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1. Introduction  

The last two decades have witnessed major changes in the organisation of health 

services. Various factors, among which the aging of the population and technical 

progress, led to growing demand levels and expectations; then to discontent, cost 

increases and general financial crisis. In general terms this scenario has characterised 

(and still characterises) many European countries: thus the need to reform the system. 

The UK was one of the first European countries to introduce a reform, with the White 

Paper Working for Patients (December 1989) and the NHS and Community Care Act 

(June 1990, effective from April 1991) that changed many key features of the health 

system. As regards hospital services a clear distinction was introduced between 

purchasers (District Health Authorities and GP fund-holders) and providers (hospital 

trusts).  By the acquisition of trust status hospitals were given a lot more autonomy in 

the management of their resources (Bartlett and Le Grand, 1994); on the other hand, 

however, their budget-based, cost reimbursement funding system was to be replaced 

by a contractual system: hospitals would have to sell their services to the purchasers 

via contracts on the so-called internal market. The idea was that competition for 

contracts would give hospitals incentives to efficient behaviour. 

                                                 
1 Useful comments were received from Wiji Arulampalam, Simon Burke, John Cubbin, Dennis Leech 
and Tom Weyman-Jones, and from David Spiegelhalter as discussant of the paper at the RSS 2003 
one-day meeting on “Performance Monitoring and Surveillance”. Usual disclaimers apply. 
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Even though the “quasi-market” was formally eliminated in 1997, its main features 

remained in place, other countries are now following in the same direction, and the 

debate about the efficiency and effectiveness of this kind of reform is a topical policy 

issue. Not surprisingly it has generated a lot of scientific interest, but this has been 

mainly of a theoretical nature, on the efficiency properties of different contracts or the 

existence of competitive conditions on the market; not as much has been done instead 

from an empirical point of view, not least because of difficulties in getting the 

relevant data. 

Soderlund et al. (1997) estimated a classical linear regression model on a sample of 

NHS hospitals in England for the years 1992 to1994; this revealed a general 

productivity improvement whose association with the changes to trust status remained 

however unsure.  

Due to its easier availability, others have used the acute Scottish hospitals data set 

used in this paper2. For example Scott and Parkin (1995) used it for 1992/93 to 

estimate a translog cost function which highlighted the prevalence of constant returns 

to scale and economies of scope between different kinds of outputs (mainly inpatients 

and outpatients). Some specifical analysis of efficiency was performed by Maniadakis 

et al. (1997, 1999), who used Data Envelopment Analysis (DEA) to calculate 

Malmquist indexes of total factor productivity (TFP) for the period 1991/92-1995/96. 

They conclude a general improvement in TFP, mainly attributable to shifts of the 

frontier, but a worsening of the quality level3. However, due to its deterministic, non-

parametric nature DEA suffers from a few relevant shortcomings, which are well 

                                                 
2 ISD Scotland, Scottish Health Service Costs, NHS in Scotland. 
3 Measured as the survival rate 30 days after discharge. 
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documented in the literature4. The aim of this paper is to analyse the changes in 

technical efficiency and performance of hospitals during the years of the reform by 

means of a stochastic distance function. This contributes to the literature under the 

following respects. As opposed to DEA, the stochastic parametric approach allows the 

statistical testing of hypotheses, quantifying the reliability of the results. It also allows 

the analysis of the characteristics of the production process that a non-parametric 

method by definition does not identify. Furthermore the chosen model is a stochastic 

distance function (Coelli and Perelman, 1996) for technical efficiency, which is a 

frontier model as opposed to the classical linear regression one; as will be seen in 

Section 2, the frontier model specifically separates the noise in the data from the 

estimation of inefficiency, the latter being the aim of the exercise. The choice of a 

distance function form is due to the multiple output nature of the production process 

that rules out the direct estimation of a production function. 

Data for the whole of the NHS unfortunately are not available. The analysis is 

therefore restricted to Scotland, on a sample of 52 acute hospitals observed between 

1991/92 and 1996/97, thus covering the whole duration of the reform. 

The paper is structured as follows. The estimation of stochastic frontiers and the 

distance function model are discussed in Section 2. Section 3 describes the data set. A 

first pooled model is estimated in Section 4, and a model with changing parameters in 

Section 5. General conclusions are in Section 6. The parameters’ estimates are 

reported in Appendices 1 and 2; finally Appendix 3 reports the analysis of the 

residuals. 

 

                                                 
4 General discussions on DEA can be found in Fried et al (1993); Charnes, Cooper, Lewin and Seiford 
(1994); Coelli, Rao and Battese (1998); Cooper, Seiford and Tone (2000). A specific analysis of its 
application to the hospital sector is in Parkin and Hollingsworth (1997). 
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2. The stochastic frontier and the distance function 

 

Following Debreu (1951) and Farrell (1957) seminal papers, the efficiency of a firm 

can be defined and measured in terms of the distance of its actual performance from a 

frontier. If this frontier is the production function, i.e. the maximum attainable output 

from a given set of inputs, the distance will measure technical inefficiency. More 

formally, and in an output perspective, if there are N firms that use a vector  

of inputs to produce a vector  of outputs then 

KRx +∈
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is the output set, i.e. all the levels of output that can be produced using a given level 

of inputs, whether efficient or not. The isoquant and the efficient subset are 
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and they identify respectively the boundary of the output set, defined in terms of 

radial expansions of the output points within it, and the frontier. As shown in Figures 

1 and 2, in the case of a well behaved, continuously differentiable production 

technology the isoquant and the efficient subset coincide, whereas they do not with a 

piecewise linear frontier as the one estimated with DEA.  

