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Abstract

This paper gives a survey of econometric models characterized by a re-

lation between observable and unobservable random elements where these

unobservable terms are assumed to be independent of another set of observ-

able variables called instrumental variables. This kind of specification is use-

full to address the question of endogeneity or of selection bias for example.

These models are treated non parametrically and in all the example we con-

sider the functional parameter of interest is defined as the solution of a linear

or non linear integral equation. The estimation procedure then requires to

solve a (generally ill-posed) inverse problem. We illustrate the main questions

(construction of the equation, identification, numerical solution, asymptotic

properties, selection of the regularization parameter) by the different models

we present.

1 Introduction

Most of the econometric model take the form of a relation between a random element

Y and two others random elements Z and U . Both Y and Z are observable (we have
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for example an i.i.d. sample (yi, zi)i = 1, ..., n of (Y, Z)) but U is unobservable. In

econometrics U may be view as a summary of all the missing variables of the model.

The form of the relation may vary. Consider for example the three following cases:

i) Y = 〈Z, ϕ〉 + U where 〈Z, ϕ〉 denotes a scalar product between Z and a

parameter ϕ (Z and ϕ may be infinite dimensional)

ii) Y = ϕ(Z) + U where ϕ is an unknown function of Z.

iii) Y = ϕ(Z,U) where ϕ is an unknown function of Z and U and is assumed to

be increasing w.r.t. U .

The two first cases are said separable and the last one is non separable. We will say

that Z is exogenous if the object of interest (the function ϕ) is characterized by an

independence condition between Z and U . In the first case this condition reduces

to a non correlation condition E(ZU) = 0 and 〈Z,ϕ〉 is the linear regression of Y

relatively to Z. In the second case a mean independence condition E(U |Z) = 0 is

assumed and ϕ is equal to the conditional expectation of Y given Z. In the last case

it is usually assume that U and Z are fully independent. If moreover U is uniformly

distributed between 0 and 1, ϕ(Z) is the quantile function of Y given Z. At least

in the two last cases, the exogeneity condition means that ϕ is determined by the

conditional distribution of Y given Z.

As economics is not in general an experimental science, the exogeneity assump-

tion creates an analogous statistical framework to treat economic data as in an

experimental context. Essentially the econometrician mays treat the observations

of Z as if they were fixed by an experimentalist and the mechanism generating the Z

may be neglected in the estimation process of ϕ. This concept of exogeneity is funda-

mental in econometrics and has been analyzed from the beginning of econometric’s

researchs (see Koopmans and Reiersol (1950)) or more recently in connection to the

concept of cut in statistical model (see Engle et al (1993), Florens and Mouchart

(1985)...).

However in many important applications of statistics to economic data an exo-

geneity assumption is not valid in the sense that its not characterizes the parameter

of interest. The elementary following example illustrates this point : assume Y and

Z real and we are interested by the parameter ϕ of a linear relation Y = ϕZ + U .
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The variable Z is generated according to an equation Z = γW + V where W is an

observable variable and V is an unobservable noise correlated with U . In that case

E(ZU) 6= 0. There exists a parameter β such that E((Y − βZ)Z) = 0 but this

parameter is different from ϕ.

We say that Z is endogenous if Z is not exogenous. This definition is not

operational and should be precized in order to lead to a characterization of the

parameter of interest.

The endogeneity of the Z variable may be illustrated by the notion of treatment

model which is not specific to econometrics but which is very useful to motivate

the interest to endogenous variables. Consider for example a deterministic variable

ζ ∈ R representing the level of a treatment and Y is a random element denoting the

outcome of the treatment. Let us assume that the impact of the treatment ζ on Y

may be formalized by a relation Y = ϕ(ζ)+U where ϕ(ζ) represents the mean effect

of a level of treatment equal to ζ (i.e. E(U) = 0). In a non experimental design the

level of the treatment Z assigned to an individual is not randomly determined but

may depend on some characteristics of the patient observable by the person who

fix the treatment but not by the statistician. In that case the model used by the

statistician is Y = ϕ(Z) + U but the assumption E(U |Z) = 0 is not relevant.

This example may be extended to macro econometric analysis. The aggregated

consumption of some good may be written Y = ϕ(π) + U where π is a fixed non

random value of the price of this good. The function ϕ is in that case the average

aggregated demand function. The observed price P is not at all randomly generated

and follows for example from the equilibrium of a system of demand and supply (the

supply verifies S = ψ(π)+V and the statistician observes Y and P such that Y = S

or ϕ(P ) + V = ψ(P ) + V ). In this situation the model becomes Y = ϕ(P ) + U but

E(U |P ) 6= 0.

In most of the case Z is endogenous because it is not fixed or randomized but is

generated including a strategic component of the economic agents or Z follows from

an equilibrium rule among the economic agents.

