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REGULARIZING PRIORS FOR LINEAR INVERSE

PROBLEMS∗

By Jean-Pierre Florens and Anna Simoni

Université Toulouse 1 Capitole and Università Bocconi

We consider statistical linear inverse problems in Hilbert spaces
of the type Ŷ = Kx + U where we want to estimate the function x

from indirect noisy functional observations Ŷ . In several applications
the operator K has an inverse that is not continuous on the whole
space of reference; this phenomenon is known as ill-posedness of the
inverse problem.
We use a Bayesian approach and a conjugate-Gaussian model. For a
very general specification of the probability model the posterior dis-
tribution of x is known to be inconsistent in a frequentist sense. Our
first contribution consists in constructing a class of Gaussian prior
distributions on x that are shrinking with the measurement error U

and we show that, under mild conditions, the corresponding posterior
distribution is consistent in a frequentist sense and converges at the
optimal rate of contraction. Then, a class Λ of posterior mean esti-
mators for x is given. We propose an empirical Bayes procedure for
selecting an estimator in this class that mimics the posterior mean
that has the smallest risk on the true x.

1. Introduction. Given a functional noisy observation Ŷ , we consider
the problem of estimating the solution x of the noisy functional equation

(1.1) Ŷ = Kx+ U, x ∈ X , Ŷ ∈ Y

where X and Y are infinite dimensional separable Hilbert spaces over R

with norm || · || induced by the inner product < ·, · >. The residual U is a
stochastic noise and K : X → Y is a known, bounded, linear operator with
infinite dimensional range. The operator K∗ will denote the adjoint of K,
i.e. K∗ is such that < Kϕ,ψ >=< ϕ,K∗ψ >, ∀ ϕ ∈ X and ψ ∈ Y.

This model is classical in inverse problem literature and it is encountered
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for helpful comments.

AMS 2000 subject classifications: Primary 62C10, 45Q05; secondary 60G15, 62G05
Keywords and phrases: Hilbert Scale, g-prior, posterior consistency, adaptive estimator

1

http://www.imstat.org/aos/


2 J-P. FLORENS AND A. SIMONI

in many applications. Examples are provided for instance by deconvolution
or error-in-variables models, nonparametric regression, density estimation,
mathematical models for tomography and signal and image processing. An
overview of applications can be found in [34].

In certain applications the operator K is compact, but we admit also
non-compact K. The bounded operator K is compact if the image {Kxn} of
any bounded sequence {xn} of X contains a Cauchy subsequence, see [23].
A compact operator is characterized by a countable number of eigenvalues
(or singular values) that accumulates only at zero. A non-compact opera-
tor may be characterized by a continuum of eigenvalues (or singular values)
that accumulates at zero. In the particular case with K = I, where I is the
identity operator, we call (1.1) a direct problem and it is well-posed.

When the eigenvalues of K accumulate at zero, the problem of recovering
an estimation of the original signal x from Ŷ is ill-posed because in general
K−1 is not continuous on the whole Y, see Chapter 2 in [11]. We are in prin-
ciple motivated by inverse problems affected by this kind of ill-posedness,
however, the methodology that we propose can also be applied to direct and
well-posed inverse problems.

The unboundedness of K−1 is a problem because it prevents the esti-
mated solution K−1Ŷ from being consistent, even if Ŷ converges to Kx,
since the noise in Ŷ is deeply amplified by K−1. To remove the ill-posedness,
regularization methods have been proposed in numerical analysis and clas-
sical statistics like Spectral cut-off, Tikhonov regularization, or Landweber-
Fridman regularization, to name only a few, see [25] Section 15.5 and refer-
ences therein.

In reverse, in this paper we focus on Bayesian methods for solving inverse
problems. This is the most complete statistical way to address inverse prob-
lems because we model a distribution for the noise (and not only a level for
the noise as in numerical analysis) and we specify a prior distribution on x.

The elements x and U are modeled as Hilbert space-valued random vari-
ables (H-r.v.), that is, for a complete probability space (S,S,P), x (resp. U)
defines a measurable map

x : (S,S,P) → (X ,B(X )) (resp. U : (S,S,P) → (Y,B(Y)) )

where B(X ) (resp. B(Y)) is the Borel σ-field generated by the open sets
of X (resp. of Y), see, e.g. [26]. The Bayesian approach combines the prior
and sampling information in order to overcome the ill-posedness of K−1 and
proposes the posterior distribution of x as solution for (1.1). However, since
the dimension of the problem is infinite, the posterior distribution suffers of
another problem: it is, in general, inconsistent in the frequentist sense, that
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is, as the stochastic measurement error degenerates to 0 the posterior dis-
tribution does not converge towards a degenerate distribution concentrated
on the true value of x, see [10] for frequentist inconsistency in nonparamet-
ric Bayes estimation. On the contrary, when (1.1) is an inverse problem in
finite dimensional spaces and K is a matrix, the posterior distribution is
consistent in a frequentist sense (under mild assumptions) and the posterior
mean is equal to the Tikhonov regularized solution (also known as Ridge
regularized solution in finite dimensional problems), see for instance [22].

To solve the problem of frequency inconsistency of the posterior distribu-
tion, we have proposed in another paper, see [12], to regularize the posterior
distribution with a Tikhonov scheme and we have defined a new object called
Regularized Posterior distribution that plays the role of the posterior distri-
bution. Another solution has been proposed by [27] and [29] and consists in
regularizing through a restriction of the space of definition of Ŷ .

The purpose of this paper is twofold. First, we show that when we have
a particular structure of the operator K and of the covariance operator of
U in (1.1), a prior covariance operator can be chosen in such a way that
the posterior distribution is consistent in the frequentist sense. In practice,
the regularization can be automatically performed by the prior-to-posterior
transformation and no ad-hoc regularization needs to be introduced. The
prior covariance operator that we specify depends on a parameter α > 0, on
the level of measurement noise U and on the degree of penalization s chosen
for measuring the variability of the solution (as, for instance, the highest
order of derivatives in a Sobolev penalization). We show that, while the
parameter s does not enter the rate of convergence of the posterior distribu-
tion, the parameter α does and moreover it plays the role of a regularization
parameter.

We compute an upper bound for the quadratic risk associated with the
posterior mean estimator x̂α. We determine the α which minimizes this
bound and the corresponding rate. Moreover, we compute the fastest rate
of contraction of the posterior distribution.

Then, we consider the specific case of operators with geometric spectra,
i.e. the mildly ill-posed case. In this framework, the rate of convergence pre-
viously found is shown to be the optimal rate of convergence, in a minimax
sense, associated with the class of estimators x̂α, α ∈ Λ, where Λ is some
set to be specified later. The corresponding optimal α is the solution of the
minimization problem

αopt(Λ, x) = arg inf
α∈Λ

Ex||x̂α − x||2
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if such a value exists, where Ex(·) denotes the expectation taken with respect
to the conditional distribution of Ŷ given x. We call oracle the random
function x 7→ x̂αopt , that is, the best estimate of x, see [36]. However, as the
oracle depends on the true value x and on its regularity, which are unknown,
we cannot compute it.

Our second purpose is therefore to determine a data-driven method for
optimally selecting the parameter α in the prior distribution. We propose
an empirical Bayes (EB) approach for recovering α and we denote this value
by α̂. We prove for the case of operators with geometric spectra an oracle
inequality, that is, an inequality of the type

Ex||x̂α̂ − x||2 ≤ inf
α∈Λ

Ex||x̂α − x||2(1 + O(1))

for each x belonging to a subset Xβ ⊂ X . Then, our EB estimator is adaptive
to the oracle.

The paper develops as follows. In the next two subsections we specify
the statistical model associated with (1.1) and the prior distribution of x;
some example of application of model (1.1) are given. In Section 2 we com-
pute the posterior distribution of x and we prove that it is consistent in a
frequentist sense. We provide the minimax rate of convergence of the poste-
rior mean when it is taken as estimator for x and when the operators have
geometric spectra. In section 3, we develop an EB method for selecting a
data-dependent regularization parameter α̂ with values in Λ. Optimality, in
a minimax sense, of α̂ and x̂α̂ follows from the oracle inequality in Theorem
3.2 which is one of the main results of our paper. All the proof are provided
in Section 4.

It is convenient to set up some notational convention used in the paper.
For positive quantities Mδ and Nδ depending on a discrete or continuous
index δ, we write Mδ ≍ Nδ to mean that the ratio Mδ/Nδ is bounded away
from zero and infinity. We write Mδ ∼ Nδ if there exist m, m̄ > 0 such that
mNδ ≤Mδ ≤ m̄Nδ. We write Mδ = O(Nδ) if Mδ is at least of the same order
as Nδ. We denote with R(·) the range of an operator, with D(·) its domain
and with tr(·) its trace. For an operator A : Y → X (resp. B : X → Y),
we denote with A∗ (resp. B∗) its adjoint and for a subset Y1 ⊂ Y (resp.
X1 ⊂ X ), A|Y1 : Y1 → X (resp. B∗|X1 : X1 → Y) denotes the restriction
of A (resp. of B) to the domain Y1 (resp. X1). The operator I denotes the
identity operator on both spaces X and Y, i.e. ∀ψ ∈ X , ϕ ∈ Y, Iψ = ψ and
Iϕ = ϕ.
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1.1. Sampling distribution and examples. Let the random error U in
model (1.1) be a H-r.v. with gaussian distribution N (0, δΣ), where Σ : Y →
Y is a one-to-one, positive definite, self-adjoint, trace class operator and
δ > 0 is a scale parameter. Then, the conditional distribution of Ŷ given x,
denoted by P x, is gaussian:

(1.2) Ŷ |x ∼ N (Kx, δΣ)

and it is known in Bayes literature as sampling distribution. Hereafter, Ex(·)
will denote the expectation taken with respect to P x. The scale parameter
δ is the noise level in the observation Ŷ and δ ↓ 0. In many statistical and
econometrics models the observed function Ŷ is a transformation of an n-
sample of finite dimensional objects (like the empirical distribution function,
the empirical characteristic function, the Nadaraya-Watson estimator of the
regression function) or it is the mean of functional data (like many example
in signal and image processing). In these models δ := δ(n), where n denotes
the sample size and δ ↓ 0 as n ↑ ∞.
The covariance operator Σ : Y → Y is assumed to be fixed and known. It
follows from the definition of covariance operator that it is linear, bounded
and compact. The trace-class property of Σ rules out a covariance operator
proportional to the identity operator. In fact, an operator is trace class if
its trace is finite. For Σ = cI, c > 0, tr(Σ) is clearly unbounded. Moreover,
in many applications Σ is not naturally modeled as I. This implies that, in
general, in infinite-dimensional inverse problems the posterior mean cannot
be equal to the Tikhonov regularized estimator xT

α := (αI +K∗K)−1K∗Ŷ
as it happens in the finite dimensional case (e.g. for the Ridge regression).
However, we show in this paper that, when Σ, K and the prior covariance
operator are suitably linked (see Assumptions A.1, A.2 and C.1-C.3), the
posterior mean equates the Tikhonov regularized solution in the Hilbert Scale
induced by the prior covariance operator. We give later the definition of
Hilbert Scale.
The assumption of gaussianity of the statistical model (1.2) is just made
in order to construct the estimator and it is not restrictive. The proofs of
our result of frequency consistency do not rely on the normality of U . In
particular, our estimation procedure can be applied to cases where Ŷ |x is
only asymptotically gaussian, as in Examples 2 and 3 below.
We give now three examples of estimation problems that can be written
in the form of (1.1) and treated with our methodology. Another example,
concerning the estimation of a functional regression, is given in section 2.3.
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Example 1. White noise model. Consider the following model

(1.3) dYδ(t) = f(t)dt+
1√
n
dB(t), t ∈ [0, 1]

where {Yδ(t)} is the noisy observation, f(·) ∈ L2([0, 1]) := {f :
∫ 1
0 |f |2(t)dt <

∞} is the unknown signal and B(t) is a standard Brownian motion. This
model can be rewritten as

Yδ(t) =

∫ t

0
f(s)ds+

1√
n
B(t)

and is the limiting experiment for some curve estimation problems such as
density (see [33]) and nonparametric regression (see [4]) estimation. The co-
variance operator Σ is ϕ ∈ Y 7→ Σϕ =

∫ 1
0 (s ∧ t)ϕ(s)ds and has eigenvalues

λ2
j = 4

π2j2 and eigenvectors ϕj(t) =
√

2 sin(πj
2 t) for j = 1, 3, 5, . . .. The trans-

formation K is ψ ∈ X 7→ Kψ =
∫ t
0 ψ(s)ds and, since KK∗ = Σ, the singular

values of K are λj , j = 1, 3, 5, . . .. Thus, Assumption A.1 below is satisfied
and Assumption A.2 holds with a = 0, as it will result clear from subsection
2.2. The conjugate gaussian sequence space model associated with (1.3) is
considered e.g. in [45] and [2]; they show in Theorem 5.1 and Theorem 2.1,
respectively, that the minimax rate of convergence is attained by the poste-
rior mean and the posterior distribution of the Fourier coefficients of f . We
are able to attain the same rate for the posterior mean and distribution.