Following Shephard (1953, 1970) the distance function (i.e. the measure of 

(in)efficiency) is the radial expansion measure for the output vector(s) in order to 

reach the frontier. The distance function is defined as 

⎭
⎬
⎫

⎩
⎨
⎧ ∈= )(:min xPyDo ϑ
ϑ                     (1) 

where 0<Do≤1. If Do =1 the observation lies on the frontier, if Do <1 it lies below it 

and a radial expansion of 1/ϑ of the outputs is necessary to reach it. The distance 
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function is homogeneous of degree +1 and weakly monotonically increasing in 

outputs, and it is invariant to changes in the units of measurement.  

 

Fig.1: Piece-wise linear frontier, output maximisation case with one input and 
two outputs ( y1 and y2).The isoquant is line ABCD, the efficient subset (the 
frontier) is BC, the (in)efficiency of point b is the distance from the frontier 
segment bb’. 
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Fig2: Continuously differentiable frontier, output maximisation case with one 
input and two outputs (y1 and y2). The isoquant and the efficient subset (the 
frontier) coincide on line AB. The (in)efficiency of point b is the distance from 
the frontie, segment bb’. 
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Coming to estimation, the econometric stochastic frontier model was introduced at the 

same time by Aigner et al (1977), Battese and Corra (1977) and Meeusen and Van 
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den Broek (1977). In the single equation - cross sectional case, a production frontier is 

usually estimated as  

lnyi =α +β’ lnxi +εi       (2) 

where  

εi = vi-ui  

is a composite error term in which 

vi ~N(0,σv
2) is the stochastic component and 

ui = -lnDo is the efficiency measure. 

The efficiency measure ui must come from a positively skewed, non negative 

distribution; for instance if this is a half normal (which will be used later), then 

ui = |Ui| 

Ui∼N(0,σu
2)  

Due to the presence of a composite error term OLS gives consistent but inefficient 

parameters’ estimates, and the use of ML is to be preferred if the distribution of ui is 

known or an assumption can be made about it5. 

The influence of the inefficiency component can be measured by a parameter γ = 

σ2
u/σ2, where σ2=σ2

u+σ2
v (Battese and Corra, 1997). The significance of γ can be 

tested with an LR test which, if the null hypothesis H0: γ = 0 is true, follows a mixed 

χ2 distribution. If the null hypothesis is true and inefficiency is not significant, the 

model is equivalent to a standard "average" production function, and its log-likelihood 

is the same as that of the linear model estimated by OLS. 

 

                                                 
5 Comprehensive reviews on the estimation of stochastic frontiers can be found in Greene (1997) and 
Kumbhakar and Lovell (2000). 
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As (2) can be estimated only for the single output case, an alternative model has been 

proposed by Coelli and Perelman (1996) to deal with the multiple outputs case. The 

idea is to directly express (1) as a function of the K inputs and M outputs of each of 

the N firms. Using a log-linear translog function specification6 this is: 
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Linear homogeneity in outputs of Do implies that 
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If we choose any of the M outputs, say the Mth one, and set ω = 1/yM so that 

Do(x,y/yM)=Do(x,y)/yM                               (4) 

we can impose linear homogeneity on (3) that becomes 
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where y*m=ym/yM. When m = M, ym= yM the ratio is equal to one and so its log is 

equal to zero and all the terms involving the M-th output disappear from the equation. 

For simplicity, let TL(.) represent the right hand side of the translog function in (5). 

This can be estimated by noting that 

ln(Doi/yMi) = TL(.) 

is equivalent to 

                                                 
6 A more parsimonious specification like the Cobb-Douglas cannot be used because, apart from other 
restrictions, it is not concave in the output dimensions. 
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-lnyMi = TL(.) – lnDoi                  (6) 

Adding the stochastic component7 vi~N(0,σ2
v) and setting lnDoi =-ui, equation (6) 

becomes  

lnyMi = -TL(.) +vi -ui                 (7) 

This can be now estimated as a usual production frontier, by regressing (the log of) 

one output on (the logs of) the inputs and (the logs of) the outputs ratios. Note that the 

coefficients of a production frontier correspond to the negative of the coefficients of a 

distance function. 

 

3.  The data 

 

The data are a sample of 52 acute hospitals in Scotland in the years 1991/92 to 

1996/97 (from now on referred to as 1992 and 1997 respectively), that make a panel 

data set of 312 observations. These data were obtained from the Scottish Health 

Service Costs statistics. 