The three models we have introduced before are not well defined if we eliminate

the independence assumption between Z and U . These assumptions should be

replace by other assumption in order to characterize the function ϕ.
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The more natural extension to models with exogenous variables is provided by

models with instrumental variables (IV). We consider now three random elements

(Y, Z, W ) where W are the instruments and the model is still specified by a relation

linking Y to Z and U but U is now assumed to verify an independence property with

W and not with Z. This approach extends obviously the exogeneity case because

W and Z may be taken equal but the interest of this framework is to separate the

relevant variables in the model (Z) and the variables independent to the residual

(W ). In a general presentation Z and W may have common elements but contain

specific variables. In the three models presented above the independence conditions

now become E(WU) = 0, E(U |W ) = 0 or U⊥⊥W (U and W independent).

The IV approach is not the unique way to formalize the endogeneity condition.

In separable models, we may introduce a control function approach.

Consider for example the second type of model and let us compute the con-

ditional expectation E(Y |Z,W ) = ϕ(Z) + E(U |Z,W ). A control function ap-

proach is based on the assumption that there exist a function C(W,Z) such that

E(U |Z, W ) = E(U |C) = ψ(C) and such that C is sufficiently separated of Z to allow

the identification of the two components of the additive model Y = ϕ(Z)+ψ(C)+ε.

For example we may assumed that ∂
∂Z

ψ(C) = 0. In that case ϕ(Z) is obtained up to

an additive constant by solving the equation E(Y |Z,C) = ϕ(Z) + ψ(C) (see Newey

et al. (1999) or Florens et al.(2008)).

In this paper we focus our attention on the instrumental variables approach in

a non parametric context. This question has generated numerous researches in the

last ten years in econometrics and this paper is just a survey of the main elements

of this literature. The goal is to present the key points through different examples.

The strategy to examine this question is the following. First we derive from

the independence condition between U and W a functional equation which link the

unknown object of interest ϕ and the probability distribution of (Y, Z, W ) (actu-

ally the conditional distribution of Y, Z given W ). Under the hypothesis of correct

specification we assume that a solution of this equation exists. The second ques-

tion is the unicity or local unicity of this solution, or, in econometric terminology,

the question of identification or local identification. This unicity property usually

requires some dependence condition between the Z and the W variables. In the

third step, we use the equation derived from the independence between U and W
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to estimate ϕ. We replace the distribution of (Y, Z,W ) by a non parametric esti-

mate and we estimate ϕ as the solution of the estimated equation. Unfortunately

this simple approach based on the resolution of an estimated functional equation

belongs in general to the class of ill-posed inverse problem and this naive solution

is not a consistent estimator. This difficulty is solved by a penalization technic and

we essentially consider in this paper L2 penalizations. The final element consists

to examine the asymptotic properties of the estimator and to derive in particular

its rate of convergence to the true function. This rate will basically depend upon

the difficulty of the resolution of the equation (”degree of ill-posedness”) and of the

regularity of ϕ relative to the problem (”degree of smoothness”). In the IV case

the degree of ill-posedness is related to the dependence between the Z and the W .

Intuitively low dependence means high degree of ill-posedness.

The penalized resolution of the equation requires the choice of some regularity

parameter and the search of a data driven selection of this parameter is essential for

the implementation of this approach. A comparison between a feasible estimator

based on the data driven selection of the regularization parameter and a theoretical

unfeasible estimator based on an optimal selection of the regularization parameter

is important and may be conducted in the spirit of ”oracle” inequalities”. This last

point will not be treated in the paper (see Cavalier (2010) in this volume or in a

bayesian context Florens and Simoni (2010)).

This paper will review the instrumental variable analysis in the three kind of

models which has been introduced. We also briefly introduce the extension to some

dynamic models of the previous ideas, essentially developed a in static framework.

2 The linear model: vectorial or functional data

Let us start to recall the elementary model of instrumental variables which reduces

to the well known two stages least squares method in the homoscedastic case.

We consider a random vector (Y, Z, W ) where Y ∈ R, Z ∈ Rp and W ∈ Rq (Z

and W may have common elements) and the model verifies:

{
Y = Z ′β + U

E(WU) = 0
(2.1)
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where β ∈ Rp is the parameter of interest.

The condition (2.1) leads to the equation.

E(WZ ′)β = E(WY ) (2.2)

denoted Tβ = r with T is a matrix operator from Rp to Rq and r is an element of

Rq. This system of linear equations is assumed to have a solution (well specification

of the model) and this solution is unique (identification condition) if T is one to one,

i.e. if E(ZW ′) has a rank equal to p (which needs in particular q ≥ p). This system

is solve through the minimization of

‖Tβ − r‖2 (2.3)

where the norm is the euclidian norm in Rq and the solution is

β = (T ∗T )−1T ∗r (2.4)

where T ∗ denote the transpose of T .

