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Nontechnical summary 
 
 
 

Learning in schools takes place in a group setting, and the composition of the group possibly 

affects individual outcomes.  There has been a lot of interest in these types of social 

interactions in economics recently, and in peer effects in school in particular.  We revisit this 

issue in this paper, drawing on a previously unexploited data set in this context, the Progress 

in International Reading Literacy Study (PIRLS) for fourth graders.  Our analysis covers six 

European countries, Germany, France, Iceland, the Netherlands, Norway, and Sweden. 

 
One of the main challenges in the literature on peer effects is the feature that schools and class 

rooms are not formed randomly.  School and class composition typically reflects 

neighborhood characteristics, and therefore the family background of students.  The estimated 

peer effect may capture unobserved aspects of an individual student’s performance if this 

problem is ignored.  We estimate peer effects across classes within primary schools and argue 

that classes within schools are formed randomly with respect to family background.  

   

We find that a one standard deviation change in our student background measure of peer 

composition leads to a 0.11 standard deviation change in reading test scores of fourth graders 

across our sample of six European countries.  This is slightly larger than most previous 

estimates in the literature.  The estimated peer effects are highest in France and The 

Netherlands and lowest in Norway, Iceland and Germany.  For Sweden, the estimated effects 

are also high but might be driven by within-school selection.  There is no strong evidence on 

non-linear peer effects.  

 

We argue that there is little evidence for systematic sorting into class rooms within schools, 

and for different classes receiving different observable instructional resources.  Hence, 

comparing students in different classes within schools should be an effective way of dealing 

with any selection at the school level.  Surprisingly, we find that this selection does not seem 

to be very important once we take measurement error issues into account.  The discussion in 

this literature seems dominated with solving the selection issues, while little attention is being 

paid to the measurement error issues, which we find to be important in our data. 
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Abstract 
 

 
We estimate peer effects for fourth graders in six European countries.  The identification 
relies on variation across classes within schools.  We argue that classes within primary 
schools are formed roughly randomly with respect to family background.  Similar to previous 
studies, we find sizeable estimates of peer effects in standard OLS specifications.  The size of 
the estimate is much reduced within schools.  This could be explained either by selection into 
schools or by measurement error in the peer background variable.  When we correct for 
measurement error we find within school estimates close to the original OLS estimates.  Our 
results suggest that the peer effect is modestly large, measurement error is important in our 
survey data, and selection plays little role in biasing peer effects estimates.  We find no 
significant evidence of non-linear peer effects. 
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1 Introduction 
 

Learning in schools takes place in a group setting, and the composition of the group possibly 

affects individual outcomes.  There has been a lot of interest in these types of social 

interactions in economics recently, and in peer effects in school in particular.  We revisit this 

issue in this paper, drawing on a previously unexploited data set in this context, the Progress 

in International Reading Literacy Study (PIRLS) for fourth graders.   Our analysis covers six 

European countries, Germany, France, Iceland, the Netherlands, Norway, and Sweden. 

 

Peer effects are of interest for a variety of reasons.  From the policy perspective, it is 

important to know how students should be grouped in schools and class rooms in order to 

maximize achievement, or to achieve certain equity goals.  Tracking policies, the explicit 

grouping of students into classes by ability is widespread in many countries.  Policies 

increasing school choice and school competition are being discussed or implemented in many 

countries.  These policies will influence student outcomes through peer effects, if there is 

increased sorting of students as a result of these policies.  Understanding peer effects is 

therefore an important ingredient in evaluating many education policies. 

 

One of the main challenges in the literature on peer effects is the feature that schools and class 

rooms are not formed randomly.  School and class composition typically reflects 

neighborhood characteristics, and therefore the family background of students.  The estimated 

peer effect may capture unobserved aspects of an individual student’s performance if this 

problem is ignored.  We exploit the fact that the PIRLS data sample multiple class rooms 

within a single school.  This allows us to estimate peer effects within schools.  Since we study 

students in primary schools, there is no explicit tracking in any of the countries in our sample.  

We argue that classes within schools are in fact formed more or less randomly with respect to 

family background characteristics (other than immigrant status).  The variation in our peer 

variable therefore most likely reflects that there will be small differences in composition when 

multiple groups are formed out of a small population (in essence the absence of the law of 

large numbers).  Hence, our research design allows for a relatively credible identification of 

peer effects on student test scores.   
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The existing literature, of which some recent studies are summarized in Table 1, has used a 

wide variety of approaches to identify peer effects.  The papers closest in spirit to ours are the 

ones by Hoxby (2000) for the US and Gould et al. (2005) for Israel. These papers similarly 

rely on differences in the compositions of individual classes within a school, which come 

about by chance.  Hanushek et al. (2003) and McEwan (2003) also use within school variation 

to identify peer effects.  However, it is more difficult to believe that differences in class 

composition are random in their cases.  We will compare our methodology in detail to the 

existing literature in the next section.  A number of recent studies have also used explicit 

random assignment to classes or schools, or other natural experiments.  However, none of 

these studies is for European countries. 

 

An important issue in our context is the fact that our peer measure is self-reported by the 

students’ parents and that the sample does not include all students in a class room.  These 

features will lead to measurement error in both the individual and peer level variables in the 

regression, and hence to biased estimates.  Moreover, the size of the bias will differ in the 

OLS and within school estimates.  We address these issues by using alternative variables for 

family background as instruments, and adjusting our estimates for the sampling error in our 

measure of the peer variable.   

 

On average across countries, we find that a one standard deviation change in our measure of 

peer composition leads to a 0.11 standard deviation change in reading test scores, and this 

estimate is marginally significant.  The size of this effect is slightly larger than most estimates 

reported in the literature.  However, the confidence interval for our measurement error 

corrected estimates is fairly large.    

 

The remainder of the paper is structured as follows. The next section discusses our 

methodology and compares our approach to the existing literature.  Section 3 describes the 

PIRLS data. In section 4, we investigate the issue of whether classes are formed randomly 

within schools.  Section 5 presents our preliminary estimates of peer effects, and section 6 

discusses measurement error problems and how we deal with them.  Section 7 converts our 

estimated peer effects to effect sizes and compares the results with the literature.   A final 

section concludes. 
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2 Empirical framework and existing literature 

A peer effects study typically starts from a specification of an education production function 

like 

 

icscscsicsicsicsics yXSXy εμφδγβα ++++++= −− )()(  (1)

 

where yics is a student outcome, like a test score, for student i in class room c and school s, Xics 

are student or family characteristics, like sex, family background, etc., Scs are school or class 

level characteristics, like class size, teacher experience, characteristics of the municipality, 

etc., csiX )(− are the average characteristics of the peers of student i, and csiy )(− is the average 

outcome of the peers.  In addition, μcs and εics are a class level and an individual level error 

term.   

 

In the language of Manski (1993), the coefficient δ reflects exogenous or contextual effects, φ 

reflects endogenous effects, and μcs reflects correlated effects.  Exogenous effects arise when 

individuals learn more because the group of peers is more favorable in terms of their 

predetermined characteristics.  Correlated effects arise when the group of peers is subject to a 

common influence, which is not modeled directly.  These effects will give rise to a bias if 

they are correlated with peer group composition.  For example, consider a remedial class 

room with relatively poorly performing children.  This class room may be assigned a 

particularly able teacher but the exceptional characteristics of this teacher are not observable.  

Removing the potential bias from contextual effects is one of the main challenges in the peer 

effects literature, and we will discuss this issue shortly.  Endogenous effects arise when 

individuals learn more because peers are learning more.   

 

Even if the requisite data are available, eq. (1) cannot be estimated directly because of the 

well known reflection problem (see Manski, 1993).  Student i influences his or her peers, and 

the peers influence student i in turn through the coefficient φ, if a symmetric equation to (1) 

holds for every student in the class.  This implies that εics will be mechanically correlated 

with csiy )(− , leading to a classic simultaneity problem.  It is very difficult to overcome the 

reflection problem without severe restrictions on the model.  The literature has therefore 

basically resorted to estimating the reduced form equation 
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which is the approach we will follow as well.  In eq. (2), it is not possible to distinguish 

endogenous and exogenous effects anymore; either one would give rise to a positive 

coefficient λ on the peer variable csiX )(− .  While distinguishing endogenous and exogenous 

effects may be of interest from a theoretical perspective, for policy purposes it will often not 

matter which give rise to peer effects.  Hence, identifying the reduced form parameter is still 

of substantial interest. 

 

Now consider the problem arising from the presence of correlated effects in eqs. (1) and (2).  

If some relevant school or class room characteristics are not controlled, the estimated peer 

effect λ will be biased.  Random assignment of students and teachers to class rooms solves 

this problem, because random assignment breaks the link between peer characteristics and 

extraneous effects on the class, like unobserved teacher quality.  Boozer and Cacciola (2001) 

and Graham (2004) exploit the random assignment in the Tennessee STAR experiment on 

class size. Cullen, Jacob, and Levitt (2003) use lotteries at oversubscribed Chicago public 

schools.  However, their paper does not focus on the issue of peer effects.   

 

True random assignment variation is rare in an education context, and unavailable in many 

countries.  Hence, researchers have to resort to other strategies utilizing the existing data.  In 

this paper, as in a variety of related studies, we use variation within schools in order to 

identify the peer effect.  This means that we estimate  

 

icscscsicsicssics XSXy εμλγβα +++++= − )(  (3)

 

instead of eq. (2).  αs is a set of dummy variables for each school.  Alternatively, we also 

introduce peer variables at the school level directly into equation (2).  Both approaches lead to 

very similar results.   
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The idea behind these strategies is the observation that different schools draw students from 

different neighborhoods, and hence family backgrounds.  Hence, the unobserved 

characteristics μcs will be systematically related to csiX )(−  at the school level.  However, 

students are not generally grouped into classes on the basis of ability or family background in 

primary school.  Although some countries, like Germany, track students into a rigid system of 

separate schools at the secondary level, there is no system wide tracking at the primary level.  

In fact, classes in primary schools with multiple class rooms at the same grade level are 

typically formed more or less on a random basis.  In this case, csiX )(−  will be uncorrelated 

with the class level shocks μcs conditional on a set of school fixed effects, or the 

characteristics of school peers.  The bias from correlated effects is thus removed and λ can be 

estimated consistently.   

 

In order to make this argument more precise, consider the following simple model generating 

student characteristics: 

 

icscsics vX +=η  (4)

 

I.e. student characteristics consist of a common class room level mean ηcs and an 

idiosyncratic, mean zero student level component vics, which is uncorrelated with ηcs.  The 

peer mean is 

 

csicscsi vX )()( −− +=η  (5)

 

Correlated effects arise whenever cov(ηcs, μcs) ≠ 0.  Estimates of both β and λ will therefore 

be biased in the estimation of equation (2).  Our basic identifying assumption is ηcs = ηs, i.e. 

the systematic component of the student background characteristic arises only at the school 

level but not at the class level.  Random assignment of students and resources to classes 

within schools would ensure that this condition is met.  Hence, peer characteristics within 

schools are csicsi vX )()( −− = , i.e. variation in the peer measure comes only from the fact that 

0)( ≠− csiv  in small groups.  A necessary condition for the within school estimation to work is, 

of course, that there is sufficient variance in peer composition of a class room within a school.  

