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Abstract:  
Although biotech start-ups fail or succeed based on their research few attempts have been made to 
examine if and how they strategize in this core of their activity. Popular views on Dedicated 
Biotech Firms (DBFs) see the inherent uncertainty of research as defying notions of strategizing, 
directing instead the attention to the quality of their science, or the roles of boards, management, 
and collaborative networks etc.    
Using a unique comprehensive dataset on Danish and Swedish biotech start-ups in drug discovery 
this paper analyzes their research strategies. Adopting a Simonean point of departure we develop a 
contingency view on complex problem solving which structures the argument into three steps:        
1) Characterising the problem architectures addressed by different types of DBFs;                            
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2) Testing and confirming that DBFs form requisite research strategies, by which we refer to 
problem solving approaches developed as congruent responses to problem architectures;  

3) Testing and confirming that financial valuation of firms is driven by achievements conforming 
to requisite research strategies. These strategies, in turn, require careful combination of multiple 
dimensions of research.  

Findings demonstrate that Shonhoovens classical argument that “strategy matters” is valid not only 
for the larger high-tech firms covered by her study, but also for small research-based start-ups 
operating at  the very well springs of knowledge where science directly interacts with technologies. 
Even though a lot more research is needed along these lines, these findings offer new implications 
for the understanding, management, and financing of these firms. 
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1 Introduction 
This paper examines relationships between research strategies and performance in small Dedicated 
Biotech Firms, using Danish and Swedish biotechnology as a case. Europe’s DBFs are predomi-
nantly small, with only few examples of growth to the size found in many US biotech firms. The 
larger US biotech firms are also the most productive and profitable (Drews 2003). For Europe the 
key challenge is to take an increased share of DBFs into this league (Owen 2004; Fazeli 2005), and 
that makes the causes of differential performance amongst smaller DBFs one of its critical issues. 
Several factors make the identification of these causes a difficult issue to tackle.  

First, research is hampered by shortage of data in systematic, relevant form. Information produced 
on the biotech sector covers mainly the comparatively few biotech firms that are listed on stock ex-
changes. Proprietary data-providers monitor the pipelines of these firms, their research collabora-
tions and contracts, financial changes and developments etc. Europe in particular lacks similar in-
formation for smaller, non-listed firms. Second, as observed by several authors (Nilsson 2006; 
Murray 2002) the translation of commercially undertaken research into performance and growth of 
science-based start-ups is poorly theorised.  

In response to the shortage of systematic data the authors have built a database combining a variety 
of firm-level sources, covering all biotech firms in Denmark and Sweden. The paper presents find-
ings from this dataset and applies it in developing metrics allowing for systematic description and 
analysis of the research strategies of DBFs and of their effects on the financial valuation of firms1

As for theory, since DBFs are in the business of research-based discovery, they could usefully be 
theorised as Simonean problem-solving agents. From this point of departure a research strategy is 
defined by the selection, sequencing and direction of inquiries by which a complex scientific ques-
tion is addressed by a problem-solving agent. In this approach problem-solving strategies are seen 
largely as responses to specificities of problem architectures. Taking this approach the paper fol-
lows a three-stage argument by,    

1) characterising the problem architectures addressed by different types of DBFs,   

2) testing and confirming that DBFs form requisite research strategies, by which we refer to 
problem solving approaches developed as congruent responses to problem architectures, 

3) testing and confirming that financial performance of firms is driven by achievements con-
forming to  requisite research strategies for their particular type of problem architecture. 

 
The paper begins by positioning in the next section its approach among different views on research 
as an object of strategizing, and by presenting its theoretical foundations in the resource-based view 
and in theories on problem solving. Section 3 develops hypotheses while the data developed to test 
them are presented in Section 4. Hypotheses are tested and results are interpreted in Section 5. A fi-
nal discussion of results and their implications is offered in Section 6.  

                                                 
1 DBF in this study refers to a research firm focused on drug discovery, including not only firms involved biopharma-
ceuticals (i.e. large molecule drugs), but also firms active in discovery of small molecule drugs, based on the use of  
biotechnological  tools, methods, and theories.  1
   



2 Theory  

2.1 Research strategizing as implicit dimension 
Much of the conventional wisdom on DBFs attributes their successes or failures to factors squaring 
uneasily with notions of research strategizing. Instead decisive factors are seen to be the quality e.g. 
of their science (in the academic research from which the firm typically is founded or on which it 
relies during its formative stages), or of their board and management. Also the pure uncertainty of 
research as the core activity of DBFs invites the perception that outcomes may be considered as op-
tions rather than objects for strategizing. Without insisting that the truth in this respect is either 
black or white, this paper pursues the opposite notion that DBFs may be analyzed as research 
strategizers and the extent, and the consistency with which they behave as such significantly affect 
their overall performance. We see strategizing, in other words, as an attribute more or less present 
behind the actual running of research in DBFs.  

More than 20 years ago Schoonhoven took issue with popular beliefs that for high-tech firms the 
inherent turbulence of their markets and technologies renders strategy meaningless, arguing instead 
that these are precisely the conditions “Where Strategy Really Pays Off” (Schoonhoven 1984). Es-
sentially we pursue the same argument, only now extending it further back to cover firms operating 
at the very well-springs of knowledge where scientific discovery and technological inventions con-
stantly interact, as is the case in biotech discovery firms. Our argument is directed not at their style 
of management, not at their alliances and external network, not at their choice of business models, 
but at the core of their activities, which for these firms means their research. Arguing that research 
strategizing pays off in their performance does not diminish the importance of factors convention-
ally considered in this context. On the contrary, boards and managers matter precisely by the roles 
they play in formulating and maintaining strategic overall directions for research, an important part 
of which addresses the stepwise reduction of uncertainty over a sequence of partitioned research is-
sues.   

Research in large pharmaceutical firms has been the object of multiple studies to identify how it op-
erates as a source of advantage and as an object for strategizing (Cockburn et al 2001; Dimasi et al 
1995; Nightingale 2000; Chandler 2005). However, the strong emphasis in this literature on scale 
and scope advantages renders it less informative about issues of research strategizing in small bio-
tech start-ups. Thse issues have been shown to differ markedly from those of large firms (Chataway 
and Tait 1993), confirming the more general notion in the literature that science based start-ups 
have a set of sui generic issues (Schoonhoven et al 1990; Nilsson 2006). Whereas research strate-
gizing in DBF has attracted much less attention, the literature indirectly offers ample indication that 
DBFs indeed strategize in this part of their activity. To give just a few examples: 

A sizeable literature has demonstrated not only that DBFs rely on research networks for access to 
opportunities and new skills, but also that learning and managerial adjustments are required from 
DBFs to translate this access into performance (Liebeskind et al 1996; Powell et al 1996; Gilsing 
and Nooteboom 2006). What exactly is involved in this firm-internal learning and adjustment is less 
clearly specified in the literature. The large number of collaborations documented in these studies 
indicate that in their selection of external projects, and extraction of direct and indirect results, firms 
rely on internal criteria for relevance and importance (Zucker et al 2002; Nilsson 2005). These crite-
ria, we submit, come from a more or less explicit overall strategy for their research, defining objec-
tives of single projects and the coherence at the portfolio level, indicating that research strategizing 
is one of the important skills firms must learn in order to thrive on extensive external collaboration.  

Similar indications of DBFs as research strategizers grow out of the literature on their IPR, particu-
larly in the findings that value of single patents strongly depends on achieving sufficient scope in 
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their protection (Lerner 1994), and that further value comes from building portfolios in the right se-
quence and with the right complementarities (Lynskey 2006). Sufficient patent scope and portfolio 
complementarities, in other words, share the characteristic of being effects of research guided by 
strategic criteria at the level of single projects and spanning several subprojects within each DBF.  

