+yt|t

−c+yt|t

∫ c+yt−1|t−1

−c+yt−1|t−1

p(zt+1|ytFt)p(yt|yt−1)p(yt−1|Ft)dyt−1dyt,

where yt|t = yt−1|t is the prediction of yt conditional on Ft. Now,

yt|t+1 ≈
∫ c+yt|t

−c+yt|t
ytp(yt|Ft+1) dyt,

with p(yt|Ft+1) = p(zt+1|yt,Ft)p(yt|Ft)
p(zt+1|Ft)

.
We obtain the filtered stochastic volatility from

ft|t =

∫ c+yt|t

−c+yt|t
f(yt)p(yt|Ft) dyt.
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6.3 Nonlinear system of equations

The nonlinear system of equations is given by

v1 =
β

1− βΦ
(1)
gg

[
Φ

(1)
11 + v2 + w1Φ

(1)
21

]

v2 = β
[
(1 + v1) Φ

(2)
11 + v3 + w1Φ

(2)
21

]

v3 = β
[
(1 + v1) Φ

(3)
11 + w1Φ

(3)
21

]

w1 =
β

1− βΦ
(1)
22

[
(1 + v1) Φ

(1)
12 + w2

]

w2 = β
[
(1 + v1) Φ

(2)
12 + w1Φ

(2)
22 + w3

]

w3 = β
[
(1 + v1) Φ

(3)
12 + w1Φ

(3)
22

]

vf =
β

1− β

α

2

(
w2

1 +
(1 + v1) w1νσg√

f̄

)

r̄$ = − ln β + (1− ρ)
[
Φ01 +

(
Φ

(1)
11 + Φ

(2)
11 + Φ

(3)
11

)
ḡ +

(
Φ

(1)
12 + Φ

(2)
12 + Φ

(3)
12

)
π̄
]

+

+Φ02 +
(
Φ

(1)
21 + Φ

(2)
21 + Φ

(3)
21

)
ḡ +

(
Φ

(1)
22 + Φ

(2)
22 + Φ

(3)
22

)
π̄ −

−1

2





[(ρ− 1) + (α− ρ) (1 + v1)]
2 σ2

g + [(α− ρ) w1 − 1]2 f̄ + (α− ρ)2 v2
f θ̄

2+

+2 [(ρ− 1) + (α− ρ) (1 + v1)] [(α− ρ) w1 − 1] νσg

√
f̄−

− (α− ρ) α
[
(1 + v1)

2 σ2
g + w2

1f̄ + 2 (1 + v1) w1νσg

√
f̄ + v2

f θ̄
2
]
,





where r̄$, ḡ and π̄ are the sample means of the short-term nominal interest rate, consumption
growth and inflation, respectively. For f̄ we take the median of the filtered {ft} because of
the existence of the two specified volatility regimes.

6.4 Stochastic volatility’s transition density

The transition density for the stochastic volatility process is given by

p(ft+1|ft) =





1√
2πλ

(
1

ft+1−θ0
+ 1

θ1+θ0−ft+1

)
exp

(
− 1

2λ2

(
ln

ft+1−θ0
θ1+θ0−ft+1

ft−θ0
θ1+θ0−ft

)2
)

if θ0 < ft+1 < θ0 + θ1

0 o.w.

6.5 Transition probabilities

Assume that integration is performed against the density p(zt+1|st, ft)p(ft+1|ft). Tauchen
and Hussey (1991) suggests to replace the integral with summation using the quadrature rule,
and then normalizing so that the weights add to unity. In our case, since we need to consider
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the states for the stochastic volatility, the normalization is performed as follows:

Πji,l =
p(zi|sj, fl)

p(zi|µs, fl)

wz
i,l

az
j,l

,

Πlk =
p(fk|fl)

af
l

wf
k ,

where

az
j,l =

Nz∑
i=1

p(zi|sj, fl)

p(zi|µs, fl)
wz

i,l,

af
l =

Nf∑

k=1

p(fk|fl)w
f
k ,

wz
i,l, for i = 1, 2, . . . , Nz, denote the weights given by the Gauss-Hermite quadrature; wf

k , for
k = 1, 2, . . . , Nf , denote the weights given by the Gauss-Lebesgue quadrature, and µs is the
unconditional mean of {zt}∞t=−∞.

6.6 Continuous-space solution from discrete-space solution

We can extend the discrete-space solution to the continuous-space solution by letting

Hn(s, f) =
N̂z∑
j=1

Nf∑

l=1

Hn(sj, fl)1j,l(s)1l(f),

where 1j,l(s) = 1l(z1)1l(z2)1l(z3), and

1l(zi) =

{
1, if zi ∈ (xz

j−1,l,x
z
j,l)

0, otherwise,

1l(f) =

{
1, if f ∈ (xf

l−1, x
f
l )

0, otherwise,

with xz
j,l = µz + chol(Ω(fl))xj,l, where xj,l is the solution to wz

j,l =
∫ xj,l

xj−1,l
exp (−v′v) dv,

x0,l = −∞, xNz,l = ∞, and wz
j,l are the weights given by the Gauss-Hermite quadrature rule.