We assume that an i.i.d. sample (yi, zi, wi)i=1,...,n is available and the estimation

of β is obtained by the replacement of T, T ∗ and r by their empirical counterparts:

β̂ =

[(
1

n

n∑
i=1

ziw
′
i

)(
1

n

n∑
i=1

wiz
′
i

)]−1 (
1

n

∑
ziw

′
i

)(
1

n

∑
wiyi

)
(2.5)

This estimator is not optimal in terms of its asymptotic variance. To find an

optimal estimator we may start again from the moment condition E(W (Y −Z ′β)) =

0 and the usual results (see Hansen (1982)) on GMMM (Generalized moments

Method) implies that optimal estimation is deduced from the minimization of

‖B(Tϕ− r)‖2 where B = [V ar(WU)]−
1
2 (2.6)

This minimization gives

β = (T ∗B∗BT )−1T ∗B∗Br (2.7)

If V ar(U |W ) = σ2 (homoscedastic case) B∗B reduces to [V ar(W )]−1 or, using

the empirical counter parts of these operators, we have:
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β̂ =




(
1

n

n∑
i=1

ziwi

)[(
1

n

n∑
i=1

wiw
′
i

)
]

]−1 (
1

n

n∑
i=1

wiz
′
i

)

−1

1

n

n∑
i=1

ziwi

(
1

n

n∑
i=1

wiw
′
i

)−1
1

n

n∑
i=1

wiyi

(2.8)

This estimation is consistent and verify

√
n(β̂ − β) ⇒ N(0, σ2(T ∗B∗BT )−1) (2.9)

This computation requires the inversion of two matrix operators and it is natural

to consider questions coming from the possible ill conditioning of these matrix.

The inversion of V ar(W ) may be difficult if the dimension of W becomes large,

in particular the inversion of the estimator of V arW if the sample size is small

compared to q the dimension of W . This difficulty may be solved by a regularization

of the inversion of this variance and 1
n
Σwiw

′
i may be replace by αI+ 1

n

∑
wi, w

′
i where

α is a positive parameter going to 0 when N → ∞. (see Carrasco, Florens (2000),

Carrasco (2008)).

An other question come from the rank condition on E(WZ ′) which determines

the identification condition. A recent literature on the so called ”weak instruments”

(See a survey by Stock et al (2002)) consider cases where rank ( 1
n

∑n
i=1 wiz

′
i) = p but

where this matrix converges to a non full rank matrix. The correct mathematical

formalization of this situation is not very easy if the dimension of the vector W and

Z are keeped fixed. This question is more easy to understand in the case where the

dimension of Z and W are infinite.

The natural extension of the previous model (see Florens and Van Bellegem

(2009)) considers Y ∈ R, Z ∈ F and W ∈ H where F and H are two Hilbert spaces.

The model now becomes:

Y = 〈Z, ϕ〉+ U ϕ ∈ F〈, 〉 scalar product in F
E(WU) = 0

(2.10)

where ϕ is the functional parameter if interest and where the condition (2.11)

involves an expectation in the space H. For example if F is the L2 space of square

integrable functions defined on [0,1] w.r.t. the uniform measure we have

〈Z,ϕ〉 =

∫ 1

0

Z(t)ϕ(t)dt (2.11)
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or if F is `2 space of square sommable sequences w.r.t. a measure (πj)j=0,1... we may

have

〈Z, ϕ〉 =
∞∑

j=0

Zjϕjπj. (2.12)

The functional equation determined by condition (2.10) is now rewritten

E(W 〈Z,ϕ〉) = E(WY ) (2.13)

or Tϕ = r where T is the covariance operator from F to H. We still assume the

model well specified (a solution exists to (2.13)) and identified (T is one to one).

The equation Tϕ = r which characterizes ϕ is now a Fredholm equation of type

I and is ill-posed because the covariance operator T is compact. In that case the

generalized inverse solution (2.4) is not a continuous function of r and then does not

lead to a consistent estimator.

The resolution of Tϕ = r is then an ill-posed linear inverse problem which has the

particularity that not only r is estimated but that the operator T is also unknown

and estimated using the same data set as r.

The estimation of ϕ will be performed using a regularization technic and we will

concentrate here on the estimation by a Tikhonov regularization which may include

a smoothness constraint.

Let L : F → F a differential operator defined on a dense subset of F and self

adjoint. For example let us take the operator Ion L2[0, 1] defined by:

Iϕ =

∫ t

0

ϕ(s)ds (2.14)

and let us define L by L−2 = I∗I. We easily see that ϕ ∈ D(L−b) is equivalent to

say that ϕ is b differentiable and satisfies some boundary conditions (e.g. in our

example ϕ ∈ D(L−2) means that ϕ is twice differentiable and ϕ(0) = ϕ′(0) = 0).

