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Abstract

In this article we deal with the identification problem within the Dynamic Linear Models family and

show that using Bayesian estimation procedures we can deal better with these problems in comparison

with the traditional Maximum Likelihood estimation approach. Using a Bayesian approach supported by

Markov chain Monte Carlo techniques, we obtain the same results as the Maximum likelihood approach

in the case of identifiable models, but in the case of non-identifiable models, we were able to estimate

the parameters that are identifiable, as well as to pinpoint the troublesome parameters. Assuming a

Bayesian approach, we also discuss the computational aspects, namely the ongoing discussion between

single- versus multi-move samplers. Our aim is to give a clear example of the benefits of adopting a

Bayesian approach to the estimation of high dimensional statistical models.

Key Words: Bayesian Statistics, DLM Models, Markov chain Monte Carlo, Maximum Likelihood,

Model Identification.
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1 Introduction

There has been some debate related to the algorithms based on MCMC techniques used to

estimate high dimensional models. One example is the Dynamic Linear Models (DLM). The

parameters of these models can be estimated using Maximum Likelihood (ML) estimation. We

can factorize the joint density of the sample and define the likelihood function. The likelihood

function is far from being trivial because the parameters of the conditional distributions used to

define the joint distributions are defined recursively, and hence a high nonlinear and dimensional

objective function must be maximized. Even if this a well established fact, finding the maximum

numerically is not too difficult in most cases. The difficult part is to establish whether the

parameters are identified. Using the ML, sometimes, we find likelihoods with flat regions and

consequently with high standard errors associated with the estimators. These flat regions are due

to the phenomenon of non-identifiable parameters and therefore the failure of the maximization

process. However, without analyzing carefully the structure of the model, we have no guidance

concerning the parameters causing the problems.

Another way to estimate this type of models is to adopt a Bayesian approach and define

the posterior distribution for the parameters of interest, which associated with a given loss

function will give a point estimate. If in the previous case (Maximum Likelihood estimation)

identifiability problems may be hard to detect, using MCMC techniques they will be detected

quite easily. The main hint is the lack of mixing in the chains reveled by high levels of auto-

correlation and high correlations between chains associated with different parameters. This

aspect also leads to the ongoing discussion between the use of single- versus multi-move samplers.
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2 DLM model and the identification problem

Let us consider the constant DLM. Adopting the notation of West and Harrison (1997), with

the DLM represented by the quadruple M = {F, V,G,W}, we have

yt = Fαt + vt, vt ∼ N(0, V ) (1)

αt+1 = Gαt + wt, wt ∼ N(0,W ). (2)

This parametrization is not unique and an equivalent model can be considered, yielding the

same forecasting density, f(yt+1|Dt), where Dt = {yt, yt−1, . . . , y1}. Different distributions to

the states, filter and smoothing, are obtained but the original ones can be recovered through

the distributions associated with the reparameterized model.

Now, let us consider a slightly different model in which we have

yt = Fα∗t + vt, vt ∼ N(0, V )

α∗t+1 = Gα∗t + wt, wt ∼ N(0,W )

where, α∗t = H−1αt. In this case it is easy to recover the initial parametrization. Consider

F ∗ = FH−1, G∗ = HGH−1 and w∗t = Hwt. Then

yt = F ∗αt + vt, vt ∼ N(0, V )

αt+1 = G∗αt + w∗t , wt ∼ N(0,W ∗).

This DLM is defined by the quadruple M∗ = {F ∗, V,G∗,W ∗} with W ∗ = HWH>. The

filter and smoothing distributions of αt depend on F , G, and W , but also on H. In both

parametrization the one-step ahead distribution does not depend on H. This is the essential

distribution needed to define the likelihood function if the parameters are assumed unknown,

and are to be estimated using available data. We are facing an indeterminacy as the likelihood

function does not depend on H, and we cannot distinguish between M and M∗.
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3 A simplified DLM model

Let us consider the simple model

yt = βαt + ζt, ζt ∼ N(0, σ2
ζ )

αt+1 = φαt + ηt, ηt ∼ N(0, σ2
η).