Example 2. Regression estimation. Let (ξ, w) be a R
1+q-valued random

vector with distribution F and X := L2
F (w) be the space of square integrable

functions of w with respect to F . We want to recover the regression function
of ξ given w, that is, the function m(w) ∈ L2

F (w) such that ξ = m(w) + ε,
E(ε|w) = 0 and E(ε2|w) = σ2. This function can be characterized as the
solution of a linear inverse problem.
Let g(w, t) : R

q × R
p → R, p ≥ q, be a known function that is square

integrable with respect to F × π, with π a measure on R
p. Then, by de-

noting with E the expectation taken with respect to F , m is solution of
E(g(w, t)ξ) = Km(t), where φ ∈ L2

F (w) 7→ (Kφ)(t) =
∫

g(w, t)φ(t)dF (w).
Hence, K : X → Y := L2

π(Rp) is a compact operator which is known if F (w)
is known. Moreover, the fact that ξ has finite second moment ensures that
E(g(w, t)ξ) ∈ L2

π(Rp). The left hand side E(g(w, t)ξ) is unknown and can
be estimated by its empirical mean, so that

1

n

n
∑

i=1

g(wi, t)ξi = Km+ U,
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where (ξi, wi), i = 1, . . . , n is an iid sample from F . The error U ∈ Y is

asymptotically gaussian with covariance operator σ2

n
KK∗ which is known

and δ = σ2

n
. Assumptions A.1, A.2, C.1-C.3 below are satisfied.

Example 3. Instrumental regression estimation. Let (Y,Z,W ) be a ran-
dom vector with values in R×R

p×R
q and distribution F admitting a density

f . Let L2
F (Z) denote the space of square integrable functions of Z with re-

spect to F . The instrumental regression ϕ(Z) ∈ L2
F (Z) is the parameter we

want to estimate and is defined by

Y = ϕ(Z) + ε, E(ε|W ) = 0, V ar(ε|W ) = σ2

as the solution of an integral equation of first kind: E(Y |W ) = E(ϕ(Z)|W ),
see [9] and [17]. We suppose to know f(Z,W ) while f(Y,W ) is unknown;
then, we use a kernel estimator for E(Y |W ) and we take into account the
estimation error: Ê(Y |W ) = E(ϕ(Z)|W ) + U . The sampling distribution
can be approximated by using the asymptotic distribution of U . As the
kernel estimator Ê(Y |W ) does not weakly converge toward a well-suited
process (like a gaussian process) we smooth the model by re-projecting it
on L2

F (Z). The instrumental regression is now characterized as the solution
of E(Ê(Y |W )|Z) = Kϕ + V , with K = E(E(·|W )|Z) and V a new error
term. The (approximated) distribution of V is gaussian with zero mean and
covariance operator 1

n
σ2K, where K is a known operator.

1.2. Prior measure and main assumptions. In the following, we intro-
duce the prior distribution for x and three assumptions. Some of these as-
sumptions, like Assumptions A.1 and C.1 below, are not standard in statisti-
cal inverse problems literature. This is because, in the most of the literature,
U is modeled as an Hilbert space process (see e.g. [3], Section 2.5) with the
consequence that Σ = I and Assumptions A.1 and C.1 are automatically
satisfied. Furthermore, Assumption C.1 is relevant only for Bayes inversion
theory. In our framework these assumptions are necessary in order to have
a consistent posterior distribution. When these assumptions are not verified
we are in the general case of posterior inconsistency for which a regularized
posterior distribution has been proposed in [12].

Assumption A.1. R(K) ⊂ D(Σ− 1
2 ).

Assumption A.1 demands that K is at least as smooth as Σ
1
2 and ensures

that operator Σ− 1
2K, used in Assumption A.2 below, is well-defined. In other
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words, we demand a compatibility between K and the covariance operator
Σ in the sampling mechanism. This is very common in practical examples
where the covariance operator is often of the form Σ = (KK∗)r, for some
r ≤ 1, see subsection 2.3.

Assumption A.2. There exists an unbounded densely defined operator L
in the Hilbert space X that is self-adjoint, strictly positive and that satisfies

(1.4) m||L−ax|| ≤ ||Σ− 1
2Kx|| ≤ m̄||L−ax||

on X for some a > 0 and 0 < m ≤ m̄ < ∞. Moreover, L−2s is trace-class
for some s > 0.

Assumption (A.2) means that Σ− 1
2K regularizes at least as much as L−a.

The operator L−2s is used to construct the prior covariance operator. The
H-r.v. x has a Gaussian distribution:

(1.5) x|g, s ∼ N
(

x0,
1

g
L−2s

)

,

with x0 ∈ X and g = g(δ) a function of δ such that g ↑ ∞ as δ ↓ 0. This
entails that the prior distribution shrinks towards the prior mean which is
necessary for posterior consistency. The parameter g describes a class of
prior distributions and it may be viewed as an hyperparameter. We provide
in Section 3 an Empirical Bayes approach for selecting it. Gaussian pro-
cesses for functional estimation and frequentist properties of the posterior
distribution have been extensively studied in [37], [38], [40].

In the following, we use the notation Ω0 = L−2s. Hence, Ω0 : X → X
is a linear, bounded, positive-definite, self-adjoint, compact and trace-class
operator. This choice of the prior covariance is aimed to link the prior distri-
bution with the sampling model as it results evident from Assumption A.2.
A similar idea was proposed by Zellner [43] for linear regression models for
which he constructed a class of prior called g-prior. Our prior is an extension
of the Zellner’s g-prior and we call (1.5) extended g-prior.

Roughly speaking, Assumption A.2 quantifies the regularity of Σ− 1
2K

while Assumption B below quantifies the regularity of the true value of x.
In order to understand Assumption A.2 we need to: (i) introduce the def-
inition of Hilbert scale, (ii) explain the meaning of the parameter a, (iii)

discuss the regularity conditions of Σ− 1
2K and of the true value of x. (i)For

all s ∈ R, operator L in Assumption A.2 induces the Hilbert scale (Xs)s∈R,
where Xs is an Hilbert space defined as the completion of

⋂

s∈R
D(Ls) with

respect to the norm ||x||s := ||Lsx||, see [24], [11], [31]. Let notice that as
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Σ− 1
2K must satisfy (1.4) it is necessarily an injective operator.
(ii) Parameter a is the degree of ill-posedness in the statistical experiment.

It is usually smaller than the degree of ill-posedness in the classical problem
Ŷ = Kx since it is determined by the rate of decreasing of the spectrum of
operator Σ− 1

2K and not by that one of K. In other words, to have consis-
tency of the posterior mean we have to control for less ill-posedness than to
have consistency of the classical solution. This is because the operator that
matters is Σ− 1

2K and it has a spectrum decreasing slower than that one of
K, which is the operator that matters for the classical estimator of x.

(iii) From a frequentist point of view, there exists a true value of the
parameter of interest x having generated the data Ŷ . We denote this value
with x∗ and it will be used in the asymptotic analysis since we care for the
weak convergence of the posterior distribution of x towards a point mass in
x∗ as δ ↓ 0. It is a convergence with respect to the sampling probability and
it is known as posterior consistency, see [16].

In nonparametric estimation it is customary to assume that the functional
parameter x∗ that we wish to estimate belongs to some known space of reg-
ularity. We find a similar idea in inverse problem theory with the difference
that in this framework it is natural to impose conditions on the regularity
of x∗ by taking into account the behavior of the operator that character-
izes the inverse problem (that is, the operator Σ− 1

2K in our case). A way
for implementing this consists in introducing a Hilbert Scale and in formu-
lating conditions on x∗ and K with respect to this common Hilbert Scale.
In this paper we use the space Xs, introduced above, as common Hilbert
Scale. Therefore, the meaning of Assumption A.2 is to quantify the regular-
ity of Σ− 1

2K, we refer to [20] Section 2 for a complete explanation of the
relationship between Hilbert Scale and regularity conditions. A very similar
assumption can be found in [8], see Assumptions 2.2 and 4.2 in this paper.
Next assumption expresses the regularity of x∗ according to Xs.

Assumption B. For some β ≥ s, (x∗ − x0) ∈ Xβ, i.e. there exists a

ρ∗ ∈ X such that (x∗ − x0) = L−βρ∗ (≡ Ω
β

2s
0 ρ∗).

The parameter β characterizes the regularity of the true function x∗ and
it is generally unknown. For instance, if the Hilbert scale Xβ is given by the
Sobolev space, then, Assumption B is equivalent to assume that (x∗ − x0)
has at least β square integrable derivatives, see [20].

Because β ≥ s, it follows that R(Ω
β
2s
0 ) ⊂ R(Ω

1
2
0 ) and Assumption B implies

that there exists a ξ∗ such that (x∗−x0) = Ω
1
2
0 ξ∗ and ξ∗ = Ω

β−s

2s
0 ρ∗. Moreover,



10 J-P. FLORENS AND A. SIMONI

by Proposition 3.6 in [6], we can write R(Ω
1
2
0 ) = H(Ω0), where H(Ω0) denotes

the Reproducing Kernel Hilbert Space (R.K.H.S. in the following) associated
with Ω0 and embedded in X , i.e.

H(Ω0) =
{

ϕ : ϕ ∈ X and ||ϕ||2Ω0
:=

∞
∑

j=1

| < ϕ,ϕΩ0
j > |2

λΩ0
j

<∞
}

.

where || · ||Ω0 denotes the norm in H(Ω0) and {λΩ0
j , ϕΩ0

j } is the eigensystem
associated to Ω0. Hence, Assumption B implies that (x∗−x0) ∈ H(Ω0). The
R.K.H.S. is a subset of X that gives the geometry of the distribution of x.
The support of a centered Gaussian process, taking its values in an Hilbert
space X , is the closure in X of the R.K.H.S. associated with the covariance
operator of this process (denoted with H(Ω0) in our case). Then, for our
prior distribution, (x−x0) ∈ H(Ω0) with probability 1, but with probability
1, (x − x0) is not in H(Ω0), see [38]. More properties about the R.K.H.S.
associated with a gaussian measure can be found in [39].

Remark 1.1. Assumption B is classical in Inverse Problem literature, see
e.g. [8] and [30], and it is closely related to the so-called source condition
which expresses the smoothness (regularity) of the function x∗ according
to the spectral representation of the operator K∗K defining the inverse
problem, that is, with respect to the canonical Hilbert Scale, see [11] and
[6]. In our case, the smoothness of (x∗ − x0) is expressed according to the
spectral representation of L. In the particular case considered in subsection
2.2 it will result clear how our assumption relates to similar assumptions in
inverse problems literature.
Remark 1.2. Assumption A.2 covers both the mildly ill-posed and the
severely ill-posed case (under some smoothness assumptions on x∗). In the
mildly ill-posed case the singular values of K decay slowly to zero (typically

at a geometric rate) which means that the kernel of Σ− 1
2K is finitely smooth.

