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Non-Technical Summary

This paper analyzes how investors' risk-preferences influence asset prices. It
is shown that nonconstant relative risk aversion leads to predictability in asset
returns, although the market is informationally efficient. It is also shown that
in this case asset returns are serially correlated. Thus, athough the market is
efficient and all investors act rationally, it is still possible to predict future
returns to a certain extent.

Moreover, the analysis shows that the widely used financia ratios as the
price-earnings ratio and the book-to-market ratio have predictive power for
future returns. Hence, the paper provides an explanation for possible
predictability of asset returnsin arational and efficient market.
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Abstract

Starting from an information process governed by a geometric Brownian mo-
tion we show that asset returns are predictable if the elasticity of the pricing
kernel is not constant. Declining [Increasing] elasticity of the pricing kernel
leads to mean reversion and negatively autocorrelated asset returns [mean
aversion and positively autocorrelated asset returns]. Under nonconstant
elasticity of the pricing kernel financial ratios as the price-earnings ratio
have predictive power for future asset returns. In addition, it is shown that
asset prices will be governed by a time-homogeneous stochastic differential
equation only under the constant elasticity pricing kernel. Hence, usually
asset price processes do not satisfy the assumptions needed for empirical es-
timation.

JEL classification: G12

Keywords: Pricing kernel; Diffusion processes; Stationarity; Predictability of
asset returns; Autocorrelation



1 Introduction

In spite of the vast literature on deviations from the random walk hypothesis,
there is still controversy whether these deviations are attributable to ineffi-
cient markets.! Even those who favor the efficient market hypothesis do not
agree whether these financial market phenomena point out to a new model of
investor behavior or whether modelers should remain within the traditional
framework of rational expectations and von Neumann-Morgenstern utility
functions. There is no doubt that the behavioral finance literature has con-
tributed much to our understanding of asset prices.? However, it is highly
controversial to what extent new behavioral postulates should be adopted.?

Surprisingly, although many models have been proposed for the explana-
tion of asset returns, still little is known on how return characteristics change
when the elasticity of the pricing kernel is not constant. Since through-
out the paper we assume monotonic elasticity of the pricing kernel, i.e. ei-
ther monotonic increasing or declining elasticity, our approach is consistent
with the traditional framework of rational expectations and von Neumann-
Morgenstern utility functions.

On the basis of a parsimonious model for asset price processes this paper
analyzes whether predictability can be explained by nonconstant elasticity
of the pricing kernel. The results show that predictability may indeed be
induced by nonconstant elasticity of the pricing kernel. More precisely, we
show that asset returns are autocorrelated and financial ratios have predic-
tive power for future asset returns. Since this paper shows what kind of
return characteristics can be explained in the traditional framework, the pa-
per provides a benchmark for the necessity of new behavioral postulates.

The economy considered in this paper is very simple. Following the ap-
proach of Franke, Stapleton and Subrahmanyam [18] we start from an exoge-
nously given information process which characterizes investors’ expectations
about the asset price at terminal date 7. The information process which
describes investors’ expectations is assumed to be governed by a geometric

'For an overview on deviations from the random walk hypothesis see for example
Cochrane [12].

2For recent advances in behavioral finance see for example Barberis and Huang [2],
Barberis, Huang and Santos [3], Barberis, Shleifer and Vishny [4] or Daniel, Hirshleifer
and Subrahmanyam [14].

3See for example Brennan [9] for a discussion of the pros and cons of adopting new
behavioral postulates.



Brownian motion with constant instantaneous volatility and no drift. Hence,
the information process is consistent with rational expectations. Further-
more, we assume that the pricing kernel is a deterministic function of the
asset price which is perfectly consistent with a representative investor econ-
omy (e.g., Decamps and Lazrak [15]). Hence, our model is consistent with
the model of Black and Scholes [8] except that we do not assume constant
elasticity of the pricing kernel. The simplicity of the framework allows to
show more clearly the effect of alternative assumptions on the pricing kernel.

Our analysis is related to the literature on the viability of asset price
processes in a representative investor economy.! Especially, this paper is
closely related to Franke, Stapleton and Subrahmanyam [18] and to Liiders
[24]. In both papers a similar economy is considered. However, Franke,
Stapleton and Subrahmanyam [18] focus on option prices. While Liiders
[24] proposes an alternative explicit price process to the geometric Brownian
motion, the analysis in this paper is more general, since Liiders [24] assumes
HARA utility. Our paper is also related to Johnson [23] who proposes a
rational explanation for momentum on the firm level. While we focus on the
elasticity of the pricing kernel as explanation for positive and negative serial
correlation of asset returns, Johnson [23] unveils stochastic expected growth
rate as an explanation for momentum.

The organization of the paper is as follows. Section 2 presents the model.
In Section 3 the stochastic differential equation governing the equilibrium
asset price process is analyzed for declining and increasing elasticity of the
pricing kernel. Section 4 analyzes the implications for discretely sampled
asset returns. Section 5 concludes.

2 The model

In this paper we consider a market with a given time horizon 7" > 0 and
the one-dimensional standard Brownian motion W on a given filtered prob-
ability space (Q,F, Fy, P) where (F), ¢ is the filtration generated by W
augmented by all the F-null sets, with F = Fr. It is assumed that at least
one risky asset is traded and hence the market is complete. Moreover, we
assume that the company does not pay any dividends until terminal date
T. The distribution of the terminal value of the asset is exogenously given.