 

As regards the definition of the input and output variables, the following choices have 

been made8. Output is usually measured as the total number of cases treated, an 

intermediate measure given the difficulty of measuring the final improvement in 

health. Cases are however very heterogeneous, and for this reason they are usually 

divided into various specialty (or casemix) categories, which qualify the hospital as a 

multiple-output unit.  A trade-off therefore exists between the aim of preserving this 

heterogeneity and the degrees of freedom of any estimation. The use of index 

                                                 
7 This is the usual Gaussian error of a regression, which makes the model a stochastic, instead of 
deterministic, frontier. 
8 See in particular McGuire et al, 1983; Tatchell, 1983; McGuire, 1985; Butler, 1995. 
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numbers can overcome the problem as long as one can define weights that correctly 

represent the differences between cases. 

For this paper, the following choice was made. The many output categories have been 

summarised in two indexes: one for the inpatients and one for the outpatients, day 

patients and day cases. The main difference between the two categories is that in the 

former patients spend several days in the hospital and in the latter no more than one 

day, sometimes without even using a bed (and the staff associated with it). As 

substitution between the two kinds of services could have taken place, it was preferred 

to keep them separate rather than summarising everything in one output measure. 

For the weights, a measure of the average costliness of a case in each category of 

treatment has been calculated. The assumption is that more difficult illnesses are more 

input demanding than the less serious ones, and will therefore have a higher average 

cost9. Two adjustments have been made to the simple average cost per case. First, in 

order not to bias the weights with some measure of inefficiency of each hospital, all 

averages are calculated for the whole of Scotland. Second, as average costs change 

over time if inefficiency changes, they have been normalised each year to sum to 1. In 

detail, define 

qjit as the total number of cases treated in category j by hospital i at time t, and  

cjit  as the average cost per case in category j at hospital i at time t; then 

∑
=

=
N

i
jitjt c

N
c

1

1.  is the average cost (across hospitals) per case in category j at time t 

The weight for each category is calculated as 

∑
=

= J

j
jt

jt
jt

c

c
w

1
.

.
 

                                                 
9 Some might require the use of particular equipment, and/or more staff time, as well as a longer time 
spent in the hospital, which in turn implies more inputs use and therefore a higher cost. 
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and so finally the index for each hospital in each year is 

∑
=

=
J

j
jitjtit qwy

1
 

As the two main output categories were kept separated, two final output indexes were 

calculated as above, which are: 

y1= index of inpatients 

y2= index of outpatients, day patients and day cases. 

 

Finally, 5 variables identify the inputs: 

x1= total capital charges (£000) 

x2= medical staff FTE (full time equivalent); 

x3= nursing staff FTE; 

x4= other staff FTE; 

x5= total number of beds. 

 

Capital10 is measured in £000, and it is deflated using the “Hospital and Community 

Health Services pay and price inflation values”. The “other staff” input includes 

professional, technical, administrative, clerical and all other staff. The descriptive 

statistics of the data are reported in Table 1. 

 

 

 

                                                 
10 This was the only available capital measure on the data set, and it comprises: a) depreciation on fixed 
assets; b) interest paid on money borrowed to finance any of the projects in a); c) a 6% return on capital 
(trusts only). 
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Table 1: Descriptive statistics of the inputs and outputs variables (standard 

deviation into brackets) 

 Average 92-97 Average annual rate of 

growth 

Inpatients index 141746 (125124) 0.3 

Outpatients et al. index 

 

30342 (28349) 9.0 

Capital (£000) 

 

1513 (1396) 1.6 

Medical staff (FTE) 

 

88 (87) 4.1 

Nursing staff (FTE) 

 

457 (360) 0.7 

Other staff (FTE) 

 

302 (256) 4.0 

Beds 

 

357 (272) -2.7 

 

 

4. The model 

 

The first model estimated is a translog output distance function where (the log of) the 

index of outpatients, day patients and day cases is regressed over (the log of) the five 

inputs (x) and the outputs ratio (y* = y1/y2), plus five dummy variables to allow for a 

different intercept each year, and a dummy variable for teaching hospitals. A dummy 

variable for trust status could not be introduced because of the implicitly assumed 
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correlation with the inefficiency component (the issue is discussed more in detail in 

Section 5). 

The model full specification therefore reads as 

 

ititteach
t

ttkitk
k

litkitkl
klk

kitk
k

it

uvDDyxxx

xyyy

−+++++

++++=

∑ΣΣΣ

Σ

====

=

ξζδβ

βααα

5

1

5

1

55

1

5

1

2
11102

*lnlnlnln

ln*)(ln*lnln
     (8)  

    

where 

i = 1,….,N   and N=52 

t = 1,….,T   and T=6 

vit ∼NIID(0, σ2
v)  

is the stochastic component, coming from a normal distribution. The inefficiency 

component uit is modelled by allowing it to vary stochastically between hospitals but 

deterministically across time. Specifically, following Battese and Coelli (1992) 

uit = uiexp[-η(t-T)]  

ui = |Ui| 

Ui∼NIID(0,σu
2)  

where a value of η>0 (<0) implies increasing (decreasing) efficiency over time. A 

value of η=0 implies no time effect, and the hypothesis can be tested by means of an 

LR test. The choice of a half normal distribution for ui was made after testing it 

against the more general specification of the truncated normal11. Finally  

εit= vit-uit

is the composite error term. 