We will demonstrate that this is true in our data in section 4. 
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Our identification strategy is most closely related to that of McEwan (2003).  He studies peer 

effects for 8th graders in Chile.  However, random assignment to classes within schools is 

much less likely to happen at the secondary level because schools in many countries, 

including Chile, track students to at least some degree.  If there is tracking on the basis of 

(unobserved) ability, estimates of λ are still confounded by correlated effects. 

 

Gould et al. (2005), Hanushek et al. (2003), and Hoxby (2000) also use within school 

variation to identify peer effects.  The Gould et al. and Hoxby studies are most similar in 

spirit to ours.  We use comparisons across class rooms within the same grade for the same 

cohort of students.  Hoxby uses comparisons between classes in the same grade across 

adjacent cohorts and years.  Hence, she identifies peer effects from variation arising from the 

composition of subsequent cohorts.  For example, one cohort may have more girls and the 

next cohort fewer for purely random reasons.  Gould et al. also use data on multiple cohorts in 

the same grade.  They condition on the student composition of the grade across years.  

Effectively, like Hoxby, they therefore exploit year to year variation in the composition of a 

cohort of students.  However, these studies tend to focus on different peer group measures 

than ours.  Hoxby looks at gender and race composition of the class room and performance by 

opposite gender and race groups, while Gould et al. look at the share of immigrants. 

 

Hanushek et al. (2003) focus on a peer measure more similar to ours.  They also control for 

school by grade effects like Hoxby and Gould et al.  However, they track the same cohort of 

students over time, rather than different cohorts, and they control for student fixed effects. 

This means that they effectively only consider changes in the peer group, which come about 

through student mobility, because classes are typically kept together in primary schools.  This 

means that an individual’s peer group only changes if the individual herself or some peers 

move in or out of the classroom.  But student mobility might well be related to unobserved 

time and grade specific shocks.  For example, if a class is about to be assigned a particularly 

bad teacher, the parents of the best students may move their children to other schools.  Peer 

quality in the class would fall.  Student achievement may also subsequently fall in the class 

room but this might simply be due to the poor teacher, not the poor peers.  Hence, controlling 

for student fixed effects may lead to an upward bias in the estimates.  In fact, Hanushek et al. 

find an increase in the peer coefficient when they control for individual student effects 

compared to a similar specification without individual effects.   
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Table 1 summarizes these and other recent studies on peer effects in schools.  These previous 

literature finds peer effects which range from close to zero (Angrist and Lang, 2004, and 

Cullen, Jacob and Levitt, 2003) to relatively large (Hoxby, 2000).   

 

3 Data and descriptive statistics 

Thirty-five countries participated in the Progress in International Reading Literacy Study 

(PIRLS). This study was conducted by the International Association for the Evaluation of 

Educational Achievement (IEA) in 2001 and nine- and ten-year-olds in reading literacy. In the 

data, extensive information on home and school environment is available through student, 

parent, teacher and school questionnaires. With 150,000 students tested, PIRLS 2001 is the 

first in a planned 5-year cycle of international trend studies in reading literacy (Mullis et al., 

2003). 

 

The data are collected in a two-stage stratified sampling design. First, participating schools 

were chosen.  Therefore, the schools are the primary sampling units and not the classes or 

students.  Within each school, a sample of classes from the targeted grade was drawn.  The 

targeted grade is the upper of the two grades with the most 9 year-olds at the time of testing.  

This is always the fourth grade in our sample of countries. Within each class, in principle, all 

students are sampled.  In practice, the number of sampled students can be smaller than the 

actual class size, because of student non-participation.  We use all European countries with a 

sufficient number of schools with at least two classes.  These are France, Germany, Iceland, 

the Netherlands, Norway and Sweden.  

 

Student performance is measured by test scores in reading literacy, which is the most 

important basic competency needed to acquire further skills and knowledge and to 

successfully participate in social life (Mullis et al., 2003). The test scores are plausible values 

that are drawn from an estimated proficiency distribution. Plausible values are imputed scores 

based on the students’ answers to the test items (cf. Mislevy, 1991). The scores have then 

been standardized to an international mean of 500 and a standard deviation of 100, which 

facilitates the comparison across countries.  
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Table 2 provides information on mean reading scores and sample sizes in PIRLS at the 

student, class and school level. Students, classes and schools can be directly identified. 

Missing values of student background, class, and school variables are a serious problem in the 

data set. For parents’ education, 36 percent of all values are missing. Instead of parents’ 

education, we use the number of books at home as our indicator of family background.  

Among the variables reflecting family background, this is the one with best item response 

rate.  In addition, this is an appealing variable in its own right.  It is clearly correlated with 

parental income, education and origin. Table A3 in the appendix presents the weighted means 

of student background variables by categories of the books at home variable.  The variable 

also reflects whether the parents value literary skills.  Parents who own many books most 

likely will also promote reading among their children.  In fact, Woessmann (2004) found the 

number of books to be the single most important predictor of reading skills among various 

family background variables in the Third International Math and Science Study (TIMSS) and 

Ammermueller (2005) in PIRLS and the Programme for International Student Assessment 

(PISA) data.  As an alternative peer measure, we use an index of parents’ highest educational 

attainment and report the results in the Appendix. 

 

Table 2 demonstrates that the sample size, conditioning on non-missing student background 

and school variables, shrinks to about 40 to 75 percent of the original.  Row 6 in the table 

gives the sizes of the samples we actually use.  All figures from row 6 onward refer to the 

sample with no missing values.  Reading scores in the selected samples are slightly higher 

than in the overall sample.  Some sample schools have only one class.  Our within school 

estimates will only be utilizing the schools with two or more classes.  Information on the 

students, classes, and schools with more than one class can be found in the bottom rows of 

Table 2.  Means and standard deviations of all the variables are reported in Table A1, while 

Table A2 presents the percentage of missing values for each variable in the original data.  

Both these tables are contained in the Appendix.  The peer effects estimations have also been 

performed including all observations for which test scores are reported.  Missing values have 

been replaced by zeros and dummy variables for missing values for each variable have been 

added to the regressions.  The estimated peer effects are comparable to the evidence presented 

in section five and are available from the authors upon request. 

 

The home questionnaire asked parents to report the number of books in their home in five 

categories: none or few books (0 – 10), enough to fill one shelf (11 – 25), enough to fill one 
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bookcase (26 – 100), enough to fill two bookcases (101 – 200), enough to fill three or more 

bookcases (more than 200).1  In order to form a single measure of students’ background, after 

some experimentation, we chose a simple index which assigns 1 to the lowest category (0 – 

10), and 5 to the highest category (more than 200).  The median parent reports 26 – 100 or 

101 – 200 books, and the mean of the indices range from about 3.3 to 4, depending on the 

country (see Table 3 below and Table A1). 

 

We generated peer variables as the class average of five student background variables: 

number of books at home, student’s sex and age, whether at least one parent was born abroad, 

and whether a foreign language is spoken at home.  There is an argument in the literature on 

peer effects whether class rooms or schools (or possibly even neighborhoods) are the more 

appropriate unit of peer interactions.  Of course, peer interactions may occur at each of these 

levels, and it is an open question which is the most important.  We focus on the class room 

level for the pragmatic reason that we want to analyze differences within schools.  In the 

within school estimates, all peer interactions with students from other classes in the school 

will be absorbed into the school fixed effects. However, peer effects in the class room are 

clearly of interest, since classes are the basic unit where learning takes place.  It is therefore 

natural to expect that a large fraction of total peer effects should arise at the class room level. 

 

The peer averages are formed using information for all students who report a value for this 

specific variable in the data set, not just those students in the final sample. In Table 3, we 

decompose the total variance in these class averages into the parts of the variance within and 

between schools using the relationship 
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where x is the specific variable we are interested in, s = 1, 2, …, S is a school indicator, c = 1, 

2, …, CS is a class indicator, and there are CS classes in school s.  N is the total number of 

classes across all schools in our sample.2   

 

                                                 
1 Using instead the number of books at home reported by students yields comparable results. 
2 For the variance decomposition to add to the total variance in an unbalanced panel, it is necessary to weight the 
between component by the number of classes in the sample.  This is not what, for example, the Stata xtsum 
command calculates. 
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Table 3 presents the total, between and within school variance of the peer variables. The 

variation for the average reading test score is shown as well.  It is obvious that most of the 

variance in all of these measures is between schools.  Between 7 and 18 percent of the 

variance in the index for the number of books at home is within schools.  The fraction is 

higher for the reading test scores.  However, 70 percent or more of the test score variation is 

also between schools.  This suggests that a large part of the variation in all these measures is 

accounted for by school effects.  Nevertheless, there is also some non-negligible amount of 

variance left within schools.   

 

4  Selection in class room formation 

In this section we will discuss the assignment of students both between and within schools. 

We start by presenting some basic information on primary schooling in the countries we 

study.  We then go on to present some evidence from the PIRLS data to shed light on the 

question whether classes are formed (more or less) randomly, and whether different class 

rooms systematically get different resources. 

 

In all six countries in our sample, students attend a single track primary school from school 

enrolment to at least grade four, in which students have been tested in PIRLS.3  While 

students are assigned to various school types after grade four in Germany, they stay on for at 

least two more years in primary school in most other countries (France, Iceland, the 

Netherlands, and Sweden) or go on to a single tracked secondary school (Norway). School 

choice for primary school is free in some countries (Germany and the Netherlands) and 

depends on the place of living in the other countries. However, parents have some means to 

influence the choice of schools also in these countries. In practice, most parents choose the 

nearest school for convenience in all countries (or live near the school of their choice). The 

heads of the school are responsible for the assignment of students to classes within schools. 

Most countries have legal rules on maximum class size and some school systems provide 

extra resources for schools with a high share of migrant students. The final responsibility lies 

with the heads of school, however. Grouping of students seems to happen in some cases based 

on the migration background of students.  We have found no direct evidence that primary 

                                                 
3 The information on the schooling systems is taken from Eurybase, the database in the information network on 
education in Europe, http://www.eurydice.org. 
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schools in any of the sample countries use any systematic ability grouping or sorting by 

family background in grade four.4 

 

The PIRLS data asked in the schools questionnaire whether the school forms sample classes 

on the basis of ability.  The last row in Table 2 reports the fraction of students in schools that 

report some ability grouping at the class level.  This fraction is very low except in France and 

the Netherlands, where it reaches in the order of 30 percent.  While we do not find much 

evidence that the classes in these tracked schools look very different from classes in other 

schools, we also show results excluding these schools which report some tracking.   