*See Bick [5] and [6], Franke [17], He and Leland [20] and Stapleton and Subrahmanyam
[27].



Following Franke, Stapleton an Subrahmanyam [18] and Liiders and Peisl
[25] we define the distribution of the terminal value implicitly by postulating
some information process. Such an information process can be interpreted
as the representative investor’s conditional expectation about the terminal
value of the stock. The information process I is defined by

L=E(Xr|F), 0<t<T,

where X7 is the random payoff of the stock at the terminal date T'. Moreover,
to keep things simple and to focus on the pricing kernel, we assume that this
information process [ is characterized by a geometric Brownian motion with
constant instantaneous volatility o and no drift, i.e.

d[t == U[thVt y 0 é t g T, (1)
.[0 > 0.

Note that with this assumption I7 is lognormally distributed with
Var (Inlp| F)=0*(T—t), 0<t<T,

and
E(IT|ft):It, Ogth

Thus, the information process is a martingale which is a necessary condition
for rational expectations of the representative investor. Note also that with
rational expectations, at terminal date T the expected value of the asset I
and the price of the asset Fr must be equal, i.e. Ir = Fr = X7.5 To focus
on risk preferences we always consider forward prices instead of spot prices.

Finally, we want to introduce a formal definition of what we mean by
predictability of asset returns:®

Definition 1 Asset returns ry; = ln?—: are predictable if %R (t,7,2¢) # 0,
where the function R (t, T, x;) characterizes the expected return, i.e. R (t,T,x;)
E(ri | F) forall0 <t <7 <T, and x; is some state variable.

With this definition asset returns are predictable if the expected return
depends on some (observable) state variable. While predictability of asset

SFor a detailed discussion of information processes see Liiders and Peisl [25].
SFor a function H : v+ — H (z), B%H (F}) has the same meaning as the widely used,
but informal, notation aiF[H (F}) . The more formal notation will be used in this paper.
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returns may manifest itself in different forms, we believe that this definition
is a natural way of thinking about predictability, especially in our Markovian
continuous-time setting. In Section 3 the forward price F; itself and the ex-
pected value of the terminal forward price I; will be used as state variables.
In Subsection 4.2 we introduce an additional stochastic process which char-
acterizes the book value of equity. The exogenous book value of equity will
also be used as a state variable.

After the description of the information structure in the economy let us
turn to the characterization of the pricing kernel. It is well known that in
an arbitrage-free market an equivalent martingale measure exists. Moreover,
in complete markets the equivalent martingale measure P is un';que. The

0

transformation from P to P is given by the pricing kernel ®, 7 = W{ where

Oy, = E(Por|F), 0<t<T. Thus, the forward price F; is given by

F, = EP(F/|F)=E(Fr®.1| F)
= E(Ir®r|F) , 0<t<T.

In general, the pricing kernel is characterized by the Girsanov-functional and
thus it is not necessarily a deterministic function of I; or F;. However, in
a representative investor economy with a state-independent von Neumann-
Morgenstern utility function over the terminal asset price Fp the pricing
kernel is characterized by a deterministic function of time ¢ and either I; or
F;. This follows from the equilibrium condition

0
cI)()’T = G%U (FT) y

with a some positive scalar and U the state-independent utility function of
the representative investor.” The pricing kernel considered in this article is
consistent with a representative investor economy. Given the information
process of equation (1) with Iy = Fp, the forward price F; can then be
characterized by the following backward stochastic differential equation

0 1 02 0
dF;g = {EU (t, ]t) + 5@'&) (t, It) (O'It)Q} dt + %'U (t, It) O'It dVVt,
N . ~———
:;:Ft = Fy
0 < t<T, (2)
v (T7 IT) = IT7

"For a more detailed discussion see for example Decamps and Lazrak [15] or Camara
[10].



with v (t,I;) = F, and the instantaneous drift u, and the instantaneous
volatility ¥; being deterministic functions of time ¢ and F;. Note that we
can derive a similar stochastic differential equation for any state variable X,
given that F7 is a deterministic function of X7.

3 Asset returns in continuous-time

3.1 Properties of asset price processes for different char-
acterizations of the pricing kernel

In this section we analyze the properties of the stochastic differential equation
(2) governing the forward price process. For an information process governed
by equation (1) and a pricing kernel with constant elasticity it is known that
the forward price is governed by a geometric Brownian motion. In this case
the forward price is given by

FC =" (t,I)=At)I,, 0<t<T,

where A (t) is a deterministic function of time ¢. Thus, in this case expected
returns do not depend on the level of I; nor F;. Moreover, the elasticity of

the forward price with respect to I; (nf T = %ﬁ

the instantaneous volatility >; of the forward price process F' is equal to the
instantaneous volatility ¢ of the information process I.

However, the following Lemma states that the elasticity of the forward
price with respect to I; is higher [lower| than 1 for declining [increasing]
elasticity of the pricing kernel.® This result is closely related to Theorem 3 of
Franke, Stapleton and Subrahmanyam [18] who show that the ratio between
the forward price under declining elasticity of the pricing kernel and the
forward price under constant elasticity of the pricing kernel increases with
the level of the latter one.