Let us assume that ϕ ∈ D(L−b) an consider s ≤ b.

We consider the following Tikhonov functional

‖Tϕ + r‖2 + α‖Lsϕ‖2 (2.15)

The minimum ϕα is equal to :

8



ϕα = (αL2s + T ∗T )−1T ∗r (2.16)

= L−s(αI + L−sT ∗TL−s)−1L−sT ∗r

and the estimator is obtained by replacing T, T ∗ and r by their empirical coun-

terparts T̂ , T̂ ∗ and r̂.

At least three questions follows from this estimation mechanism: is the estimator

easily computable, what are its asymptotic properties in relation in particular to a

concept of strong or weak instruments and is it possible to extend the optimality

argument presented in the finite dimensional case to the functional linear model.

The answers of these question are given in Florens and Van Bellegem (2009) and we

just summarize here the main results.

Let us first remark that the computation of the estimator of ϕ reduces to a

matrix computations. To illustrate this points consider the case where s = 0 and

consider the system (αI + T̂ ∗T̂ )ϕ = T̂ ∗r̂, or equivalently:

αϕ + 1
n

n∑
i=1

zi〈wi, (
1

n

n∑
j=1

wj〈zi, ϕ〉) >

= 1
n

n∑
i=1

zi〈wi, (
1

n

n∑
j=1

wjyj)〉
(2.17)

This equation is estimated in two steps. First we take the scalar products of the

two sides of this equation with any zl (l = 1, ..., n) and we derive a linear system of

n equations where the n unknowns are 〈ϕ, zl〉. In a second step we may compute ϕ

everywhere using the equation (2.17) and the previous computation of these scalar

products. Note that we have to invert are n × n systems and that we assume to

observe the scalar products 〈zi, zj〉 or 〈wi, wj〉 (and not necessarily the complete

continuous trajectoires of the sample of W and Z).

The second question concerns the speed of convergence of the estimator. The

main result is summarized by

‖ϕ̂α − ϕ‖2 ∼ O(n−
β

β+1 ) (2.18)

where β = b
a(1−γ)

. We have defined b as the smoothness hypothesis on ϕ. The

number a (the degree of ill-posedness) is defined by the property
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‖Tϕ‖ ∼ ‖L−aϕ‖ (2.19)

Intuitively L−1 is an integral operator and T is equivalent in terms of norms to L−a.

The notation (2.19) is a shortcut of the property C1‖L−aϕ‖ ≤ ‖Tϕ‖ ≤ C2‖L−aϕ‖
for two suitable constants C1 and C2.

The final term γ is specific to statistical inverse problems (different from inverse

problems treated in numerical analysis). We have introduced an error term U and

the element WU of H is assumed to have a variance Σ which is a trace class operator

from H to H. Let us consider the singular values decompositions of T ∗T character-

ized by the (non null) eigen values λ2
j and the eigen vectors ϕj. The parameter γ is

defined by the largest value in [0, 1] such that

∞∑
j=1

〈Σϕj, ϕj〉2
λ2γ

j

< ∞ (2.20)

This property is trivially satisfied for γ = 0 because Σ is trace class which

correspond to the worth speed of convergence.

The last point we may consider concerns the optimality of our method in term

of the asymptotic variance. If we follows the result obtained in the final dimensional

case we should weight the difference T̂ϕ− r̂ in the norm by Σ− 1
2 . This is impossible

because Σ is a compact non invertible operator. A second regularization is then

needed and we proof that the estimator

ϕ̂α,ν =
(
αI + T̂ ∗Σ̂

1
2 (νI + Σ̂)−2Σ̂

1
2 T̂

)−1

(2.21)

T̂ ∗Σ̂
1
2 (νI + Σ̂)−2Σ̂

1
2 r̂

is optimal in a large class of estimator. All the elements of this class converges

at the same rate and (2.21) has the best asymptotic variance. The study of this

estimator is complex because it depends on two regularization parameters α and ν

and because Σ is unknown and estimated. One of the basic results is that ν may be

chosen such that the speed given in (2.18) is preserved.
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3 The additively separable model and its exten-

sions

We still consider a random vector (Y, Z, W ) ∈ R × Rp × Rq and we define the

instrumental regression by the following properties (See Florens (2000)):

{
Y = ϕ(Z) + U

E(U |W ) = 0
(3.1)

if Z and W are identical (3.1) characterizes ϕ as the conditional expectation of Y

given Z. The interest of the model comes from the case where Z and W are not

identical and for simplicity we first assume that Z and W have no common element.

If (Y, Z,W ) has a density f , the model (3.1) implies that ϕ should satisfies the

integral equation:

∫
ϕ(z)f(z|w)dz =

∫
yf(y|w)dy

which may be denoted

Tϕ = r (3.2)

The choice of the spaces and then of the operator T and of r should be precised.