 

We investigate two separate and distinct questions about class room formation with the 

PIRLS data.  The first question is whether class rooms which differ in composition, for 

random or non-random reasons, receive different resources.  The second question is whether 

the data are consistent with classes being formed randomly.  In order to shed light on the first 

question, we ran a set of regressions of the peer variables described in the previous section on 

class room, teacher, and school characteristics.  The observable characteristics of class rooms 

and schools which we use are class size, teacher gender, education, and experience, size of the 

town or city, instruction hours per day, and the degree of shortages of staff, materials, or 

rooms that the school reports.  

 

Table 4 illustrates these regressions for Germany.  For books at home, the only significant 

variable is shortage of rooms in the school, while none of the class level variables are 

individually significant.   The other peer characteristics are also typically unrelated to class 

room and school characteristics, with coefficients usually being small and insignificant.  The 

only exception is immigrants and non-native speakers, who tend to be clustered in more urban 

schools.  Classes with more immigrants also tend to have better educated teachers.  

 

Table 5 shows p-values for the corresponding F-tests on the joint significance of the variables.  

The first three rows of this table refer to simple OLS regressions of the type run in Table 4, 

which include both class room and school characteristics.  F-tests for the class room level 

variables, the school level variables, and both groups together are reported.  The fourth row 

reports the F-tests for the class level variables from a regression including school fixed 

effects.  For our family background variable of interest, the number of books at home, the 

                                                 
4 We consulted researchers in each of the sample countries and they also confirmed this impression. 
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class and school variables are typically insignificant, with a few exceptions.  School level 

variables seem to matter in the Netherlands and Norway.  This may simply indicate that 

students from more favorable backgrounds are not randomly allocated to schools.  There is no 

correlation with class level variables, however.  So this should not affect our conclusions 

when we look at within school results.  There is some evidence for class level variables being 

related to family background in Iceland and in Sweden.  In the case of Iceland, this only 

appears in the fixed effects regressions.  It turns out that this correlation is solely driven by a 

single class room with a teacher with 20 years of experience (while all other teachers in 

Iceland have 10 or fewer years of experience).  We discount this result as spurious.  In the 

case of Sweden this seems indeed to indicate a non-random allocation of class room resources 

to classes with students from different background, even within schools.  In particular, there is 

evidence that class size increases with average background of students in a class.  The 

coefficients for the other class and school variables are not significant.   

 

We also find some evidence that class rooms differ for students by age (in Germany, Iceland, 

and Norway) and by student sex (in Iceland, the Netherlands, and Norway).  It also seems 

fairly clear that classes are different for immigrant students in all our sample countries.  The 

higher the share of immigrant students in a class, the lower is teacher’s education in Germany 

and Norway. Instead, teacher’s education increases with the share of immigrants in France. In 

Sweden, there is weak evidence for an allocation of immigrant students to larger classes. 

 

In order to test whether class rooms are formed randomly with respect to a particular student 

characteristic, we perform a series of Pearson Chi² tests.  If classes are formed randomly, the 

student characteristic under study and the class the student is assigned to should be 

statistically independent.  For example, consider student sex.  The Pearson Chi² test asks 

whether there are more females in a particular class than is consistent with independence, 

given the number of students in the school.  Formally, for each school the test statistic is 

given by 

 

( )
∑∑

−
=

c j cj

cjcj

n
nn

P
ˆ

ˆ 2

 (7)
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where ncj is the number of students with characteristic j in class room c, c = 1, …, C, j = 1, 

…, J.  Define  

 

∑=•
j

cjc nn  ∑=•
c

cjj nn  ∑∑
••=

c j
cj

jc
cj n

nn
n̂

 

where cjn̂ is the predicted number of students with characteristic j in class room c when 

characteristic and class room are independent.  Then, under the null hypothesis of 

independence, P ∼ χ2 with (C – 1)(J – 1) degrees of freedom.   

 

We further assume that the S schools in a country are independent.  In this case, we can 

simply add up the S test statistics to get an aggregate test statistic with [ ] )1()1( −−∑ JCs  

degrees of freedom (see, e.g. DeGroot, 1984, p.384).  Obviously, the test can only be carried 

out on the sub-sample of schools with two or more class rooms.  These test statistics are 

shown in the fifth row of each panel in Table 5.  We found in a small Monte Carlo experiment 

that the test generally performs well but rejects somewhat too often under the null hypotheses 

in samples of our size.   

 

Figure 1 shows the histograms of the school specific p-values for this test for Germany.  

Under the null hypothesis of random assignment to classrooms, the p-values should be 

(roughly) uniformly distributed. A policy of deliberate balancing of students’ characteristics 

across classrooms (e.g. making sure that the same fraction of girls are in each class) would 

lead to a left-skewed distribution, while an assignment of similar students to the same 

classroom would lead to a right-skewed distribution (cf. Graham, 2004).  Figure 1 suggests 

that students are roughly randomly assigned to classes on the basis of family background and 

sex.  However, there is clustering of immigrant and non-native language students in certain 

classes, as low p-values predominate for these tests.   

 

Table 5 confirms these results.  The p-values of the aggregate tests for books at home and sex 

are 0.24 and 0.12, respectively.  However, the p-values are only 0.016 for foreign born, and 

0.050 for non-German speaking children.  We also find evidence of non-random assignment 

of immigrant children for the Netherlands and Sweden.  In addition, there seems to be some 

evidence that children of a similar family background are grouped together in Sweden.   
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Recall that principals in a significant number of schools in France and the Netherlands report 

ability grouping in their schools.  The p-values presented in Table 5 differ only slightly 

between these schools and those that report no tracking in France and the Netherlands.  One 

exception is the evidence for sorting by age within the 19 schools that may be tracked in 

France.   

 

Our results largely confirm that classes in the sample countries seem to be formed roughly 

randomly within schools.  There is little evidence that students of different family 

backgrounds are more likely to be grouped in certain classes conditional on the school they 

attend, or that classes with different compositions receive different (observable) resources.  

This is comforting for our analysis.  The only country, where this does not seem to be the 

case, is Sweden.  Hence, the Swedish results may have to be taken with a grain more of salt.  

In addition, immigrant children, which are an important group in all of the sample countries, 

also seem to be non-randomly assigned and given different teaching resources.   

 

5 Basic results on peer effects 

We now turn to our results on peer effects.   Table 6 reports results for Germany, which is the 

country with the biggest sample, and, in particular, with the largest number of schools with at 

least two classrooms.  We report results for two versions of the peer variable on books at 

home and two versions of the individual level regressor on books at home.  Since the variable 

takes on five categories, the most nonparametric way to use the variable is to use the fraction 

of peers in four of the categories.  Alternatively, we use the 1 – 5 index we created from these 

five categories.  In each case, the peer variable for student i used in the regressions is the 

leave-out mean for the classroom, omitting the value of the variable for student i from the 

calculation of the mean.   

 

In the upper part of Table 6, four dummy variables are used as the individual level control 

variable, while the index is used in the lower part of the table.  In each case, only the 

coefficients on the peer variable are shown in the table.  Column 1 shows results when we 

only control for student level characteristics (gender, age, immigrant status, language at home, 

household size as well as the control for the number of books in the home of the student).  

Going from a classroom where all peers have 26-100 books to a classroom where all peers 



 15

have 101-200 books, a change of about a two standard deviations of the peer composition 

across classrooms, is associated with a 19 point increase in the test score.  This is about 32 

percent of the student level standard deviation in test scores.  We find a very similar result in 

the specification with the single index measure for peers’ books at home.  This is not 

surprising since in practice most of the variation in the index variable occurs in the range 

between the 26-100 and the 101-200 books categories.  Results are very similar, no matter 

how books at home are controlled for at the individual level. 

 

In column (2) of Table 6, we add class and school level covariates to the regression.  Adding 

these covariates does little to the results.  This is not surprising, since we found in Tables 4 

and 5 above that the class and school level covariates are basically uncorrelated with our 

measure of peer quality.  In column (4) we add a school level measure of the peer group.  This 

changes the results dramatically.  The coefficient on the index variable drops from about 18 to 

zero and is insignificant.  When the peer effects are measured by the fraction of peers in each 

category, the peer effects are no longer monotonic now.  However, these effects are also 

imprecisely estimated.  Finally, in columns (5) and (6), we add a full set of school fixed 

effects, leading to comparable results as for the school peer measures.  The exclusion of 

schools that reported to form classes on the basis of student ability in column (6) hardly 

changes the results.  Using the categories or the index for the individual books variable leads 

to very similar estimated peer effects.  Using the peer’s index of books at home seems a 

useful summary.  Standard errors for the categorical measure of the peers’ variable are often 

so high as to make it difficult to draw any conclusions from the results.  For ease of 

interpretation, we will therefore only present results which use the index of books at home for 

both the individual level and the peer variable. 

 

Table 7 summarizes the results for all the six countries.  We find a relatively consistent 

pattern of results for all six countries in our sample.  The size of the estimated peer effect is 

similar across the specifications with and without school and class level variables, and is in 

the order of 15 to 22 for moving peer quality to the next higher category.  Only in Norway 

does the peer coefficient fall when school level covariates are added to the regression.  Once 

we include school peer measures in column (3) or school fixed effects in column (4), the 

effect always falls, although the amount of the change is different across countries.  In 

Germany, Iceland, and Norway the peer effect weakens the most in these specifications, while 

there is little change in France. Excluding schools that form classes based on student ability 
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predictably only changes the results in France and the Netherlands, the two countries with 

moderate shares of students in schools which form classes based on ability (see Table 2).  

Curiously, estimated peer effects are larger when the schools which report tracking are 

excluded for the Netherlands. 

 

One reason for the high variation in the coefficients from the fixed effects models is that the 

standard errors of these estimates are reasonably large, so that the effects for each individual 

country cannot be estimated very precisely.  If we believe that the peer effects are the same in 

each country then it makes sense to combine the estimates into a single estimate.  The average 

of the six coefficients in the fixed effects specification in column (4), weighted by the inverse 

of the sampling variance, is 8.5.  If the variation in country level estimates around this overall 

mean is only due to sampling variation, then the standard error for the meta-estimate is 3.3.5  

This estimate is much more precise than the country level estimates, and it is significant at the 

5 percent level.  One concern is with the results for Sweden, because we found some evidence 

for non-random assignment and targeted class room resources for Sweden above.  The meta-

estimate for the countries without Sweden is only slightly lower.  

 

Our results show that standard OLS estimates of the peer effect may be biased upward 

substantially if the within school results are indeed reliable estimates of the true peer effect.  

This is true even after controlling for the typically available measures of class room and 

school characteristics.  One reason why even the fixed effects estimates may be biased is the 

presence of immigrant children.  We showed above that immigrant children are often not 

randomly assigned to classes within schools, and the classes with many immigrant children 

may get different resources.  Since immigrants in these countries tend to be of lower SES (the 

index for books at home is on average 3.15 for immigrant families in the six countries but 

3.56 for non-immigrant families), part of the peer effect may be explained by the non-random 

allocation of immigrants.   