                                                 
11 The details of the testing procedure and results are available from the author on request. 

 12



The choice of (8) was made after estimating and comparing four alternative models: a 

base model without any time effect (M1), one with a linear time trend, one with a 

quadratic time trend (M3) and the dummy variables model in (8) (M4). As all models 

are nested in one another, the comparisons were made by means of LR tests, and the 

results are reported in Tables 2 and 3. The tests sequence is the following: first test 

whether there is a time effect or not: M1 (the null hypothesis) is tested against M4 

(dummy variables), M2 (quadratic time trend), and M3 (linear time trend). In all cases 

the null hypothesis has to be rejected (see Table 5.2), meaning that a time effect 

exists. Then the three models including a time variable are tested against one another. 

The null hypothesis of a linear model is rejected against the unrestricted quadratic 

time tend, which in turn is rejected as a null hypothesis against the dummy variables 

specification. More detail about the testing procedure is given in Appendix 4. 

 

The estimations were carried out via maximum likelihood, using the software 

FRONTIER 4.1.  

Table 2: log likelihood of models M1 to M4. 

 ℒ  # parameters 

M1 158.60 29 

M2 164.80 30 

M3 167.86 31 

M4 179.13 34 
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Table 3: comparison of models M1 to M4 (# restrictions into brackets). 

 LR score Implication 

M1 vs M2 12.4           (1) H0 (M1) rejected 

M1 vs M3 18.52         (2) H0 (M1) rejected 

M1 vs M4 41.06         (5) H0 (M1) rejected 

M2 vs M3         6.12         (1) H0 (M2) rejected 

M3 vs M4  22.54         (3) H0 (M3) rejected 

 

Table 3 shows that a time effect should be included and that the dummy variables 

specification is to be preferred. The full results of the estimation of M4 are reported in 

Appendix 1, which shows a number of coefficients are not significant, and the main 

results are summarised in Table 4: the first two columns report the estimates of the 

intercept and dummy variables and the two log-likelihood values; the last two 

columns report the estimates of the elasticities and of the parameters γ and η. All 

elasticities are calculated at the sample mean and their significance is tested by means 

of an LR test that in all cases leads to reject the null hypothesis (i.e. all are 

significant)12. The inputs partial elasticities are reported first, followed by the 

elasticity of y2 with respect to the outputs ratio y* =y1/y2, then by the total input 

elasticity (or elasticity of scale) and finally by the elasticity of substitution between y2 

and y1, whose calculation is detailed as follows. 

 Assume for ease of explanation that the estimated function has one input and two 

outputs (whose ratio is again denoted by y*), as 

*lnln*)(ln*ln)(lnlnln 2
111

2
1112 yxcybybxaxay ++++=              (10)        

                                                 
12 The presence of the squared and interaction terms makes the translog prone to multicollinearity. As a 
consequence it is usually advisable to test for joint parameters’ significance rather than relying on their 
individual ones. 
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Total differentiation of (10) is 

*lnlnln 2 yBxAy ∂+∂=∂  

or equivalently 

212 lnlnlnln yByBxAy −∂+∂=∂                  (11) 
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The elasticities with respect to y2 alone can now be calculated as 
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Equation (13) is the elasticity of y2 with respect to input x, so it should be >0. 

Equation (14) is the elasticity of y2 with respect to y1, i.e. it is a measure of the 

substitutability between the two outputs and it should be < 0. From (14) it follows that 

–1< B < 0: lower absolute values of B will imply very little substitutability between 

the two outputs, and higher absolute values of B a higher substitutability. 

Coming to the results, Table 4 shows that inefficiency is significant and significantly 

decreases over time: the estimated value of η is 0.09; this corresponds to an average 

rate of change of the distance function d(lnDo)/dt of around 2.45% per year (as 

approximated by the difference in the logs). The parameter for teaching status is 

positive but not significant. With the exception of capital, all inputs elasticities are 
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positive. Medical and nursing staff are the most productive inputs, whereas capital 

and beds are the least, with the former showing negative returns, a result difficult to 

interpret. The total elasticity of scale is 2.82, so the production function shows 

increasing returns to scale (at the sample means). Given the particular functional 

specification used, this measures the effect that an increase in inputs has on the 

output, given the outputs ratio: if the outputs ratio remains the same then a 1% 

increase in all inputs leads to an increase of 2.82% in both outputs. Not surprisingly 

the hypothesis of constant returns to scale is rejected (LR score 20.5, with 7 

restrictions), but the result seems to be due only to the very high value of the partial 

elasticity of the medical staff.  