If no restrictions are imposed on the parameters, this model is not identifiable. By considering

the vector of parameters θ = (β, σ2
η, φ, σ

2
η), and the information set Dt = {yt, yt−1, . . . , y0}, the

joint density assumes the form

f(y1, . . . , yn|θ) = f(y1|θ)
n∏
t=2

f(yt|Dt−1). (3)

In this setting, it assumes the form of a multivariate normal density. However, the vector of

means and variance-covariance matrix depend in a highly non-linear manner on the parameters.

The main problem rises from the signal-to-noise ratio σ2
η/σ

2
ζ and its relation with the parameter

β. If one wants to estimate the signal-to-noise ratio, the parameter β can also be estimated.

However, we cannot distinguish between σ2
η and σ2

ζ without considering any restriction on β.

To give a more precise idea of the complexity involved, let us consider n = 2. The log-

likelihood function, assuming α0 ∼ N(0, 1), is given by,

l(β, φ, σζ , ση|y1, y2) = −1
2

ln(φ2 + σ2
ζ )−

y2
1

2(φ2 + σ2
ζ )

− 1
2

ln

(
φ2

(
φ2 + σ2

η −
(β3(φ2 + σ2

η) + βσ2
ζ )

2

β2(φ2 + σ2
η) + σ2

ζ

)
+ σ2

ζ

)

−

(
y2 −

βφ(β3(φ2+σ2
η)+βσ2

ζy1)

β2(φ2+σ2
η)+σ2

ζ

)2

2φ2

(
φ2 + ση2 − (β3(φ2+ση

2)+β σζ
2)2

β2(φ2+ση
2)+σζ

2

)
+ σζ2

.

Using this log-likelihood, it is not possible to identify all parameters. Only imposing restrictions

on some parameters can the others be identified.

Using the general notation presented above, we have F = β, V = σ2
ζ , G = φ and W = σ2

η,

which yields the following re-parametrization, F ∗ = βH−1, G∗ = φHH−1 = φ and W ∗ =
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σ2
ζHH

>. With these results the problems of identification associated with the maximum like-

lihood estimation method become then much clear. The parameters β and σ2
η, using just the

time series {yt}nt=1 without any constraints, cannot be identified. With an adequate rate of

convergence, and ση tending to zero and β tend to infinity, or vice-versa, does not change the

value of the likelihood function. Using just the likelihood function, it is not easy to find why the

maximization algorithm fails. An inadequate algorithm to the problem or lack of identification

of the model can be a possible explanation for the problem.

4 MCMC and Bayesian estimation

An alternative to ML estimation is to use MCMC techniques within a Bayesian framework. The

aim is to approximate the joint posterior distribution of the unknowns, states and parameters.

Parameters point estimates are obtained through the joint marginal posterior distribution of

the parameters associated with a given loss function. By considering a quadratic loss function,

the point estimates are given by the vector of means of the respective posterior distribution.

Here, we are dealing basically with the Gaussian distribution, and if we assume a diffuse prior

information, all relevant information is given by the likelihood. In the Bayesian framework

the posterior distribution of the parameters is proportional to the likelihood function, and so

the mode, the maximum of the likelihood function, coincides with the mean of the posterior

distribution. Essentially, we obtain the same point estimates. However, the output of the two

procedures are substantially different and, even for the assumed loss function, much more can

be done with the output of a Bayesian analysis.

Let us consider the model above with n = 500. In this case the posterior distribution of

interest is of dimension 504, f(α1, . . . , α500, β, σζ , φ, ση|y1, . . . , y500). The calculations needed

are far from trivial. The main idea is use simulations to approximate it numerically. This

task is not an easy one due to two main reasons: first, the dimension of the distribution;

second, the mixing of mean and variance components, which results in a mixing of Gaussian and
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Gamma distributions for the unknowns. Plain vanilla simulation methods that give independent

and identically random observations, like the inversion method and the accepting-rejection

method, will fail in this environment. The way forward is to divide the main problem into

simpler problems. This introduces some dependence in the random observations but allows the

treatment of more complex models. By analyzing the model, we can explore the two separate

nature of the unknowns, states and parameters. We are going to simulate the states conditioned

on the parameters and the parameters on the states. Later we break further these problems.

Simulating from the parameters given the states is a trivial task. More difficult is to simulate

from the states given the parameters.

In phenomenons like financial volatility evolution and economic time series forecasting, using

income or inflation, where this kind of model reveals its usefulness, it is common to find processes

with high persistence, with a value for φ near 1, where φ acts like a parameter of correlation.