 

In order to probe this, we reran the regressions in Table 7 including the fraction of foreign 

born children in the class, and the fraction of children speaking a foreign language at home.  

                                                 
5 The sampling variance of the mean is obtained as [ ] 11 −−∑= cvv , where vc is the sampling variance of the 
estimate for country c.  One interpretation of this calculation is that the country average is the minimum distance 
estimate of the common peer effect across countries. 
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This attenuates the estimated peer effects at most very slightly.6   We also experimented with 

regressions on the sub-sample of schools with few immigrant children.  However, most 

sample countries have enough immigrants that there are relatively few such schools leading to 

small samples, and hence imprecise estimates.  These results indicate that the effect of 

immigrant children in a class may be relatively well captured by our family background 

variable. 

 

A further question is whether peer effects vary across students. This could give insights into 

the optimal assignment of students to classes. When students from a lower social background 

profit more from their peers’ background than students from a high social background, more 

heterogeneous classes would benefit overall performance (Glewwe, 1997). To investigate 

this, we add interaction effects between the peer variable and the individual variable books at 

home to the regressions presented in Table 7. Since about half the students have more than 

100 books at home, we interact the peer average with a dummy indicating whether the 

individual reports more than 100 books at home.  The results are presented in Table 8.  Peer 

effects seem to be stronger for students with a higher social background in France and the 

Netherlands, while they are stronger for students with a lower social background in Sweden 

and Norway.  The meta-estimates are small and insignificant.     

 

6 Measurement Error 

Survey reports are subject to a lot of measurement error.  In our case, measurement error in 

the books at home variable implies that there is measurement error in both the individual and 

the peer level regressor.  In addition, the peer measure is not based on all students in a class 

because some students have not been sampled and others have not responded to the respective 

question.  This problem will also arise in many studies based on administrative data, which 

frequently use lagged test scores as peer measure, since test taking may be incomplete or 

lagged scores cannot be matched to all students.  Both these measurement problems will 

interact in leading to biased estimates of the peer effect in a non-standard way. 

 

                                                 
6 Including measures from the school questionnaire on the share of economically disadvantaged students or the 
share of students leaving before the end of the academic year as alternative school level variables did not change 
the results. 
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In order to investigate the impact of measurement error in this setup we will return to the 

model we outlined in equations (2), (4), and (5) above.  In order to focus on the variables of 

interest, consider a simplified version of equation (2) with only the individual level and the 

peer group regressor but no other variables: 

 

icscsiicsics XXy ελβ ++= − )(  (8)

 

The student background variable Xics is still given by equation (4) but this variable is not 

directly observed.  Instead we observe 

 

icsicscsicsicsics uvuXX ++=+= η~  (9)

 

where uics is a classical measurement error.  Our argument above has been that the correlated 

shocks ηcs only arise at the school level.  Hence, we can think of our standard OLS results 

corresponding to those with 02 >ησ and the within school results to 02 =ησ .   

 

In this setup, the OLS estimate of λ will converge to 
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as we show in the appendix.  Ncs is the actual number of students in classroom c in school s 

and ncs is the number of students in the sample.  In order to understand the different sources of 

measurement error and the sign of the bias, it is instructive to look at some special cases.  

First, consider the case where all students in each class are sampled, so the only problem is 

classical measurement error.  In this case  

 

( )
( )( )

( ) ( )
( ) ( )22222222

222222

22222

22 11ˆlim
uvcsuuvcsv

ucsuvcsv

uvcsuv

ucs
OLS NN

NN
N

N
p

σσσσσσσσ
σσσσσσ

λ
σσσσσ

σσ
βλ

ηη

ηη

η

η

+++++

−+++
+

+++

−
=  

(11)

 



 19

It is easy to see in this formulation, that the second term implies an attenuation bias of λ if 

there is classical measurement error in Xics.  This measurement error will carry over to csiX )(− , 

and lead to the standard attenuation.  Since λ is likely positive, this will imply an 

underestimate of λ.  Returning to equation (10), it becomes clear that the attenuation is 

greater, when some students in the class are not sampled.  If 02 >ησ  a second component of 

the bias arises, and this is captured by the first term in equation (11).  The individual level 

regressor Xics is also subject to error and hence will lead to an attenuation of the estimated β̂ .  

Since the peer variable contains csiX )(−  information on ηcs, part of the signal in the individual 

level regressor will load on to the peer coefficient.  This term is positive, and hence yields an 

upward bias.   

 

Because of these two conflicting sources of bias it is impossible to tell what the net effect of 

the bias on OLSλ̂  is.  The first term can dominate when β is sufficiently larger than λ.  Hence 

measurement error may not lead to an underestimate of the peer effect in the standard OLS 

specification.  Since the within school model corresponds to the case where 02 =ησ , the first 

term in equation (10) and (11) vanishes, and the peer effect is now underestimated.  Hence, 

measurement error alone may explain why we find lower peer effects in the fixed effects 

estimates in Table 7.   

 

In order to address the measurement error problem, we rely on the standard remedy by using 

instruments for both Xics and csiX )(− .  Recall that in our case the background variable Xics is the 

parents’ report of the number of books at home.  The same question was asked of the students 

as well, so we use the students’ report of the number of books at home as our instrument for 

the parents’ report, and the peer mean of the students’ report as instrument for the peer 

variable.  A second plausible instrument is parents’ education.  However, books at home may 

not be a sufficient statistic for the way family background affects students’ reading skills, and 

parents’ education may affect students independently.  Hence, we also re-estimate the IV 

models with only the student variable on books. 

 

If the instrument is valid, the IV estimate of λ will converge to 
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This is the same as the expression in equation (10) with 02 =uσ , so IV solves the standard 

measurement error problem.  It does not resolve the attenuation in the peer effect that arises 

due to the fact that we do not sample all the students in a class.  When 02 =ησ , equation (12) 

becomes  
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This suggests that the within school IV estimate is simple to adjust for the sampling bias since 

Ncs and ncs is known in our data.  One problem we have ignored in these calculations is the 

fact that class sizes are not the same for each class.  However, we find in a simple Monte 

Carlo experiment that using the adjustment in (13) works very well for the level of variation 

in class sizes present in our data.  Our adjusted IV estimator will therefore be 
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The first stages corresponding to our IV regressions indicate that both the relevant 

instruments for the individual level regressor and for the peer variable are always highly 

significant.  The t-statistics on the students’ report of books at home and parents’ education 

are above 7 and typically above 10, and the corresponding F-statistics are also large.7  This 

indicates that our IV models are not likely to suffer from any small sample bias. 

 

Table 9 presents the results from the IV regressions.  Both the individual and peers’ index of 

the number of books at home from the home questionnaire are instrumented by the individual 

and peers’ index of books at home from the student questionnaire and parents’ highest 

educational level.  Including only student level variables, the average peer effect across all 

                                                 
7 The only exception is the Netherlands, where the instruments for the peer variable are not individually 
significant.  However, the F-statistic for the joint significance of the instruments is above 10.  
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countries decreases slightly from 19 in the OLS regression in column (1) to 15 in the IV 

regression in column (2).  Recall from equations (10) and (12) above that the bias in the OLS 

regression may be positive if 02 >ησ .   

 

Columns (3) and (4) report the corresponding results when school fixed effects and class level 

regressors are included.  We know already that the standard fixed effects estimate is much 

smaller than the OLS estimate in column (1).  Applying IV to the within estimates yields a 

much higher average peer effect of about 15.  The magnitude of this coefficient is very similar 

to the pooled IV model in column (2).  This is perfectly consistent with our results in 

equations (11) and (13).  Column (5) applies the correction for sampling bias which raises the 

estimate slightly. Interestingly, this is actually slightly higher than the IV estimate in the 

pooled sample without school fixed effects.  We should note that the average peer effect 

across countries masks large differences in the country level estimates.  The coefficients in 

columns (4) and (5) basically only increase in France, and to a lesser degree in the 

Netherlands in Sweden, while they fall in the other countries.  However, the country level IV 

results are very imprecisely estimated.  Hence we focus on the average across countries.  

Finally, in column (6), we exclude tracked schools and the peer effect falls slightly but 

remains large.  If we use only the children’s report of books as instrument but not parental 

education, we obtain slightly larger IV estimates but these estimates are also less precise.  

Overall, these results suggest that the bias due to measurement error is important, particularly 

in the fixed effects results, while omitted variables bias actually does not play a large role.   

 

7 Effect sizes 

In order to facilitate comparisons with other studies, it is common in the literature to report 

effect sizes of the peer effects estimates.  Effect sizes are typically calculated as yX σλσ /ˆ  

where Xσ  is the within country variation in the peer variable, and yσ  is the within country 

variation in the test scores.  This quantifies the peer effect as the impact of a one standard 

deviation change in peer background in terms of individual level standard deviations of the 

outcome variable.   
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One complication with this measure in our context is that the standard deviation of the peer 

variable is not an unbiased measure of Xσ  because of the measurement error.  However, since 

we have both the parents’ and the children’s reports for books at home, the covariance of the 

two is a measure of the variance of the true variable if both reports are only subject to 

classical measurement error.   

 

We report the effect size measure and the necessary ingredients in Table 10.  As before, the 

effect sizes vary quite widely across countries, ranging from zero in Norway to almost 0.5 in 

France.  The average effect size across countries is 0.11.  This is larger than most of the 

estimates in the literature.  The bulk of the reported effect sizes is in the range of 0.05 – 0.10.  

Our estimate is at the upper end of that range but well below the highest estimates reported in 

studies by Hoxby (2000) and McEwan (2003).   One reason why our estimates are higher 

might be that we are careful about the measurement error in the peer effects variable.  

However, adjusting for measurement error lowers the estimate of Xσ  and raises the estimate 

of λ̂ , so this cuts two ways.  However, the upward adjustment in λ̂  is much more important.  

Calculating the effect size on the basis of the estimates ignoring measurement error yields a 

value of only 0.06, almost half the size of our adjusted result.  Hence, the treatment of 

measurement error may be rather important, particularly in studies based on survey data, like 

Schindler-Rangvid (2003) and Schneeweiss and Winter-Ebmer (2005).   

 

8 Conclusion 

Peer effects are potentially a major input into the process of educational production but are 

difficult to estimate empirically.  We estimate peer effects across classes within primary 

schools and argue that classes within schools are formed randomly with respect to family 

background.  We find that a one standard deviation change in our student background 

measure of peer composition leads to a 0.11 standard deviation change in reading test scores 

of fourth graders across our sample of six European countries.  This is slightly larger than 

most previous estimates in the literature.  The estimated peer effects are highest in France and 

The Netherlands and lowest in Norway, Iceland and Germany.  For Sweden, the estimated 

effects are also high but might be driven by within-school selection.  
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We have argued that there is little evidence for systematic sorting into class rooms within 

schools, and for different classes receiving different observable instructional resources.  