The variable ey* is the elasticity of y2 with respect to the outputs ratio y*. This is a 

measure of the curvature of the frontier, called B in (12), and as expected it is a 

negative -0.67). This translates into an output substitutability of –2.075, meaning that 

a 1% increase in y1 (the inpatients) leads to a more than proportional decrease in y2 

(the outpatients, day patients and day cases): as one might expect inpatients appear a 

lot more expensive, in terms of resource use, than outpatients, day patients and day 

cases. 
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Table 4: results from the estimation of M4 (time dummy variables). 

variable estimate 

(t-statistic) 

variable Estimate 

(LR statistic) 

α0 5.13 

(6.52)* 

ecap -0.01 

(25.86)* 

D93 0.01 

(0.44) 

emed 2.31 

(89.24)* 

D94 0.02 

(0.57) 

enurs 0.34 

(25.08)* 

D95 -0.03 

(0.99) 

eoth 0.14 

(34.02)* 

D96 -0.15 

(4.05)* 

ebed 0.04 

(23.82)* 

D97 -0.13 

(3.02)* 

ey* -0.67 

(201.13)* 

Dteach 0.03 

(0.69) 

etot 2.82 

  ey1 -2.07 

ℒ 179.13 γ  0.91* 

(308.44) 

OLS ℒ 24.91 η 0.09* 

(26.86) 

* = significant at 5% (or less); 
** = significant at 10%. 
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Coming finally to the intercept dummies, their pattern is shown in Figure 3. 

The figure shows that, starting from 1992, there is a mild increase in 1993 and 1994, 

whereas from 1995 the trend is markedly decreasing. If the dummies account for 

technological change then the above results would indicate a slowdown in 

productivity over time (at least for one of the outputs), especially after the first big 

change to trust status which takes place in 1994.  

 

Figure 3: Time pattern estimated by the dummy variables model (8). 

4.9
4.95

5

5.05
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5.15
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dummies

 

The overall picture would then be one of progressive worsening of productivity, 

which might in turn be the reason of the increase in technical efficiency (a lower 

frontier is easier to reach), and where one of the inputs consistently negatively affects 

production. Together with the negative capital elasticity, this scenario raises the doubt 

that the effect of time might not have been adequately captured. Another possibility is 

therefore explored: that not only the intercepts but all the parameters of the equation 

might have changed over time. This possibility is explored in the next section. 
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5.  Testing for technological change 

 

The results obtained from the estimation of M4 raised the suspicion that a pooled 

model might not be correct, and that all the parameters, and not just the intercepts 

might have changed over time. As the use of Chow tests for parameters stability is 

ruled out for lack of degrees of freedom (the translog has too many parameters to be 

estimated on a single cross section of 52 observations), an alternative approach is used 

instead. This consists of estimating several times the distance function with a time 

interaction dummy instead of the intercept dummies. In particular, a time dummy d is 

introduced, which takes a value of 1 for a particular year(s), and 0 else, and this is 

multiplied to all the variables in the translog distance function, as: 
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In (15) the xits, the yit*s and Dteach are the same explanatory variables as in (8) and d is 

the time interaction dummy. When d=0 the parameters of the function are the αs, βs 

and δs; when d=1 they are the respective (αs+λs), (βs+ρs) and (δs+ζs). 

The dummy is first set equal to 1 for 1992 (and 0 else), then for 1992 and 1993 (and 0 

else) and so on. In this way 5 different distance functions are estimated, each with a 

different time effect which is captured by the parameters of the interaction dummy. 

The likelihood results of the five estimations of (15) are reported in Table 6. In each 

case the significance of the time interaction parameters is tested for by means of LR 
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tests against a restricted model with no time effects and as expected the null 

hypothesis is always rejected. 

 

Table 6: Log-likelihood of the translog distance function with time interaction 

dummy. 

 92 92 - 93 92 - 94 92 - 95 92 - 96 

ℒ 177.99 218.54 190.93 191.68 170.19 

 

Since the models are not nested in one another their comparison should be made on 

the basis of information criteria.  In this case all the models have the same number of 

parameters, and so selection by minimisation of any standard information criterion is 

equivalent to selection of the model with the greatest maximised log likelihood. This 

happens when separating 1992 and 1993 from all other years, as the model has about 

27 points of difference in the log-likelihood from its closest alternative. This therefore 

points to the fact that the parameters of the distance (and production) function might 

have changed after 1993. On the grounds of the Akaike13 information criterion the 

model as specified in (15) is also to be preferred to the pooled one (M4).  

 

Given the above, the model in which 1992 and 1993 are separated from the following 

years is analysed. The main results are shown in Table 7, whereas all the parameters’ 

estimates are in Appendix 2. Appendix 3 reports the graphs of the true density 

function of the composite error term and that of the estimated residuals; their 

                                                 
13 The Akaike information criterion is used to compare models that are non nested in one another. It is 
specified as AIC = -2ℒ + 2n where ℒ is the value of the maximised log-likelihood and n is the number 
of parameters. The preferred model is the one with the lowest AIC value. 
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comparison shows that the model fits the data well and rules out the presence of 

outliers. 

Looking at Table 7, the γ parameter is significant (LR test is 337.62) meaning that so 

is inefficiency. Very interestingly, however, this time η is not: the result of the LR test 

(2.46) leads not to reject the null hypothesis that η = 0, so that no significant 

difference in (in)efficiency appears to have taken place over time. 