)is equal to 1 and

Lemma 1 Assume that the information process is governed by a geometric
Brownian motion with constant instantaneous volatility and no drift. Then

8In this paper we consider only monotonically declining [increasing| elasticity of the
pricing kernel. The empirical evidence on the elasticity of the pricing kernel is mixed.
However there are studies that report nonmonotonic elasticity of the pricing kernel, see
Jackwerth [22].



the elasticity of the forward price with respect to I; is higher [lower] than 1,

%ﬁ > [<]| 1, if and only if the elasticity of the pricing kernel is

declining [increasing.

i.e.

Proof. See Appendix A.1

Since ;' > [<] 1 implies that a 1% change in I, leads to a more [less]
than 1% change in F}, Lemma 1 establishes that the forward price overreacts
[underreacts] compared to the case of constant elasticity of the pricing ker-
nel if the elasticity of the pricing kernel is declining [increasing]. To get the
intuition for the overreaction [underreaction| let us think about the elasticity
of the pricing kernel in terms of relative risk aversion of the representative
investor. A representative investor with decreasing [increasing| relative risk
aversion requires a lower [higher| return for the same risk the wealthier he is.

Compared to an investor with constant relative risk aversion, his required rel-

ative risk premium (%) decreases [increases| the wealthier he is. Hence,

the price he is willing to pay for the asset increases more [less| with increas-
ing expected terminal value. Thus, with nonconstant relative risk aversion
a change in the expected terminal value I; does also induce a change of the
required risk premium. This change of the risk premium reinforces [dimin-
ishes| the purely 'information based’ change of the asset price. Thus, since
the required risk premium decreases [increases| with the level of I; for declin-
ing [increasing| elasticity of the pricing kernel the forward price overreacts
[underreacts|.

The following proposition establishes that predictability of asset returns
and nonconstant elasticity of the pricing kernel are closely related. It is
shown that predictability of asset returns is a consequence of the overreaction
[underreaction] effect.

Proposition 1 Assume that the information process is governed by a geo-
metric Brownian motion with constant instantaneous volatility and no drift.
Then the expected return of the forward price process depends negatively [pos-
itively] on the level of the forward price, if and only if the elasticity of the
pricing kernel is declining [increasing/. In addition, the instantaneous volatil-
ity of the forward price is higher [lower] than the instantaneous volatility of
the information process, if and only if the elasticity of the pricing kernel is
declining [increasingl.

Proof. See Appendix A.2



What do we learn from Proposition 1 and what is the economic mecha-
nism which drives the results? First, the higher [lower| instantaneous volatil-
ity is a direct consequence of the overreaction [underreaction| effect. The
instantaneous volatility of the forward price ¥; measures the instantaneous
reaction of the forward price to innovations of the Brownian motion W. This
Brownian motion drives both processes I and F. Since F' overreacts [underre-
acts| relatively to I, ¥, must be higher [lower| than o. This intuitive relation
between ¥J; and o is also seen from the definition of ¥

Si=nto, 0<t<T. (3)

Second, expected returns depend negatively [positively] on the level of the
forward price if the elasticity of the pricing kernel is declining [increasing].
Thus, we have mean reversion [mean aversion| in returns. This effect is also
due to the changing risk premium. The higher I; the lower [higher| will be the
risk premium under declining [increasing] elasticity. Therefore the expected
return decreases [increases| with the level of I;. The mean reversion [mean
aversion| can also be related to the overreaction [underreaction| effect. Note
first that the distribution of the terminal asset price is independent of the
pricing kernel and equal to the distribution of /7. However, under declining
[increasing] elasticity of the pricing kernel the forward price overreacts [un-
derreacts]. Hence, since It = Fr this overreaction [underreaction] has to be
compensated and thus asset returns exhibit mean reversion [mean aversion].

The overreaction effect also provides an additional intuition for the mis-
pricing of the Black-Scholes model when the elasticity of the pricing kernel
is not constant. This effect has been analyzed in detail by Franke, Stapleton
and Subrahmanyam [18]. They show that options are more expensive with
declining elasticity than with constant elasticity of the pricing kernel. In
the light of our results this overpricing compared to Black-Scholes follows
because of the higher instantaneous volatility of the forward price process.
It is well known that hedging costs are increasing with the instantaneous
volatility. Thus, although the terminal value is distributed as in the constant
elasticity case, under declining elasticity hedging costs are higher. Higher
hedging costs, however, imply a higher price. Hence, option prices exceed
Black-Scholes prices when the pricing kernel has declining elasticity.

Let us now consider the characteristics of the instantaneous volatility in
more detail. The following proposition provides a new explanation for the
empirically well documented asymmetric volatility phenomenon.



Proposition 2 Assume that the information process is governed by a geo-
metric Brownian motion with constant instantaneous volatility and no drift.
Then the instantaneous volatility of the forward price is decreasing [increas-
ing] in the level of the forward price if the elasticity of the pricing kernel is
declining [increasing].