Hence, comparing students in different classes within schools should be an effective way of 

dealing with any selection at the school level.  Surprisingly, we find that this selection does 

not seem to be very important once we take measurement error issues into account.  The 

discussion in this literature seems dominated with solving the selection issues, while little 

attention is being paid to the measurement error issues, which we find to be important in our 

data. 
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Figure 1: Distribution of school-specific p-values for Pearson Chi² test for Germany 
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Table 1: Recent studies on peer effects 
 

Studies Context Grade / 
student age Outcome Peer measure or 

treatment 
Peer 

group Identification Magnitude of 
peer effect 

Source of 
Magnitude

Non-linearities 
in peer effects 

Hoxby (2000) 
Public 

schools, 
Texas, US 

3rd to 6th 
grade 

Test scores 
(Reading, 

Math) 
Test scores Class Cohort gender 

variation 
1.s.d.  ~0.4 

s.d. 

Table 9, 
columns 3 

and 4 
No evidence 

McEwan 
(2003) 

Secondary 
schools, 

Chile 
8th grade Test scores  

(Spanish) Mothers’ education Class School fixed 
effects 

1.s.d.  0.27 
s.d. 

Table 3, 
column 4 

Slightly 
concave 

Hanushek et 
al. (2003) 

Public 
schools,  

Texas, US 

5th to 6th 
grade 

Math test 
score gain 

Math scores two 
years ago (also incl. 

prop. free lunch, 
std. dev of score) 

School-
grade 

Student and 
school-by grade 

fixed effects 

1.s.d.  
0.05.s.d. 

Table 2, 
column 3 
Table A1 

No evidence 

Cullen, Jacob 
and Levitt 
(2003) 

Chicago 
public 

schools, US 

9th and 10th 
grade 

Test scores, 
and others 

Winning a school 
voucher in lottery - Random 

assignment 
Near zero and 
insignificant 

Table 6, 
columns 1 

and 2 
No evidence 

Schindler 
Rangvid 
(2004) 

Secondary 
schools, 
Denmark 

Age 15 
PISA test 

scores 
(Reading) 

Mothers’ education School-
grade 

Additional 
controls from 
register data 

1 s.d.  0.07 
s.d. 

Table 4 
Table 1 

Weak evidence 
for declining 

effects 

Gibbons and 
Telhaj (2005) 

State 
secondary 
schools, 
England 

Age 14 
Test scores 
(English, 

Math) 

Attainment at age 
11 

School-
grade 

Random 
variation in 

transition from 
primary to 
secondary 

schools 

1 s.d.  0.08 
s.d. 

Tables 3 
and 4, 

column 7 

Slightly 
concave 

Graham 
(2004) 

STAR 
project, US 

Kinder-
garten to 
3rd grade 

Test scores 
(Math, 

Reading) 
Test scores Class 

Random 
assignment and 
excess variance 

contrasts 

50 percentile 
increase  
0.9-1.1 s.d. 

Table 5, 
column 3 - 

Schneeweiss 
and Winter-
Ebmer (2005) 

Secondary 
schools, 
Austria 

Age 15 
PISA test 

scores 
(Reading) 

Socio-economic 
status 

School-
grade 

School type fixed 
effects 

1 s.d.  0.06 
s.d. 

Table 2, 
column 1 
Table 1 

Weak evidence 
for declining 

effects 

Builds on Table 1 in Gibbons and Tehlhaj (2005). 
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Table 2: Mean scores and sample sizes 
(Standard deviations in parentheses) 

 
 Germany France Iceland Netherlands  Norway Sweden 

Reading score (all) 539.1 
(63.6) 

525.2 
(66.6) 

512.4 
(71.0) 

554.2 
(51.2) 

499.2 
(77.5) 

561.0 
(61.5) 

Reading score (sample) 548.6 
(59.9) 

533.7 
(64.2) 

518.6  
(68.4) 

565.2 
(51.3) 

505.0 
(76.0) 

563.1  
(61.3) 

Reading score (excl. 
tracked schools) 

548.6    
(59.7) 

534.2   
(65.4) 

518.7   
(68.3) 

562.8 
(53.6) 

504.4   
(76.4) 

562.8    
(61.5) 

Reading scores (tracked 
schools) 

549.4   
(64.2) 

532.2    
(60.5) 

506.8   
(81.0) 

568.8 
(47.5) 

529.1   
(66.5) 

570.0   
(56.6) 

No. of students (all) 7,633 3,538 3,676 4,112 3,459 6,044 
No. of students (sample) 4,577 2,312 1,728 1,857 2,548 3,997 
No. of students in 
schools with > 1 class 3,628 1,612 1,301 805 1,748 3,270 

No. of schools 183 115 84 105 117 119 
No. of schools with > 1 
class 114 55 39 29 54 79 

No. of classes 301 172 135 141 171 267 
No. of classes in schools 
with > 1 class 232 112 90 65 108 227 

Fraction of students in 
schools that apply 
tracking  

0.067 0.278 0.006 0.328 0.035 0.046 

 
Scores are weighted by students’ sampling probability, standard deviations are in parentheses.  Rows 6 and 
below refer to the sample used in the estimations.  Last row reports the fraction of students in schools in which 
principals state that classes are formed by ability out of all students in schools for which principals reply to the 
question. 
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Table 3: Decomposition of variance in class level means 
 
 Germany France Iceland Netherlands  Norway Sweden 

Index of the number of books at home 
Mean 3.45 3.30    4.00  3.37 4.00     3.95    
Total  .2401 .3138 .1480 .3922 .1542 .2643 
Between .2098 .2726 .1220 .3629 .1297 .2174 
Within .0303 .0412 .0259 .0293 .0245 .0469 

Age 
Total  .0326 .0313 .0065 .0306 .0082 .0111 
Between .0250 .0183 .0050 .0212 .0060 .0060 
Within .0076 .0130 .0015 .0094 .0022 .0051 

Female 
Total  .0145 .0226 .0212 .0156 .0145 .0158 
Between .0085 .0174 .0170 .0139 .0125 .0091 
Within .0061 .0052 .0043 .0017 .0020 .0067 

Foreign parent 
Total  .0459 .0463 .0095 .0488 .0222 .0485 
Between .0404 .0413 .0069 .0451 .0189 .0386 
Within .0054 .0050 .0026 .0036 .0033 .0099 

Foreign language at home 
Total  .0141 .0151 .0088 .0345 .0069 .0230 
Between .0112 .0128 .0058 .0330 .0052 .0167 
Within .0029 .0023 .0030 .0015 .0017 .0064 

Reading test scores 
Total  1144.71 1223.61 751.93 896.62 1075.93 1123.78 
Between 978.47 908.63 569.62 799.28 933.10 791.51 
Within 166.24 314.97 182.31 97.34 142.83 332.27 
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Table 4: Regressions of peer variables on class room  
and school characteristics in Germany 

 
 Dependent Variable 

Independent Variable Books Age Female Foreign 
parent 

Foreign 
language 

Class size .002   
(.091) 

-.011 
(.043) 

.030   
(.017) 

.010 
(.028) 

.015 
(.014) 

Class size squared*100 .03    
(.2) 

.001   
(.09) 

-.06 
(.04) 

-.03    
(.06) 

-.03 
(.03) 

Female teacher .109   
(.070) 

.031 
(.024) 

.006    
(.019) 

-.008   
(.030) 

-.009   
(.013) 

Teacher education: 
ISCED 4 

.001   
(.146) 

.026 
(.050) 

-.039   
(.039) 

.006 
(.036) 

-.018    
(.023) 

Teacher education: 
ISCED 5+ 

.065   
(.114) 

-.062   
(.047) 

-.023   
(.034) 

.173 
(.025) 

.056   
(.015) 

Teacher’s experience 
in grade 4 

.001   
(.011) 

-.002   
(.003) 

-.005   
(.003) 

.005 
(.004) 

.0001   
(.002) 

Teacher’s exp. 
Squared*100 

.003   
(.03) 

.008   
(.009) 

.01    
(.008) 

-.01 
(.01) 

.00002   
(.006) 

Size of town  
< 3000 inhab. 

-.077   
(.265) 

.141   
(.037) 

.049   
(.074) 

-.084   
(.048) 

-.059   
(.039) 

Size of town  
< 100,000 inhab. 

.008   
(.081) 

.086   
(.026) 

-.029   
(.020) 

.090 
(.030) 

.044   
(.014) 

Size of town  
< 500,000 inhab. 

.045   
(.143) 

.073   
(.047) 

.004   
(.031) 

.167 
(.044) 

.084   
(.028) 

Size of town  
> 500,000 inhab. 

-.046    
(.154) 

.115    
(.049) 

.017   
(.035) 

.230 
(.064) 

.116   
(.033) 

Instruction hours per 
day 

.018   
(.053) 

.005   
(.018) 

-.022   
(.012) 

.014 
(.022) 

.012   
(.013) 

Shortage of staff -.020   
(.055) 

.004   
(.018) 

-.009   
(.010) 

.034 
(.021) 

.011   
(.011) 

Shortage of material .005   
(.071) 

-.035   
(.022) 

-.001   
(.013) 

-.013   
(.025) 

.005   
(.015) 

Shortage of rooms -.112   
(.057) 

.041   
(.022) 

.010  
(.012) 

.004 
(.020) 

.001   
(.013) 

 
Regressions are weighted by the students’ sampling probability. Number of observations is 4,577. Standard 
errors are clustered at the school level.  
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Table 5: P-values for F-tests on class room and school characteristics 
and for Chi² test for independence of peer variable and class assignment 

 
 Germany France Iceland Netherlands  Norway Sweden 

Index of the number of books at home 
 Class 0.4532 0.2886 0.7094 0.4051 0.0995 0.0673 
 School 0.7095 0.1016 0.0595 0.0005 0.0431 0.3348 
 Class+school 0.7766 0.0588 0.3538 0.0000 0.0286 0.2448 
 Class (SFE) 0.4595 0.2552 0.0123 0.3370 0.5675 0.0000 
 Pearson Chi² 0.2415 0.3813 0.7964 0.7512 0.0893 0.0364 

Age 
 Class 0.0002 0.5581 0.0704 0.0249 0.1587 0.3492 
 School 0.0050 0.0137 0.3197 0.0015 0.4364 0.4234 
 Class+school 0.0000 0.0394 0.1603 0.0000 0.2139 0.4130 
 Class (SFE) 0.0017 0.2672 0.0021 0.0046 0.0000 0.9300 
 Pearson Chi² 0.0694 0.2402 0.1452 0.0992 0.0467 0.6247 