Using the benchmark of a bivariate Gaussian distribution, as the correlation coefficient becomes

near one in absolute value, more stretched are the contours associated with the distribution, and

the chain can move less freely. With only small steps allowed, the chains present a high level

of autocorrelation and inferences become less reliable. What has been proposed is to consider

the problem in higher dimensions. There was been research trying to establish the differences

in performance between the so-called single- and multi-move samplers. In some problems the

chains associated with a single-move sampler present a high degree of autocorrelation making

inferences very difficult to implement.

What we analyze here is the separation between the high degree of autocorrelation of the

chains related to some kind of identifiability problem and the one related to the nature of the

problem, namely the high memory of the subjacent processes. We are going to exemplify these

facts by estimating two models using ML and MCMC. In the first, not all the parameters are

identifiable, in the second, all the parameters are identifiable. In the first, we cannot obtain ML

estimates and the ones resulting from MCMC must be used with care, as it is difficult to accept

that all chains of interest have converged. With the second model, ML estimates can be found
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and with a large sample, with diffuse prior distribution for the parameters, Bayesian estimates

will be near the ML estimates.

5 MCMC algorithms

Simulating from the parameters conditioned on the states is a trivial task. Let us consider

the original model (possible non-identifiable) and let us define the samplers. Assuming a given

vector of states α = {α1, . . . , αn} and a vector of observations y = {y1, . . . , yn}, the posterior

distribution of β can be written as

β|α, y, σζ ∼ N

(∑n
t=1 ytαt∑n
t=1 α

2
t

,
σ2
ζ∑n

t=1 α
2
t

)
.

By considering

Sβ =
n∑
t=1

(yt − βαt)2,

we can establish the posterior distribution

σ2
ζ |y, α, β ∼ IG

(
n

2
,
Sβ
2

)
.

To the parameters associated with the states, the procedures are identical, and for φ we have

φ|α, ση ∼ N

(∑n
t=2 αtαt−1∑n
t=2 α

2
t−1

,
σ2
η∑n

t=2 α
2
t−1

)
.

By considering

Sφ =
n∑
t=2

(αt − φαt−1)2,

we can establish the posterior distribution

σ2
η|α, φ ∼ IG

(
n

2
,
Sφ
2

)
.

Here for all the parameters we are assuming a priori diffuse distributions.

Simulating from the states given the parameters is much more difficult. The posterior

distribution of the states given the parameters is a multivariate Gaussian distribution. If we
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knew the vector of means and the variance-covariance matrix, using a Cholesky decomposition,

it would not be too difficult to generate draws from the corresponding distribution. The problem

here is the definition of the vector of means and variance-covariance matrix. These are defined

recursively and take into account the information associated with previous observations, which

makes difficult to express them analytically.

5.1 The single move sampler

One way to move forward is to break the n-dimensional problem into n problems of dimension

one. This can be done by considering one dimensional conditional distribution (Gibbs Sampling)

for the states with the distribution

αt|yt, αt−1, αt+1, β, σζ , φ, ση ∼ N(mt, s
2
t ),

where

mt =
βytσ

2
η + φσ2

ζ (αt−1 + αt+1)

(1 + φ2)σ2
ζ + β2σ2

η

and

s2t =
σ2
ησ

2
ζ

(1 + φ2)σ2
ζ + β2σ2

η

.

These results can be accomplished using two different strategies. Consider the generic ex-

pression,

f = −(yt − βαt)2

2σ2
ζ

− (αt − φαt−1)2

2σ2
η

− (αt+1 − φαt)2

2σ2
η

,

which is proportional to the logarithm of the conditional density given above. Mean and variance

parameters can be defined by expanding the expression, collecting the factors depending on α2
t

and αt and arranging the expression as (−1/2)a(αt − b)2 + c, where a is the precision, b the

mean and c a constant that is absorbed by the constant of proportionality needed to define

the density function. Another strategy is to find the maximum by deriving with respect to αt,

equalize to zero and resolve in order to αt. Evaluating −1/(d2f/dα2
t ) at the point obtained
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previously, at the maximum of the function, and at the mean of the conditional distribution,

we obtain exactly s2t .