In general we consider L2(Y, Z, W ) Hilbert space of square integrable functions w.r.t.

the true data generating process and L2(Z), L2(W )... the sub spaces of Z dependent

or W dependent random variables. In that case r is assumed to be an element of

L2(W ), ϕ an element of L2(Z) and T is the conditional expectation operator from

L2(Z) into L2(W ). In that case the adjoint operator T ∗(L2(W ) → L2(Z)) is simply

the conditional expectation operator:

T ∗(ψ) = E(ψ(W )|Z) ψ ∈ L2(W )

The difficulty behind this approach is that we have to estimate both r and T

and we don’t know the distribution which characterizes the spaces. It may be easier

to specifies two given Hilbert spaces E and F and to assume that T operates from

E to F and that r ∈ F .
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This approach has been follow in particular in Florens et al (2005). In this

presentation however we consider that the relevent spaces are of the form L2(Z)....

The first question following from equation (3.2) is the identification of ϕ or

equivalently the unicity of the solution. Due to the linearity of T it is obvious that

ϕ is identified if Tϕ = 0 implies ϕ = 0.

This property is the injectivity of the conditional expectation operator and is

a dependence condition between Z and W . It means that there does not exist a

function of Z orthogonal to any function of W . This property has been introduced

in statistics under the name ”completness” and has been studied under the name

”strong identification” (see Florens et al (1989) chap. 5). For joint normal distribu-

tion T is one to one if and only if the rank of the covariance matrix between Z and

W is equal to the dimension of Z.

In the general case the singular value decomposition of T may be used to char-

acterize the identification condition. This condition is true if 0 is not an eigen value

of T ∗T .

Actually the statistical analysis of our problem requires that we may character-

ized the speed of decline to zero of the SVD of T . This speed of decline measures

the dependence between Z and W . As we did in the previous section a natural

tool is provided by a measurement deduced from an Hilbert scale defined from a

differential operator L. We then assume that ‖Tϕ‖ ∼ ‖L−aϕ‖ and a defines the

degree of ill-posedness of the problem. We may also assume that the singular values

of T (λj)j=1,... declines at a geometric rate (λj ∼ 1
ja ) see Hall and Horowitz (2005)

or at an exponential rate (which is the case for a jointly normal distribution from

(Z, W )) .

As usual for non parametric statistic we need also to assume some regularity

for the function we want to estimate. The Hilbert scale approach gives such a

definition of regularity : ϕ has the regularity b if ϕ ∈ D(Lb). We can also assume

some rate of decline for the Fourier coefficient of ϕ in the basis of the eigen vectors

of T ∗T . An elementary case is obtained by choosing L = (T ∗T )−
1
2 which implies

that the degree of ill-posedness is equal to 1 and the condition ϕ ∈ D[(T ∗T )−
b
2 ] (or

equivalently ϕ ∈ R(T ∗T )
b
2 ) is called a source condition. All these considerations are

very common in the theory of inverse problems and we just applied this methodology

to the conditional expectation operator.
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The general principle of the estimation of ϕ is to estimate the r value of (3.2)

and the operator T by usual non parametric technics and to solve any regularized

version of equation (3.2).

The estimations is obtained by estimating the first order condition of the mini-

mization of the Tikhonov functional see Carrasco et al (2007).

‖Tϕ− r‖2 + α‖ϕ‖2 (3.3)

which leads to

ϕα = (αI + T ∗T )−1T ∗r (3.4)

and to an estimator:

ϕ̂α = (αI + T̂ ∗T̂ )−1T̂ ∗r̂ (3.5)

which may computed by matrix inversion only (see Florens et al (2003)).

More general estimation are derived from iterated Tikhonov method or from a

minimization in an Hilbert scale penalization:

‖Tϕ− r‖2 + α‖Lsϕ‖2 (3.6)

where s ≤ β which leads to an estimator.

ϕ̂α = L−s(αT + L−sT̂ ∗T̂L−s)−1L−1T̂ ∗r̂ (3.7)

We will consider only the case where s = 0 (usual L2 Tikhonov method).

Let us first discuss the non parametric estimation part. The rhs r may be

estimated by a usual kernel approach:

r̂ =

∑n
i=1 yiK

(
w−wi

hn

)

∑h
i=1 K

(
w−wi

hn

) (3.8)

where K is a kernel of suitable order an hn the bandwidth. The estimation of T is

done by replacing f(z|w) by its kernel estimation

f̂(z|w) =

1
hp

∑n
i=1 K

(
z−zi

hn

)
K

(
w−wi

hn

)

∑n
i=1 K

(
w−wi

hn

) (3.9)
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where for simplicity we denote by K and hn the different kernels and bandwidths.