Female 
 Class 0.1270 0.7582 0.0006 0.0286 0.0089 0.9612 
 School 0.5170 0.3604 0.5958 0.0000 0.8831 0.3424 
 Class+school 0.4082 0.5402 0.0062 0.0000 0.0902 0.6536 
 Class (SFE) 0.5677 0.2838 0.0000 0.1467 0.0036 0.1589 
 Pearson Chi² 0.1240 0.4615 0.9608 0.6011 0.8827 0.9657 

Foreign parent 
 Class 0.0000 0.1350 0.1339 0.0254 0.5828 0.2174 
 School 0.0000 0.0004 0.7760 0.0000 0.0000 0.0000 
 Class+school 0.0000 0.0011 0.3009 0.0000 0.0000 0.0000 
 Class (SFE) 0.0003 0.0327 0.0000 0.0024 0.0000 0.1171 
 Pearson Chi² 0.0157 0.3129 0.3201 0.0444 0.1335 0.0046 

Foreign language at home 
 Class 0.0052 0.6215 0.0173 0.1830 0.3365 0.1542 
 School 0.0004 0.0098 0.6573 0.1222 0.1026 0.0000 
 Class+school 0.0000 0.0717 0.0476 0.0000 0.0867 0.0000 
 Class (SFE) 0.0000 0.4776 0.0001 0.0000 0.0029 0.0000 
 Pearson Chi² 0.0495 0.6920 0.1861 0.4217 0.4860 0.0009  

 
The first four rows in each panel report p-values of Wald tests for the joint significance of the respective group 
of variables. The first three rows refer to regressions of peer variables on class and school variables.  The fourth 
row refers to regressions of peer variables on class variables controlling for school fixed effects. Running the 
regressions at the class level or including the student level variables sex, age, origin and language in the 
regressions for the first three rows yields comparable results.  The fifth row reports the p-value for Pearson Chi² 
tests of independence between the peer characteristic and class room assignment within each school using the 
individual level data.  See text for details. 
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Table 6: Regressions for reading test score on peer composition for Germany 
(Standard errors in parentheses) 

 
 

Independent Variable (1) (2) (3) (4) (5) 
Individual books variable: five categories 

Peers’ index of books at home 17.93 
(3.04) 

17.62   
(3.03) 

-.93   
(6.03) 

5.92 
(6.15) 

6.82   
(6.30) 

Fraction peers 11-25 books at home -20.15   
(23.44)

-4.42   
(21.11)

-31.63   
(22.87)

-49.91   
(42.75) 

-68.77   
(44.67)

Fraction peers 26-100 books at 
home 

21.41   
(18.08)

28.10   
(16.09)

-17.32   
(21.24)

-22.90   
(32.38) 

-26.36   
(33.20)

Fraction peers 101-200 books at 
home 

40.48   
(18.88)

47.49   
(17.24)

-10.31   
(24.85)

-11.15   
(39.44) 

-16.21   
(40.55)

Fraction peers 200+ books at home 54.86   
(17.69)

62.18   
(16.16)

-28.67   
(30.35)

-15.95   
(36.86) 

-21.31   
(37.36)

 
Individual books variable: index 

Peers’ index of books at home 17.97   
(3.04) 

17.66   
(3.03) 

-.98  
(6.02) 

5.93   
(6.11) 

6.80 
(6.27) 

Fraction peers 11-25 books at home -21.42   
(22.83)

-6.36   
(20.63)

-27.71  
(21.74)

-32.49 
(33.48) 

-45.14   
(35.74)

Fraction peers 26-100 books at 
home 

20.37   
(17.31)

26.54   
(15.39)

-13.03  
(19.10)

-7.50   
(23.62) 

-6.89   
(25.02)

Fraction peers 101-200 books at 
home 

39.68   
(18.16)

46.04   
(16.51)

-5.19   
(22.38)

5.40   
(28.67) 

5.37 
(30.17)

Fraction peers 200+ books at home 53.60   
(16.40)

60.21   
(14.99)

-21.18  
(26.37)

-.37   
(27.64) 

-2.18   
(28.48)

Student level variables      
Class level variables      
School level variables      
School peer variables      
School fixed effects      
Exclude tracked schools      

 
Weighted least squares regressions using students’ sampling probability.  Number of observations is 4,577.  
Standard errors are robust to clustering at the school level.  Student level variables are student’s sex and age, 
parents’ origin, language spoken at home, number of books at home (four categories in the upper part and index 
in the lower part of the table) and number of persons living in household. Class level variables are class size, 
class size squared, teacher’s sex, education, experience and experience squared.  School level variables are 
community size, average daily instruction hours, shortage of staff, teaching material and buildings.  School peer 
variables are school averages of index of number of books at home and parents’ origin.  Tracked schools are 
those for which principals state that fourth-grade classes are formed on the basis of ability.   
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Table 7: Regressions for reading test score on peer composition 
(Standard errors in parentheses) 

 
 (1) (2) (3) (4) (5) 

Germany 17.97 
(3.04) 

17.66   
(3.03) 

1.52   
(5.29) 

5.93 
(6.12) 

6.80   
(6.27) 

France 22.23   
(3.05) 

22.84   
(2.91) 

22.11    
(7.67) 

19.12   
(8.32) 

14.08   
(10.78) 

Iceland 18.08   
(5.77) 

19.97    
(5.04) 

9.73   
(11.07) 

6.46   
(11.28) 

3.28    
(11.37) 

The Netherlands 17.58  
(4.30) 

19.70   
(4.37) 

7.80   
(8.01) 

11.17     
(9.29) 

20.06    
(10.57) 

Norway 15.46   
(7.33) 

9.84   
(7.42) 

-1.12   
(10.47) 

-6.93      
(9.44) 

-6.56   
(9.57) 

Sweden 18.98   
(3.84) 

18.04    
(4.10) 

12.59   
(6.78) 

12.07   
(6.97) 

11.73    
(7.20) 

Average across countries 19.17 
(1.61) 

19.40 
(1.59) 

8.33 
(3.05) 

8.50 
(3.29) 

8.08 
(3.52) 

Student level variables      
Class level variables      
School level variables      
School peer variables      
School fixed effects      
Exclude tracked schools      

 
Weighted least squares regressions using students’ sampling probability. Peers’ index of books at home is 
independent variable. Standard errors are robust to clustering at the school level.  Student level variables are 
student’s sex and age, parents’ origin, language spoken at home, index of number of books at home and number 
of persons living in household.  Class level variables are class size, class size squared, teacher’s sex, education, 
experience and experience squared.  School level variables are community size, average daily instruction hours, 
shortage of staff, teaching material and buildings.  School peer variables are school averages of index of number 
of books at home and parents’ origin.  Tracked schools are those for which principals state that fourth-grade 
classes are formed on the basis of ability. 
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Table 8: Regressions for reading test score on peer composition 
and interactions with individual family background 

(Standard errors in parentheses) 
 

 (1) (2) (3) (4) 
 Peer Inter Peer Inter Peer Inter Peer Inter 
         

Germany 17.58   
(3.03) 

.82   
(1.04) 

1.27   
(5.28) 

.66   
(1.02) 

5.69   
(6.11) 

.65   
(1.04) 

6.58   
(6.26) 

.63   
(1.08) 

France 20.94   
(3.12) 

2.46   
(1.43) 

20.16   
(7.59) 

2.75   
(1.42) 

17.78   
(8.27) 

1.85   
(1.40) 

11.84   
(10.40) 

2.95   
(1.68) 

Iceland 17.32   
(5.82) 

1.43   
(1.66) 

9.02    
(11.14)

1.36   
(1.65) 

5.54   
(11.46)

1.58    
(1.66) 

2.60   
(11.61) 

1.19   
(1.63) 

The Netherlands 17.74   
(4.49) 

-.34   
(1.36) 

7.42   
(8.14) 

.92   
(1.23) 

10.68   
(9.46) 

1.15   
(1.28) 

18.45   
(10.71) 

4.38   
(1.35) 

Norway 15.35    
(7.58) 

.16   
(1.76) 

-1.03    
(10.54)

-.17   
(1.75) 

-6.58   
(9.37) 

-.71   
(1.71) 

-6.24   
(9.51) 

-.61    
(1.75) 

Sweden 19.91   
(3.94) 

-1.35   
(1.14) 

13.81   
(6.80) 

-1.40   
(1.13) 

13.81   
(6.98) 

-2.01   
(1.13) 

13.84   
(7.21) 

-2.43   
(1.16) 

Average across 
countries 

18.81 
(1.64) 

0.38 
(0.54) 

8.13 
(3.06) 

0.54 
(0.53) 

8.49 
(3.29) 

0.28 
(0.53) 

8.06 
(3.51) 

0.76 
(0.56) 

Student level variables         
Class level variables         
School level variables         
School peer variables         
School fixed effects         
Exclude tracked 
schools         

 
Weighted least squares regressions using students’ sampling probability. Peers’ index of books at home 
(columns “Peer”) and interaction term of peers’ index and individual level dummy variable for > 100 books at 
home (columns “Inter”) are jointly included. Standard errors are robust to clustering at the school level.  Student 
level variables are student’s sex and age, parents’ origin, language spoken at home, index of the number of books 
at home and number of persons living in household.  Class level variables are class size, class size squared, 
teacher’s sex, education, experience and experience squared.  School level variables are community size, average 
daily instruction hours, shortage of staff, teaching material and buildings.  School peer variables are school 
averages of index of number of books at home and parents’ origin.  Tracked schools are those for which 
principals state that fourth-grade classes are formed on the basis of ability. 
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Table 9: IV regressions for reading test score on peer composition 
(Standard errors in parentheses) 

 
 

 (1) ( 2) (3) (4) (5) (6) 

Germany 17.97 
(3.04) 

12.60  
(4.01) 

5.93 
(6.12) 

6.84  
(10.64) 

8.62  
(13.40) 

4.46   
(12.56) 

France 22.23   
(3.05) 

16.51   
(3.64) 

19.12   
(8.32) 

47.75   
(17.84) 

64.99   
(24.28) 

63.63   
(27.08) 

Iceland 18.08   
(5.77) 

-.93  
(8.39) 

6.46   
(11.28) 

7.27   
(21.21) 

9.57   
(27.91) 

12.96   
(28.43) 

The Netherlands 17.58  
(4.30) 

13.47   
(5.48) 

11.17    
(9.29) 

24.80  
(31.38) 

41.53  
(52.54) 

163.64   
(139.90)

Norway 15.46   
(7.33) 

20.00   
(10.86) 

-6.93     
(9.44) 

.18   
(16.49) 

.22   
(20.01) 

.005   
(19.79) 

Sweden 18.98   
(3.84) 

22.00   
(4.66) 

12.07   
(6.97) 

19.69   
(12.48) 

26.21   
(16.61) 

23.16   
(16.51) 

Average across countries 19.17 
(1.61) 

15.22 
(2.04) 

8.50 
(3.29) 

14.97 
(6.29) 

18.70 
(8.16) 