Proof. See Appendix A.3

Combining this result with Proposition 1 gives a clear characteristic of
the instantaneous volatility in the case of declining [increasing] elasticity of
the pricing kernel. Note, however, that the relationship established in Propo-
sition 2 is not necessarily monotonic. Let us now discuss this relationship
for the case of declining elasticity: Why is the instantaneous volatility %P¥
of the forward price process smaller when forward prices are high than when
forward prices are low? This effect comes from the fact that we assume risk
aversion over RT. Thus, for I; — oo the representative investor is risk neutral
and therefore also constant relative risk averse.

This explanation for asymmetric volatility, i.e. high volatility in bear
markets and low volatility in bull markets differs from the two previous ap-
proaches, i.e. the leverage effect (see for example Black [7] and Christie [13])
and the volatility feedback effect (see for example Campbell and Hentschel
[11] and Liiders and Peisl [25]). Hence, Proposition 2 presents a third mech-
anism which might contribute to the observed asymmetric volatility. More-
over, recent empirical results show that the negative correlation between
volatility and returns is more pronounced for market returns than for individ-
ual stocks. This, however, suggests that the leverage effect is less important
than the preference based arguments, i.e. volatility feedback and declining
elasticity.”

3.2 Stationarity

The purpose of the next section is to analyze the characteristics of the sto-
chastic processes in terms of moments of discretely sampled asset returns as
for example the autocorrelation and standard deviation of such returns. The
following analysis, however, shows that usually asset returns are not station-
ary. Stationarity requires that the forward price process (the return process)
is governed by a time-homogeneous stochastic differential equation, i.e. g,

9See for example Andersen, Bollerslev, Diebold and Ebens [1], Hentschel [21], Mayhew
and Stivers [26] and Tauchen, Zhang and Liu [28].
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and Y; of the stochastic differential equation (2) for the price F} may depend
on F}, but they may not depend on time ¢.'°

Proposition 3 Assume that the information process is governed by a geo-
metric Brownian motion with constant instantaneous volatility and no drift.
Then the forward price process is governed by a time-homogeneous stochas-
tic differential equation if and only if the elasticity of the pricing kernel is
constant.

Proof. See Appendix A.4

While Proposition 3 does not really come as a surprise, it has strong
implications for empirical studies of asset prices. The assumption of a log-
normal distribution of the terminal value, time independent coefficients and
nonconstant elasticity of the pricing kernel are incompatible. Moreover, note
that since the forward price process is governed by a geometric Brownian
motion if the elasticity of the pricing kernel is constant, it follows that either
the forward price process is governed by a geometric Brownian motion or it
is not governed by a time-homogeneous stochastic differential equation. The
intuition behind this result is as follows. With, for example, declining elas-
ticity of the pricing kernel the asset price instantaneously overreacts. This
overreaction is then compensated by the mean reversion. However, both ef-
fects depend on the distance to the terminal date T since at the terminal
date the forward price is equal to the lognormally distributed I;. The im-
portant point of Proposition 3 is that most estimation techniques rely on
the assumption of time-homogeneity.!! Hence, empirical studies might suffer
from the nonstationarity of asset returns.

10See also He and Leland [20] for the analysis of time-homogeneous asset price processes.
For the estimation of diffusion models see for example Gourieroux and Jasiak [19]. A recent
development on the estimation of diffusion processes is found, for example, in Elerian,
Chib, Shephard [16].

For an overview of recent estimation techniques see for example Gourieroux and Jasiak

19].



4 Implications for asset returns in discrete-
time

4.1 Time series properties of asset returns

Even though Proposition 3 suggests careful interpretation of empirical results
we may deduce some properties of the return process over finite intervals. It is
shown in Proposition 1 that for declining [increasing] elasticity of the pricing
kernel the forward price is characterized by a function v satisfying

noPE(t. 1) > 1 0<t<T
3lnxnv (t, 1) ’ ’

0
Olnzx

o™ (L) < 1, 0<t<T.

It follows immediately that the variance of InvP¥ (¢, 1;) is higher and the
variance of In v'" (¢, I;) is smaller than the variance of In I; for 0 < ¢ < T For
constant elasticity of the pricing kernel both variances are equal since in this
case the elasticity of the forward price with respect to I; equals 1. Note also
that this is true for conditional as well as unconditional variances.

More relevant are the properties of the returns r,, = InF, — InFj}.
The following proposition shows that for the case of declining elasticity of
the pricing kernel, the conditional variance of returns over finite periods,
Var (ln F; — In F| F;), and the unconditional variance of returns over finite
periods, Var (In F;, — In F}) , are higher than under constant elasticity of the
pricing kernel. Moreover, it should be noted that the results are not sensitive
to whether we consider Var (In F; — In F}) or Var (In F;, —In Fy| F; ) with
60 > 0. Important is only whether In F; is measurable with respect to the
filtration on which the variance is conditioned.

Proposition 4 Suppose that the information process is governed by a geo-
metric Brownian motion with constant instantaneous volatility and no drift.
Then the conditional and unconditional variance of returns over finite periods
(In Fr —In Fy with 0 <t <7 <T) is higher than the corresponding variance
of the returns of the information process (Inl, —Inl; with 0 <t <7 < T)
when the elasticity of the pricing kernel is declining.