The most notable difference between the two time periods is the change in ey1, the 

elasticity of substitution between y2 and y1: the absolute value increases by a 60%, 

meaning that the opportunity cost of treating someone as an inpatient over time 

becomes a lot higher. A pattern therefore is revealed towards treating patients more 

and more on a day basis, as day patients/cases if not directly as outpatients. This is 

confirmed when looking at Table 1, that shows a very big rate of increase in the value 

of y2 as opposed to a relatively small increase in that of y1.  

As regards the inputs elasticities, only two variables improve their performance after 

1994 (namely the nursing staff and the beds), and the other three lower it. Whether 

this is due to a specific change in the technology involving each input or just to a 

change in its levels can be revealed by testing for the significance of the respective 

dummy variable parameters. The improvement in productivity of the beds input then 

appears to be a consequence of the reduction in the levels of the variable, well known 

also to the general public via the news. This is also consistent with the 

aforementioned trend towards day-based treatment, as beds would in that case be used 

more intensively. 

This nursing staff variable also shows the lowest rate of increase in levels over time, 

although this appears not to be the only reason of its improved productivity. 
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Table 7: results of the estimation of the time-interaction dummy variable model 

allowing for technical change (equation (15)). 

Variable 

ℒ 

OLS ℒ 

γ 

η 

Estimate 

218.54 

49.73 

0.955* 

0.02 

 1992-1993 LR score 

(when D=0) 

1994-1997 

(LR score) 

ecap 0.028* (17.56) 0.005* 

emed 1.049* (46.38) 0.672* 

enurs 0.156* (17.6) 0.254* 

eoth 0.334* (20.94) 0.121* 

ebed 0.043* (41.04) 0.289* 

ey* -0.493* (232.3) -0.613* 

etot 1.611  1.341 

ey1 -0.973  -1.582 

* = significant at 5% (or less). 
** = significant 1 at 10%.   

 

The reduced elasticities of capital and other staff are taken to be a direct consequence 

of the reform. As regards capital, the increase in the variable levels could be due to 

the investment in information technology that hospitals made in order to deal with the 

new contracting issues (Fattore, 1999). As this activity is not directly linked to the 

treatment of patients (the output variable) this might explain the reduced productivity 
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of the input. However, increased capital levels are also the consequence of 

accountancy changes related to the change to trust status, which made the hospitals 

owners of their assets, so concluding a definite problem of overcapitalisation would 

be misleading. As the data did not offer any other measure of capital but the one used, 

no further detail is available and the result has to be taken with caution. 

 

Similarly, the “other staff” variable increases in level and its elasticity decreases from 

0.33 to 0.12. One reasonable explanation is the increased administrative staff made 

necessary to deal with the new contracting issues. Another possibility is that the lower 

increase in nursing staff might have led to the transfer of some of their duties over 

cheaper but less qualified (and therefore less efficient) staff.  A pattern towards the 

use of cheaper labour inputs in Scottish hospitals was revealed by others (Gray et al., 

1986), and this might have been reinforced by the financial concerns of the reform. 

 

Finally, the difference in the intercepts indicates an improvement in average 

productivity, that is a shift upwards of the frontier. Considering that the shape of the 

frontier has changed, the higher intercept could indicate that the improvement is 

mainly in the production of the dependent variable, i.e. again y2. 

 

The fact that 1994 is the year of the first big change to trust status naturally leads to 

think of that as the reason behind the structural break. The relevance of trust status in 

explaining changes in technology and inefficiency is therefore analysed more in 

detail.  

The correct approach to the analysis of the determinants of inefficiency is the 

estimation of a one-step model (Wang and Schmidt, 2002): this specifies the 
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inefficiency term as a function of some explanatory variables, and then 

simultaneously estimates its parameters and those of the frontier itself.  One model of 

this kind is proposed by Battese and Coelli (1995) and can be estimated by 

FRONTIER 4.1 (Coelli 1996). However, no further details are given because the 

several, different attempts to estimate it all failed to converge to a maximum. More 

sophisticated models are currently discussed by the literature and will be worth 

exploring for future research. For this paper the interaction dummy specification 

remains the preferred one. Using the estimates of that model, the elasticities of trusts 

and non trusts are calculated and compared to one another, as shown in Table 814. 

 

Table 8: partial elasticities of trusts and non trusts hospitals. 

 Trusts Non trusts 

ecap -0.001 0.022 

emed 0.667 0.687 

enurs 0.252 0.259 

eoth 0.121 0.128 

ebed 0.308 0.207 

ey1 -1.594 -1.506 

 

Table 8 shows that the pattern revealed by Table 7 after 1994 seems to be more 

marked for the trusts sample than for the other hospitals, which confirms the 

hypothesis that the change in technology is related to the change in status. However, 

no significant link between trust status and efficiency can be detected: a t-test on the 

                                                 
14 In particular these are calculated at the average sample values in 1994 and 1995, which are the years 

where a reasonable mix of trusts and non trusts exists. 1992 and 1997 in fact have 0 in one category, 

and 1993 and 1996 have 7 or less in one category. 
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equality of the mean inefficiency score, computed as E[ui⏐ ]
∧

iε
15 of trusts and non 

trusts is performed and the null hypothesis cannot be rejected (the p-value is 0.34). 