Then T is estimated by

T̂ϕ =

∫
ϕ(z)f̂(z|w)dz (3.10)

and T ∗ by:

T̂ ∗ϕ =

∫
ψ(w)f̂(w|z)dw (3.11)

where f̂(w|z) is defined analogously. Notice that T̂ not the dual of T̂ . It may be

proved (see Darolles et al (2003) that:

‖r̂ − T̂ϕ‖2 ∼ O

(
1

nhq
n

+ h2ρ
n

)
(3.12)

‖T̂ − T‖ ∼ ‖T̂ ∗ − T ∗‖2 ∼ O

(
1

nhp+q
n

+ h2ρ

)
(3.13)

where ρ represents the regularity of the joint distribution of the data.

Note that an alternative estimation of T would be

T̂ϕ =

∑n
i=1 ϕ(zi)K

(
w−wi

hn

)

∑n
i=1 K

(
w−wi

hn

) (3.14)

and equivalently for T ∗. These estimations gives excellent approximations and ex-

cellent results in the simulation but as this operators are not bounded in the L2

spaces the available proofs of consistency do not applied to these estimations (see

Fève and Florens (2010)).

As in the linear case the computation of ϕ̂α reduces to a matrix computation, at

least if approximation (3.14) is used. Indeed in that case we have to solve:

αϕ(z) +

∑
j

∑
i ϕ(zi)K(w−wi

hn
)

∑
K

(
wj−wi

hn

) K
(

z−zj

hn

)

∑
j K

(
z−zj

hn

) (3.15)

=

∑
j

∑
i yiK

(
wj−wi

hn

)

∑
K

(
wj−wi

hn

) K
(

z−zj

hn

)

∑
j K

(
z−zj

hn

)
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which is solved in two steps: first for z = z1, ..., zn and after for any value of z.

The last question is to consider the asymptotic properties of these estimators.

Let us focussed on the usual Tikhonov estimation. The difference ϕ̂α − ϕ may be

decomposed in three points:

ϕ̂∗ − ϕ = (αI + T̂ ∗T̂ )−1T̂ ∗(r̂ − T̂ϕ) I

+ [(αI + T̂ T̂ )−1T̂ ∗T̂ − (αI + T̂ ∗T )−1T ∗T ]ϕ II

+ ϕα − ϕ III

The norm ‖ϕα − ϕ‖2 is the regularization bias and is known to be O(α
b
α ) in the

Hilbert scale approach.

The norm of the first term I verifies

|I‖2 ≤ ‖(αI + T̂ ∗T̂ )−1T̂ ∗‖2‖r̂ − T̂ϕ‖2

∼ O

(
1

α

(
1

nhp
+ h2ρ

))

The norm of II requires some computations but under some regularity assump-

tion is term is negligible w.r.t. to the other term. If h is chosen by an optimal rule

we have hn = n−
1

p+2ρ and ‖I‖2 ∼ O
(

1
α
n−

2ρ
p+2ρ

)
.

The optimal choice for α is then

α proportional to [n−
2ρ

p+2ρ ]
a

b+a (3.16)

which gives an optimal rate of convergence:

‖ϕ̂α − ϕ‖2 ∼ O(n− 2ρ
−p+2ρ

× b
a+b

))

In some cases (see Chen and Reiss (2007) or Johannes et al (2007)) it is natural

to assume that ρ = b + a and the optimal rate simplifies to:

‖ϕ̂α‖2 ∼ O(n−
2b

2(b+a)+ρ ) (3.17)

which has been shown to be minimax under some assumptions.

The main question following from this approach is the empirical determination

of the regularization parameters, namely the bandwidths of the kernel estimation

and the α for the Tikhonov regularization.
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Several approaches has been proposed in the literature. The following rule has

been proved to have good properties, both theoretically and by simulation (see Engle

et al (2000) or Feve and Florens (2010)).

The principle is to compute α which minimizes

1

α
‖r̂ − T̂ ϕ̂α‖2 (3.18)

where the norm is replaced by the empirical norm.

Indeed the minimization of ‖r̂ − T̂ ϕ̂α‖2 leads to α = 0 and multiplying by 1
α

is

equivalent to penalize this quantity. The α obtained by this rule has the optimal

speed of convergence (for a comparable rule see Loubes and Marteau (2010) or for

a bayesian approach Florens and Simioni (2010)) and numerous simulations shows

its relevance.

This separable model has many extensions which may be treated in the same

spirit.

First, for dimensionality reason, we may consider some restrictions on the general

form Y = ϕ(Z) + U , for example:

i) Y = ϕ1(Z1) + ϕ2(Z2) + U (additive model) Y = ϕ1(Z1) + Z ′
2β2 + U (semi

parametric additive model) where Z2 may be exogenous (Z2 included in W )

or not

ii) Y = ϕ(β′Z) + U (single index form)

This model does not lead to a linear integral equation. These models has been

treated in many papers (see Florens et al (2005), Ai and Chen (2003)).