Proof. See Appendix A.5
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In addition, note that the conditional and unconditional variance of re-
turns over finite periods is equal to the corresponding variance of the infor-
mation process if the elasticity is constant. However, while the conditional
variance Var (In F; — In F;| ;) is lower for increasing elasticity of the pricing
kernel, this is not necessarily true for Var (In F, — In F;| F;_4) with 6 > 0.
To see this, consider

Var (InF, —InFy| Fy9) = Var(E(InF|F) —InF| F )
+E (Var (InFr| F)| Fio)

with E (Var (In F;| F;)| Fi_g) being lower under increasing elasticity than
under constant elasticity of the pricing kernel. However, while in the case of
constant elasticity of the pricing kernel Var (E (In F;| F;) — In Fy| Fi_p) =0
this is positive for nonconstant elasticity. Hence, in contrast to the case
of declining elasticity the effect on the unconditional variance is ambiguous
under increasing elasticity, since the first term on the right hand side is higher
than under constant elasticity but the second term is lower.

The intuition for the higher variance of returns when the pricing ker-
nel has declining elasticity is the same as for the instantaneous volatility.
The change in the risk premium increases the reaction to a change in ex-
pectations compared to the case of constant elasticity of the pricing ker-
nel. This leads to a higher variance of returns. Moreover, Proposition 4
is closely related to Proposition 3 since it illustrates the nonstationarity of
asset returns. For declining elasticity of the pricing kernel the conditional
variance of returns over any subperiod [t,¢t 4+ 6] with 0 < ¢t < t+6 < T,
Var (In Fy9 — In Fy| F;), is higher than the corresponding variance of the
information process Var (In ;.9 — In I;| F;) except for the returns over the
period [T'— 6, T] . The conditional variance of terminal returns r, r is always
equal to the corresponding variance of the information process, i.e.

Var(nFp —InF|F)=Var(Inlp —InL|F) , 0<t<T.

In contrast, the corresponding conditional variance of the information process
is equal for both periods, i.e.

Var(Inlyg —InL| F) =00, 0<t<t+0<T,

which demonstrates that the transition density of asset returns depends on
time ¢t. Proposition 4 is also in line with Franke, Stapleton and Subrah-
manyam [18] who have shown that the variance of the forward price is higher
under the declining elasticity pricing kernel.

11



In the previous section we derived the fact that returns are predictable
under a pricing kernel with nonconstant elasticity. The following proposition
shows that the terminal return 7, r is conditionally negatively [positively]
correlated with the preceding return r; , with 0 < ¢ < 7 < T' if the elasticity
of the pricing kernel is declining [increasing].

Proposition 5 Suppose that the information process is governed by a geo-
metric Brownian motion with constant instantaneous volatility and no drift.
Then final period returns (r-r =In Fr—In F; with0 < 7 < T') are condition-
ally negatively [positively] correlated with preceding returns (ry, = In F.—In F,
with 0 <t <7 <T), ie. Corr(rrp,ri,|F) < [>]0, if the elasticity of the
pricing kernel is declining [increasing].

Proof. See Appendix A.6

Proposition 5 shows that in contrast to the case of constant elasticity of
the pricing kernel, asset returns are negatively [positively| autocorrelated if
the elasticity of the pricing kernel is declining [increasing]. Since Proposition
5 and Proposition 1 are more or less two views on the same mechanism,
the economic intuition for the serial correlation parallels the explanation
of Proposition 1. For declining elasticity, we have seen that asset prices
overreact compared to the information process. Hence when, for example,
expectations rise the asset price rises more than the change in expectations.
Since Fr = Ip this relatively high first period return has to be compensated
by a relatively low return in the following period. In the case of increasing
elasticity of the pricing kernel, asset prices underreact and since Fr = I they
have to catch up in the second period, which yields positive autocorrelation.

Finally, let us consider the variance ratio

(T—t) Var (In Fp — In Fy | F)
vr =

O<t<tT<T
T—t) Var(InF, —InF,|F)’ 4 ’

which is widely used in empirical finance to detect serial correlation. Since
Var (In Fp|F) = Var (Inlp |F)

and
Var (InF, —In Fy |F) > [<|Var (Inl, — In I} |F;)

for declining [increasing] elasticity of the pricing kernel it is easily seen that
the variance ratio is smaller [higher| than 1 for declining [increasing] elastic-
ity of the pricing kernel which is consistent with our earlier finding of mean

12



reversion and negative autocorrelation [mean aversion and positive autocor-
relation]. Hence, in spite of the concerns expressed earlier given our assump-
tions the variance ratio test may be an appropriate technique to recover some
characteristics of the return process.

4.2 The explanatory power of multiples

Up to here we have focused on univariate properties of the asset price process.
However, there exist many other forms of predictability. This section analyzes
the relationship between expected returns and multiples to understand why
multiples may have predictive power although the market is efficient and
in equilibrium. To analyze this question we slightly extend our previous
model by introducing an additional process which describes the evolution of
the book value of equity. More precisely, we assume that the book value of
equity buv; is characterized by

t t
bvy = bv0+//<obvsds+/7bvdeS, 0<t<T, (4)
0 0

bvg > 0,

where we assume that x and ~ are some positive constant parameters. Thus,
we assume that the book value of equity is governed by a geometric Brownian
motion with constant coefficients. The book value of equity is only loosely
related to the market value of equity since accounting numbers are distorted
by regulations and do not necessarily reflect the fair value. However, it seems
reasonable to assume that the book value of equity at time T is equal to the
value of the company at time 7" when the company is liquidated. Hence,
at time T we have bvp = Fp. The following derivation of the information
process is based on the assumption that the representative investor observes
the book value of equity and based on these observation he builds his condi-
tional expectations about the terminal value Fr. With our assumptions the
derivation of the information process I; = E (bvr |F;) is straightforward.