In this case the operator L is generally some differential operator such that
L−1 is finitely smooth. In the severely ill-posed case the singular values of
K decay very rapidly (typically at an exponential rate). Assumption A.2
cover also this case if the function x∗ to be estimated is very smooth. This is
because when the singular values of Σ− 1

2K decay exponentially, Assumption
A.2 is satisfied if also L−1 has an exponentially decreasing spectrum. On
the other hand, L−1 is used to describe the smoothness of x∗; therefore
Assumption B can be satisfied only if x∗ is infinitely smooth.

Hereafter, we use the notation: α = δg, B = Σ− 1
2KΩ

1
2
0 , B̃ = Σ− 1

2K and
we can rewrite the prior covariance operator as 1

g
Ω0 = δ

α
Ω0. Operator B̃ is
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well defined under Assumption A.1 while operator B is well-defined under
Assumption C.1 below. The parameter α is assumed to belong to a set Λ
and plays the role of regularization parameter. For that, it must decrease to
zero; the rate at which α ↓ 0 is crucial in order to get posterior consistency.

Assumption C.1. R(KΩ
1
2
0 ) ⊂ D(Σ−1).

Assumption C.2. The real parameters a, b and s satisfy the inequalities
0 < a ≤ s ≤ β ≤ 2s+ a.

Assumption C.3. There exists γ ∈]0, 1] such that the operator (B∗B)γ

is trace class, i.e. if {λ2
j} denotes the eigenvalues of B∗B, then,

∑

j λ
2γ
j <∞

must be verified.

Assumption C.1 concerns the degree of regularity (e.g. the differentiability)
of the prior covariance operator with respect to the sampling covariance op-
erator. Under Assumption C.1 and since D(Σ−1) ⊂ D(Σ− 1

2 ), operator B is
well-defined.
Assumption C.2 is classical in inverse problem theory, see e.g. [11] Section
8.5. The restriction s ≤ β means that (x∗−x0) has to be at least an element
of Xs and it guarantees that the norm ||Lsx|| exists ∀x ∈ Xβ. The upper
bound (2s+ a) of β is the qualification of the regularization scheme: it says
that we can at most exploit a regularity of x∗ equal to (2s+ a).
Assumption C.3 is used in order to get a better rate of convergence of the
posterior distribution. When γ = 1, Assumption C.3 is the classical Hilbert-

Schmidt assumption of operator Σ− 1
2KΩ

1
2
0 . For γ < 1 this assumption is

more demanding and the posterior rate is faster.

2. Main results. The posterior distribution of x, denoted with µY
δ , is

the Bayesian solution of the inverse problem (1.1), see [14]. The existence
of a regular version of the posterior distribution µY

δ , that is, of a transition
probability characterizing it, is guaranteed by the fact that X and Y are
Polish spaces. In fact, any separable Hilbert space is Polish. In many appli-
cations X and Y are L2 spaces; L2 spaces are Polish if they are defined on
a separable metric space.
The characterization of the posterior distribution µY

δ of x, together with
their joint distribution, is given in the following theorem. The notation
B(X ) ⊗ B(Y) means the Borel σ-field generated by the product topology.
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Theorem 2.1. Let x and Ŷ |x be two gaussian H-r.v. with means x0 and
Kx and covariance operators 1

g
Ω0 := 1

g
L−2s and δΣ, respectively, as in (1.5)

and (1.2). Then,

(i) (x, Ŷ ) is a measurable map from (S,S,P) to (X × Y,B(X ) ⊗ B(Y))
and it has a Gaussian distribution: (x, Ŷ )|g, s ∼ N ((x0,Kx0)

′,Υ),
where Υ is a covariance operator defined as Υ(ϕ,ψ)′ = (1

g
Ω0ϕ +

1
g
Ω0K

∗ψ, 1
g
KΩ0ϕ+ (δΣ + 1

g
KΩ0K

∗)ψ)′ for all (ϕ,ψ) ∈ X ×Y. Then,

the marginal sampling distribution is Ŷ |g, s ∼ N (Kx0, (δΣ+1
g
KΩ0K

∗)).

(ii) The conditional distribution µY
δ of x given Ŷ is gaussian with mean

E(x|Ŷ , g, s) = A(Ŷ −Kx0)+x0 and covariance operator 1
g
[Ω0−AKΩ0],

where the operator A : Y → X is ϕ ∈ Y 7→ Aϕ := Ω0K
∗(αΣ +

KΩ0K
∗)−1ϕ and α = δg.

(iii) Under Assumption C.1, the linear operator A : Y → X satisfies

||Aψ|| ≤ C||ψ||, ∀ψ ∈ Y

for a positive constant C. That is, A is continuous on the whole space Y
as it can be written A = Ω

1
2
0 (αI+B∗B)−1(Σ− 1

2B)∗ with B = Σ− 1
2KΩ

1
2
0 .

Points (i) and (ii) in the theorem are slight modifications of Theorem 1 in
[12] and Corollary 2 in [29], respectively. We rewrite them in order to have
a self-containing theorem. The operator A, written as in point (ii), is in
general continuous only on R(αΣ +KΩ0K

∗). Hence, it is not continuous in
Ŷ because a gaussian H-r.v. with covariance operator Σy := δΣ + 1

g
KΩ0K

∗

does not belong to R(Σy)
1
2 with probability 1 and then Ŷ /∈ R(Σy), since

R(Σy) ⊂ R(Σy)
1
2 . One of our important contributions is given in point (iii)

of Theorem 2.1: when a compatibility assumption among K,Σ and Ω0 holds
as stated in Assumption C.1, the operator A is a continuous and bounded
operator on the whole Y.
More clearly, the operator A written as in (iii) looks like a Tikhonov regu-
larization of the unbounded inverse of B∗B. The inverse of operator B∗B is
unbounded and not defined everywhere in Y because, as B∗B is compact, its
spectrum accumulates at zero. The operator αI, introduced by the prior-to-
posterior transformation, translates the eigenvalues of B∗B sufficiently far
from zero or, equivalently, extends the range of B∗B to the whole space Y
which is the same result of a Tikhonov regularization. In other words, when
Assumption C.1 holds, the prior-to-posterior transformation is equivalent to
apply a Tikhonov regularization scheme to the inverse of B∗B, i.e. to regu-
larize the solution of the equation Bϕ = r, ϕ ∈ Y and r ∈ X . Therefore, the
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regularization effect of the prior-to-posterior transformation is not typical of
all the Gaussian prior distributions in infinite dimensional spaces: a compat-
ibility between the prior covariance operator and the sampling model must
exist in order for the prior distribution to be able to regularize.

Remark 2.1. As stressed in 1.1, the posterior mean can be interpreted
as the Tikhonov regularized solution in the Hilbert scale Xs induced by Ls.
Take for simplicity x0 = 0, then

E(x|Ŷ , g, s) = AŶ = L−s(αI + L−sK∗Σ−1KL−s)−1L−sK∗Σ− 1
2 Σ− 1

2 Ŷ

= (αL2s + B̃∗B̃)−1B̃∗Σ− 1
2 Ŷ

which is the regularized solution of the model

Σ− 1
2 Ŷ = B̃x+ Σ− 1

2U.

This model is the transformation of (1.1) through operator Σ− 1
2 . We remark

that there is no reason why the quantities Z := Σ− 1
2 Ŷ and Σ− 1

2U exist,
so that this specification is incorrect if we interpret Z as a Hilbert-space
valued random variable. However, this transformed model makes sense if
we interpret Z as a Hilbert space process in Y, that is, we assume that
Zϕ :=< Z,ϕ >: Y → L2(S,S,P) is a random variable with E(Zϕ) = 0 and
CovZ = I, where CovZ : Y → Y is the covariance operator characterized
by < CovZϕ,ψ >= E(ZϕZϕ), ∀ϕ,ψ ∈ Y. This assumption is quite usual
in inverse problem literature, see for instance [3] and [1], and it requires
that only the inner product of the noise be well-defined, which allows the
covariance operator to be the identity on Y.

Remark 2.2. We could generalize the specification of the prior covariance
operator to the form 1

g
Ω0 = 1

g
QL−2sQ∗, for some bounded operator Q not

necessarily compact. Then, the previous case is a particular case of this one
for Q = I. In this setting: operator A takes the form

A = QL−s(αI +B∗
QBQ)−1(Σ− 1

2BQ)∗,

for BQ = Σ− 1
2KQL−s and Ls is the Hilbert Scale for Σ− 1

2KQ. Assumptions

A.1 and C.1 are replaced by the weaker assumptions R(KQ) ⊂ D(Σ− 1
2 )

and R(KQL−s) ⊂ D(Σ−1), respectively. Assumption B is replaced by the
assumption that there exists ρ̃∗ ∈ X such that (x∗ − x0) = QL−βρ̃∗.

2.1. Asymptotic analysis. We analyze in this subsection frequentist asymp-
totic properties of the posterior distribution µY

δ of x characterized in Theo-
rem 2.1. The asymptotic analysis is for δ ↓ 0. Let P x∗ denote the sampling
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distribution (1.2) with x = x∗, we remind the definition of posterior consis-
tency in the case the parameter space is a separable metric space:

Definition 1. The posterior distribution is consistent at x∗ with respect
to P x∗ if it weakly converges towards the Dirac measure δx∗

on x∗, i.e. if for
every bounded and continuous functional a : X → X

||
∫

X
a(x)µY

δ (dx) −
∫

X
a(x)δx∗

(dx)|| → 0, a.s.P x∗

as δ → 0, see [10], [16].

If posterior consistency is verified, then the estimators constructed from µY
δ

can be used from both bayesian and classical statisticians.
Our asymptotic analysis is organized as follows. First, we propose the pos-
terior mean E(x|Ŷ , g, s) as an estimator for the solution of (1.1) and we
analyze its frequentist consistency and give the rate of convergence of the
associated risk. Second, we study the asymptotic behavior of the posterior
variance. Last, we state posterior consistency and recover the fastest rate of
contraction of the posterior distribution.
To short the notation we denote the posterior mean as

(2.1) x̂α := E(x|Ŷ , α, s) ≡ E(x|Ŷ , g, s), α := δg

and we index it to α ∈ Λ instead of to g since the two are equivalent.
The set Λ is of the type (0, ᾱ], for a constant ᾱ > 0 not too large. As α
moves in the set Λ, x̂α describes a class of estimators. Hereafter, R(α, x∗) :=
Ex∗

||x̂α − x∗||2 denote the risk associated to our estimator and Ex∗
denotes

the expectation taken with respect to P x∗ . Furthermore, we denote with Xβ

the ellipsoid of the type

(2.2) Xβ(R) := {ϕ : ϕ ∈ X and ||ϕ||2β ≤ R}.

Our asymptotic results will be valid uniformly on Xβ(R). The following
theorem gives the asymptotic behavior of x̂α.

Theorem 2.2. Let consider the observational model (1.1) with U ∼
(0, δΣ); let x∗ be the true value of x having generated the data and α = δg.
Under Assumptions A.1, A.2, B and C.1-C.3 the MISE associated to x̂α is
of order

Ex∗
||x̂α − x∗||2 = O

(

α
β

a+s + δα− γ(a+s)+a

a+s

)

.
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Then, if α is such that δα− γ(a+s)+a

a+s ↓ 0, x̂α is consistent in the sense that
||x̂α − x∗||2 → 0 in P x∗-probability.

Moreover, if (x∗ − x0) ∈ Xβ(R) and α = k1δ
a+s

β+a+γ(a+s) , for some constant
k1 > 0, then

lim
δ→0

sup
(x∗−x0)∈Xβ(R)

δ
− β

β+a+γ(a+s)Ex∗
||x̂α − x∗||2 <∞.