Secondly we may consider the class of transformation models like:

ϕ(Y ) = Z ′β + U

(see Fève and Florens (2010)) or

ϕ(Y ) = ψ(Z) + X ′β + U

(see Florens and Sokullu (2010) when X is exogenous).

Third we may consider some test problems like testing that Z is exogenous

(ϕ(Z) = E(Y |Z)) or that ϕ has a given parametric form (see Horowitz (2006),

Blundell and Horowitz (2007)).
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4 The non separable models

The last family of models we consider in the static case belongs to the class of non

separable models. Let us still consider a random vector (Y, Z, W ) ∈ R × Rp × Rq

and we assume the following relation:

Y = ϕ(Z, U) U ∈ R
where ϕ(Z, .) is strictly increasing.

U⊥⊥W and U ∼ F0 given

(4.1)

If Z = W and U uniform this model is called the conditional quantile model

and may be view as a way to describe the conditional distribution of Y given Z. If

U is exponential and Y non negative this equation is a general characterization of

duration model conditional to cofactors Z (see Horowitz (1996)). This model may

be generalized by relaxing some assumptions as the monotonicity condition.

Our objective here is to relax the assumption Z = W and to consider the instru-

mental variable generalization of the non separable models by considering the case

where Z and W are distincts. (See Horowitz and Lee (2007)). A complete theory of

these models is out of the scope of this survey but we want to give some elements

about this specification.

First let us note that equation (4.1) leads a non linear integral equation where

the unknown element is the fonction ϕ. Indeed:

U⊥⊥W ⇔
∫

Prob(U ≤ u, Z = z|W = w)dz = F0(u) (4.2)

⇔
∫

F (ϕ(z, u), z|w)dz = F0(u)

where F (y, z|w) = Prob(Y ≤ y, Z = z|W = w) (4.3)

=
∂p

∂z1, ..., ∂zp

Prob(Y ≤ y, Z ≤ z|W = w)

The fonction F is identifiable and estimable from the data, F0 the c.d.f. of U is

given and (4.2) appears as an equation which characterizes ϕ.

The next question is the identification question, i.e. the unicity of the solution

of (4.2). As the equation is non linear it is natural to look at the local unicity of
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the solution which may be characterized by the one to one property of the linear

approximation of the equation at the true value.

Let f(y, z|w) the density of (Y, Z) given W = w (f(y, z|w) = ∂
∂y

F (y, z|w)). The

linearized version of the equation (4.2) denoted T (ϕ) = F0 is based on the linear

operator :

T ′
ϕ(ϕ̃) =

∫
ϕ̃(z, u)f(ϕ(z, u), z|w)dz (4.4)

This operator is computed as the Gâteau derivative of T in ϕ and is shown to be

the Frechet derivative under regularity conditions (see recalled in Nashed (1971))

The model is then locally identified if T ′
ϕ is one to one for any ϕ. Assuming that

the true ϕ is almost surely (as a function of Z and U) different from 0 we have:

T ′
ϕ(ϕ̃) = 0 ⇔

∫
ϕ̃(z, u)

ϕ(z, u)
ϕ(z, u)f(ϕ(z, u), z|w)dz = 0 (4.5)

⇔ g(u|w)

∫
ϕ̃(z, u)

ϕ(z, u)
g(z|w,w)dz = 0

if g(z, u|w) is the density of (Z,U) given W .

We say that Z is strongly identified by W given U if for any integrable function

λ(Z,U) we have E(λ(Z,U)|W,U) = 0 implies λ(Z,U) = 0 almost surely. It follows

immediately that ϕ is locally identified if Z is strongly identified by W given U .

Let us now briefly discuss the estimation procedure of ϕ. The principle would

be to construct a regularized solution of

min‖T (ϕ)− F0‖2 (4.6)

where T is replaced by a non parametric estimator. This minimization is difficult

and may lead to unconsistent estimator for some estimators of T . A better strategy

is to estimate the first order conditions of the Tikhonov functional

‖T (ϕ)− F0‖2 + α‖ϕ‖2 (4.7)

i.e.

αϕ + T
′∗
ϕ (T (ϕ)− F0) = 0 (4.8)
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where T
′∗
ϕ is the adjoint of T ′

ϕ defined in (41). We have:

T
′∗
ϕ (ψ) =

∫
ψ(w)f(ϕ(z, u), w|z)dw

where f(y, w|z) is the joint density of (Y, W ) given Z.

Numerous iterative methods exists for solving a non linear integral equation and

are out of the scope of the paper (see Kaltenbacher et al (2008) for a survey of these

methods).