Lemma 2 Assume that the book value of equity bv, is governed by the geo-
metric Brownian motion (4) and that at terminal date T the market value
of equity is equal to the book value of equity, i.e. buy = Fr. Then the infor-
mation process is governed by a geometric Brownian motion with constant
instantaneous volatility and no drift. Moreover, the instantaneous volatil-
ity of the information process is equal to the instantaneous volatility of the
stochastic process governing the book value of equity.
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Proof. See Appendix A.7

Hence, as in the previous section the information process is governed by a
geometric Brownian motion with constant instantaneous volatility and drift
zero. Therefore our previous results can be applied to our extension of the
model.

Proposition 6 Assume that the book value of equity bv; is governed by the
geometric Brownian motion (4) and that at terminal date T' the market value
of equity is equal to the book value of equity, i.e. by = Fr. Then, for declin-
g and for increasing elasticity of the pricing kernel, the expected return

by

depends positively on the book-to-market ratio o

Proof. See Appendix A.8

This result is a direct consequence of the derived mean reversion [mean
aversion| of asset returns for declining [increasing] elasticity of the pricing
kernel. A higher book-to-market ratio indicates that the risk premium is
relatively high. Thus, the expected return is higher for high book-to-market
ratios. For declining elasticity of the pricing kernel, the book-to-market ratio
decreases with increasing I; while for increasing elasticity of the pricing kernel

the book-to-market ratio increases with increasing I;.

To analyze the predictive power of the price-earnings ratio <f—;> we have

to define earnings (e;) in terms of our model for the book value of equity.
More precisely, we assume that the following relationship holds:!?

bUt:bUt,1+€t, OStST

Proposition 7 Assume that the book value of equity bv; is governed by the
geometric Brownian motion (4) and that at terminal date T' the market value
of equity is equal to the book value of equity, i.e. bvp = Fr. Moreover,
consider the cases when earnings are positive, i.e. e; > 0. Then, conditionally

on bv;_1 the expected return depends negatively on the price-earnings ratio

i
et

elasticity of the pricing kernel and conditionally on bvy 1 expected returns
depend negatively on the price-earnings ratio if

PPt L) i<
aavDE(t,It) ’ - =7

i

when the elasticity of the pricing kernel is increasing. For declining

0
e < gB (t, ]t)

12Note that we define periods such that their length is 1. This simplifies the notation.
We assume that 7" > 1.
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with bvy = B (t, I;) and F, = vP* (t,1,) . For

DE
I
e, > EB(t,It)M

<t<T
ox -

(‘;%UDE (t7 It) 7 B

expected returns depend positively on the price-earnings ratio.

Proof. See Appendix A.9

The explanatory power of the price-earnings ratio is also due to the fact
that asset returns are mean reverting [mean averting| for declining [increas-
ing] elasticity of the pricing kernel. However, Proposition 7 establishes that
while the relationship is unequivocal for increasing elasticity of the pricing
kernel, in the case of declining elasticity expected returns depend positively
[negatively] on the price-earnings ratio if earnings are relatively high [low].
Why do we get this surprising result for declining elasticity of the pricing
kernel? Assume for a moment F; constant. In this case obviously higher
earnings would imply higher expected returns since the expected terminal
value [; increases also. Moreover, price-earnings ratios would decrease also
for F; fixed and increasing earnings. However, the forward price F; depends
also positively on earnings. Since with declining elasticity of the pricing
kernel the forward price may react heavily to a change in expectations and
hence to earnings, this second effect may dominate the first. Thus, the total
effect is ambiguous and depends on how strongly the forward price reacts to
earnings.

5 Conclusion

Predictability of asset returns is often explained by nonrational expectations
or new behavioral postulates which are not consistent with von Neumann-
Morgenstern utility functions. However, still little is known on return char-
acteristics in a traditional framework when the elasticity of the pricing kernel
is not constant. In this paper we derived the characteristics of asset returns
when the elasticity of the pricing kernel is not constant. However, we assume
rational expectations and the framework is also consistent with a represen-
tative investor with a von Neumann-Morgenstern utility function.

We show that with nonconstant elasticity of the pricing kernel, the for-
ward price F; is not a linear function of the expected terminal value I, =
E (Fr|F;). This nonlinearity induces predictability in asset returns. The

15



predictability is reflected by the fact that expected returns depend on the
level of the asset price. We find also that financial ratios (as the book-to-
market ratio) have explanatory power for expected returns. While expected
returns are always positively related to the book-to-market ratio the relation-
ship between expected returns and price-earnings ratios is more complicated.
For increasing elasticity of the pricing kernel there is always a negative rela-
tion but for declining elasticity the relationship between price-earnings ratios
and expected returns is positive for relatively high earnings while it is neg-
ative for relatively low earnings. Moreover, nonconstant elasticity of the
pricing kernel leads to time-varying instantaneous volatility. For declining
[increasing] elasticity of the pricing kernel, the instantaneous volatility de-
creases [increases| with rising asset prices. Hence, declining elasticity of the
pricing kernel leads to asymmetric volatility. In addition, we show that asset
returns ’'overreact’ ['underreact’] to changes in expectations when the pricing
kernel has declining [increasing] elasticity. We also analyzed the moments of
the discretely sampled return process. The results suggest very careful inter-
pretation of empirical results since the derived return processes are usually
not stationary. In spite of this result, it is shown that declining [increasing]
elasticity of the pricing kernel leads to negative [positive| autocorrelation of
asset returns. Hence, the analysis shows that many return characteristics are
compatible with a rational expectations model with nonconstant elasticity of
the pricing kernel.