14.75 
(8.11) 

Student level variables       
Class level variables       
School fixed effects       
IV books individual       
IV books peer measure       
IV parents educ. indiv.       
IV parents educ. peers       
Corrected for sampling bias       
Exclude tracked schools       

 
Weighted least squares and instrumental variable regressions using students’ sampling probability. Peers’ index 
of books at home is independent variable. Standard errors are robust to clustering at the school level.  Student 
level variables are student’s sex and age, parents’ origin, language spoken at home, index of number of books at 
home and number of persons living in household.  Class level variables are class size, class size squared, 
teacher’s sex, education, experience and experience squared.  School level variables are community size, average 
daily instruction hours, shortage of staff, teaching material and buildings.  The individual’s and peers’ index of 
the number of books at home from the home questionnaire are instrumented by the individual’s and peers’ index 
of books at home from the student questionnaire and individual’s and peers’ index of parents’ highest 
educational level.  A dummy for missing observations for the parental education variable has been added to not 
further restrict the sample size.  The correction factor for sampling bias in columns (5) and (6) is (N-1)/(n-1).  
Tracked schools are those for which principals state that fourth-grade classes are formed on the basis of ability.  
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Table 10: Effect sizes 
 
 
 (1) ( 2) (3) (4) (5) 

 
S. D. test 
score yσ  

S. D. peer 
variable

X
~σ  

S. D. peer var. 
adjusted Xσ  

Peer  
effect λ̂  

Effect size 
yX σλσ /ˆ  

Germany 59.9 .462 .379 8.6 .055 

France 64.2 .572 .480 65.0 .485 

Iceland 68.4 .367 .278 9.6 .039 

The Netherlands 51.3 .579 .420 41.5 .340 

Norway 76.0 .370 .300 .2 .001 

Sweden 61.3 .458 .420 26.2 .179 

Average across countries 63.5 .468 .379 18.7 .112 

 
Column (3) is the square root of the covariance between the peer variables index of books at home taken from 
the student and the home questionnaire. The estimates of the peer effects in column (4) are taken from column 
(5) in Table 8.  The results in column (5) are calculated as (4)*(3)/(1) 
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Appendix A 
 

Table A1: Weighted mean values 
(standard deviations in parentheses) 

 
 Germany France Iceland Netherlands  Norway Sweden
Student background       

Student female .52 
(.50) 

0.49 
(0.50) 

0.50 
(0.50) 

0.53 
(0.50) 

0.49    
(0.50) 

0.49    
(0.50) 

Student’s age 10.51 
(.47) 

10.10 
(0.49) 

9.72 
(0.28) 

10.24 
(0.46) 

9.97    
(0.33) 

10.80   
(0.32) 

Foreign parent .22 
(.42) 

0.29 
(0.46) 

0.12 
(0.32) 

0.17 
(0.37) 

0.17    
(0.38) 

0.23    
(0.42) 

Foreign language at home .09 
(.29) 

0.12 
(0.33) 

0.11 
(0.32) 

0.13 
(0.34) 

0.08    
(0.26) 

0.09    
(0.29) 

Books at home (index 1 – 
5) 

3.49   
(1.19) 

3.32   
(1.25) 

3.99   
(1.01) 

3.36 
(1.29) 

4.03    
(1.04) 

3.91   
(1.12) 

0 – 10 books (ref.) .06 
(.24) 

0.10 
(0.30) 

0.02 
(0.13) 

0.10 
(0.31) 

0.02    
(0.13) 

0.03    
(0.18) 

11 – 20 books  .12 
(.32) 

0.14 
(0.35) 

0.05 
(0.21) 

0.15 
(0.35) 

0.05    
(0.22) 

0.07    
(0.25) 

21 – 100 books  .36 
(.48) 

0.35 
(0.48) 

0.27 
(0.44) 

0.30 
(0.46) 

0.26    
(0.44) 

0.26    
(0.44) 

101 – 200 books  .19    
(.39) 

0.18 
(0.38) 

0.26 
(0.44) 

0.19 
(0.39) 

0.23    
(0.42) 

0.23    
(0.42) 

More than 200 books .27 
(.44) 

0.24 
(0.43) 

0.41 
(0.49) 

0.26 
(0.44) 

0.44    
(0.50) 

0.41    
(0.49) 

Household size 3.54 
(1.50) 

3.62 
(1.45) 

3.78 
(1.35) 

3.51 
(1.15) 

3.49    
(1.17) 

3.56    
(1.26) 

Class       

Class size 22.77 
(3.93) 

24.04 
(3.41) 

19.56 
(3.98) 

26.65 
(5.26) 

20.32   
(5.40) 

24.25   
(6.36) 

Teacher female .80 
(.40) 

0.62 
(0.48) 

0.94 
(0.23) 

0.51 
(0.50) 

0.84    
(0.36) 

0.79    
(0.41) 

Teacher’s education 
ISCED 3 (ref.) 

.07 
(.25) 

0.42 
(0.49) 

0.13 
(0.34) 

1.00 
(0.00) 

0.02    
(0.14) 

1.00    
(0.00) 

Teacher’s education 
ISCED 4 

.01 
(.12) 

0.23 
(0.42) 

0.12 
(0.33) 0 0.98    

(0.14) 0 

Teacher’s education 
ISCED 5+ 

.92 
(.28) 

0.35 
(0.48) 

0.75 
(0.43) 0 0 0 

Teacher’s experience 8.26 
(7.25) 

9.06 
(8.86) 

2.84 
(2.73) 

6.25 
(5.81) 

3.17    
(2.35) 

6.78    
(6.54) 
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Table A1, continued: Weighted mean values 
(standard deviations in parentheses) 

 
 

 Germany France Iceland Netherlands  Norway Sweden
School       

Village (ref.) .31 
(0.46) 

0.25 
(0.44) 

0.06 
(0.23) 

0.01 
(0.09) 

0.25    
(0.43) 

0.14    
(0.34) 

< 3000 inhab.  .02 
(0.12) 

0.06 
(0.25) 

0.17 
(0.37) 

0.14 
(0.35) 

0.15    
(0.36) 

0.08    
(0.27) 

< 100,000 inhab. .47 
(0.50) 

0.51 
(0.50) 

0.45 
(0.50) 

0.68 
(0.47) 

0.43    
(0.50) 

0.64    
(0.48) 

< 500,000 inhab. .12 
(0.32) 

0.15 
(0.36) 

0.32 
(0.47) 

0.13 
(0.33) 

0.10    
(0.30) 

0.07    
(0.26) 

> 500,000 inhab. .09 
(0.28) 

0.02 
(0.13) 0 0.04 

(0.20) 
0.07    

(0.25) 
0.07    

(0.26) 

Instruction hours/day 3.76 
(0.65) 

5.05 
(0.35) 

4.21 
(0.54) 

5.02 
(0.16) 

3.47    
(0.77) 

4.39    
(0.77) 

Shortage of staff 
(index 1 – 4) 

1.76 
(0.81) 

1.23 
(0.45) 

1.56 
(0.81) 

1.55 
(0.71) 

1.53    
(0.91) 

2.09    
(1.04) 

Shortage of material 
(index 1 – 4) 

1.30 
(0.51) 

1.50 
(0.75) 

1.70 
(0.87) 

1.51 
(0.66) 

1.53    
(0.74) 

1.55    
(0.83) 

Shortage of rooms 
(index 1 – 4) 

1.49 
(0.69) 

1.40 
(0.76) 

1.62 
(0.94) 

1.49 
(0.76) 

1.67    
(0.86) 

1.74    
(0.92) 

 
Mean values are weighted by the students’ sampling probability.  
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Table A2: Percentage of missing values 
 

 Germany France Iceland Netherlands  Norway Sweden 

Reading score 0 0 0 0 0 0 
       

Student female 0 0 0 0 0 0 

Student’s age 0.03 0.17 0.03 0.54 1.07 0.02 

Foreign parent 9.60 7.80      6.80 2.48 2.46 3.16 

Foreign lang. at home 4.40 3.00 3.51 1.53 2.20 2.38 

Books  13.32 10.97      16.89 35.41 9.42 9.33 

Household size 8.23 6.53      4.68 4.60 3.79 4.42 

Class size 6.86 4.49      6.86 11.84 1.24 3.26      

Teacher female 8.14 4.83      7.64 11.31 0.69 3.34      

Teacher’s education 9.45 3.87      11.29 100 0.69 100 

Teacher’s experience 14.45 4.49      12.40 14.42 3.32 6.72 

Size of town 4.48 4.49      23.91 11.87 2.66 4.33 

Instruction hours/day 7.91 6.02      18.47 10.00 6.27 11.15 

Shortage of staff 4.48 7.55 20.08 10.34 2.11 5.15 

Shortage of material 5.04 5.17      21.33 10.80 2.60 4.91      

Shortage of rooms 4.48 6.22      20.13 10.09 2.89 3.87      
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Table A3: Weighted means of student background variables by the number of books  
 

 Germany France 

 0-20 
books 

21-
100 

101-
200 

> 200 
books 

0-20 
books 

21-
100 

101-
200 

> 200 
books 

Student female .49    .55   .51 .50   .50   .49    .50    .49   
Student’s age 10.68   10.52   10.45   10.42   10.26  10.10   10.03   9.97   
Foreign parent .40    .23   .15 .14   .34   .29    .24    .29   
Foreign language .19    .09   .06 .05    .21   .11    .11    .07   
Household size 3.60    3.51   3.49   3.57   3.85   3.59    3.46    3.58   
No secondary .07    .02   .01   .01   .19   .09    .03   .03   
Lower secondary .29   .13    .05   .03   .52   .37    .20    .08   
Upper secondary .23   .27   .24   .20   .17   .24     .27    .12   
Post secondary .36   .46   .41   .23   .09   .16    .21    .20   
Tertiary .05   .12     .30   .54   .04   .13    .28   .57   
Income < 30,000$ .63 .45 .30 .17 - - - - 
30,000$ – 50,000$ .32 .41 .47 .43 - - - - 
> 50,000$ .06 .15 .23 .41 - - - - 
         
Number of obs. 835 1,641 849 1,252 528 782 412 590 
 Iceland The Netherlands 

 0-20 
books 

21-
100 

101-
200 

> 200 
books 

0-20 
books 

21-
100 

101-
200 

> 200 
books 

Student female .44    .50   .48   .53   .53   .54     .53  .51   
Student’s age 9.76    9.71  9.74   9.71   10.33   10.23   10.19   10.17   
Foreign parent .25    .12   .10    .10   .25   .17    .11    .12   
Foreign language .15    .12   .11   .11   .18   .15    .13     .09   
Household size 3.67    3.76   3.74  3.84  3.41    3.47    3.47    3.68   
No secondary .06   .02   .01    .01   .02   .01    .002    .002   
Lower secondary .22    .18   .16   .08   .69   .56    .36    .15   
Upper secondary .55    .54   .47   .27   .14   .18    .13    .09   
Post secondary .12    .11   .09  .11   .10   .22    .40    .45   
Tertiary .05    .15   .28   .53   .05   .03     .11   .31    
Income < 30,000$ .34 .27 .20 .15 .48 .34 .25 .16 
30,000$ – 50,000$ .49 .43 .41 .32 .37 .41 .39 .33 
> 50,000$ .17 .30 .39 .54 .16 .25 .35 .51 
         