The value α = k1δ
a+s

β+a+γ(a+s) , given in the last part of the theorem, is the
optimal one in the sense that it minimizes the upper bound of the risk as-

sociated to x̂α. We denote this value with αup, i.e. αup = k1δ
a+s

β+a+γ(a+s) . The
corresponding optimal value gup for g is obtained through the relationship
α = δg:

gup = αupδ−1 = k1δ
− β−s+γ(a+s)

β+a+γ(a+s) ,

with k1 some constant. By construction, gup ↑ ∞ slower than δ−1 and faster

than δ−
d−1

d , with d = γ(a+s)+a
a+s

.

We stress an important fact: the optimal rate δ
β

β+a+γ(a+s) of the MISE only
depends on the degree of ill-posedness a and the smoothness parameter β. It
does not depend on the parameter s of the prior covariance because the pa-
rameter γ, as it is determined by the spectrum of B, is a function s. Hence,
the s in γ(a+s) simplify. This will result clear in Corollary 2 where the value
of γ will be explicitly computed. As s does not affect the asymptotic prop-
erties of our estimator it does not need to be estimated in an adaptive way;
it simply has to be specified on the base of the prior guess of the statistician.

Assumption B is particularly suitable because it allows to express the
regularity of (x∗ − x0) according to the spectral representation of the prior
covariance operator. However, x̂α is consistent at a certain rate even when
Assumption B is violated and (x∗ − x0) /∈ H(Ω0) are violated, that is, when
(x∗−x0) is less regular. In this case, the rate can be obtained by expressing
the smoothness (regularity) of (x∗ − x0) according to the spectral represen-
tation of the operator B. This is the result of the following Corollary.

Corollary 1. Under Assumptions A.1, A.2, C.1-C.3, if Ω
1
2
0 and B∗Σ− 1

2K

commute and if (x∗ − x0) ∈ R[(B∗B)
η
2 ], for some η > 0, then

Ex∗
||x̂α − x∗||2 = O(αη + δα− γ(a+s)+a

a+s ).

Then, if α is such that δα− γ(a+s)+a

a+s ↓ 0, x̂α is consistent in the sense that
||x̂α − x∗||2 → 0 in P x∗-probability.
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Because of Assumption A.2 and the result of Corollary 3 in Section 4,
which is due to [11], R[(B∗B)

η
2 ] ⊂ H(Ω0) if and only if η > s

a+s
and

R[(B∗B)
η
2 ] = R(Ω

β
2s
0 ) if and only if η = β

2(a+s) . Thus, the regularity as-

sumption (x∗ − x0) ∈ R[(B∗B)
η
2 ] implies (x∗ − x0) ∈ H(Ω0) if and only if

η > s
a+s

; if 0 < η < s
a+s

, then Corollary 1 shows that we have a certain rate
even when the true mean is not in the R.K.H.S.(Ω0).

Remark 2.3 Corollary 1 is related to a fixed x∗. However, it may be
immediately deduced from the proof that the result is true uniformly on
Φη(M):

sup
(x∗−x0)∈Φη(M)

Ex∗
||x̂α − x∗||2 = O(αη + δα− γ(a+s)+a

a+s ).

where Φη(M) := {ϕ ∈ X ;
∑∞

j=1 λ
−2η
j < ϕ,ϕj >

2≤ M} and {λj , ϕj} is the
eigensystem of B∗B.

The asymptotic behavior of the posterior variance is given in the following
theorem. The rate given is the rate of the MISE of the posterior variance.

Theorem 2.3. Let consider the observational model (1.1) with U ∼
(0, δΣ) and α = δg. Under Assumptions A.1, A.2 and C.1-C.3 the posterior
variance of x converges to zero in X -norm: ||V ar(x|Ŷ , g, s)φ|| → 0, ∀φ ∈ X .
Furthermore, for V ar(x|Ŷ , g, s)|Xβ

: Xβ → X , we have

||V ar(x|Ŷ , g, s)|Xβ
φ||2 = O

( 1

g2
α

β+2s

a+s

)

.

When the optimal αup and gup are used, the posterior variance converges at

the rate δ
3β+2γ(a+s)
β+a+γ(a+s) which is faster than the optimal rate δ

β
β+a+γ(a+s) of the

posterior mean.
The rate of convergence depends on the subset to which we restrict the do-
main of the posterior covariance operator. If its domain is restricted to a
bigger space than Xβ, then the rate will be slower.
A simple Chebishev’s inequality allows to conclude that convergence of the
posterior distribution towards the point mass δx∗

is implied by the conver-
gence of the posterior mean towards x∗ and of the trace of the posterior
variance towards 0. We state consistency of the posterior distribution in the
theorem below.
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Theorem 2.4. Let the assumptions of theorem 2.2 be satisfied. For any
sequence Mδ → ∞ and εδ > 0 small enough, the posterior probability, with
α = αup, satisfies

µY
δ {x ∈ X : δ

− β
2(β+a+γ(a+s)) ||x− x∗|| > Mδ} → 0

in P x∗-probability as δ → 0.

The rate of contraction εδ = δ
β

2(β+a+γ(a+s)) is the fastest one. This theorem
shows that we are able to avoid the posterior inconsistency which is stressed
in [10] as a typical aspect of Bayesian nonparametric estimation. This is
possible because the prior distribution introduces a kind of regularization
of the posterior mean due to the fact that it is shrinking. The parameter of
regularization α is linked to the parameter g in the prior distribution of x.

2.2. Operators with geometric spectra. Of particular interest is the case
where the operators K,Σ and L have geometric spectra (see Example 1).
In this case, we show that the rate of convergence given in Theorem 2.2 is
optimal in a minimax sense and αopt ∝ αup. Our estimator x̂α with α = αopt

is optimal in the sense that it attains the optimal rate of convergence. More-
over, in this framework we show that x̂α, with α estimated with the method
proposed in Section 3, is sharp adaptive in a minimax sense on the classes
of ellipsoids.
We denote with λK

j the singular values of K and with λΣ
j and λL

j the eigen-
values of Σ and L, respectively. We assume that they decrease as a power
of j:

Assumption D. There exist a0, c0 ≥ 0, a, ā, c, c̄, l, l̄ > 0 such that aj−a0 ≤
λK

j ≤ āj−a0 , cj−c0 ≤ λΣ
j ≤ c̄j−c0 and lj ≤ λL

j ≤ l̄j, j = 1, 2, . . .

Under Assumption D we rewrite Assumption B and the ellipsoid Xβ(R)
respectively as

(x∗ − x0) ∈ Xβ :=
{

ϕ ∈ X :
∞
∑

j=1

j2β < ϕ,ψj >
2<∞}

Xβ(R) :=
{

ϕ ∈ X :
∞
∑

j=1

j2β < ϕ,ψj >
2≤ R

}

.

Xβ(R) is the usual ellipsoid encountered in inverse problem literature, see
e.g. [2], [7] or [45]. Assumption D is standard in literature. Under this
assumption, Assumption B implies that the Fourier coefficients < (x∗ −



18 J-P. FLORENS AND A. SIMONI

x0, ψj) > decrease at the geometric rate j−b0 for b0 >
1
2 + β, that is, there

exist x, x̄ > 0 and b0 >
1
2 +β such that xj−b0 ≤ | < (x∗−x0), ψj > | ≤ x̄j−b0 ,

for {ψj} the eigenfunctions of B∗B.
The geometric spectra case makes evident how Assumption B encompasses
the assumption for instance in [42] (Theorem 4.1) and [17] (Assumption
A3). Nevertheless, our Assumption B is more general because it allows the
important case of exponentially declining eigenvalues which arises with an
analytic kernel of K.
Under Assumption D, Assumptions A.1, A.2 and C.1-C.3 imply the follow-
ing conditions on the coefficients:

a = a0 −
c0
2
> 0, a0 ≥ c0 − s,(2.3)

s >
1

2
, γ =

1

2(a0 + s) − c0
(2.4)

where the last equality is up to an additive small term ε > 0. The following
Corollary to Theorem 2.2 gives the minimax rate attained by x̂α.

Corollary 2. Let Assumptions B, D, (2.3) and (2.4) hold. Then, the

Bayes estimator x̂α, with α = k2δ
a+s

β+a+1
2 and k2 = (2a+1

2β
c2
c1

)
a+s

β+a+1
2 attains the

optimal (minimax) rate δ
β

β+a+1
2 , that is,

(2.5) inf
α

sup
(x∗−x0)∈Xβ(R)

Ex∗
||x̂α − x∗||2 = C(R,β)δ

β

β+a+1
2 ,

where

C(R,β) =
[1 + 2a

2β

c2
c1

]

β

β+a+1
2 c1

(

1 +
2β

2a+ 1

)

with c1 := c1(R,β) and c2 two constants.

The value of α = k2δ
a+s

β+a+1
2 given in the previous Corollary is the optimal

one in the sense that it minimizes the risk associated with x̂α and we denote

it as αopt := k2δ
a+s

β+a+1
2 . Then, αopt is solution of the minimization problem

(2.6) αopt = arg min
α∈Λ

R(α, x∗).

The estimator x̂opt computed with this value of α is called the oracle.

The rate δ
β

β+a+1
2 is the same as the rate given in Theorem 2.2: Corollary 2
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shows that this rate is minimax. This rate does not depend on the hyperpa-
rameter s, as previously discussed and it is the same as the rate in [7] and
in [8] for the mildly ill-posed case. Furthermore, for the direct problem, i.e.
for a = 0, it is the same as in [45].
The rate of contraction of the posterior distribution in the geometric spec-

tra case is εδ = δ
β

2(β+a)+1 . For the direct problem, it is the same rate of
contraction given in Theorem 2.1 of [2].

2.3. Covariance operators proportional to K. Another particular case,
encountered in many applications, is when the covariance operator is of the
form Σ = (KK∗)r, for some r ∈ R+ (see for instance Example 2 and
Example 3 in Section 1.1 and Example 4 below). In this case it is con-

venient to choose L = (K∗K)−
1
2 , i.e. L is the canonical Hilbert Scale, and

Ω0 = (K∗K)s, for s ∈ R+.
Assumption A.1 and A.2 hold for r ≤ 1 and a = 1 − r. Assumption C.1
holds for s ≥ 2r− 1. We have to check that (KK∗)r and (K∗K)s are trace-
class. We remark that K Hilbert-Schmidt does not imply that Σ and Ω0 are
trace-class and Assumption C.3 implies that Σ and Ω0 are trace-class only
if γ is such that γ < r∧s

s+1−r
.

The asymptotic results of subsection 2.1 trivially apply to this particular
case.
Next, we develop the example of functional regression estimation which is
an application where the covariance operator Σ is proportional to K.

Example 4. Functional Regression Estimation. The model is the follow-
ing:

(2.7) Y =

∫ 1

0
h(s)X(s)ds + U, E(UX(s)) = 0, X, h ∈ L2([0, 1])

and U |τ2 ∼ N (0, τ2). We want to recover h. Assuming that X is a centered
random variable, the most popular approach consists in multiply both sides
of (2.7) byX(s) and then take the expectation: E(Y X(t)) =

∫ 1
0 h(s)Cov(X(s),X(t))ds,

for t ∈ [0, 1]. This model has been studied in [18], among others. If we dis-
pose of independent and identically distributed data (Y1,X1), . . . , (Yn,Xn)
we can estimate the unknown moments in the previous equation as

1

n

∑

i

YiXi(t) =
1

n

∑

i

< Xi, h > Xi(t) +
1

n

∑

i

UiXi(t),

where < ·, · > denotes the inner product in L2([0, 1]). Then, the operator
K takes the form ϕ ∈ L2([0, 1]) 7→ Kϕ := 1

n

∑

i < Xi, ϕ > Xi(t) and
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δΣ = τ2

n
K, so that r = 1

2 . Suppose that the spectrum of K has a geometric
decline rate, as in subsection 2.2, and that it is the same as in [18], then
j−a0 = j−c0 and a0 = c0. If the true h satisfies Assumptions B and ??, the
rate of convergence of the MISE of the posterior mean is

n
− 2b0−1

2b0+a0

which is the same as the minimax rate in [18].