Along the same lines research strategizing in DBFs appears as an unarticulated dimension behind 
other observations on their key attributes: Systematic relationships have been demonstrated between 
the types of products pursued by biotech firms and their connectivity to the scientific community 
(Casper et al 2002); between tight agency control on part of share holders and successful commer-
cialization of drug candidates in DBF pipelines ( Guedj and Scharfstein 2004), and between the 
ability to establish correspondence between research and business models as they evolve over the 
life cycle of single DBFs (Rothman and Kraft 2006). All these relationships would not emerge 
without strategic attention to direction and coherence across multiple discrete research issues ad-
dressed by DBFs, providing sufficient justification for the effort in this paper to further unpack their  
research strategizing. 

2.2 Building knowledge assets for problem solving - a resource based view 
Before we turn to our main argument on relationships between problem architectures and research 
strategies, it is useful to note that an important part of research strategizing in DBFs is concerned 
not with directly attacking the research object per se. Rather it is concerned with the more indirect 
route of  building a diverse set of research tools offering indispensable effectiveness to the more di-
rect problem solving in drug discovery (Drews 2000; Jorgensen 2004). These tools constitute 
knowledge assets, in the sense of representing investments for further repeated use beyond solution 
of a single problem.  

These assets affect the overall performance of DBFs in accordance with arguments of the Resource 
Based View (RBV) (Wernerfelt 1984; Barney 1986; Dierickx and Cool 1989). The general claim of 
RBV is that competitive advantage may be achieved by developing and exploiting heterogeneous 
resources and by combining them into higher order competencies that are both the key sources of 
value creation and of appropriability based on non-imitability (Peteraf 1993). The concept of dy-
namic capability has been advanced to identify the ability to renew competencies so as to achieve 
congruence with changing opportunities. This capacity emerges as an effect of strategizing aimed at 
adapting, configuring and integrating resources and competencies (Teece and Pisano 1994).  

Focusing briefly on the two key terms in the RBV argument, knowledge assets of DBFs affect their 
value creation not only by contributing to the quality of their science (exhaustiveness, precision 
etc.) but also by allowing problems to be processed at the pace required for the first mover positions 
without which value often evaporates in the competitive environment of DBFs.  Knowledge assets, 
we submit, may be grouped into three categories: 1) Knowledge on therapeutic principles, i.e. pro-
prietary or internal experiential insights on ways of accessing and controlling disease targets, 2) 
methods for discovering and validating drug candidates (e.g. specialised screening techniques) 3) 
bodies of enriched information, (e.g. proprietary libraries of small molecules or DNA sequences). 
Rather than providing complete predictions in the drug discovery process these knowledge assets, 
often referred to as a DBF’s research platform, enable more effective search and interpretation of 
experimental procedures. For that reason they can be seen both as assets representing cumulated in-
sights of previous findings and development of techniques, and they also can be viewed as the core 
of the dynamic capabilities by which these assets are further improved.  

As for appropriability, these knowledge assets are crucial for building the complementarity and 
combinatorial uniqueness by which non-imitability is obtained. It could be argued that the focus of 
RBV on non-imitability has little relevance in the appropriability regime of drug discovery with its 
intensive patent protection against imitation. However, the findings on Danish and Swedish DBF 
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start-ups presented below indicate that patents are merely one among several factors explaining fi-
nancial performance, arguably because it takes time before a portfolio is formed offering the com-
plementarities which are particularly important for its business strength (Shapiro 2001; Re-Jin Guo 
et al 2005). Rather than patenting finalised products, early patents often obtain a more delicate pro-
tection of territories of search and procedures from which drug candidates may evolve. The exact 
relationships between patents and other approaches to appropriability in early stages of the discov-
ery cycle of DBFs is an issue in need of more research, but early patents often are best understood 
as allowing firms to be in the game at all, since they are a prerequisite for attracting venture capital 
(Lynskey 2006). However the ability to transform that capital into performance and growth to a 
large extent depends on those attributes of the firm, which are highlighted in RBV and in the argu-
ments associated with dynamic capabilities. 

Whereas the combinatorial possibilities of biochemistry, molecular biology and bioinformatics 
theoretically define a search space for drug discovery research of astronomical proportions, the 
avenues of discovery actually pursued by DBFs and pharmaceutical firms are much smaller in 
number. In fact on the most popular avenues the traffic is quite intense, i.e. several companies tend 
to do research that is similar in terms of targets, pathways or leads, thus forming a “strategic 
group”(Porter 1980; Schmid and Smith 2004). Metaphorically speaking, these firms collectively put 
together a jig-saw puzzle in which each player with a certain time-lag gets to see the pieces put 
down by the other players. The firm bringing the final pieces into place achieves a number of first 
mover advantages that tends to be only moderately tempered by the IPR claimed by other players in 
early stages of the game. For these reasons, the RBV arguments about the significance of non-
imitability and fast problem solving become all the more important.   

By implication research strategies of DBFs refer not only to the direct exploration of research ob-
jects, but also to the investment in knowledge assets in the form of research tools offering enhanced 
effectiveness in subsequent exploration. Since these two objectives in a small DBF start-up compete 
for the same limited resources, the issue of striking the proper balance between the two may itself 
safely be assumed to be a core concern for firm’s research strategy. 

2.3 A cognitive contingency view on research strategies  
Turning next to the relationship between research strategies and problem architectures, let us start 
out by noting that a complex problem almost inherently invites strategizing as an aspect of problem 
solving behavior by requiring its partitioning into sub-issues. Such partitioning, in turn, is contin-
gent on the architecture of the problem, which may be defined on several dimensions, such as the 
prevalence of interdependencies between its various parts, by the extent to which parts are hierar-
chically ordered, or by their homology(Simon 1969). Of equal importance are the cognitive re-
sources initially available to the problem solving agent, such as her prior knowledge or her reper-
toire for trial-and-error procedures (Klahr 2000). These cognitive factors decide important aspects 
of problem solving behaviour, e.g. which part of the problem is selected as the “entry point”, the 
sequence in which sub-issues are addressed, the extent to which sub-issues may be addressed inde-
pendently of each other, whether results or successful procedures are transferable from one issues to 
the next etc. (Langlois 1999).   

This contingency view on complex problem solving finds a useful point of departure in Simon’s dis-
tinction (Simon 1969) between the two aspects of complexity in problem solving, one being an at-
tribute of the knowledge with which problems are solved (by Simon referred to as “cognitive struc-
tures and processes”), while the other refers to the (perceived) attributes of the problem object (by 
Simon also referred to as the problem environment). This distinction clarifies why uncomplicated 
knowledge may be useful also for complex environments, provided the latter may be decomposed 
into sufficiently homogenous elements each of which may be addressed with the same simple reper-
toire of solutions. Increasing dissimilarity and interdependencies across the problem environment, 
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on the other hand, calls for requisite development of complex knowledge. In such cases, which part 
of the problem should be selected as “entry point”? Should they be selected so as to minimise ac-
cess costs, or so as to maximise reuse of initial solutions in tackling remaining parts of the envi-
ronment? Some problem environments have attributes making that initial selection self-evident, 
while selection in other cases may be both extremely difficult and consequential for subsequent 
problem-solving. Drug discovery falls in this latter category, because its problem environment – the 
human system – from a therapeutic perspective defines a set of contingencies with fundamental im-
plications for development of the knowledge with which the system may be accessed and con-
trolled. The following attributes of biological systems perceived as a problem environment are par-
ticularly important:     

i) Sequential causalities: Rather than being directly accessible for intervention, disease 
targets instead must be addressed chemically or biologically through cascades of cause-
effect relationships.  

ii) Multi-causal effects: Each effect in these cascades often is produced by a configuration 
of causal factors. 

iii) Multi-effect causes: Each causal factor may have different effects depending on its con-
figuration with other components. 

iv) Selective accessibility: Only a few components offer themselves as points of access to 
the system, which basically is “designed” for maximum protection from external intefer-
ence. When subjected to chemical or biological manipulation, these points of access dif-
fer in the scope and depth of the causal linkages they trigger. 