 

Putting all the evidence together, the following general picture is disclosed. The main 

effect that the reform seems to have on hospitals is to change their technology. A 

structural break is detected in 1994, the year of the first trust wave, after which 

hospitals change not only the way in which they provide their services, but also the 

mix of services they provide. The opportunity cost of inpatients increases as hospitals 

tend to treat patients more and more on a day basis. This view is supported by the fact 

that both the number and the costliness of outpatients, day patients and day cases 

increase quite significantly, indicating a possible “swap” between the two categories 

of output considered. This could be the result of hospitals attempting to reduce their 

costs by reducing the length of stay, especially if the contracts constrained them to 

provide minimum levels of treatment (as it was the case especially with the widely 

used ‘block contracts’). The involvement in the new contracting activity, and the 

financial concerns that this brings, also appear to translate into reduced inputs 

productivity. This at least seems to be true for the capital and other staff variables 

(whose levels increase over time), and for the medical staff. Nurses and beds instead 

improve their productivity, and are also associated with the lowest increases in levels 

(with the latter strongly negative in fact).  

 

This increase in the day-basis treatment is also behind the shift upwards of the 

frontier. However, although technical inefficiency remains significant, it does not 

show any significant improvement. If a shorter length of stay raises concerns about 
                                                 
15 See Greene (1997) for a discussion. 
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the quality and effectiveness of treatment, then the overall scenario might not be 

particularly optimistic. 

 

 

6. Conclusion 

 

The UK undertook in the 90’s a major reform of their health system, introducing, 

among other things, an internal market for hospital services; the idea was that the 

competitive environment would improve the efficiency of hospitals’ provision. The 

system was reformed again in 1997, but many of the new key features remained the 

same. Albeit being an interesting and relevant issue, the effectiveness of the internal 

market has not been extensively analysed by the empirical economic literature. 

The aim of this paper was to analyse the changes in (technical) efficiency and 

performance of acute hospitals in Scotland during the years of the reform, from 

1991/92 to 1996/97. The econometric tool was the estimation of a stochastic distance 

function. Different models were estimated, and the analysis led to finally choose one 

that allows all the technology parameters to change over time. This revealed a 

structural break associated with the change to trust status (which embodies the full 

working of the reform) after which hospitals changed both the way in which they 

provide their services and the kind of services they provide. In particular, the former 

showed as a lower productivity of most inputs, the latter as a trend towards the 

“quicker” treatment of patients on a day basis. No improvement in technical 

efficiency was detected instead. Consistently with other literature, this was interpreted 

as hospitals having to devote resources to new activities and concerns, which could 

however happen at the expenses of the effectiveness and quality of their services. 
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There are clearly limitations to this work, the first of which is the non-availability of a 

specific quality measure in the data set. Another is that the sample is relatively small, 

and a more robust analysis would ideally enjoy a higher number of observations, 

possibly covering the whole country. With these in mind, the general conclusion that 

can be drawn from this work is that the reform did not unambiguously produce all the 

expected beneficial effects.  
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Appendix 1 

Table A1 reports the results of the estimation of equation (8): 

ititteach
t

ttkitk
k

litkitkl
lk

kitk
k

it

uvDDyxxx

xyyy

−+++++

++++=

∑ΣΣΣ

Σ

====

=

ξζδβ

βααα

5

1

5

1

4

1

5

1

5

1

2
11102

*lnlnlnln

ln*)(ln*lnln
 

Table A1: results of the estimation of equation (8) (standard errors into 
brackets). 
parameter coefficient  parameter coefficient  

α0 5.134 (0.788) β24 -0.133 (0.095) 

α1 0.098 (0.139) β25 -0.129 (0.181) 

α11 -0.005 (0.013) β34 -0.528 (0.257) 

β1 0.576 (0.202) β35 -0.375 (0.384) 

β2 -0.845 (0.387) β45 0.472 (0.202) 

β3 1.839 (0.815) δ1 -0.118 (0.038) 

β4 0.699 (0.350) δ2 -0.004 (0.036) 

β5 -1.534 (0.688) δ3 0.110 (0.085) 

β11 -0.040 (0.022) δ4 0.019 (0.054) 

β22 -0.107 (0.057) δ5 -0.122 (0.076) 

β33 0.199 (0.311) ζ1 0.011 (0.025) 

β44 0.148 (0.079) ζ2 0.016 (0.027) 

β55 0.009 (0.160) ζ3 -0.033 (0.033) 

β12 0.105 (0.058) ζ4 -0.152 (0.038) 

β13 -0.141 (0.150) ζ5 -0.126 (0.042) 

β14 -0.178 (0.087) Ξ 0.031 (0.045) 

β15 0.268 (0.136) σ2 0.114 (0.025) 
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β23 0.489 (0.229) γ 0.907 (0.023) 

ℒ 179.13 η 0.088 (0.017) 

OLS ℒ 24.91     
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Appendix 2. 