Number of obs. 110 467 440 711 448 562 336 511 
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Table A3, continued: Weighted means of student background variables by the number 
of books  

 
 Norway Sweden 

 0-20 
books 

21-
100 

101-
200 

> 200 
books 

0-20 
books 

21-
100 

101-
200 

> 200 
books 

Student female .47 .50 .45 .50 .49 .46 .52 .50 
Student’s age 9.99 9.97 9.97 9.97 10.80 10.81 10.80 10.80 
Foreign parent .31 .17 .14 .16 .45 .26 .20 .17 
Foreign language .21 .10 .06 .05 .24 .11 .07 .05 
Household size 3.46 3.37 3.42 3.60 3.83 3.58 3.50 3.51 
No secondary .01 .004 0 .001 .03 .003 .004 .001 
Lower secondary .09 .05 .02 .01 .17 .08 .05 .02 
Upper secondary .73 .64 .47 .26 .53 .51 .39 .22 
Post secondary 0 0 0 0 .15 .24 .30 .21 
Tertiary .18 .30 .51 .73 .12 .17 .26 .55 
Income < 30,000$ .45 .28 .19 .12 .47 .29 .21 .14 
30,000$ – 50,000$ .42 .47 .41 .31 .43 .52 .47 .38 
> 50,000$ .13 .24 .41 .57 .10 .19 .32 .48 
         
Number of obs. 178 670 565 1,135 359 967 865 1,806 

 
Mean values are weighted by the students’ sampling probability. Number of observations refers to variables 
included in Table A1. For the variables highest educational level attained by at least one parent and annual 
household income in US$ before taxes the number of observations is lower in most countries.  
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Table A4: Regressions for reading test score on alternative peer composition 
(Standard errors in parentheses) 

 
 (1) (2) 

 Books Parent’s 
education Books Parent’s 

 education 

Germany 17.97 
(3.04) 

12.12    
(3.53) 

5.93 
(6.12) 

-2.00    
(5.00) 

France 22.23    
(3.05) 

17.38    
(2.75) 

19.12    
(8.32) 

3.67     
(7.40) 

Iceland 18.08    
(5.77) 

14.21    
(3.42) 

6.46    
(11.28) 

-11.70    
(11.93) 

The Netherlands 17.58   
(4.30) 

16.18   
(3.57) 

11.17      
(9.29) 

-17.53    
(9.48) 

Norway 15.46    
(7.33) 

15.26    
(5.23) 

-6.93       
(9.44) 

-10.05    
(8.84) 

Sweden 18.98    
(3.84) 

25.53    
(4.31) 

12.07    
(6.97) 

-2.77    
(7.40) 

Average across countries 19.17 
(1.61) 

16.47 
(1.46) 

8.50 
(3.29) 

-4.37 
(3.05) 

Student level variables     
Class level variables     
School fixed effects     

 
Weighted least squares regressions using students’ sampling probability. Peers’ index of books at home and 
peers’ index of parents’ highest education are independent variables. Standard errors are robust to clustering at 
the school level.  Student level variables are student’s sex and age, parents’ origin, language spoken at home, 
index of number of books at home and number of persons living in household. Class level variables are class 
size, class size squared, teacher’s sex, education, experience and experience squared.  
 
 
 



Appendix
We are interested in estimating equation (8) in the text

yics = �xics + �wcs + �ics (1)

where wcs = x(�i)cs is the peer e¤ect. The background variable xics is given by

xics = �cs + vics

E(vics) = 0

and measurement error is classical so that the measured variable is

exics = xics + uics

E(uic) = 0

There are Ncs students in a class. Even though E(vic) = 0, because Ncs is relatively
small, v(�i)cs will generally be di¤erent from zero. It is useful to distinguish v(�i)cs from
�cs, because �cs will carry information about xics, while v(�i)cs will not.
Hence the variances of the true values of the variables are

var(xics) = �2� + �
2
v

var(wcs) = var(x(�i)cs)

= �2� + var(v(�i)cs)

= �2� +
�2v

Ncs � 1

We have a sample on ncs � Ncs students in the class. Hence the variance of the estimated
variables exics and ex(�i)cs in the sample is

var(exics) = �2� + �
2
v + �

2
u

var( ewcs) = �2� +
�2v

ncs � 1
+

�2u
ncs � 1

We will also need various covariances below. Denote by S�i the set of students other
than student i in the sample, and by P�i the set of all other students in the classes under
study. Then

cov(ex; ew) = E

24(�cs + vics + uics)
0@�cs + 1

ncs � 1
X
S�i

(vics + uics)

1A35
= �2�
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cov(ex;w) = E

24(�cs + vics + uics)
0@�cs + 1

Ncs � 1
X
P�i

vics

1A35
= �2�

cov(x; ew) = E

24(�cs + vics)
0@�cs + 1

ncs � 1
X
S�i

(vics + uics)

1A35
= �2�

cov( ew;w) = E

240@�cs + 1

ncs � 1
X
S�i

(vics + uics)

1A0@�cs + 1

Ncs � 1
X
P�i

vics

1A35
= �2� +

1

(ncs � 1) (Ncs � 1)
(ncs � 1)�2v = �2� +

�2v
(Ncs � 1)

The estimates of � converges to

plim b�OLS =
var( ew)cov(y; ex)� cov( ew; ex)cov(y; ew)

var(ex)var( ew)� cov( ew; ex)2
=

var( ew)(��2x + cov(w; ex))� cov( ew; ex)(�cov( ew; x) + �cov( ew;w))
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This shows if � = 0 or �2� = 0, then there is only classical attenuation bias in b�. However,
if � > 0 and �2� > 0, then there is also a positive bias term. However, this term will
tend to be small because of the factor (Ncs� ncs)=(Ncs� 1), unless very few students are
sampled per classroom.
However, we are primarily interested in the estimate of the peer e¤ect:

plim b�OLS =
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Consider the following special cases. If there is no measurement error, �2u = 0:
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In this case attenuation due to not sampling the whole class is most important when
�2� = 0, but will vanish as �

2
� grows.

If there is only measurement error but the whole class is sampled, Ncs = ncs:
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In this case there is attenuation in b� if � = 0. Attenuation is greatest if �2� = 0, but

becomes less important when �2� grows. If � > 0, this raises the estimated value of b�,
and more so when �2� is bigger. The positive bias due to the �-term may outweigh
the attenuation for large enough �2�. If the whole class is not sampled, this introduces
additional attenuation.
We now turn to the instrumental variables estimator. The instruments

z1ics = xics + u1ics

z2cs = z1cs = �cs + vcs + u1cs

are based on an independent measurement of xics, i.e. we assume cov(uics; u1ics) = 0.
Then

cov(z1; ex) = E [(�cs + vics + u1ics)(�cs + vics + uics)]

= �2� + �
2
v = cov(z1; x)

cov(z1; ew) = E

24(�cs + vics + u1ics)
0@�cs + 1

ncs � 1
X
S�i

(vics + uics)

1A35
= �2� = cov(z1; w)
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cov(z2; ex) = E

240@�cs + 1

ncs � 1
X
S�i

(vics + u1ics)

1A (�cs + vics + uics)
35

= �2� = cov(z2; x)

cov(z2; ew) = E

240@�cs + 1

ncs � 1
X
S�i

(vics + u1ics)

1A0@�cs + 1

ncs � 1
X
S�i

(vics + uics)

1A35
= �2� +

1

(ncs � 1)
�2v

cov(z2; w) = E

240@�cs + 1

ncs � 1
X
S�i
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Ncs � 1
X
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1A35
= �2� +

1

(ncs � 1) (Ncs � 1)
(ncs � 1)�2v = �2� +

�2v
(Ncs � 1)

Hence

plimb�IV =
cov(z2; ew)cov(y; z1)� cov( ew; z1)cov(y; z2)
cov(z1;ex)cov(z2; ew)� cov(z1; ew)cov(z2;ex)

=
cov(z2; ew) [�cov(x; z1) + �cov(w; z1)]� cov( ew; z1) [�cov(x; z2) + �cov(w; z2)]

cov(z1;ex)cov(z2; ew)� cov(z1; ew)cov(z2;ex)
=

�
�2� +

1
(ncs�1)�

2
v

� �
�
�
�2� + �

2
v

�
+ ��2�

�
� �2�

h
��2� + �

�
�2� +

1
(Ncs�1)�

2
v

�i
�
�2� + �

2
v

� �
�2� +

1
(ncs�1)�

2
v

�
� �4�

=
�
h�
�2� + �

2
v

� �
�2� +

1
(ncs�1)�

2
v

�
� �4�

i
+ �

h
�2�

�
�2� +

1
(ncs�1)�

2
v

�
� �2�

�
�2� +

1
(Ncs�1)�

2
v

�i
�
�2� + �

2
v

� �
�2� +

1
(ncs�1)�

2
v

�
� �4�

= � + �

h
�2�

1
(ncs�1)�

2
v � �2� 1

(Ncs�1)�
2
v

i
�
�2� + �

2
v

� �
�2� +

1
(ncs�1)�

2
v

�
� �4�

= � + �
�2��

2
v

Ncs�ncs
(ncs�1)(Ncs�1)�

�2� + �
2
v

� �
�2� +

1
(ncs�1)�

2
v

�
� �4�

= � + �

�
Ncs � ncs
Ncs � 1

�
�2��

2
v�

�2� + �
2
v

� �
(ncs � 1)�2� + �2v

�
� (ncs � 1)�4�

= � + �

�
Ncs � ncs
Ncs � 1

�
�2��

2
v

�2v
�
ncs�2� + �

2
v

�
= � + �

�
Ncs � ncs
Ncs � 1

�
�2�

ncs�2� + �
2
v

47



so the IV estimator of � is consistent if �2� = 0.

plim b�IV =
cov(z1;ex)cov(y; z2)� cov(ex; z2)cov(y; z1)
cov(z1;ex)cov(z2; ew)� cov(z1; ew)cov(z2;ex)

=
cov(z1;ex) [�cov(x; z2) + �cov(w; z2)]� cov(ex; z2) [�cov(x; z1) + �cov(w; z1)]

cov(z1;ex)cov(z2; ew)� cov(z1; ew)cov(z2;ex)
=
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This is the same as in the OLS case when �2u = 0. When �
2
� = 0 this simpli�es to

plim b�IV = �� ncs � 1
Ncs � 1

�
so that the IV coe¢ cient can easily be adjusted.
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