5.2 Multi-move samplers

The recursive nature of the process can be used by applying the Kalman filter to define successive

posterior distributions and then move backward to define the smoothing distribution, which will

be used within the so-called Simulation Smoother. Different algorithms have been proposed to

perform this task in the most efficient manner. However, by taking into account the simple fact

that only Gaussian distributions are here considered, the main issue is to define the appropriate

vector of means and variance-covariance matrix.

5.2.1 The multivariate approach

The procedure defined above can be extended through the maximum of the function f in the

bivariate case or even in the multivariate case. An analytical expression to the vector of means

and variance-covariance matrix is available. However, these would be too complicated for being

operational in a computational sense. Let us take the example of the distribution

α1, α2|α3, y1, y2, β, σζ , φ, ση ∼ N(µ,Σ)

where

µ =



φ2α3σ
4
ζ + β

((
1 + φ2

)
y1 + φy2

)
σ2
ζσ

2
η + β3y1σ

4
η

φ4σ4
ζ + β2 (1 + 2φ2)σ2

ζσ
2
η + β4σ4

η

φ3α3σ
4
ζ + βφ (y1 + φy2 + βα3)σ2

ζσ
2
η + β3y2σ

4
η

φ4σ4
ζ + β2 (1 + 2φ2)σ2

ζσ
2
η + β4 σ4

η


.

We could continue to obtain the distribution of

α1, . . . , αn|Dn, αn+1, β, σζ , φ, ση ∼ N(µ,Σ)

with the parameters µ and Σ defined in an analytical manner, but this would lead to an un-

manageable expression when n assumes a large value. A better computational solution would
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be to evaluate the vector of means and variance-covariance matrix numerically. As the vector of

derivatives is easy to define, the Hessian (H) matrix is tridiagonal and relates to the variance-

covariance matrix as Σ = −H−1, passing an adaptation period, the number of iterations needed

to find the maximum (vector of means) is small. The algorithm becomes very efficient for

simulating from the joint smooth distribution of the states given the parameters.

At each iteration, for the vector of states, sub-iterations are needed to find the vector of

means, which are associated with the definition of the gradient. A vector of dimension n must be

evaluated at each sub-iteration. This is not too complicated as the structure of the vector is very

simple, and with current computational power, this does not represent a great computational

burden. At each sub-iteration, the inverse of the hessian matrix need not to be recomputed as

it only depends on the parameters of the model. Being a tridiagonal matrix, symmetric and

negative definite, by considering the Cholesky decomposition, −H = C>C, with C a bidiagonal

matrix, calculating the inverse of −H as the product of the inverse of two bidiagonal matrices

facilitates greatly the computations.

5.2.2 The simulation smoother

Several simulation techniques have been proposed to simulate from high dimensional smoothing

distributions within a DLM. As mentioned above, it corresponds to simulate from a multivari-

ate normal distribution with a given vector of means and variance-covariance matrix, then as

this problem is standard in statistics the main difference between algorithms is the efficiency

associated with the definition of such draws. Using the statistical structure of the model, differ-

ent algorithms were proposed and one is presented in West and Harrison (1997), p. 570. Two

widely referred algorithms were proposed by Frühwirth-Schnatter (1994) and Carter and Kohn

(1994). Another common algorithm is the one proposed in de Jong and Shephard (1995). These

algorithms are referenced in Koopman and Durbin (2000), Durbin and Koopman (2001) and

Durbin (2004). In particular the one proposed in Durbin (2004), being very efficient, is very

easy to codify.
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Following closely the notation in Durbin (2004) and making the necessary adaptations for the

constant DLM presented in section 2, we present the Kalman Filter, the States Smoother and

the Simulation Smoother algorithms. Consider at+1 = E(αt+1|Dt) and Pt+1 = V ar(αt+1|Dt),

that can be obtained using the following recursions,

ut = yt − Fat

Zt = FPtF
> + V

Kt = GPtF
−1

Lt = G−KtF

at+1 = Gat +Ktut

Pt+1 = GPtL
>
t +W, t = 1, . . . , n.

With the States Smoother, the aim is to calculate α̂t = E(αt|Dn) and p̂t = V ar(αt|Dn) by the

backwards recursion,

rt−1 = F>Z−1
t ut + L>t rt

Nt−1 = F>Z−1
t F + L>t NtLt

α̂t = at + Ptrt−1

p̂t = Pt − PtNt−1Pt, t = n, . . . , 1

with rn = 0 and Nn = 0.