A Appendix

A.1 Proof of Lemma 1

The ratio between the forward price under declining [increasing] elasticity of
the pricing kernel FP¥ [F}*] and the forward price under constant elasticity
FF

FtDE F'tIE
——, respectively —
FP FF

increases [decreases| monotonically with increasing F,°. This follows because

% = % is independent of the level of I; since

FC =" (t,I)=AMt)I,, 0<t<T,
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with A:[0,7] — R*, and with declining [increasing] elasticity of the pricing

1y 1y
FPE \ FI¥

I;. For a more detailed proof see Theorem 3 in Franke, Stapleton and Sub-
rahmanyam [18]. However, this statement in Franke, Stapleton and Subrah-
manyam [18] can be expressed more formally as:

3 UIE (ta It)
oz \ v° (t, I;)

kernel the expected return decreases [increases| with increasing

)<0, 0<t<T,

respectively

3 UDE (ta ]t)
ox \ v (t, 1)

Simple calculus shows that this is equivalent to

)>0, 0<t<T.

8UIE (t, It) ’UIE (t, It)

< 0<t<T, 5
8$ It ’ ( )
respectively
ovPE (¢, )  WPE (¢ L)
— > ’ 0<t<T. 6
az It ’ ( )
[ |

A.2 Proof of Proposition 1

}—’; is characterized by a function ¢ : [0,7] x RT — R*, (¢,2) — ~itzy Which
does not depend on I; if and only if 6%1) (t,1;) depends only on time ¢, i.e.
the forward price at time ¢ is linear in [;. Positive [negative] dependence of
the expected return implies

@% (uim) > [<] 0. (7)

Comparing equation (7) to equation (5) and equation (6) proves that declin-
ing [increasing] elasticity of the pricing kernel yields negative [positive] de-
pendence of the expected return on the level of the forward price. Since
v (t,x) and x are strictly positive, the results hold also for the expected return

In (}—i) . That the instantaneous volatility ¥; of the forward price process F'

is higher [lower] under declining [increasing] elasticity of the pricing kernel

17



follows from Lemma 1 and the definition of the instantaneous volatility of
the forward price process

%U (ta It)

E pr—
CTou(t L)

A.3 Proof of Proposition 2

We give the proof for declining elasticity, the proof for increasing elasticity is

analogous. Since a% (#ﬁ) >0 and %jh) < 1for 0 <t <T it follows

from the Theorem of Bolzano-Weierstrass that

DE
lim (—U (t’jt)> =c,
Ii—o0 It

where ¢ is some positive constant with ¢ < 1 and F, = vP® (¢, I;). Since
limy, oo vPF (¢, I;) = oo it follows from the rule of L'Hopital that

. vt (8 1) : 9 pE
c= I}l_r)rgo (T) = 1}520 <%v (t, It)) .

Hence, the elasticity of the forward price with respect to I; converges to 1,
ie.

0 I
lim ( —vPE (¢, ) —C— ) = 1.
Itggo (a{EU ( ’ t) UDE (t, It)

For I; < oo we have already seen that the elasticity is higher than 1. Hence,

lim (E?E) =0,

Ii—o0

while ¥PF > o VI, < cc. |

A.4 Proof of Proposition 3

First note that because %ﬁ =1and ¥; = Wv(ﬁﬂ)g , 0t

T we know that the instantaneous volatility 3; is constant in 7" with X = 0.
Moreover, the instantaneous volatility ¥; can be characterized by a function

18



5 (t, F}) = X;. Hence, we have > (T, x) = constant for all x. If the elasticity
of the pricing kernel is declining [increasing]| then

Xt F)>[<lo, 0<t<T,

for all finite values of Fy. Since X (T, Fy) = o, the instantaneous volatility
of the forward price depends on time ¢. It follows from Proposition 1 that

Y (t, F;) = o if and only if the elasticity of the pricing kernel is constant. W

A.5 Proof of Proposition 4

Since with declining elasticity of the pricing kernel Var (In F;| F,) > Var (In ;| F;)
for 0 <t <7 < T, it follows immediately that also

Var (InF, —InFy|F) > Var(Inl, —In | F) , 0<t<7t<T.