These four attributes turn biological systems into problem environments of exceedingly high com-
plexity. With the advent of modern biotechnology drug discovery bifurcated into two main ap-
proaches for navigating into and through this maze of causalities, a biopharmaceutical and a small 
molecule approach (see Box 1 below). To a considerable extent the two approaches, in their current 
versions, draw on the same toolbox, which has grown out of the scientific revolutions in molecular 
biology and genetics2. But they differ fundamentally in their approach to the way knowledge ini-
tially is built about the system, and in turn that drives further differences in the way knowledge sub-
sequently is reused and extended.  

Inventions in biopharmaceuticals typically build on an initial highly imperfect understanding of the 
effects of a lead protein on a therapeutic sequence of effects. The discovery process consists in 
building further insights on both engineering of the protein and on the cascade it affects, to the point 
where controlled therapeutic results are achieved. The results achieved on this basis refer to a com-
plex interaction, which is also exceedingly specific for both the protein and the target subset of the 
human system. Biopharmaceutical discovery success for the same reason represents a major chal-
lenge in reusing the complex knowledge on this interaction in the discovery of treatments for addi-
tional targets. In pursuit of such reuse other parts of the system are analysed for sub-sets with com-
ponents and interdependencies that are sufficiently similar to allow significant reuse of prior prob-
lem-solving. Therefore the major challenge in research strategizing for biopharmaceutical start-ups 
is to capitalise on its highly complex knowledge by overcoming its extreme specificity, allowing at 
least portions of that knowledge to become effective also for additional therapeutic targets.    

5

                                                 
2 That similarity in research tools and in a shared theoretical foundation is the reason why we group them together under 
the heading of “biotech firms”, although some would reserve that term for biopharmaceutical firms only. 

   



Discovery in small molecule drugs, by contrast,  
works by exposing the problem environment to a 
large variety of trial and error tests of low-complexity 
solutions (small molecule compounds). In principle 
this may be done based on little prior understanding of 
their effects on the interdependencies by which desir-
able end states for the entire system come about. In-
stead, investment in complex knowledge creation is 
reserved for the tasks of a) identifying components 
that are particularly accessible as entry points and 
which also are well connected to other parts of the 
problem-environment, in this sense constituting the 
“soft spots” through which broader segments of the 
problem environment may be reached, and b) under-
standing what goes on when a specific trial solution 
turns out to have desirable effects, which invariably 
are also imperfect. Once such desirable effects are 
identified problem-solving focuses on understanding 
the cascade connecting the trial solution to these ef-
fects. The research strategy of small molecule discov-
ery therefore typically takes it point of departure in a 
body of understanding of an entry mechanism giving 
access to multiple subsystems. That opens a consider-
able scope of potential disease targets, the entry points 
to which also frequently are claimed in patents by 
newly established firms. Drug discovery in this case 
advances by choosing one (or a few) of these poten-
tials to build the knowledge required for effective 
control of its further therapeutic sequence.   
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3 Hypotheses  
The main implication of this stylised presentation of 
the two approaches to drug discovery is that they re-
spond to the contingencies of the problem environ-
ment of the human system with fundamentally differ-
ent research strategies. Successful performance, by 
implication, requires firms to excel within one of two 
different sets of strategic requirements. The three hy-
potheses that structure the analysis of this paper are designed to substantiate this contingency view 
on strategy and performance. The two first hypotheses establish whether research in the two types 
of biotech firms in fact pursue different strategies. The third hypothesis tests if the firms that most 
effectively pursue their respective strategies also achieve superior performance. 

Box 1:   Different approaches to discov-
ery in biopharmaceuticals and in small 

molecules 
Biotech discovery turns on matching leads to thera-
peutic targets through pathways that are adequately 
understood and controlled. But biotech firms take 
quite different approaches to this challenge, varia-
tions being particularly clear between biopharma-
ceuticals (large molecules) vs. small molecules as 
distinct Discovery Forms.  

Biopharmaceuticals in most cases mean proteins 
operating as drugs, obtained by inserting human-
derived gene constructs into a suitable host organ-
ism capable of producing the therapeutic protein in 
required quantities. A key advantage of therapeutic 
proteins is that if recognised as intended by the hu-
man body they may initiate natural corrective 
mechanisms. Such mechanisms are found e.g. in the 
immune system, and often consist of effective 
therapeutic cascades that has a complexity that is 
very difficult to access and control through simpler 
chemical drugs.  

The enormous molecular complexity of proteins is 
the major challenge in achieving and controlling 
this process. Core knowledge specialisation and 
complementarities for biopharmaceutical firms 
therefore coalesce around their understanding of a 
highly complex lead molecule and the cascades 
through which its therapeutic effects are achieved.  
Successful effects of a large molecule in one disease 
area invite the firm to search for further exploita-
tions in related therapeutic cascades.  

Small molecule discovery focuses on the connection 
of chemical leads (of much lower complexity) to 
binding sites, typically found in receptors. Some re-
ceptor families appear on the membranes of many 
different cell-types in the human body. Correctly 
understood and approached these receptors may 
open up to pathways relevant for multiple diseases, 
which may be tested with a large, systematic varia-
tion of compounds.  

To specify these hypotheses we translate the concept of research strategies into five constituent di-
mensions referring to,  

1. Knowledge complexity  

2. Solution specificity   

3. Search advantages  

4. Directions of problem solving  

5. Achievements affecting firm valuation 

 

   



 

1) Knowledge complexity and solution specificity   

In biopharmaceutical discovery key knowledge refers to two main problem areas. The first is about 
controlling the expression of a lead therapeutic protein, including its intricate structure and interde-
pendencies. The second area of knowledge is about controlling its effects on a disease target via an 
equally intricate cascade. The combination of these two sets of properties in lead and target requires 
extremely complex knowledge. At the same time that knowledge produces highly specific solutions, 
which cannot be reused in related problem solving without further complex search and modifica-
tion.    

In small molecule drugs, on the other hand, knowledge in most cases centres on discovery of an ef-
fective chemical access to a specific binding site, which opens up to multiple effects in the system. 
The obvious attractiveness of this scope is counterbalanced by limited understanding available on 
each entry point regarding its pathway towards therapeutic effects.   

Hypothesis 1 tests for these differences in knowledge architectures by comparing the two discovery 
approaches with regard to the balance between the two following attributes; 

• The specificity of the access to the system is reflected in the number of different disease ar-
eas actually targeted by the DBF in its research, referred to as its therapeutic scope (TS) 

• The complexity of the knowledge providing access to and control of the system is reflected 
in its heterogeneity, i.e. the number of different knowledge domains, tools, and techniques 
that are required for or produced by this knowledge, referred to as its knowledge heterogene-
ity (KH)3 

The ratio of KH over TS therefore is expected to have higher average value in biopharmaceutical as 
compared to small molecule research:  

 

Issue Different relationships between knowledge complexity and solution 
specificity  

Hypothesis 1 Knowledge heterogeneity per disease area is higher in biopharmaceutical DBFs 
than in small molecule DBFs. 