3. An adaptive selection of α through an empirical Bayes ap-

proach. The parameter α = δg plays the role of a smoothing (or regular-
ization) parameter and {x̂α}α∈Λ defines a class of possible estimators of x.
The set Λ is of the type (0, ᾱ], for a constant ᾱ > 0 not too large. We know
that when α = αopt our estimator x̂opt := x̂αopt is optimal in a minimax
sense. However, the oracle αopt cannot be computed from the data since it
depends on the true value x∗ and on β which are unknown. We are then
satisfied if we can select a value α̂ for α depending on the data and such
that x̂α̂ mimics the behavior of the oracle x̂opt. In order to mimic the oracle,
the risk of x̂α̂ must be at least as small as the risk of the oracle, for δ small.
This property is known as adaptivity of our estimator.
We propose an empirical Bayes procedure in order to select a data-driven
α̂; we show, for the geometric spectra case of subsection 2.2 that the corre-
sponding estimator x̂α̂ is sharp adaptive in a minimax sense. In the litera-
ture, adaptive empirical Bayes procedures have been proposed in frameworks
different from the our, see for instance [21] and [44] in wavelet estimation.

3.1. Characterization of the likelihood. For simplicity we express g and
the prior distribution of x in terms of α, so that g = α/δ and x ∼ N (x0,

δ
α
Ω0).

Then, α is treated as an hyperparameter. The marginal distribution of Ŷ ,
given s and α, is

(3.1) Ŷ |s, α ∼ Pα, Pα = N
(

Kx0, δΣ +
δ

α
KΩ0K

∗
)

.

When α is considered as a random variable, the marginalization of P x with
respect to the prior of x demands the implicit assumption that, condition-
ally on x, Ŷ is independent on α, in symbols Ŷ ‖ α |x.
A gaussian measure on infinite dimensional spaces does not have a density
function with respect to the Lebesgue measure. Computing its likelihood is
therefore not an easy task. In particular, we have to find another measure,
different from the Lebesgue measure, with respect to which Pα is absolutely
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continuous. The following theorem gives a characterization of such a mea-
sure.

Theorem 3.1. Let P 0 be a Gaussian measure with mean Kx0 and co-
variance operator δΣ, i.e. P 0 = N (Kx0, δΣ). Under Assumptions C.1 and
C.3, the Gaussian measure Pα defined in (3.1) is equivalent to P 0. More-
over, the Radon-Nikodym derivative is given by

(3.2)
dPα

dP 0
=

∞
∏

j=1

√

α

λ2
j + α

e

λ2
j

2(λ2
j
+α)

z2
j

,

with
λ2

j

α
the eigenvalues of 1

α
BB∗ and zj a standard normal random variable

under P 0.

The measure P 0 is equal to Pα with α = ∞. This theorem is an application
of Theorem of Kuo (1975) [26]. The random variable zj is defined under

P 0 as zj =
<Ŷ −Kx0,ϕj>√

δlj
, where {l2j , ϕj} is the eigensystem associated with

Σ. Thus, (3.2) gives the marginal likelihood of Ŷ given α, with respect to P 0.

3.2. Adaptive Empirical Bayes (EB) procedure. We specify a non-informative
prior distribution on α and select the regularization parameter that maxi-
mizes the posterior distribution of α which is proportional to the marginal
likelihood of Ŷ . We define the marginal maximum likelihood estimator α̂ of
α to be the maximizer of the marginal log-likelihood

S̄(α, Ŷ ) =
1

2

∞
∑

j=1

[

log
( α

α+ λ2
j

)

+
λ2

j

α+ λ2
j

< Ŷ −Kx0, ϕj >
2

δl2j

]

.

In an equivalent way, α̂ is defined as the solution of the first order condition
∂

∂α
S̄(α, Ŷ ) = 0:

(3.3)

S(α, Ŷ ) :=
∂

∂α
S̄(α, Ŷ ) =

1

2

(

∞
∑

j=1

λ2
j

α(α+ λ2
j )
−

∞
∑

j=1

λ2
j

δ(α + λ2
j)

2l2j
< Ŷ−Kx0, ϕj >

2
)

= 0.

To shorten the notation we write S(α) = S(α, Ŷ ). Our strategy will then be
to plug the value α̂ back into the prior of x and then computing the posterior
mean estimator x̂α̂ using this value of α. The goal for estimation using EB
selection of α is to obtain a risk R(x̂α̂, x∗) associated with x̂α̂ sufficiently
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small compared to the oracle R(x̂opt, x∗).
We show in the next theorem that α̂ is of the same order as αopt and we
provide an oracle inequality for R(x̂α̂, x∗). These results are obtained for the
case where operators have geometric spectra.

Theorem 3.2. Let Assumptions B, D, ??, (2.3) and (2.4) hold. Then,
for every x∗ ∈ Xβ which satisfies assumption ?? with b0 > β + 1

2 , the es-
timator α̂ defined as the solution of (3.3) converges to 0 at the same rate
as αopt, i.e. α̂ ≍ αopt. Moreover, for the estimator x̂α̂ with α̂ defined as the
solution of (3.3), we have

(3.4) R(α̂, x∗) ≤ inf
α∈Λ

R(α, x∗)(1 + O(1))

uniformly in x∗ ∈ Xβ(R).

Inequality (3.4) is an oracle inequality on the class (0, ᾱ] and it implies that
our EB estimator x̂α̂ is adaptive to the oracle x̂opt in a minimax sense on
the family {Xβ(R), β > 0, R > 0}:

sup
(x∗−x0)∈Xβ(R)

Ex∗
||x̂α̂ − x∗||2 ≤ C(β,R)(1 + O(1))δ

β

β+a+1
2

where C(β,R) is a finite constant depending on β > 0 and R > 0. Therefore,
EB procedure gives a practical rule for selecting a value for α from the data.

Remark 3.1. Instead of doing EB estimation by plugging α̂ in the prior
distribution for x we could recover the posterior distribution of α|Ŷ and then
draw a sample from it through methods like Rejection Method or Metropolis-
Hastings. This sample would be used for integrating out α, by Monte Carlo
integration, in the posterior distribution of x|s, α, Ŷ .

Remark 3.2. The specification of a prior distribution on the hyperpa-
rameter α allowing to obtain a posterior for α|Ŷ in closed form is not an easy
task. For the finite dimensional linear regression model, a prior in the gamma
form has been proposed in [43]. In the Bayesian variable selection problem,
different prior specifications for g have been proposed in [28]. For our model
(3.2) we propose, as an alternative to the non-informative prior, a natural
conjugate prior which, for some parameters ν0, µ0 > 0 and a sequence (aj)j
with values in R, has kernel

α− ν0
2 [det(α(αI +BB∗)−1)]

µ0+1
2 exp

{1

2

∑

j

λ2
j

α+ λ2
j

a2
j

}

.
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This prior depends on operator K and we suggest that it could be used for
selecting the operator itself (like model selection in finite dimensional regres-
sion models, see [28], [15]). Moreover, this prior can be think as the posterior
distribution resulting from a ”conceptual” sample and a non-informative
prior, both the sampling and prior distributions being in the same family.
A non-informative prior in the same family requires aj = 0, ∀j.

4. Proofs. In all the proofs we use the notation (λj , ϕj , ψj)j to denote the
singular value decomposition of B (or equivalently of B∗), that is, Bψj = λjϕj and
B∗ϕj = λjψj . In order to prove several results we make use of Corollary 8.22 in
[11]. We give here a simplified version of it adapted to our framework:

Corollary 3. Let Xs, s ∈ R be a Hilbert scale induced by L and let Σ− 1
2K :

X → Y be a bounded operator satisfying Assumption A.2, ∀x ∈ X and for some
a > 0. Then, for B = Σ− 1

2KL−s, s ≥ 0 and |ν| ≤ 1

c(ν)||L−ν(a+s)x|| ≤ ||(B∗B)
ν
2 x|| ≤ c(ν)||L−ν(a+s)x||

holds on D((B∗B)
ν
2 ) with c(ν) = min(mν , m̄ν) and c(ν) = max(mν , m̄ν). More-

over, R((B∗B)
ν
2 ) = Xν(a+s) ≡ D(Lν(a+s)), where (B∗B)

ν
2 has to be replaced by its

extension to X if ν < 0.

We refer to [11] for the proof of it.

4.1. Proof of Theorem 2.1. (i) Because x and Ŷ are both Borel measurable,
then (x, Ŷ ) is measurable in the product of the Borel σ-field B(X ) × B(Y). As X
and Y are separable, it follows that the product of the Borel σ-fields is the same
as the Borel σ-field of the product metric. Then, (x, Ŷ ) is Borel measurable in
B(X ) ⊗ B(Y), see Chapter 1.4 in [41].
By construction of Ŷ in (1.1) and (1.2) we have Ŷ = y1 + y2, with y1 a gaussian
random variable with values in R(K) and y2 a gaussian random variable with values
in R.K.H.S.(Σ), where R.K.H.S.(Σ) denotes the closure in Y of the reproducing
kernel Hilbert space associated with Σ. Remark that because Σ is one-to-one the
support of y2 is all Y. Therandom elements y1 and y2 are independent and there
exists a gaussian random variable with values in D(K) ⊂ X such that y1 = Kx.
Let < ·, · >XY denote the inner product in X × Y. For all (ϕ, ψ) ∈ X × Y we have

< (x, Ŷ ), (ϕ, ψ) >XY=< x,ϕ > + < Kx+ y2, ψ >=< x,ϕ+K∗ψ > + < y2, ψ >

that is gaussian since it is the sum of two gaussian random variables. Since this holds
for all (ϕ, ψ) ∈ X ×Y, this proves that (x, Ŷ ) is jointly gaussian. Its mean is easily
computable as< E(x, Ŷ ), (ϕ, ψ) >=< x0, ϕ > + < Kx0, ψ >=< (x0,Kx0)(ϕ, ψ) >
and the covariance operator Υ is such that

< Υ(ϕ, ψ), (ϕ, ψ) >XY= Cov(< (x, Ŷ ), (ϕ, ψ) >XY , < (x, Ŷ ), (ϕ, ψ) >XY).
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Then,

< Υ(ϕ, ψ), (ϕ, ψ) >XY = Cov(< x,ϕ+K∗ψ > + < y2, ψ >,< x, ϕ+K∗ψ > + < y2, ψ >)

= <
1

g
Ω0[ϕ+K∗ψ], ϕ+K∗ψ > + < δΣψ, ψ >

= <

( 1
g
Ω0,

1
g
Ω0K

∗

1
g
Ω0K, (δΣ + 1

g
KΩ0K

∗)

)

(ϕ, ψ)′, (ϕ, ψ) >XY

for all (ϕ, ψ) ∈ X ×Y, where Cov denotes the covariance operator. Let denote this
joint distribution with Π and the marginal distribution of Ŷ |g, s with Q. The distri-
bution Q is the projection of Π on (Y,B(Y)). Since Π is gaussian, the projection Q
must be gaussian with mean function mQ and covariance operator RQ. Moreover,
∀ψ ∈ Y, < mQ, ψ >=< (x0,Kx0), (0, ψ) >=< Kx0, ψ > and

< RQψ, ψ > = < Υ(0, ψ), (0, ψ) >=< (
1

g
Ω00 +

1

g
Ω0K

∗ψ, (δΣ +
1

g
KΩ0K

∗)ψ +
1

g
KΩ00), (0, ψ) >

= < (δΣ +
1

g
KΩ0K

∗)ψ, ψ > .