Table A2 reports the results of the estimation of equation (15): 
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Table A2: Parameters’ estimates of equation (15). Standard errors into brackets. 

parameter coefficient  parameter coefficient  

α0 6.38 (0.93) β13 0.18 (0.18) 

α1 0.69 (0.19) β14 -0.22 (0.09) 

α11 -0.05 (0.02) β15 0.13 (0.16) 

β1 0.29 (0.23) β23 0.21 (0.25) 

β2 -0.16 (0.47) β24 0.01 (0.12) 

β3 0.56 (0.91) β25 -0.08 (0.20) 

β4 0.84 (0.37) β34 -0.48 (0.28) 

β5 -1.12 (0.70) β35 -0.19 (0.39) 

β11 -0.06 (0.03) β45 0.34 (0.23) 

β22 -0.08 (0.07) δ1 -0.12 (0.05) 

β33 0.11 (0.31) δ2 0.02 (0.05) 

β44 0.15 (0.08) δ3 -0.07 (0.13) 

β55 0.02 (0.17) δ4 0.10 (0.07) 

β12 0.03 (0.06) δ5 -0.10 (0.11) 

This part of the table shows the value of the parameters when the dummy is equal to 0 (1994-97) 
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Table A2: continued 

parameter coefficient  parameter coefficient  

λ0 -6.04 (0.20) ρ13 -0.64 (0.27) 

λ1 -0.42 (0.28) ρ14 0.08 (0.16) 

λ11 -0.02 (0.39) ρ15 0.10 (0.20) 

ρ1 1.40 (0.23) ρ23 0.58 (0.31) 

ρ2 -3.02 (0.05) ρ24 0.03 (0.22) 

ρ3 0.38 (0.05) ρ25 -0.11 (0.23) 

ρ4 1.83 (0.13) ρ34 -0.66 (0.51) 

ρ5 0.48 (0.07) ρ35 0.04 (0.65) 

ρ11 0.00 (0.11) ρ45 0.23 (0.41) 

ρ22 -0.26 (1.48) ζ1 0.10 (0.08) 

ρ33 0.39 (0.27) ζ2 0.02 (0.07) 

ρ44 0.05 (0.03) ζ3 0.23 (0.16) 

ρ55 -0.20 (0.59) ζ4 -0.19 (0.12) 

ρ12 0.32 (0.69) ζ5 -0.07 (0.13) 

   Dteach 0.11 (0.04) 

ℒ 218.54  σ2 0.17 (0.03) 

OLS ℒ 49.73  γ 0.95 (0.01) 

   η 0.02 (0.01) 

This part of the table shows the parameters of the interaction dummy.  
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Appendix 3. 

Analysis of the residuals of equation (15). 

The first graph shows the true density of the composed error term εi = vi-ui  

with 

vi ~N(0,σv
2)  

ui = |Ui| 

Ui∼N(0,σu
2)  

The second graph shows the estimated density of the residuals, from the estimation of 

equation (15). The last graph shows the distribution of the 312 residuals. 

The residuals seem to be in broad agreement with their theoretical distribution and 

there are no serious outliers, indicating that the results are robust.  
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Appendix 4 

 
 

Selection of models M1 to M4 estimated in Section 4. 
 

The comparison of models in Section 4 was made by means of LR tests because in 
each case one model was nested in the other. The restrictions imposed in each case are 
specified hereinafter. 
  
For all the models: 
N=52  
T=6  
NxT=312  
f(.) is the translog distance function, with n = 27 parameters   
 
 
Model 4: 5 intercept dummy variables 
 
M4= α0 + f(.) + δ1D1+δ2D2+δ3D3+δ4D4+δ5D5+ εit
 
where 
 
D1=1 for time 2 and 0 else 
D2=1 for time 3 and 0 else 
D3=1 for time 4 and 0 else 
D4=1 for time 5 and 0 else 
D5=1 for time 6 and 0 else 
 
Model 3: quadratic time trend 
 
M3 = β0 + f(.) + β1t +β2t2 + εit
 
Model 2: linear time trend 
 
M2 = γ0+ f(.) + β1t+ εit
 
Model 1: no time effect 
 
M1 = ϕ0+ f(.) + εit
 
 
The restriction(s) imposed in the tests were the following: 
 
1) M1 vs M4 

M1 is nested in M4 if 
δ1=δ2=δ3=δ4=δ5=0 
number of restrictions:5 
 

2) M1 vs M3 
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M1 is nested in M3 if 
β1=β2=0 
number of restrictions:2 
 
 

3) M1 vs M2 
M1 is nested in M2 if 
β1=0 
number of restrictions:1 

 
4) M2 vs M3 

M2 is nested in M3 if 
β2=0 
number of restrictions:1 
 

5) M3 vs M4 
M3 is nested in M4 if 
δ3 = δ2 -δ1  
δ4 = 2δ2-3δ1 

δ5 = 3δ2-4δ1
number of restrictions: 3 
 
This comes from observing that M4 could be reparameterised as 
α0= β0+ β1 +β2 

δ1=  β1 + 3β2 
δ2=  2β1 + 8β2

δ3=  3β1 + 15β2

δ4=  4β1 + 24β2

δ5=  5β1 + 35β2
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