In a similar reasoning, xf
l = xf

l−1 + 1
2
θ1w

f
l , where xf

0 = θ0, xf
Nf

= θ0 + θ1, and wf
l are the

weights given by the Gauss-Lebesgue quadrature rule.

6.7 Simulated method of moments estimation

The estimators are defined, for Υ ≡ {(−∞, 1), (−∞, 1)}, as

{α̂, ρ̂} = arg min
{α,ρ}∈Υ

mT (α, ρ)′DT mT (α, ρ),
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where, for rt denoting the vector of yields for the different maturities considered,

mT (α, ρ) =
1

T

T∑
t=1

ψ(rt, α0, ρ0)− µT (α, ρ),

and α0 and ρ0 are the true preference parameters. For the estimation we choose the means
of the yields, which give us 8 moment conditions, that is, we choose ψ(·) to be the identity
function. For DT we use the inverse of a HAC variance-covariance matrix of the method of
moments estimator of the means of the yields. Burnside (1993) provides conditions under
which the estimators obtained from this methodology are consistent.
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Table 1: Lag order selection of the VAR

Lag LRa AICb SCc HQd

1 139.24 -8.96 -8.87 -8.92
2 53.49 -9.18 -9.02 -9.11

3 34.66* -9.31* -9.09* -9.22*

4 2.87 -9.28 -9.00 -9.17
5 9.46 -9.29 -8.95 -9.15
6 5.25 -9.28 -8.88 -9.12
7 4.95 -9.27 -8.80 -9.08

a
Sequential modified LR test statistic.

b Akaike information criterion.
c Schwarz information criterion.
d Hannan-Quinn information criterion.
* Lag order selected by the criterion.
p-values for the LM test of residual serial correlation of

the VAR(3) for lags 1 to 10 are, respectively: 0.876, 0.862,
0.176, 0.521, 0.200, 0.413, 0.349, 0.014, 0.710, 0.883.
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Table 2: Consumption Growth
and Inflation VAR

Parameter Estimate

Φ0

0.028
(0.005)

−0.006
(0.003)

Φ1

0.117
(0.069)

−0.277
(0.084)

0.110
(0.053)

0.223
(0.064)

Φ2

0.056
(0.070)

0.168
(0.083)

0.136
(0.053)

0.327
(0.063)

Φ3

0.063
(0.067)

−0.100
(0.087)

0.073
(0.051)

0.401
(0.066)

σg 0.026
σπ 0.020
ν −0.153

HET1a eq: gt+1 [0.868]
eq: πt+1 [0.001]

HET2b eq: gt+1 [0.855]
eq: πt+1 [0.001]

HET3c [0.008]
Values in parenthesis denote standard errors.
Values in square brakets denote p-values.

a ARCH LM test.
b White heteroskedasticity test with cross terms for
individual equations.
c Joint White heteroskedasticity test with cross
terms.

zt+1 = Φ0 +
3∑

l=1

Φlzt+1−l + εt+1

[
εg,t+1

επ,t+1

]
|Ft ∼ iidN

([
0
0

]
,

[
σg 0
0 σπ

] [
1 ν
ν 1

] [
σg 0
0 σπ

])
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Table 3: Estimates of the SV-
VAR

Parameter Estimate

Φ0

0.030
(0.004)

−0.007
(0.002)

Φ1

0.108
(0.067)

−0.302
(0.082)

0.105
(0.040)

0.186
(0.069)

Φ2

0.050
(0.068)

0.158
(0.083)

0.123
(0.042)

0.356
(0.068)

Φ3

0.066
(0.066)

−0.078
(0.085)

0.089
(0.039)

0.402
(0.065)

σg 0.026
(0.001)

θ0 6.05× 10−5

(2.15×10−5)

θ1 0.001
(3.6×10−4)

λ 0.950
(0.403)

ν −0.175
(0.067)

Values in parenthesis denote standard errors.

zt+1 = Φ0 +
3∑

l=1

Φlzt+1−l + ε∗t+1




ε∗g,t+1

ε∗π,t+1

ut+1


 |Ft ∼ N







0
0
0


 ,




σg 0 0

0
√

f(yt) 0
0 0 1







1 ν 0
ν 1 0
0 0 1







σg 0 0

0
√

f(yt) 0
0 0 1







f(yt) = θ0 +
θ1

1 + exp (−λyt)
yt+1 = yt + ut+1
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Table 4: Estimates of α,
ρ, and β

Parameter Estimate

α −3.014
(0.050)

ρ 0.999
(0.016)

β 0.982
Values in parenthesis denote standard

errors.
β comes from the solution to the non-

linear system of equations.
α = 1−γ, where γ is the coefficient of

relative risk aversion, and ρ = 1−1/ψ,
where ψ is the elasticity of intertempo-
ral substitution.
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Figure 1: Implied Logistic Function

Figure 2: Filtered Logistic Volatility
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Figure 3: Average Term Structure
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Figure 4: Volatility of Yields
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Figure 5: Risk-free Rate
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Figure 6: Yield Spread
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