 

2) Search advantages and directions in problem solving 

For biopharmaceuticals the key advantage for further problem solving is that the complex knowl-
edge on proteins and their effects on cascades may be partially reused to access additional therapeu-
tic targets, provided they are regulated through cascades sufficiently overlapping with or resembling 
their first achievement. Further search and discovery therefore is driven by pursuit of re-use of 
knowledge for new targets, i.e. directing problem solving to expand therapeutic scope per unit of 
knowledge heterogeneity, hence decreasing the KH/TS ratio. 

Small molecules have the very different advantages of easier trial-and-error search for potential 
therapeutic effects, allowing more effective prioritisation of pathways selected for deeper and fo-
cused research. Once this selection has been made, further inventiveness must focus on building 
knowledge and control beyond the binding site. This direction requires further problem solving to 

                                                 
3 The dimensions of KH and TS are conceptually independent of its other. That is, different spans of therapeutic scope 
may be offered by the same level of knowledge heterogeneity, depending entirely on the intricacy of the lead and of the 
pathways addressed in the therapeutic approach. 7
   



be directed at expansion of knowledge heterogeneity per unit of therapeutic scope, hence  increas-
ing the KH/TS ratio.  

Issue Directions of problem solving 

Hypothesis 2 Increasing inventiveness produces decreasing KH/TS ratios in biopharmaceutical 
DBFs  and increasing  KH/TS rations in small-molecule DBFs. 

 

3) Direction of achievements affecting firm valuation 

In biopharmaceutical discovery the main barrier for extending knowledge from previous problem 
solving comes from the high specificity of the therapeutic cascades. This specificity means that   
opportunities for re-use of knowledge are both difficult to identify, and once they are found will re-
quire substantial complementary discoveries to make them effective as drug targets. Overcoming 
this barrier critically affect the value of the problem solving capability of the firm. I.e. for these 
firms increasing valuation is a function of decreasing KH/TS value over time.  

Small molecule firms must overcome the different barrier of building an understanding of a com-
plex pathway, without the benefit available to biopharmaceutical discovery of re-using complex 
patterns. For them valuable problem solving centres on progress in validating and substantiating 
their understanding for any single therapeutic target.  I.e. their valuation increases as a function of 
increasing KH/TS values.  

Issue Effects on the valuation of DBFs 

Hypothesis 3 Valuation of DBFs increases with falling levels of KH/TS ratio in biopharmaceu-
tical firms and with rising levels of the ratio in small molecule DBFs. 

 

Suitable data to test these three hypotheses would come from a population of young, small biotech 
firms active in biopharmaceutical or in small molecule drug discovery research, with a minimum of 
overlap between the two approaches within one and the same. The two next sections demonstrate 
that these requirements are largely met by DBFs in Denmark and Sweden, and the methodology is 
presented with which data on these firms has been collected and transformed into relevant metrics.  

4 Data and methodology  
Data for this paper has been extracted from the SCANdinavian BIoTech database (SCANBIT), de-
veloped by the authors to cover Scandinavian biotech firms. Taking the firms as its key unit, 
SCANBIT brings together data extracted from multiple sources, including financial accounts, bib-
liographic sources, and information provided by firms primarily via Internet sites and other public 
documents. All patents of each firm are recorded with their IPC codes, application date, date 
granted, assignees, and description of the patented technology. Bibliographic sources comprises sci-
entific and press articles. Data sources are regularly scanned and examined to continuously update 
SCANBIT.  

4.1  Firms 
The issues examined in this paper are concerned with problem-solving in DBFs specialised in drug 
discovery, and only firms from that category are included in the analysis below. Data were ex-
tracted on Swedish and Danish firms, which cover most of Scandinavian firms in this category 
(only 12 quite small drug discovery DBFs operate in Norway). A total of 43 Swedish and the 49 
Danish discovery DBFs have emerged since 1990 evenly divided in specialisations in biopharma-
ceutical and in small molecule discovery, but with some differences between the two countries. The 
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presentation of firms by year of entry in Fig. 1 shows that after 2001 small molecule firms outnum-
ber biopharmaceutical firms in Denmark. In Sweden, on the other hand, bio-pharmaceutical DBFs 
drive the increase of firms since 1997. Fig. 1 also brings out that it is a young population of firms, 
which largely emerged in the mid-1990s and one half of which was less than 5 years old in 2003, 
the latest year for which we bring data. Of the total of 92 firms 11 have closed down, ceased activ-
ity, or integrated with other firms, leaving 81 active firms by 2003, the latest year for which data are 
used for the present analysis.  

 
Fig. 1: Number of firm establishments by year, nationality and discovery approach 
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4.2 Variables 

4.2.1 Valuations 
The DBFs in pharma discovery examined in this paper are financed primarily by venture capital and 
in most cases are not yet profitable. Conventional financial metrics, consequently, do not adequately 
reflect their performance, and stock rates are available as metrics only for the 9 discovery DBFs 
listed on the Swedish and Danish exchanges. As an alternative we calculate an Adjusted Index of 
Share Value.  

AISV measures the rates with which shares are acquired, normalised to an identical nominal share 
value, thus reflecting not the value of the firm as an effect of its size, but instead expected returns 
per equally sized units of investments. For unlisted firms these rates vary from one investment 
round to the next and this valuation of firms per round of investment is our basic unit of analysis. 
Data for this calculation have been extracted from the record for all new equity which firms are 
mandated to file with Danish and Swedish Commerce and Companies Agencies.  

Information on investment rounds or share values is available only for 70 firms. Nine firms are 
listed on the Danish or Swedish stock exchange. Performance measures thus have to be determined 
from two approaches depending on whether the firm, at the time of valuation, is listed or not. The 
number of investment rounds per firm is presented in Fig. 2  
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Fig. 2: Number of capital rounds pr firm 
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AISV is calculated for each firm and each year by means of the following intermediate metrics:  

1) Share value: For firms listed on the stock exchange, the value per share is available on a daily 
basis. The share value for a given year is calculated as the average daily closing price per share for 
each firm, which reduces fluctuations during the year in the market assessment of firm values. For 
non-listed firms share values are based on the total amount invested in each round divided by the 
number of new shares committed.  An Index of share value is calculated as the share value divided 
by the nominal share value, normalising shares to identical units of nominal value. Only rounds in-
volving new issued shares and capital increases with share premium are taken into account, to re-
duce the risk of biased and internal determination of share prices, resulting from converting debts or 
warrants exercised into share capital. New investments are assumed to better mirror a market as-
sessment of the firm. 

2) Postmoney value refers to the total value of a firm. It is calculated as the share value multiplied 
by the total number of shares committed. For listed firms, postmoney value is the market capitaliza-
tion value, calculated as the average daily closing price in each year for a given firm multiplied with 
the number of stocks committed. Postmoney value for non-listed firms is calculated as share value 
multiplied by the total number of shares committed as per each round of capital inflow. This value 
corresponds to the amount an investor has to invest to acquire the whole firm if buying at the price 
resulting from the latest round. 13 firm valuations for years falling between capital rounds are linear 
interpolations. Of all the 229 valuations, 167 relate to rounds in non-listed firms, and 62 to firms 
listed on the stock exchange (Table 1).  
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Table 1: Distribution of firms and rounds by discovery approaches 
 

Discovery Field Firms Observed invest-
ment rounds Interpolations Stock 

rates 
Total no of index 
values on AISV 

Biopharmaceutical 19 51 0 16 67 
Small molecule 13 40 0 20 60 SE 
Total 32 91 0 36 127 
Biopharmaceutical 17 33 6 17 56 
Small molecule 21 30 7 9 46 DK 
Total 38 43 13 26 102 

Grand total 70 154 13 62 229 
 
3) Adjustment ratio. The Index of Share Value does not take into account systemic differences in 
share value assessments between listed and non-listed firms, the latter category of firms persistently 
having a higher scoring on the Index of Share Value. Since we are interested in comparing the total 
population of DBFs over time, including both listed and non-listed firms, we correct for this differ-
ence by calculating an Adjustment ratio for differences between listed and non-listed firms for each 
year. For each of the two groups total postmoney value is divided by total nominal value. The rate 
by which results for non-listed forms exceeds that of listed firms forms the Adjustment ratio, pre-
sented in Fig. 3.  