The Simulation Smoother can be implemented using the following steps:

1. Obtain random draws for v∗t and w∗t from the distributions N(0, V ) and N(0,W ), re-

spectively, and, using the parameters of the model (1)-(2), obtain for t = 1, . . . , n, the

simulated values of α∗t and y∗t .

2. Compute for t = 1, . . . , n, α̂t = E(αt|Dn) and α̂∗t = E(α∗t |D∗n).

3. Take a draw from the distribution of αt|Dn, as

α̃t = α̂t − α̂∗t + α∗t ,
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for t = 1, . . . , n.

As well known, when MCMC methods are applied to state space models, the most difficult

part is to simulate the states. We present the single-move and a multi-move sampler to guarantee

that the results we aim for are not influenced by the algorithm used to simulate the states of

the DLM. We argue that MCMC techniques within the Bayesian Statistics are better equipped

to deal with models with possible non-identifiable parameters than standard ML techniques.

Using the DLM, we show in the next section that this is independent of the algorithm used to

simulate the states.

6 Empirical application

We use simulated data to illustrate the differences in the properties of the chains in the case

of an identified model versus a non-identified one. The procedures implemented were codified

using the statistical package R. New code was written to implement the estimation procedures.

The output of the Bayesian analysis is dealt with using the library coda of the referred statistical

package. The code and data are available upon request.

When maximum likelihood methods are used, applied to a non-identifiable model, most

probably the algorithm used in the maximization process gives a meaningless output, sometimes

without giving any clue for the reason of such result. There are many reasons for a numerical

maximization algorithm not to converge to a unique optimal solution. One of them is the lack

of identification of all parameters.

Using Bayesian estimation and MCMC techniques, we obtain an output from which the

parameter estimates can be obtained. The chains may or may not converge. However, an output

is always given. The lack of convergence may be a symptom of misspecification, namely, by the

use of a model with non-identifiable parameters. What can be found here is that using these more

sophisticated techniques, checks for identification can be performed, while at the same time we

can obtain reliable estimates to the identifiable parameters and pinpoint the parameters causing
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the identification problem. A second step could be followed, fixing or imposing restrictions to

those parameters as a way of specifying an identifiable model. In contrast to ML techniques,

an output is obtained and this can be helpful in the model redefinition if necessary.

One illustration uses a simulated series with n = 500 observations. This allow us to compare

the parameters estimates with the true values, considering an identifiable model and a non-

identifiable one. Let us use the following model,

yt = αt + εt, εt ∼ N(0, 0.32)

αt+1 = 0.97αt + ηt, ηt ∼ N(0, 0.152).

We consider first the vector of parameters (β, σε, φ, ση) = (1.0, 0.3, 0.97, 0.15) associated with the

non-identifiable model, and second, (σε, φ, ση) = (0.3, 0.97, 0.15) for the identifiable one. With

the first parametrization the sample does not contain sufficient information for the estimation

of all the parameters.

In a non-identifiable model the parameters in the likelihood function are connected in a

manner that they cannot be distinguished, different combinations lead to the same value of

the log-likelihood. Using Bayesian Statistics associated with MCMC techniques has two main

advantages: it identifies the troublesome parameters and deals smoothly with the estimation

issue.

To illustrate these aspects, let us simulate from the model above and then estimate the

parameters using ML and MCMC. First, we ignore the identifiability problem and try to estimate

all four parameters. Using ML the maximization procedure, it ends suddenly without giving any

explicit clue. Depicted in Figure 1 are the problems associated with the chains of β and ση, which

do not converge. However, in the case of parameters that are causing no problem, meaningful

estimates are obtained through chains that seem to converge. Using MCMC techniques, in both

cases, we use simulated chains with 10000 draws.

After detecting the problem of non-identifiable parameters, we have to proceed by redefining

the model or imposing more informative prior distributions. It was clear from above that the
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Figure 1: Chains and respective densities for the parameters β (beta), σε

(sigma u), φ (phi) and ση (sigma v) of the DLM
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Figure 2: Chains and respective densities for the parameters σε (sigma u), φ

(phi) and ση (sigma v), of the DLM, in the case of an identifiable model
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Table 1: Summary of the parameters estimates for the non-identifiable model.