Hence, mQ = Kx0 and RQ = (δΣ + 1
g
KΩ0K

∗).

(ii) First, the posterior mean E(x|Ŷ ) is an affine transformation of Ŷ : E(x|Ŷ ) =
AŶ + b for some linear operator A : Y → X and a function b ∈ X . We refer to [29]
Section 3.4, page 392 for the proof of it. The modification required by the fact that
we have a non null prior mean is trivial.
To prove that µYδ is gaussian we use the characteristic function of x given Ŷ (this is
a slight modification and extension of Section 3.5, page 392 in Mandelbaum (1984)).
Let z := x−E(x|Ŷ ) = x−(AŶ +b). By definition of linear conditional expectation,
z and Ŷ are independent. Then, ∀ϕ ∈ X
E(ei<x,ϕ>|Ŷ ) = E(ei<z,ϕ>+i<(AŶ+b),ϕ>|Ŷ ) = E(ei<z,ϕ>)ei<(AŶ+b),ϕ>

= ei<(AŶ+b),ϕ>E(ei<x,ϕ>Ex(e
−i<(A+b)Ŷ ,ϕ>|x))

= ei<AŶ ,ϕ>E(ei<(I−AK)x,ϕ>)e−
1
2<AδΣA

∗ϕ,ϕ>

= ei<AŶ ,ϕ>ei<(I−AK)x0,ϕ>e−
1
2<[ 1

g
(I−AK)Ω0(I−K∗A∗)+AδΣA∗]ϕ,ϕ>

= ei<(AŶ+(I−AK)x0),ϕ>− 1
2<V ϕ,ϕ>.(4.1)

The relation (4.1) identifies the conditional distribution µŶ as being Gaussian with
mean AŶ +b, b = (I−AK)x0 and covariance V = 1

g
(I−AK)Ω0(I−K∗A∗)+AδΣA∗.

We now have to identifies the operator A. Let consider the definition of covariance
operator: for all (ϕ, ψ) ∈ X × Y we have

< Cov(Ŷ , x)ϕ, ψ > = < Cov(Ŷ ,E(x|Ŷ ))ϕ, ψ >=< (δΣ +
1

g
KΩ0K

∗)A∗ϕ, ψ >

and moreover we have that < Cov(Ŷ , x)ϕ, ψ >=< KΩ0ϕ, ψ >. Then, A is the
solution of

(4.2)
(

δΣ +
1

g
KΩ0K

∗
)

A∗ϕ =
1

g
KΩ0ϕ, ∀ϕ ∈ X
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and we conclude that A = Ω0K
∗(αΣ + KΩ0K

∗)−1 with α = δg. We substitute
back this value of A in V so that we obtain Cov(x|Ŷ ) = 1

g
[Ω0 −AKΩ0].

(iii) We transform equation (4.2) in the following way

(αΣ +KΩ0K
∗)A∗ = KΩ0

⇔ Σ
1
2 (αI + Σ− 1

2KΩ0K
∗Σ− 1

2 )Σ
1
2A∗ = KΩ0

⇔ (αI +BB∗)Σ
1
2A∗ = BΩ

1
2
0

⇔ Σ
1
2A∗ = (αI +BB∗)−1BΩ

1
2
0

⇔ Σ
1
2A∗ = B(αI +B∗B)−1Ω

1
2
0

⇔ A∗ = Σ− 1
2B(αI +B∗B)−1Ω

1
2
0 .

The computations above are justified under Assumption C.1. This allows to obtain
an alternative expression for A:

(4.3) A = Ω
1
2
0 (αI +B∗B)−1(Σ− 1

2B)∗.

The identity operator I extends the range of B∗B to the whole Y and then A is

continuous and defined everywhere.

4.2. Proof of Theorem 2.2. The difference (x̂α − x∗) is re-written as

x̂α − x∗ = −(I −AK)(x∗ − x0) +AU := C1 + C2,

where A is defined as in Theorem 2.1. We consider the MISE associated to x̂α:
Ex∗

||x̂α − x∗||2 = ||C1||2 + Ex∗
||C2||2; by Markov inequality this is enough in order

to show convergence to 0 in P x∗-probability of the estimation error: ||x̂α − x∗||2 =
O(Ex∗

||x̂α − x∗||2). By Assumption B there exists a ρ∗ ∈ X such that (x∗ − x0) =
L−βρ∗, then

||C1||2 = ||[I − Ω
1
2
0 (αI +B∗B)−1(Σ− 1

2B)∗K]L−βρ∗||2

= ||Ω
1
2
0 [I − (αI +B∗B)−1(Σ− 1

2B)∗KΩ
1
2
0 ]Ls−βρ∗||2

= ||(B∗B)
s

2(a+s) [I − (αI +B∗B)−1B∗B](B∗B)
β−s

2(a+s) ṽ||2

= ||α(αI +B∗B)−1](B∗B)
β

2(a+s) ṽ||2 = O(α
β

a+s ).

The third equality is obtained by applying Corollary 3 and ṽ is an element of X
such that Ls−βρ∗ = (B∗B)

β−s

2(a+s) ṽ. Next, we address the second term of the MISE:

Ex∗
||C2||2 = tr(AV ar(U)A∗). Corollary 3 implies that R(Ω

1
2
0 ) ≡ D(Ls) is equal to

R(B∗B)
s

2(a+s) so that A = (B∗B)
s

2(a+s) (αI +B∗B)−1(Σ− 1
2B)∗ and then

Ex∗
||C2||2 = tr

[

(B∗B)
s

2(a+s) (αI +B∗B)−1(Σ− 1
2B)∗δΣΣ− 1

2B(αI +B∗B)−1(B∗B)
s

2(a+s)

]

= δtr
[

(B∗B)
s

2(a+s) (αI +B∗B)−1B∗B(αI +B∗B)−1(B∗B)
s

2(a+s)

]
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after simplification. Then,

Ex∗
||C2||2 = δ

∑

j

λ
2s

a+s
+2

j

(α+ λ2
j )

2
= δ

∑

j

λ
2s

a+s
+2−2γ

j

(α+ λ2
j )

2
λ2γ
j

≤ δ sup
j

λ
2s

a+s
+2−2γ

j

(α + λ2
j)

2

∑

j

λ2γ
j ≍ δα−

γ(a+s)+a

a+s ,

where we have exploited Assumption C.3. Therefore, Ex∗
||C2||2 = O

(

δα−
γ(a+s)+a

a+s

)

and Ex∗
||x̂α − x∗||2 = O(α

β

a+s + δα−
γ(a+s)+a

a+s ). This proves the first part of the
theorem.
To prove the second part of the Theorem it is easy to see that

k1δ
a+s

β+a+γ(a+s) = arg inf
α∈Λ

Ex∗
||x̂α − x∗||2

sup
(x∗−x0)∈Xβ(R)

Ex∗
||x̂α − x∗||2 = sup

(x∗−x0)∈Xβ(R)

||C1||2 + Ex∗
||C2||2

and

sup
(x∗−x0)∈Xβ(R)

||C1||2 = sup
(x∗−x0)∈Xβ(R)

∞
∑

j=1

α2 < (B∗B)
s

2(a+s) (αI +B∗B)−1(B∗B)
β−s

2(a+s)Lβ(x∗ − x0), ψj >
2

= α
β

a+sR
( β

2(a+ s) − β

)

β

a+s
(2(a+ s) − β

2(a+ s)

)2 ≍ ||C1||2.

Therefore,

inf
α∈Λ

sup
(x∗−x0)∈Xβ(R)

Ex∗
||x̂α − x∗||2 = O(δ

β

β+a+γ(a+s) )

which proves the second result of the Theorem.

4.3. Proof of Corollary 1. Following the proof of Theorem 2.2 we simply have
to focus on term ||C1||2 of the risk decomposition.

||C1|| = ||[I −K∗Σ− 1
2B(αI +B∗B)−1Ω

1
2
0 ]∗(x∗ − x0)||

= ||[I −K∗Σ− 1
2B(αΩ

− 1
2

0 +K∗Σ−1KΩ
1
2
0 )−1]∗(x∗ − x0)||

= ||[αΩ
− 1

2
0 (αΩ

− 1
2

0 +K∗Σ−1KΩ
1
2
0 )−1]∗(x∗ − x0)|| = ||α(αI + Ω0K

∗Σ−1K)−1(x∗ − x0)||

and if Ω
1
2
0 commute with B∗Σ− 1

2K we have

||C1||2 = ||α(αI +B∗B)−1(x∗ − x0)||2 =

∞
∑

j=1

α2

(α+ λ2
j )

2
< x∗ − x0, ψj >

2

=

∞
∑

j=1

α2λ2η
j

(α+ λj)2
< x∗ − x0, ψj >

2

λ2η
j

= O(αη)

since (x∗ − x0) ∈ R((B∗B)
η

2 ). By using the upper bound for Ex∗
||C2||2 and the

decomposition of the risk given in subsection 4.2 we get the result.
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4.4. Proof of theorem 2.3. The asymptotic behavior of the posterior variance
is similar to that one of term C1 considered in the proof of Theorem 2.2 except for
the fact that it is scaled by the factor 1

g
. We have ∀φ ∈ X

V ar(x|Ŷ , g, s)φ =
1

g
[Ω0 − Ω

1
2
0 (αI +B∗B)−1(Σ− 1

2B)∗KΩ0]φ,

||V ar(x|Ŷ , g, s)φ|| ≤ ||V ar(x|Ŷ , g, s)||||φ|| = sup
||ψ||≤1

||V ar(x|Ŷ , g, s)ψ||||φ||.

We develop the norm of the operator by using Corollary 3:

sup
||ψ||≤1

||V ar(x|Ŷ , g, s)ψ|| =
1

g
sup

||ψ||≤1

||Ω
1
2
0 α(αI +B∗B)−1Ω

1
2
0 ψ||

=
1

g
sup

||ψ||≤1

||(B∗B)
s

2(a+s)α(αI +B∗B)−1(B∗B)
s

2(a+s)ψ||

=
α

g
sup

||ψ||≤1

(

∞
∑

j=1

λ
4s

a+s

j

(α+ λ2
j)

2
< ψ,ϕj >

2
)

1
2

=
α

g

(

sup
j

λ
2s

a+s

j

(α+ λ2
j )

)

≍ α
s

a+s

g

which converges to zero. This proves the first statement. Consider now the restric-

tion V ar(x|Ŷ , g, s)|Xβ
. Since ∀φ ∈ Xβ there exists v ∈ X such that φ = Ω

β
2s

0 v and
||φ|| = ||v||−β , we have

||V ar(x|Ŷ , g, s)|Xβ
φ|| =

1

g
||(B∗B)

s
2(a+s)α(αI +B∗B)−1(B∗B)

s
2(a+s) Ω

β

2s

0 v||

=
1

g
||(B∗B)

s
2(a+s)α(αI +B∗B)−1(B∗B)

β+s

2(a+s) v||

= O
(1

g
α

β+2s

2(a+s)

)

.

By taking the square of this rate we get the result of the theorem.

4.5. Proof of theorem 2.4. Let EY
δ be the expectation taken with respect to

µYδ . By Chebishev’s inequality and Theorem 2.2

µYδ {x ∈ X : ||x− x∗|| > εδMδ} ≤ 1

ε2δM
2
δ

EY
δ ||x− x∗||2

=
1

ε2δM
2
δ

(

||E(x|Ŷ , g, s) − x∗||2 + trV ar(x|Ŷ , g, s)
)

≍ 1

ε2δM
2
δ

(α
β

a+s + δα−
γ(a+s)+a

a+s ) in P x∗-probability
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since

trV ar(x|Ŷ , g, s) =
1

g

∞
∑

j=1

αλ
2s

a+s

j

α+ λ2
j

≤ 1

g

(

sup
j

αλ
2(s−γ(a+s))

a+s

j

α+ λ2
j

)

∞
∑

j=1

λ2γ
j

≍ 1

g
α

s−γ(a+s)
a+s ≍ δα−

a+γ(a+s)
a+s .