 
Fig. 3: Factor adjusting Index of Share Value 
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4) Adjusted index of share value for listed forms is identical with Index of Share Value, while for 
non-listed firm the index is deflated by the Adjustment ratio. The Adjusted Index AISV measures 
financial performance corrected for effects of firm size and for systematic inflation of valuation 
rates for non-listed firms. AISV will be the key metric for the valuation of firms in the analysis be-
low.  

4.2.2 Knowledge heterogeneity (KH) 
Indicators to represent the heterogeneity of knowledge assets play an important part in the analysis 
presented below. “Knowledge-relatedness” or “technological proximity”, as a measure of techno-
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logical heterogeneity between firms, has been applied in a number of previous contributions. These 
methods include various techniques ranging from measuring R&D expenditures and the distribution 
of outputs between different industries (Scherer 1982), the distribution of patents over technology 
fields (Jaffe 1986; Jaffe 1989; van Raan and Engelsman 1993), and the combination of classifica-
tion codes in individual patents (Verspagen 1997; Breschi et al 2003). In this paper we apply an 
original bibliometric method of measuring the level of heterogeneity within firms, referred to as the 
H-index. This index is based on the main IPC code of each patent. IPC codes are translated into a 
three level categorisation, referred to as H-codes, in which level 1 indicates the highest aggregation 
of technological fields, while level 3 gives the most detailed specification of technological fields4. 
The level of heterogeneity within each firm is measured by the number of relationships between 
dissimilar H-codes for all the firm’s patents (N), normalised by the total number of relationships be-
tween patents [N(N-1)/2]. All relationships between identical H-codes are given a score of 0. Rela-
tionships between dissimilar H-codes at level 1 are given the value 1. Dissimilarities at level 2 take 
the value of 0,5, while differences on level 3 score 0,25. 

An H-index value of 1 indicates a firm with all patents falling into different technological fields at 
level 1, while an index value of 0 corresponds to a firm with all its patents falling within a single H-
code. Firms with less than 2 patents are omitted and therefore not assigned any value, so that H-
index observation are available for a total 62 firms. A more detailed presentation of the H-index is 
available in ( Dahlgren, Jensen, and Valentin 2004).   

Roughly 2/3 of the firms for which the H-index may be calculated in 2003 had scores between 0.25 
and 0.75 (Fig. 4). Tests confirm that a firm’s H-index value is unrelated to its number of patents. I.e. 
the index reflects not its level of inventiveness, but the heterogeneity of the knowledge on which its 
entire patent portfolio is based.  
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4 H-codes aggregate the 5-level IPC system along two dimensions. “Vertically”, IPC levels 1 and 2 are combined into 
H-level 1, while IPC levels 4 and 5 are combined into level 3. The IPC codes now appearing on three vertical H-levels, 
are aggregated further, horizontally, on each of the 3 levels. H-level 1 has 9 categories, level 2 has 19 categories, and 
level 3 has 17.  To exemplify, the five IPC levels of IPC  “C12Q-001/18” signify the following:  
IPC-Level 1:  C: Chemistry and metallurgy  
IPC-Level 2: C12: Biochemistry; beer, spirits, wine or vinegar; microbiology or enzymology, mutation or ge-

netic engineering. 
IPC-Level 3: C12Q: Measuring or testing processes involving enzymes or micro-organisms, compositions or 

test papers therefore, processes of preparing such compositions, condition-responsive control in 
microbiological or enzymological processes, 

IPC-Level 4:  C12Q-001: Measuring or testing processes involving enzymes or micro-organisms and composi-
tions therefore and/or processes of preparing such compositions.   

IPC-Level 5: C12Q-001/18: Measuring or testing processes involving viable micro-organisms testing for anti-
microbial activity of a material. 

This IPC code is translated into the H-code “7.2.0” in the following way: Category 7 on H-level 1 corresponds to C12 in 
the IPC system. Category 2 on H-level 2 corresponds to Q on IPC level 3. Category 0 on H-level 3 corresponds to 001 
on IPC levels 4 and 5.  
 

   



Fig. 4: Firms by level of knowledge heterogeneity 
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4.2.3 Therapeutic scope (TS)  
Values for therapeutic scope of the company per each year take their point of departure in the num-
ber of disease groups in which the company reports activity in 2003. A total of 85 firms provide 
date on disease groups.  We use a highly aggregated classification into 12 disease groups, so that 
activity across several groups for a small DBF signals considerable diversity. Observations are 
available for 85 firms.  Fig 5 present the percentage shares of firms for specific numbers of disease 
groups, separately for the two discovery approaches. 
Most firms are active in 1-2 disease groups only, and very few firms operate in four groups or more. 
There is a slight tendency for more disease groups per firm in small molecule discovery.  
 

Fig. 5: Firms by number of disease groups targeted by their research. 
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A regression shows the number of disease groups addressed by firms in 2003 to be a function of 
firm age (p < 0,0001) with yearly increments of 0.05715. This coefficient is applied in backward 
adjustments of values for Therapeutic Scope until the level of 1 is reached. (Firms giving no spe-
cific information on therapeutic fields are coded “missing” on this variable.)  
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4.2.4 Approaches in pharmaceutical discovery  
SCANBIT maps the discovery approach(es) of each firm into a detailed classification. Most firms 
pursue one approach only, but a few engage in two or even more. Based on the approach that is 
predominant in each case, firms have been regrouped into the following two main types of discov-
ery fields: 1) Bio-pharmaceuticals and 2) Small molecule drugs.  
 

4.2.5 Inventiveness  
Inventiveness of each firm is measured by its cumulated number of patent applications by the year 
of the investment round for non-listed firms or the year for calculation of the average stock rates for 
listed firms (labeled 01BUB).The patent application date is used so as to get as close as possible to 
the time of invention. Fig. 6 present firms by the accumulated number of patents as per 2003 (omit-
ting the large Danish DBF, Neurosearch A/S, with its 129 patents and 161 employees). Ten firms 
have no patents. One third of the firms have 3 patents or less. 