For example we may consider the iterated following method. If ϕ̂α
k−1 is the value

of the estimator at step k − 1 the new value ϕ̂α
k will be the solution of

αϕ + T ′α
ϕ̂α

k−1
(T (ϕ)− F0)) = 0 (4.9)

The parameter α may be fixed or updated at each step. The algorithm is stopped

at the convergence (ϕ̂α
k−1 ' ϕ̂α

k ) because the regularization is coming from the α

parameter.

We don’t consider in that section the extension of the analysis of the convergence

rate of the estimator of ϕ neither then the optimal selection of the regularization

parameter (see Gagliardini and Scaillet (2006), Chernozukov et al (2009) or Horowitz

and Lee (2007)).

5 Some extensions to dynamic models

All the specifications we have considered have been introduced in an i.i.d. context.

Their extension to some dynamic case with discrete time observations is natural.

Take for example the model

Yt = ϕ(Zt) + Ut (5.1)

where (Yt, Zt) is a joint markov process and

E(U |Yt−1, Zt−1) = 0 (5.2)

All the theory of section 3 applies where the instruments W are now the lagged

variables (Yt−1, Zt−1). In case of weakly dependent processes the main results of non

parametric estimation apply and for example the analysis of the rate of convergence
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remains identical. Non stationary data main leads to unexpected conclusions: if

(Yt, Zt) is a unit root process, Wang and Phillips (2009 ) verify that a usual estima-

tion of the regression of Yt given Zt is a consistent estimators of ϕ.

We want to give a brief survey of a more theoretical approach for instrumen-

tal analysis for stochastic processes, possibly with a continuous time. (a complete

presentation and examples are given in Florens and Simon (2010)).

We will briefly present two different approaches which correspond for stochastic

processes to the extension of separable and non separable models.

The first extension considers a stochastic process Yt (t ≥ 0) possibly with t

continuous and two filtrations Zt and Wt. In general there exists two stochastic

processes Zt and Wt such that Zt is generated by Yt and Zt and Wt by Yt and Wt.

In an intuitive presentation the idea is to decompose the variation of Yt in this way:

dYt = λtdt + dUt (5.3)

where λt depends on Zt and where E(dUt|Wt) = 0. More formally if we integrate

w.r.t. to t equation (5.3) we get

Yt = Λt + Ut (5.4)

where Λt is Zt predictable and Ut satisfies the martingale condition E(Ut−Us|Ws) =

0.

This model may be identified by computing first the decomposition of Yt w.r.t.

to Wt:

Yt = Ht + Mt (5.5)

where Ht is Wt predictable and Mt is a Wi martingale. We assume that (5.5) has a

differential version

dYt = htdt + dMt (5.6)

In that case λt is solution of

ht = E(λt|Wt) ∀t. (5.7)

The equation (5.7) generates a sequence of linear integral equations which may

be treated (for each value of t) in the same way as in section 3. However ht and λt
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may depend on the complete past of Yt and Wt for ht and of Yt and Zt for λt and

the statistical treatment of this problem is impossible unless some restrictions are

improved to these processes.

This decomposition does not cover all the interesting cases and we propose an-

other class of stochastic processes models with endogenous variables defined in the

following way.

Let ϕt an increasing sequence of stopping times adapted to the filtration Zt and

Ut a process with a given distribution. We assume (Ut)t and (Wt)t independent (the

complete paths of U and W are independent) and the model is defined by assuming

Yϕt = Ut, (5.8)

i.e. the process Y stopped at ϕt is equal to Ut.

This model may be view as a non separable model and be used for counting

processes (Ut is an homogenous Poisson process) or for diffusion (Ut is a Brownian

motion). It is shown in Florens and Simon (2010) that ϕt is characterized as the

solution of a non linear integral equation:

∫
Q(dz)

∫ ϕt

0

ktg(z|Ws)ds = HU
t (5.9)

where HU
t is the compensator Ut w.r.t. its own his history and is given, kt is the

intensity of Yt w.r.t. Zt and Wt and g is the density of the process (Zt)t w.r.t. a

dominating measure Q.

Several examples of the application of this formulae are given in Florens and

Simon (2010). In this paper the local unicity of the solution of this sequence of

equation is also discussed.

6 Conclusion

This paper present a different examples of econometric models based on an instru-

ment variable assumption and shows that the functional parameter of interest is

characterized as the solution of a linear or non linear integral equation. We have

illustrated the main questions following of this characterization: unicity or local

unicity of the solution, degree of ill-posedness and regularization, speed of conver-

gence of the solutions and data driven selection of the regularization parameters.
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All these points have been illustrated by a Monte Carlo analysis in Fève and Florens

(2010) and an application may be founded e.g. in Blundell et al (2007).
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