Hence, εδ = inf(α
β

2(a+s) , δ
1
2α−

γ(a+s)+a

2(a+s) ) and the fastest rate is obtained when α
β

a+s =

δα−
γ(a+s)+a

a+s , so that εδ = δ
β

2(β+a+γ(a+s)) .

4.6. Proof of Corollary 2. Let consider the eigensystem {λj , ϕj , ψj} associ-
ated with B. Under Assumption D there exist λ, λ̄ > 0 such that λj−(a+s) ≤ λj ≤
λ̄j−(a+s).
We rewrite the risk associated to x̂α as:

R(α, x∗) = Ex∗
||x̂α − x∗||2

=
∑

j

α2

(α+ j−2(a+s))2
< x∗ − x0, ψj >

2 +δ
∑

j

j−2s−2(a+s)

(α+ j−2(a+s))2

=: A1 + A2.

Because of Assumption B we have that

sup
(x∗−x0)∈Xβ(R)

A1 = sup
(x∗−x0)∈Xβ(R)

∑

j

α2j−2β

(α+ j−2(a+s))2
j2β < x∗ − x0, ψj >

2

= R sup
j

α2j−2β

(α+ j−2(a+s))2
= α

β
a+s c1,

c1 := c1(R, β) =
(2(a+ s) − β

2(a+ s)

)2( β

2(a+ s) − β

)

2β

2(a+s)

R.

Term A2 is developed as follows

A2 = δ
∑

j

1

(j(a+2s)(α+ j−2(a+s)))2
= δ

∑

j

1

[j−a(αj2(a+s) + 1)]2

∼ δ

∫ ∞

0

1

[t−a(αt2(a+s) + 1)]2
dt = δ

∫ ∞

0

α− 1
2(a+s)

[α
a

2(a+s) u−a(u2(a+s) + 1)]2
du

= δα− a
a+s

− 1
2(a+s)

∫ ∞

0

1

[u−a(u2(a+s) + 1)]2
du := δα− 2a+1

2(a+s) c2.
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Finally,

sup
(x∗−x0)∈Xβ(R)

R(α, x∗) = α
β

(a+s) c1 + δα− 2a+1
2(a+s) c2

arg inf
α

sup
(x∗−x0)∈Xβ(R)

R(α, x∗) =
[1 + 2a

2β

c2
c1

]

a+s

β+a+ 1
2 δ

a+s

β+a+1
2

inf
α

sup
(x∗−x0)∈Xβ(R)

R(α, x∗) = δ
β

β+a+1
2

[1 + 2a

2β

c2
c1

]

β

β+a+1
2 c1

2(a+ β) + 1

2a+ 1

= C(R, β)δ
β

β+a+ 1
2 .

4.7. Proof of Theorem 3.1. To prove theorem 3.1 we rewrite Theorem of Kuo
[26] and then we just need to verify that the conditions of this theorem are verified.

Theorem 4.1. Let P2 be a Gaussian measure on Y with mean m and covari-
ance operator S2 and P1 be another Gaussian measure on the same space with mean
m and covariance operator S1. If there exists a positive definite, bounded, invert-

ible operator T such that S2 = S
1
2
1 TS

1
2
1 and T − I is Hilbert-Schmidt, then P2 is

equivalent to P1. Moreover, the Radon-Nikodym derivative is given by

(4.4)
dP2

dP1
=

∞
∏

j=1

√

α

λ2
j + α

e

λ2
j

2(λ2
j
+α)

z2j
,

with
λ2

j

α
the eigenvalues of T − I and zj a standard normal random variable under

P1.

We refer to Theorem in [26] for a proof of this Theorem.
In our case: P2 = Pα, m = Kx0, S2 = δΣ + δ

α
KΩ0K

∗, P1 = P 0 and S1 = δΣ. We
rewrite S2 as

S2 =
(

δΣ +
δ

α
KΩ0K

∗
)

=
√
δΣ

1
2

[

I +
1

α
Σ− 1

2KΩ0K
∗Σ− 1

2

]

Σ
1
2

√
δ,

so that T = [I+ 1
α
Σ− 1

2KΩ0K
∗Σ− 1

2 ] = (I+ 1
α
BB∗) and it satisfies all the properties

required in Theorem 4.1, as we show in the following.

- It is positive definite, that is, (I + 1
α
BB∗) is self-adjoint, i.e. (I + 1

α
BB∗)∗ =

(I + 1
α
BB∗) and ∀ϕ ∈ Y, ϕ 6= 0

< (I +
1

α
BB∗)ϕ,ϕ >=< ϕ,ϕ > +

1

α
< B∗ϕ,B∗ϕ >= ||ϕ||2 +

1

α
||B∗ϕ|| > 0.

- It is bounded. The operators B and B∗ are bounded if Assumption C.1 holds;
the operator I is bounded by definition and a linear combination of bounded
operators is bounded, see Remark 2.7 in [25].
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- It is invertible: (I + 1
α
BB∗) is invertible if its inverse is bounded, i.e. there

exists a positive number C such that ||(I + 1
α
BB∗)−1ϕ|| ≤ C||ϕ||, ∀ϕ ∈ Y.

We have ||(I+ 1
α
BB∗)−1ϕ|| ≤ ||(I+ 1

α
BB∗)−1||||ϕ||, and ||(I+ 1

α
BB∗)−1|| ≤

supj
α

α+λ2
j

= 1, ∀ϕ ∈ Y.

- The operator T − I is Hilbert-Schmidt since || 1
α
BB∗||HS = 1

α

√

∑

j λ
4
j <

1
α

√

∑

j λ
2
j < ∞ by Assumption C.3, where || · ||HS denotes the Hilbert-

Schmidt norm.

4.8. Proof of Theorem 3.2. We show the first part of the Theorem, i.e. the
fact that α̂ has the same rate as αopt. The oracle inequality (3.4) is proved in
subsection 4.8.1.
We compute S(α) by using the fact that under Assumption D there exist λ, λ̄ > 0
such that λj−(a+s) ≤ λj ≤ λ̄j−(a+s) and under Assumptions B and D there exist
x, x̄ > 0 such that xj−b0 ≤ | < x∗ − x0, ψj > | ≤ x̄j−b0 for b0 > β + 1

2 . Then,

S(α) =
1

2

∞
∑

j=1

λ2
j

α(α+ λ2
j )

− 1

2

∞
∑

j=1

λ2
j

δ(α+ λ2
j )

2l2j
< K(x∗ − x0), ϕj >

2

−1

2

∞
∑

j=1

λ2
j

δ(α+ λ2
j )

2l2j
< K(x∗ − x0), ϕj >< U,ϕj > −1

2

∞
∑

j=1

λ2
j

δ(α+ λ2
j )

2l2j
< U,ϕj >

2

:= S1 − S2 − S3 − S4.

Let start by computing S2:

S2 =
1

2

∞
∑

j=1

λ2
j

δ(α+ λ2
j )

2l2j
< K(x∗ − x0), ψj >

2

∼ 1

2δ

∞
∑

j=1

j−2(a+s)−2a−2b0

(α+ j−2(a+s))2
=

1

2δ

∞
∑

j=1

j−4a−2s−2b0

(α+ j−2(a+s))2

=
1

2δ

∞
∑

j=1

j2s−2b0

(αj2(a+s) + 1)2

∼ 1

2δ
α

b0−s

a+s
− 1

2(a+s)

∫ ∞

u

u2(s−b0)

(u2(a+s) + 1)2
du, for u > 0

=
1

2δ
α

b0−s− 1
2

a+s

∫ ∞

0

u2(s−b0)

(u2(a+s) + 1)2
du :=

1

2δ
α

β−s

a+s c4

where we have taken b0 = β + 1
2 + ε, for a small ε > 0. Let ξj denote a N (0, 1)

random variable; we rewrite S3 as

S3 =
1

2

∞
∑

j=1

λ2
j√

δ(α+ λ2
j )

2lj
< K(x∗−x0), ψj >

< U,ϕj >√
δlj

=
1

2
√
δ

∞
∑

j=1

λ2
j

(α+ λ2
j )

2lj
< K(x∗−x0), ψj > ξj .
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This series is convergent if, for a fixed α, E||S3||2 < ∞. This is always verified
because:

E||S3||2 ∼ 1

2δ

∞
∑

j=1

λ4
j

(α+ λ2
j )

4
j−2(a+b0)

≤ 1

2δ

(

sup
j

λ2
j

(α + λ2
j)

2

)2 ∞
∑

j=1

j−2(a+b0) =
1

32δα

∞
∑

j=1

j−2(a+b0)

and it is finite if and only if b0 >
1
2 − a which is always true. Therefore, S3 is a

gaussian random variable with 0 mean and variance 1
2δ

∑∞
j=1

λ4
j

(α+λ2
j
)4
j−2(a+b0):

S3 ∼ 1

2
√
δ
ξ
(

∞
∑

j=1

j−4(a+s)−2a−2b0

(α + j−2(a+s))4

)
1
2

=
1

2
√
δ
ξ
(

∞
∑

j=1

j2a+4s−2b0

(αj2(a+s) + 1)4

)
1
2

∼ 1

2
√
δ
ξα− 1

4(a+s)
−

a+2s−b0
2(a+s)

(

∫ ∞

u

u2a+4s−2b0

(u2(a+s) + 1)4
du

)
1
2

:=
1

2
√
δ
ξα− a+2s−β

2(a+s) c5

where we have taken b0 = β+ 1
2 + ε, for a small ε > 0. Because

<U,ϕj>
2

δl2
j

∼ i.i.d.χ2
1,

we center term S4 around its mean and apply the Central Limit Theorem

S4 =
1

2

∞
∑

j=1

λ2
j

(α+ λ2
j )

2
(
< U,ϕj >

2

δl2j
− 1) +

1

2

∞
∑

j=1

λ2
j

(α + λ2
j)

2

=
1

2

(

2

∞
∑

j=1

λ4
j

(α+ λ2
j )

4

)
1
2

ξ +
1

2

∞
∑

j=1

λ2
j

(α+ λ2
j )

2
:= S4a + S4b,

where ξ ∼ N (0, 1) and 2
∑∞
j=1

λ4
j

(α+λ2
j
)4

is the variance of
∑∞

j=1

λ2
j

(α+λ2
j
)2

(ξ2 − 1). We

remark that the same approximations for S3 and S4 remain valid even if U is only
asymptotically gaussian. In this case an application of the Central Limit Theorem
would provide the same result.
Term S4b is non random and we subtract it from S1:

S1 − S4b ∼ 1

2

[

∞
∑

j=1

j−2(a+s)

α(α+ j−2(a+s))
−

∞
∑

j=1

j−2(a+s)

(α+ j−2(a+s))2

]

=
1

2α

∞
∑

j=1

j−4(a+s)

(α+ j−2(a+s))2

=
1

2α

∞
∑

j=1

1

(αj2(a+s) + 1)2
∼ 1

2α

∫ ∞

0

1

(αt2(a+s) + 1)2
dt

=
1

2
α−1− 1

2(a+s)

∫ ∞

0

1

(u2(a+s) + 1)2
du :=

1

2
α−

2(a+s)+1
2(a+s) c3.
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Lastly, term S4a is

S4a ∼ 1√
2

(

∞
∑

j=1

j−4(a+s)

(α+ j−2(a+s))4

)
1
2

ξ =
1√
2

(

∞
∑

j=1

j4(a+s)

(αj2(a+s) + 1)4

)
1
2

ξ

∼ 1√
2

(

∫ ∞

0

t4(a+s)

(αt2(a+s) + 1)4
dt

)
1
2

ξ

=
1√
2
α−1− 1

4(a+s)

(

∫ ∞

0

u4(a+s)

(u2(a+s) + 1)4
du

)
1
2

ξ =
1√
2
ξα−

4(a+s)+1
4(a+s) c6.