 

Fig. 6: Firms by cumulated number of patents 2003 
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4.2.6 Bubble effect on firm valuations 
The bursting high-tech bubble in 2001 profoundly affected investments in the firms studies here. 
Fig. 7 shows the steep increase in investment (in Danish crowns) up until early 2001, followed by a 
steep decline. In the analysis below we control for this effect by introducing a dummy with years af-
ter 2001 given the value of 1.                  
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Fig.7: Total amount pr year in Mkr [non-listed firms] 
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5 Tests of hypotheses 

5.1 HYP 1 
Table 2 presents variables applied in the tests of Hypotheses 1, 2 and 3,  
 
Table 2: Variables used in test of Hypotheses 1, 2, 3 

Status in 
model Role in hypothesis Indicator Variable 

acronym 
Dependent 
Variable 

Rate by which the firm is valu-
ated in each round of investment (log) adjusted rate index logAISV 

Inventiveness  Number of patents until the year of the in-
vestment round Pat 

Knowledge heterogeneity Value at H-index as per each  investment 
round KH 

Therapeutic scope The number of therapeutic areas in which he 
DBF’s is active at each  investment round   TS 

Ratio of Knowledge Heterogene-
ity per unit of therapeutic scope  

H-indix divided by number of therapeutic ar-
eas as per each investment round   KH/TS 

Independent 
variables 

Control variable Control for the effect of the IT-crash in 2000 
on the adjusted rate index Inddev 

 
The first hypothesis submits that Knowledge heterogeneity per disease area is higher in biophar-
maceutical DBFs than in small molecule DBFs. It is tested by comparing with Anova analysis  av-
erage KH/TS ratios for the two segments of biopharmaceutical and small molecule firms, at the 
point in time of each capital round for each firm. Results are presented in Table 3, confirming a ra-
tio in biopharmaceutical DBFs about 30% higher than the ratio for small molecule firms (a differ-
ence significant at the 5% level)  
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Table 3: ANOVA tests of difference between biopharmaceutical and   
small molecule DBFs in average scores on  the KH/TH ratio  

ANOVA test of differences of average score 
Strategy dimension 

Biopharmaceutical Small molecule Overall 
mean 

Average KH/TS Ratio scores  0.4078** 0.3078** 0.3699 
N 74 45 119 

Three outliers omitted, all referring to portfolios of only two patents as per the initial capital                  
round of firms  
Levels of significance as indicated by * = 10% level, ** = 5% level and *** = 1% level. 

 
The confirmation of hypothesis 1 documents a tendency in the two DBF segments to differ in their 
basic knowledge architectures. Compared to small molecule DBFs, biopharmaceutical firms on av-
erage build significantly broader and more heterogeneous knowledge per disease target addressed in 
their inventions.  

5.2 HYP 2 
Hypotheses 2 and 3 are tested with regressions using variables which have their descriptive statis-
tics presented in Table 4. 
 
Table 4:  Descriptive statistics for variables in regressions testing hypotheses 2 and 3 

Biopharmaceutical firms Small molecule firms Name of variable 
N Mean Std dev Min Max N Mean Std dev Min Max 

Log(AISV) 109 2.874 1.259 -0.590 5.365 99 3.100 1.405 -0.365 6.286 
KH/TS-ratio 68 0.388 0.294 0.000 1.000 44 0.313 0.201 0.000 0.754 
Log(KH/TS-ratio) 59 -0.984 0.622 -3.119 0.000 38 -1.153 0.596 -2.787 -0.282 
KH 78 0.662 0.307 0.000 1.000 56 0.474 0.270 0.000 1.000 
TS 102 1.899 0.837 1.000 4.057 87 1.899 0.989 1.000 5.057 
Pat 115 8.296 11.202 0.000 54.000 104 14.442 28.389 0.000 129.000 
Log(Pat) 99 1.605 1.191 0.000 3.989 75 1.881 1.544 0.000 4.859 
01BUB 71.30 % (1) 59.62 % (1) 

 
Hypothesis 2 (Increasing inventiveness produces decreasing KH/TS ratios in biopharmaceutical 
DBFs  and increasing  KH/TS rations in small-molecule DBFs) is tested in regression analysis with 
KH/TS ratios as the dependent variable (Table 5). The independent variable is the level of inven-
tiveness of the firm, as indicated by its accumulated number of patents, and both  variables are 
measured at the time of each capital round for each firm. Tests are made separately for the two 
segments of biopharmaceutical and small molecule DBFs. Log transformation is applied to both de-
pendent and independent variable, estimates in other words indicating how the rate of increases in 
patenting affect the rate of changes in on the KH/TS ratio.    
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Table 5: Effects of increasing number of inventions on KH/TS ratios. 
Separate regression analyses for biopharmaceutical and for small molecule DBFs  
 

Dependent variable Log(KH/TS Ratio) 

Independent variables Model 1: 
Biopharmaceutical firms 

(N =115) 

Model 2: 
Small molecule firms  

(N = 104) 
Intercept -0.181 (0.164) -1.836*** (0.354) 
Log(Pat) -0.411*** (0.060) 0.227** (0.099) 

Pr > F 0.0001 0.0265 
Adj R-sqr 0.3326 0.2145 Model 

Df 58 38 
- Robust Standard errors are given in parentheses under each estimate 
- Levels of significance as indicated by * = 10% level, ** = 5% level and *** = 1% level.     
 

Increasing inventiveness is found, in both discovery approaches, to significantly (at 1% and 5% lev-
els) affect the levels of KH/TS ratio. The ratio shifts at a rate of 0.2 – 0.4 of the rate of increase in 
patenting. Equally important, however, these shifts take the ratio in opposite directions for the two 
discovery approaches. Addition of further inventions to the portfolio, in other words, for biophar-
maceutical DBFs has the objective of shifting the balance towards identifying additional promising 
disease targets, so as to capitalise further on the heterogeneous knowledge already developed by the 
firm. For small molecule DBF, conversely, the objective is not to add further potential disease tar-
gets to the portfolio but to build broader knowledge on whatever therapeutic pathways seems par-
ticularly promising.  

5.3 HYP 3  
Hypothesis 3 (Valuation of DBFs increases with falling levels of KH/TS ratio in biopharmaceutical firms 
and with rising levels of the ratio in small molecule DBFs) is tested and presented in Table 6A-B in two 
separate sets of OLS regression models for biopharmaceutical firms only, and for small molecule 
firms only5. A log transformation of the dependent variable is applied, to bring out more clearly the 
rate with which effects are brought about and to handle large variations appearing in a small subset 
of valuations.  

Tables 6 A and B present findings using the same structure with 4 models, each testing one of the 
independent variables, all of which include Inddev and PAT as controls.  

                                                 
5 Results from mixed models are not presented because they require observations ideally to be available for each firm in 
each year. The present dataset falls short of these requirements in several aspects, since i) investment rounds occur in 
highly irregular patterns, ii) a number of firms do not exist during the whole period of study, iii) many  firms have only 
one investment round (compare Fig. 2). To test for effects for specific companies a mixed model nevertheless was ap-
plied and show no significant relationships for any firms. 
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Table 6:  Effect on firm valuations of scores on KH/TS ratios. Separate regression analyses        
for biopharmaceutical and for small molecules DBFs  
 

Dependent variable Log(adjrateidx) 

6A:  Biopharmaceutical firms (N = 115) Independent Variables 

Model 1 Model 2 Model 3 Model 4 
Intercept 3.135*** (0.254) 3.999*** (0.255) 2.795*** (0.495) 4.146*** (0.233) 

KH  0.886** (0.358)   
TS   0.275* (0.163)  

KH/TS Ratio    -0.951** (0.489) 
Inddev -0.388 (0.268) -0.347 (0.241) -0.449 (0.316) -0.525** (0.0245) 
Pats 0.001 (0.009) -0.009 (0.009) -0.012 (0.135) -0.034** (0.014) 

Pr > F 0.3456 0.0054 0.0354 0.0007 
Adj R-sqr 0.0201 0.1151 0.0643 0.1548 

Df 109 75 97 65 

6B:   Small molecule firms (N = 104)  
Model 1 Model 2 Model 3 Model 4 

Intercept 3.484*** (0.273) 3.523*** (0.489) 3.656*** (0.408) 3.099*** (0.366) 
KH  0.699 (0.709)   
TS   -0.281* (0.141)  

KH/TS Ratio    2.169** (0.844) 
Inddev -0.451 (0.300) -0.682* (0.358) -0.056 (0.326) -0.664** (0.307) 

Pat -0.007** (0.003) -0.011*** (0.003) -0.005** (0.003) -0.011*** (0.003) 
Pr > F 0.0224 0.0020 0.0616 0.0035 