Hence, the conditional variance of returns is higher under declining elasticity
of the pricing kernel. Consider now the unconditional variance:

Var(InF, —InF,) = Var(E(InF.|F)—-InF)+ EVar(InF;|F)) ,
0 < t<7<T,

with

T 1
E(WF;|F)—InF,=FE (/ w— 522ds
¢

ﬂ), 0<t<7<T. (9

Equation (9) shows that except for constant elasticity of the pricing kernel
with nonrandom term p — %EQ

Var (E(In Fr| F) —In F;) > 0.
Moreover,

Var(Inl, —Inl;) = Var(Inl.|F) ,
0 < t<7<T,

since the information process is governed by a geometric Brownian mo-
tion with constant volatility and no drift. Thus, because Var (In F;| F;) >
Var (In I;| F;), we have

Var(InF, —InF) > Var(Inl, —In1).
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A.6 Proof of Proposition 5

Since sgn Cov (rr 7,14, |Fi) = sgn Cov <E(F+T|E),FT ].7-",:) we have to con-

0 (1(LF)
ox F,
where I (t,F;) = E(Fr|F;) is the inverse function of F'(¢,1;). Note that

F(t,1;) is monotone in I;. Hence, we have negative [positive] conditional
autocorrelation for

sider

) I(t, F})
£I (t, F}) < [>]T

which is equivalent to

I pwL) < [>]I(ftFt)'

ox

It follows from Proposition 1 and Appendix A.2 that returns are conditionally
negatively [positively] autocorrelated for declining [increasing] elasticity of
the pricing kernel. [ |

A.7 Proof of Lemma 2

Since bvy = Fp = Ip, it follows from the Theorem of Feynman-Kac that I;
is characterized by a function x : [0,7] x R — R with x (¢, bv;) = I; for all
0 <t <T,and x (t, ) satisfies the following deterministic partial differential
equation

62

0 0 1 5 o
0 = ot (t,$)+axx(t,$)lil'+2a$2X(t,$)’y.1' ’
0 < t<T, (10)
x(T,x) = =

Solving equation (10) and applying Ito’s Lemma yields the following stochas-
tic differential equation for the information process I :
d[t = It")/dVVt, OStST,
.[0 = kK (bUT) .
Hence, the information process is governed by a geometric Brownian motion
with constant instantaneous volatility and drift zero. The instantaneous

volatility of the information process equals the instantaneous volatility of
the book value of equity. |
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A.8 Proof of Proposition 6
Note that I; = x (¢,bv;) is a deterministic function of the book value:
Iy = x (t,bvy) = exp (k (T —t))bvy, 0<t<T. (11)

It follows from equation (11) that we can consider bu; as a deterministic
function B of I, B : [0,7] x RT — R*:

B=1IlLexp(—k(T'—1t)), 0<t<T.

B(t,I¢)
D

é(t 7y and for declining

Hence, the book-to-market ratio is characterized by -

[increasing] elasticity of the pricing kernel
g B(t, 1) Y (=x (T =1)) 1— % (UDE (¢, It)) I < [>]o,
Ox \ vPE (¢, I) (vPE (¢, I))

0 < t<T,

since the elasticity of the forward price is higher [lower| than 1 under the
declining [increasing] elasticity pricing kernel. It follows from Proposition
1 that the expected return depends negatively [positively] on I; for declin-
ing [increasing] elasticity of the pricing kernel. We can conclude that the
expected return depends positively on the book-to-market ratio. |

A.9 Proof of Proposition 7

Let us first discuss the case of increasing elasticity of the pricing kernel.
Consider therefore the first derivative of the price-earnings ratio with respect
to the information process, i.e.

a UIE (ta It)
_ <
e (B 1) — Bt1> o Ost<T (12)

with B (t — 1,I; 1) := B, ; =constant. Equation (12) may be rewritten as

B%UIE (t, I;) (B (t,1;) — Bi—1) — a%B (t, 1) v'® (t, Iy)
(B(t,1,) — By_1)

., 0<t<T

For positive earnings, i.e. B(t,1;) — B;_; > 0, this term is negative, if

I

0 I, )
— _ B(t, 1
v (7 t)B(t,It)—Bt_l 9

Ox (t. 1) v'E (¢, I}) <oz
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Since Z B (t, 1)
the prlcmg kernel

5 (t by =1 (see, Lemma 1) and for increasing elasticity of

8UIE (t, It) It
or v (t, 1)

<1, 0<t<T,

(see, Proposition 1) it follows that the price-earnings ratio depends nega-
tively on [;. Since expected returns depend positively on I; (see, Proposition
1) we conclude that expected returns and price-earnings ratios are negatively
related.

For declining elasticity of the pricing kernel, the price earnings ratio de-
pends positively on [; if

0 I 0 I,

— PPt ) ——— > —B(t.1
o (’t)UDE(t,It)>8$ (’t)B(t,It)_Bt—l7 ’

/A
/A
~

However, for increasing elasticity of the pricing kernel

a'UDE (t, It) It
or  oPE(t 1)

>1, 0<t<T

and therefore

8 ’UDE (t It)
g ’ >0, 0<t<T,
oz (B(t,[t) ~ Bt1> <% <

9, vPE (¢, 1)
¢ = —B(t ;) 5—t
( t) 8 UDE(t It)

if

0<t<T.
< Oz - -

Since, expected returns depend negatively on I; we conclude that expected

returns and price-earnings ratios are positively related for relatively low earn-

ings, i.e.

0 oPE (¢, 1)
< —B({t L) ——* 0<t<T.
@< B b1 5 O A
and negatively related for relatively high earnings, i.e.
0 oPE (¢, 1)
>—B(t ;) ¥————— 0<t<T.
> 5z 0 1) 3 R A I
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