Note: Due to the problems posed by the parameters β and ση, it is not possible

to estimate the standard-error of such parameters. As a result the ESS is

extremely low.

Mean-S SE-S ESS -S

β 0.5191 na 2

σε 0.3107 5.64e-4 56

φ 0.9819 2.64e-4 1337

ση 0.3105 na 8

troublesome parameters are β and ση. Using the results from section 2, it is clear that was

established that only β and the signal-to-noise parameter σ2
η/σ

2
ε can be estimated, not all the

three parameters. However, by fixing β = 1, we can see, in Figure 2, that using MCMC the

chains associated with the three parameters converge and meaningful results are obtained.

The differences between single- versus multi-move samplers will not be developed further.

Applying the multi-move sampler to the identified model, no substantial differences in the results

were obtained when compared with the single-move sampler. Through a graphical analysis

(trace and density), not depicted here, we can see no difference. We present the estimates using

both algorithms and the difference that is noticed is related to the Effective Sample Size (ESS).

The ESS is calculated using coda and give us an idea of the efficiency of the simulations, when

compared with a sample of n independent and identically distributed random variables, which

corresponds an ESS of n. Lower values for the ESS represent more inefficient algorithms.

In Table 1, only the output associated with the Bayesian analysis is presented. It was not

possible to obtain ML estimates due to the lack of identification of the parameters. In Table 1,

as in Figure 1, the troublesome parameters are clearly identified. As the chains associated with

16



Table 2: Summary of the parameters estimates for the identifiable model. Estimation used

MCMC with single-move sampler (S), multi-move sampler (M) and Maximum Likelihood (ML).

Notes: Estimates using MCMC are presented at Mean- with the respective Standard Error (SE -)

and Effective Sample Size (ESS- ). To compare the estimates, the last two columns are related to

Maximum Likelihood estimation.

Mean-S SE-S ESS -S Mean-M SE-M ESS-M ML SE -ML

σε 0.309 5.06e-4 1029 0.310 4.06e-4 1118 0.310 1.75e-4

φ 0.982 2.45e-4 1659 0.982 2.17e-4 1553 0.982 8.29e-4

ση 0.1295 1.07e-4 288 0.129 8.59e-4 357 0.128 2.46e-4

β and ση did not converge, it was not possible to calculate the standard-error of the estimates.

Then looking at the ESS of these parameters, low values are obtained, a sign of chains associated

with the troublesome parameters did not converge.

In Table 2 we present the summary of the estimation using MCMC (single- and multi-move)

and ML. As the model is identified, meaningful results were obtained for the three parameters.

The parameters estimates are similar using all the three procedures, exactly what we were

expecting, which reinforces the usefulness to consider different estimation techniques and not

be restricted only to ML or OLS, which may yield meaningless results.

7 Conclusion

To Bayesian estimation, the lack of identification is not such a restrictive problem as in other

estimation procedures. With the likelihood assuming very complicated forms, it can be difficult

to identify the parameters that potentially or effectively cause identification problems. By

maximizing the likelihood function associated with an unidentified model, it is likely that no
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parameter estimate will be obtained. With a Bayesian estimation procedure based on MCMC

techniques, we can identify the troublesome parameters and deal with unidentified models using

convenient informative priors or any other suitable restriction. In this article, we present a simple

model, in which, theoretically, we can establish the constraints that yield an identified model.

Unidentified parameters lead to Markov chains that do not converge. The chains associated

with non-identifiable parameters are necessarily highly correlated as a consequence of the lack

of convergence. Bayesian Statistics associated with MCMC techniques is a very robust way to

deal with non-identifiable models. An erroneous idea sometimes found in the literature is that

MCMC methods are too complicated to be applied widely. We try to demonstrate that this is not

necessarily true. With the DLM, all the distributions associated with the states are gaussian,

which is straightforward to simulate from. In other cases, for example, stochastic volatility

models, the gaussian distribution may constitute a meaningful approximation. The outputs are

considerable more richer than in more common estimation procedures, as we demonstrated in

the case of the identification problem. The procedures were implemented using an interpretation

language like R, which demonstrates the feasibility of such approach.
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