Adj R-sqr 0.0436 0.1478 0.0688 0.3102 
Df 99 55 82 43 

- Robust Standard errors are given in parentheses under each estimate 
- Levels of significance as indicated by * = 10% level, ** = 5% level and *** = 1% level.     
- 10  outliers omitted, all referring to portfolios of only two patents and to very small investment made in the ini-

tial round of firms  
 
 
 
The main test is provided by model 4, which confirms HYP 3. Valuation of DBFs is clearly driven 
by shifts in the predicted opposite directions of the KH/TS ratio for the two discovery approaches. 
At the same time model 4 offers additional insights on the role of inventiveness as reflected in Pat.  
In both versions of model 4, Pat comes out with significant estimates close to zero. What drives 
valuations, in other words is the direction of inventiveness as expressed in the KH/TS ratio, which 
must be moved in opposite directions for firms operating in the two discovery approaches. When 
that direction plays out its effects on valuations, then the rate of inventiveness quite consistently is 
inconsequential for the valuation of firms. In that sense the premium for valuations comes not from 
the rate of inventiveness per se, but from strategizing consistently on the other two dimensions of 
research strategies.  

In model 4 the negative significant slope on INDDEV indicate a robust effect of the decline in ven-
ture financing after 2001.  

Significant estimates also appear in some of models for KH and TS as separate variables, however 
yielding consistently lower R2 compared to what is achieved with the ratio in model 4. That is par-
ticularly the case for small molecule DBFs, the R2 of which (0.31) indicates that a considerably 
share of variations in valuations for this discovery approach is explained by model 4. 
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5.4 Interpretations 
According to the cognitive contingency view, presented in the theory section, problem solving is 
shaped by the architecture of the problem it addresses. The attribute of problem architectures play-
ing a particularly important role in therapeutic pathways, concerns their interdependencies. Bio-
pharmaceutical DBFs, we argue, by working through engineering of proteins and controlling their 
effects on complex cascades, initially address a larger set of interdependencies in the system as 
compared to small molecule discovery. It is this difference in problem architectures addressed by 
the two approaches, which requires biopharmaceuticals from the outset to tackle a broader and more 
heterogeneous set of problems, which, in turn, appears as an attribute of the knowledge they build 
during the early stages of the company. This is the conjecture about relationships between problem 
architectures, problem solving, and resultant knowledge, which we find confirmed is the verifica-
tion of HYP 1.    

To oversimplify the case, after the first round of problem solving, small molecule firms have dis-
covered multiple potential points of access to therapeutic effects, but have fairly scant understand-
ing of each of them. Biopharmaceuticals, on the other hand, comes out of initial problem solving 
with highly complex knowledge about therapeutic effects, which are extremely specific. Therefore 
further research for either approach must be strategized so as to capitalize on initial results, while 
also overcoming their barriers. For biopharmaceuticals that research strategy means extending the 
highly specialised knowledge already achieved to additional disease targets. Small molecule firms, 
conversely, must build further knowledge directed at a selected disease area6. That is the conjecture, 
translated into opposite directions of the KH/TS ratio for increasing number of patents, which is 
confirmed by the verification of HYP 2.  

The third and last part of our argument (HYP 3) refers to research strategies as they affect the valua-
tion of firms. To interpret the verification of HYP 3 the implication of HYP 1 should be noted, i.e. 
that the initial drive of the two discovery approaches, given their problem architectures, is to form 
high, resp. low KH/TS ratios. Those are the natural propensities of firms in the two approaches, so 
to speak, and they attract their initial venture capital based on the intermediate results expected from 
these initial ratios. Bringing the ratios to reverse their direction is much less a “natural propensity”. 
For a biopharmaceitcal research team it is considerably more challenging to transfer their knowl-
edge into new disease targets, than it is to further extend the tools and knowledge within its existing 
domain. Symmetrical restrictions apply to small molecule scientists. Reversing the trends, in other 
works, to a considerable extent brings either team of scientists into “foreign territory”. Nevertheless 
this reversal, we learn from HYP 2, is the general research strategy pursued by all firms, indicating 
this as the direction required to build value and to attract further venture capital. Not only is that in-
dication substantiated by the verification of HYP 3. At the same time it is ascertained that firms in-
dividually are differentially valuated by venture capital precisely based on how far they get in 
strategizing their research to achieve this reversal.  

Are these patterns established as general trends from the verification of HYP 1-2-3- also recogniz-
able in closer inspections of specific firms? Appendix A profiles representative DBFs belonging to 
the most successful biotech start-ups in Denmark, one for each of the two discovery approaches. 
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6 These findings should not be interpreted as saying that the emphasis on building knowledge in small molecule firms 
means that managers and investors in these firms are less concerned with pushing drug candidates through the pipeline 
towards commercialisation, instead pursuing scientific insight for its own sake. Rather the increasing KH/TS ratio re-
flects their interest in moving the right drug candidates through the pipeline. Alarmingly high failure rates prevail for 
drug candidates that have moved from discovery into the vastly more expensive stages of clinical testing, and this risk is 
particularly pronounced for small molecule candidates. The only effective way of avoiding losses of that magnitude is 
to validate drug candidates and their targets as thoroughly as possible, and that would be reflected precisely in the in-
creasing KH/TS ratio observed for small molecule DBFs. 

   



The objective is to bring out what the knowledge assets and the trends, stylised and simplified in 
our three hypotheses, look like when observed in actual firms.   

  

6 Discussion and conclusions  
Together the verification of HYP 1-2-3 confirm research strategizing as an important aspect of the 
way biotech research firms are established and managed through their first years of existence. This 
paper has confirmed the role of research strategizing by demonstrating:   

• Knowledge assets were shown to be shaped with distinct differences between two different 
approaches to drug discovery as part of the early activities of the firm. We refer to this shap-
ing as strategising in the sense that knowledge architectures built by firms as part of their 
initial rounds of problem solving may be rationalised in Simonean fashion as responses to 
the architectures of the problems they address.  

• Firms emerge as strategizers also in the sense that inventions, subsequent to the initial com-
position of knowledge architectures, reveal a systematic pattern of reversing the balance of 
problem solving and knowledge creation established initially. While this shift to some extent 
directs firms into “foreign territory”, it is required to extract further commercial value from 
their initial investment in knowledge assets.    

• This gradual rebalancing of the knowledge architecture, carried out over a sequence of in-
ventions, represent a major challenge in research strategizing, and firms vary significantly in 
their ability to meet this challenge. Strategising precisely in this respect significantly affects 
evaluation of firms, and hence their ability to attract further venture capital at attractive 
rates.  

Furthermore the analysis brought out that research strategizing refers to interactions between multi-
ple distinct dimensions. DBFs are not valuated by any single attribute. Very little happens when 
firm valuations are regressed against our key independents variables individually. As singular at-
tributes of biotech research, most of these dimensions contribute to successes in some firms and to 
failures in others. What matters for successful strategizing is the ability of firms to craft research 
strategies that are responsive to the particular opportunities and restraints of their core research 
competencies. This crafting requires multiple strategy dimensions to be carefully combined before 
they beneficially affect firm valuations.  

In this sense, Shonhoovens argument that “strategy matters” has been shown to be valid not only for 
the larger high-tech firms covered by her study, but also for small research-based firms operating at  
the very well springs of knowledge where science directly interacts with technologies. Even though 
a lot more research is needed along these lines, the finding that strategy matters offers new implica-
tions for the understanding, management, and financing of these firms. Advise on how to run bio-
tech start-ups often amounts to recommendations on “getting the right people” for their manage-
ment and boards,  but few attempts have been made to specify what it is the right people do in terms 
of setting directions for research. And the specialised business press on biotechnology is of little 
help in this context, not only because it so frequently redefines potential sources of success or risk 
for the sector, but also because it tends to consider them separately. This paper suggests the useful-
ness of further unpacking the contribution to their performance coming from multi-dimensional 
strategizing. 