By putting together all the terms we get

S(α) =
1

2
α−1− 1

2(a+s) c3 −
1

2δ
α

β−s

a+s c4 −
1

2
√
δ
ξα− a+2s−β

2(a+s) c5 −
1√
2
ξα−

4(a+s)+1

4(a+s) c6

and α̂ is solution of S(α) = 0 or equivalently of S̃(α) = 0 with

(4.5) S̃(α) := δ(c3 −
√

2ξα
1

4(a+s) c6) − α
2β+2a+1
2(a+s) c4 −

√
δξα

β+a+1
2(a+s) c5 = 0.

A solution to this equation does not exist in closed form and it must be computed
through numerical methods. However, we can easily compute the rate of convergence

to 0 of α̂. In fact, let notice that
√

2δξα
1

4(a+s) c6 is negligible with respect to δc3 as

δ ↓ 0 and
√
δξα

β+a+1
2(a+s) c5 is negligible with respect to α

2β+2a+1
2(a+s) c4 if

√
δα− β+a

2(a+s) ↓ 0.

The α̂ which solves S̃(α) = 0 is then such that δc3 = α
2β+2a+1
2(a+s) c4, i.e.

α̂ = Op(δ
a+s

β+a+1
2 )

and
√
δα̂− β+a

2(a+s) ↓ 0. Furthermore, let α̂1 be such that δc3 = α̂
2β+2a+1
2(a+s)

1 c4. Then,

S̃(α̂1) = δ
a+s

β+a+1
2 ξ(

√
2c6δ

4β−4s+3

β+a+ 1
2 − c5δ

3β−a−4s+2
4β+4a+2 ) and S̃(α̂1) = δ

a+s

β+a+1
2 op(1). Then,

we can write

(4.6) α̂ = δ
a+s

β+a+1
2 (
c3
c4

+ op(1)) ≍ αopt.

4.8.1. Proving the oracle inequality (3.4). In this proof we use the notation
B(α̂) := (α̂I + B∗B)−1 and B(αopt) := (αoptI + B∗B)−1. Let consider the norm

defined by
√

Ex∗
|| · ||2 and the risk defined as R(α, x∗) = Ex∗

||x̂α − x∗||2 with
α = α̂ or α = αopt. The risk can be bounded above by

R(α̂, x∗) = Ex∗
||x̂α̂ − x̂opt + x̂opt − x∗||2

≤ Ex∗
(||x̂α̂ − x̂opt|| + ||x̂opt − x∗||)2

≤ 2(Ex∗
||x̂α̂ − x̂opt||2 +R(αopt, x∗)).(4.7)
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Next, we develop Ex∗
||x̂α̂ − x̂αopt

||2. From the definition of x̂α in (2.1) we write

Ex∗
||x̂α̂ − x̂αopt

||2 = Ex∗
||Ω

1
2
0 B(α̂)B∗Σ− 1

2 Ŷ − Ω
1
2
0 B(αopt)B

∗Σ− 1
2 Ŷ ||2

= Ex∗
||
(

Ω
1
2
0 B(α̂)B∗Σ− 1

2 Ŷ − x∗

)

−
(

Ω
1
2
0 B(αopt)B

∗Σ− 1
2 Ŷ − x∗

)

||2

= Ex∗
||
(

Ω
1
2
0 B(α̂)B∗Σ− 1

2K − I
)

x∗ + Ω
1
2
0 B(α̂)B∗Σ− 1

2U

−
(

Ω
1
2
0 B(αopt)B

∗Σ− 1
2K − I

)

x∗ − Ω
1
2
0 B(αopt)B

∗Σ− 1
2U ||2

≤ 2Ex∗
|| − Ω

1
2
0 α̂B(α̂)ξ∗ + Ω

1
2
0 αoptB(αopt)ξ∗||2

+2Ex∗
||Ω

1
2
0

[

B(α̂) −B(αopt)
]

B∗Σ− 1
2U ||2 := 2(A1 + A2),

where ξ∗ is such that x∗ = Ω
1
2
0 ξ∗ and it exists by Assumption B.

A1 = Ex∗
||Ω

1
2
0 B(α̂)(−α̂αoptI − α̂B∗B + α̂αoptI + αoptB

∗B)B(αopt)ξ∗||2

= Ex∗
||Ω

1
2
0 B(α̂)(αopt − α̂)B∗B

1

αopt
αoptB(αopt)ξ∗||2

≤ Ex∗
||(B∗B)

s
2(a+s)B(α̂)

αopt − α̂

αopt
(B∗B)1−

s
2(a+s) ||2||(B∗B)

s
2(a+s)αoptB(αopt)ξ∗||2.

The last norm is exactly term ||C1||2 evaluated at αopt in the proof of Theorem 2.2
(and also term A1 in the proof of Corollary 2) and then it is part of R(αopt, x∗).
We denote it by ||Copt1 ||2 and, by Lemma 2 we have

A1 ≤ Ex∗
(αopt − α∗)

2

α2
opt

||Copt1 ||2.(4.8)

Consider now term A2.

A2 = Ex∗
||Ω

1
2
0 B(α̂)(αopt − α̂)B(αopt)B

∗Σ− 1
2U ||2

≤
(

Ex∗
||Ω

1
2
0 B(α̂)(αopt − α̂)(B∗B)−

s
2(a+s) ||2

)(

Ex∗
||(B∗B)

s
2(a+s)B(αopt)B

∗Σ− 1
2U ||2

)

.

The last term in brackets in A2 is term Ex∗
||C2||2 in the proof of Theorem 2.2,

evaluated at αopt (and also term A2 in the proof of Corollary 2). We denote it by
Ex∗

||Copt2 ||2. Let X̄ = {v ∈ X such that ||v|| ≤ 1}, then

A2 = Ex∗
||(B∗B)

s
2(a+s)B(α̂)(αopt − α̂)(B∗B)−

s
2(a+s) ||2Ex∗

||Copt2 ||2

= Ex∗

[

(αopt − α̂)2 sup
v∈X̄

∞
∑

j=1

1

(α̂+ λ2
j )

2
< v, ϕj >

2
]

Ex∗
||Copt2 ||2

= Ex∗

[ (αopt − α̂)2

α2
opt

sup
v∈X̄

∞
∑

j=1

α2
opt

(α̂+ λ2
j )

2
< v, ϕj >

2
]

Ex∗
||Copt2 ||2
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A2 ≤ Ex∗

[ (αopt − α̂)2

α2
opt

sup
v∈X̄

∞
∑

j=1

< v, ϕj >
2

]

Ex∗
||Copt2 ||2

≤ Ex∗
(αopt − α̂)2

α2
opt

||v||2Ex∗
||Copt2 ||2 ≤ Ex∗

(αopt − α̂)2

α2
opt

Ex∗
||Copt2 ||2(4.9)

where we have used the following fact:

αopt
α̂+ λ2

j

=
αopt − α̂

α̂+ λ2
j

+
α̂

α̂+ λ2
j

≤ αopt − α̂

α̂− αopt
+

αopt − α̂

αopt + λ2
j

+
α̂

α̂+ λ2
j

≤ −1 +
αopt

αopt + λ2
j

+
α̂

α̂+ λ2
j

≤ −1 + 1 + 1 = 1.

By putting together (4.8) and (4.9) we have

Ex∗
||x̂α̂ − x̂αopt

||2 ≤ 2Ex∗
(αopt − α̂)2

α2
opt

(

||Copt1 ||2 + Ex∗
||Copt2 ||2

)

where ||Copt1 ||2 + Ex∗
||Copt2 ||2 = R(αopt, x∗). Hence, by (4.7) and Lemma 1 we have

R(α̂, x∗) ≤ R(αopt, x∗)
(4Ex∗

(αopt − α̂)2

α2
opt

+ 2
)

≤ inf
α∈Λ

R(α, x∗)
(

1 +
α2
opt + α2

opt4
(

1 +
c23
k2
3 c̃

2
3

+ o(1)
)

α2
opt

)

≤ inf
α∈Λ

R(α, x∗)(1 + O(1)).

This concludes the proof of Theorem 3.2.

Lemma 1. Let αopt be the oracle defined in (2.6) and α̂(Ŷ ) be the solution of

S(α, Ŷ ) = 0 defined in 3.3. Under the assumptions of Theorem 3.2, we have

(4.10) Ex∗
(αopt − α̂(Ŷ ))2 ≤ α2

opt

(

1 +
c23
k2
3 c̃

2
3

+ op(1)
)

where c3 :=
∫ ∞

0
1

(u2(a+s)+1)2
du, k3 :=

∫ ∞

0
u2s−2a+1du ans c̃3 :=

∫ ∞

0
u4a+2s

(u2(a+s)+1)3
du.

Proof. Under Assumptions B and D the risk R(α, x∗) can be rewritten as

R(α, x∗) =
∑

j

(

1 − j−2(a+s)

(α+ j−2(a+s))

)2

< x∗ − x0, ψj >
2 +δ

∑

j

j−2(a+2s)

(α+ j−2(a+s))2
.

Then, αopt is the solution of ∂
∂α
R(α, x∗) = 0 and ∂

∂α
R(α, x∗) is approximately equal

to
∂

∂α
R(α, x∗) ∼ 2

(

α−
a+s+b0−

1
2

a+s c̃4 − δα−
2a+s+ 1

2
a+s c̃3

)

,
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with c̃4 :=
∫ ∞

0
u4(a+s)−2b0

(u2(a+s)+1)3
and c̃3 :=

∫ ∞

0
u4a+2s

(u2(a+s)+1)3
du. This can be shown by

using a similar procedure as for determine S(α) above. In an equivalent way, αopt
is solution of

δc̃3 − α
β+a+ 1

2
a+s c̃4 = 0

since b0 = β + 1
2 + ǫ, ǫ > 0. Hence,

(4.11) αopt = δ
a+s

β+a+ 1
2
c̃3
c̃4
.

From (4.6), we have α̂ = αopt(
c3 c̃4
c4c̃3

+ op(1)) and by the Cauchy-Schwartz inequality
we have c4 ≤ c̃4k3. Putting all together we conclude that

Ex∗
(αopt − α̂)2 = α2

opt

(

1 − c3c̃4
c4c̃3

− o(1)
)

≤ α2
opt

(

1 +
c23
k2
3 c̃

2
3

+ o(1)
)

.

Lemma 2. Let α̂, αopt ∈ Λ := (0, ᾱ] where ᾱ > 0 is a finite constant and {λ2
j}

denote the eigenvalues of B∗B. Then, we have

(4.12) Ex∗

(

||(B∗B)
s

2(a+s)B(α̂)(αopt − α̂)(B∗B)1−
s

2(a+s) ||2
)

= Op

(

δ
2(a+s)

β+a+1
2

)

.

where B(α̂) := (α̂I +B∗B)−1.

Proof. Let consider the norm || · || :=
√

Ex∗
| · |2. By definition of the norm of

an operator, we have

||(B∗B)
s

2(a+s)B(α̂)(B∗B)1−
s

2(a+s) ||2 := sup
v∈X̄

||(B∗B)
s

2(a+s)B(α̂)(αopt−α̂)(B∗B)1−
s

2(a+s) v||2,

where the sup is taken over the set X̄ = {v ∈ X such that ||v|| ≤ 1}. We develop
the right hand side of the previous equality as

Ex∗

[

(αopt − α̂)2 sup
v∈X̄

∞
∑

j=1

λ4
j

(α̂ + λ2
j)

2
< v, ϕj >

2
]

≤ Ex∗
(αopt − α̂)2

(

sup
j

λ2
j

(α̂+ λ2
j )

)2

sup
v∈X̄

∞
∑

j=1

< v, ϕj >
2

≤ Ex∗
(αopt − α̂)2

since supj
λ2

j

(α̂+λ2
j
)
≤ 1 and supv∈X̄ ||v||2 = 1.
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