At the same time, the specific dimensions used for analysing research strategies in this paper should 
not incautiously be generalised and extended. While research strategizing as such may be expected 
to matter for small research-based firms also in other fields (e.g. nano-technology), these strategies 
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most likely focus on dimensions different from those identified in this paper, reflecting the particu-
lar problem architectures of their domains. At the same time, the general Simonian approach ap-
plied in this paper, along with some of metrics developed for measuring knowledge and perform-
ance attributes, could be applied also in other technology fields.  

Similarly, caution should be taken in generalising beyond the start-up stage of biotech firms the 
specific findings of this paper which has studied primarily quite small DBFs in their early years of 
existence. The main concern of start-ups is to stabilise and strengthen the inventions or concepts on 
which they were founded. That pursuit takes them in different directions depending on the type of 
discovery field they are operating in, but these directions reflect the common concern on nurturing 
the original knowledge assets of the company. As these pursuits succeed, firms will begin to formu-
late new concepts and inventions that may be continuous or diverging from their focus during their 
years as start-ups. Thus firms will cumulate knowledge developed for much more heterogeneous 
objectives, no longer lending itself to the type of interpretation by which research strategizing has 
been deciphered in this paper.  

 

7 Appendix A:  Cases exemplifying differences in research strategies 
in two Discovery Fields   

Using publicly available sources only (company websites, patents etc.) this section presents two 
short cases on research strategies in DBFs, one working within a small molecule approach - 7TM 
Pharma A/S – the other being the biopharmaceurical firm of Bavararian Nordic A/S. 

7.1 7TM-Pharma A/S 7 

Formed in 2000 as a spin-out from the University of Copenhagen in 2000, 7TM Pharma focuses on 
structure-based drug discovery of small molecules affecting 7TM receptors. The company’s plat-
form for research on the structure and function of 7TM receptors has given rise to a pipeline of drug 
discovery projects focusing on metabolic disorders. This particular type of receptor is present in 
multiple cell types within the human body, thus affecting a large number of functions of the human 
system, depending on which of the many different intra-cellular functions it activates. 

7TM’s Pharma has innovated and further developed a screening method, as well as a target valida-
tion method based on a novel test animal model. Together these two inventions – protected by 
seven patents – form a research platform capable of offering significantly enhanced effectiveness to 
multiple, targeted pursuits of drug discovery. In turn these research tools largely built on the science 
advanced though the 1990s by its founder, Professor Thue W. Schwartz of Copenhagen University. 

The screening method offers a molecular approach for rapidly and selectively identifying small lead 
molecules capable of interacting with and binding to selected targets (Elling et al., 2001). Targets 
and leads subjected to screening by this method are modified so as to artificially bind and indicate 
their pattern of interaction 

Based on this screening method 7TM has developed internal libraries containing both modified tar-
gets and modified leads. The modification confers on leads and targets in these libraries a set of 
properties that “natural” target proteins do not possess, and which are important for lead-target in-
teraction. These properties in turn allow screening procedures to identify the degree of interaction 
between targets and leads in terms of signal strengths. This screening technology makes pattern 
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recognition in large data volumes vastly more efficient, and for 7TM it has the particular value of 
being applicable to the entire 7TM receptor family. 

Application of its screening tools has supplied the company with additional unique knowledge as-
sets in the form of information on sub-types of 7TM receptors in terms of their inter- and intra-
cellular functions along with their abilities to bind optimally and to interact with a lead compound. 
This information has been assembled on a limited number of 7TM receptors only. By homological 
reasoning, however, they greatly enhance formulation of hypotheses, search and interpretation re-
garding the identification of other 7TM receptors likely to hold the two essential properties of func-
tionality and binding abilities. Homology allows information patterns to operate as search tools in 
new pools of data to identify potentially relevant areas in the 7TM receptor family.  

The second invention from 7TM Pharma relates to a target validation method for testing the physio-
logical importance, and therapeutic and pharmacological features of the drug-target interaction. The 
method makes it possible to genetically modify animals to express the desired properties in a poten-
tial drug target. When a test animal has been developed, the target may be turned on/off  ‘in vivo’ 
experimentation, offering more precise indications of the validated targets’ therapeutic and pharma-
cological features. In also allows for testing of the 7TM’s proprietary target libraries in vivo with 
and without the modified feature as a basis for further improvement of target validation.  

7.2 Bavarian Nordic A/S 
Founded in 1994 and listed on the Danish Stock Exchange since 1998, the biopharmaceutical DBF 
of Bavarian Nordic today has research and manufacturing activities in Denmark, Germany and Cali-
fornia. Bavarian’s technology platform comprises MVA-BN vaccine technology and a number of 
vaccine technologies for infectious diseases related to smallpox, such as HIV and flavi viruses. In 
addition to traditional targets for vaccine technology, Bavarian Nordic has also ongoing research on 
vaccine treatments of cancer.  
 
The MVA-BN platform is based on the Modified Vaccinia Ankara (MVA). It builds on efforts to 
reduce negative side effects of ordinary smallpox vaccines, which in the early 1960 resulted in the 
development of MVA offering safe vaccination even for immune compromised individuals. Modi-
fications of the MVA were achieved by passing it through hundreds of chicken embryo fibroblast 
cell generations. Through this process, the MVA lost approximately 10% of its genome and, as a 
consequence, its ability to replicate efficiently in primate cells, allowing it to become the corner-
stone of a potential smallpox vaccine.   
 
The modern genetically modified version of the MVA, denoted MVA-BN, induces a high antibody 
and cellular immune response, making it effective for treatment of several types of infections, with-
out negative side effects. The MVA-BN differs from the original MVA in the two crucial respects 
of 1) allowing the integration of foreign DNA into its genome and 2) reducing the potential number 
of cells hosting and enabling replication of viruses. MVA-BN generates a strong immune response 
by neutralising antibodies and cytotoxic T-cells (CTL). The response is directed towards both MVA 
and foreign DNA cloned into MVA-BN.  

Bavarian’s research on MVA-BN platform was initiated in 1995. Projects have focused on im-
proved construction of stable recombinant vaccines within the original target of smallpox. But its 
unique control of specific cascades in the immune system also allows the company to address new 
diseases. Some vaccines are, for instance, fitted with multiple genes of high homology. The latter is 
important for the development of multivalent vaccines targeting, for instance, HIV and dengue fe-
ver.  
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Bavarian Nordic is involved in HIV vaccine research through a collaboration agreement with the 
US based biotech firm Epimmune Inc. Recent research has showed evidence of effective CTL re-
sponse, which is required to protect against HIV and hamper development of AIDS. Since MVA-
BN platform exhibits those characteristics, Bavarian Nordic believes that the MVA-BN technology 
combined with Epimmune’s technology in related fields of T-cell epitope identification may de-
velop such a vaccine.  

Bavarian Nordic also conducts research in other infections diseases, primarily oriented towards ill-
nesses caused by viruses of the flavi family type. This includes research in vaccines for dengue fe-
ver, Japanese Encephalitis Virus, Hepatitis C Virus and West Nile Virus. The benefits of the MVA-
BN platform allows Bavarian Nordic to utilise the ability of MVA vehicles to deliver, for instance, 
multiple antigens for all four serotype of the dengue fever virus.  This vaccine may induce broad 
cross-strain immunity against dengue and become a first-mover in the market.   
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