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ABSTRACT

We derive a general analytic approximation for pricing basket options on N assets, which is ex-
tended to analytic approximations for pricing general rainbow options, including best-of and
worst-of N asset options. The key idea is to express the option’s price as a sum of prices of various
compound exchange options, each with different pairs of sub-ordinate multi- or single-asset op-
tions. For some multi-asset options a strong condition holds, whereby each compound exchange
option is equivalent to a standard single-asset option under a modified measure, and in such
cases an almost exact analytic price exists for the multi-asset option. The underlying asset prices
are assumed to follow log-normal processes, although the strong condition can be extended to
certain other price processes for the underlying. More generally, approximate analytic prices for
multi-asset options are derived using a weak log-normality condition, where the approximation
stems from making constant volatility assumptions on the price processes that drive the prices
of the sub-ordinate basket options. The analytic formulae for multi-asset option prices, and their
Greeks, are defined in a recursive framework. For instance, the option delta is defined in terms of
the delta relative to sub-ordinate multi-asset options, and the deltas of these sub-ordinate options
with respect to the underlying assets. An empirical study of a particular 4-asset basket option
tests the accuracy of our approximation, given some assumed values for the calibrated parame-
ters. Then we demonstrate how to calibrate the model’s parameters to market data so that the
prices are consistent with the implied volatility and correlation skews of the assets.
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1. INTRODUCTION

The most commonly traded multi-asset options are basket options, rainbow options, best-of-N-
assets and worst-of-N-assets options. These are collectively referred to as ‘linear’ multi-asset op-
tions because they have a linear structure in their payoffs. That is, the payoff is ω[ f (St, K)]+ where
f is an affine transformation, St is a vector of N asset prices, K is the option strike and ω is +1 for a
call and -1 for a put. For example, when N = 3 then St = (S1, S2, S3) and f (St, K) = (θ1S1 + θ2S2 +
θ3S3)− K for the basket option with weights (θ1, θ2, θ3) and f (St, K) = (S1 − K, S2 − K, S3 − K) for
a rainbow option.1.

To our knowledge exact analytic solutions only exist for a best-of-two-assets option, which is com-
monly called an ‘exchange option’, and this only when the underlying asset prices are assumed to
follow correlated geometric Brownian motion (GBM) processes.2 This is because a linear combi-
nation of log normal processes is not log normal. Even in the case of a spread option, i.e. a basket
option on two assets with θ1 = 1, θ2 = −1, there is no exact analytic formula for the price.

There have been a number of attempts to approximate prices for standard European basket op-
tions: Levy [1992] approximates the basket price distribution with that of a single log-normal
variable, matching the first and second moments; Gentle [1993] derives the price by approximat-
ing the arithmetic average by a geometric average; extending the Asian option pricing approach of
Rogers and Shi [1995], Beißer [1999] expresses a basket option price as a weighted sum of single-
asset Black-Scholes prices with adjusted forward price and adjusted strike for every constituent
asset, so the price is expressed as an adjusted Black-Scholes price; Milevsky and Posner [1998a]
use the reciprocal gamma distribution and Milevsky and Posner [1998b] use the Johnson [1949]
family of distributions to approximate the basket distribution; Ju [2002] approximates the ratio of
the characteristic function of the arithmetic average to the approximating variable using higher
order Taylor’s expansion. For a comparison of the performance of the above models, please refer
to Krekel et al. [2004].

Most of the above methods, based on approximating the basket price distribution or average price
options, require the basket value to be positive. Hence, they may fail when the basket has a
negative weight on one or more underlying asset prices. Models based on approximating the
basket price distribution also ignore the possibility that correlation between individual assets,
and their individual volatilities, may affect the option price. As a result their prices and hedge
ratios need not be consistent with the implied volatility skews and implied correlation skews of
the underlying asset prices.

Research on analytic approximations for pricing rainbow options includes an intuitive inductive
formula of Johnson [1987], who extends the two asset rainbow option pricing formula of Stulz
[1982] to the general case of N assets.3 Topper [2001] uses a finite element scheme to solve the
associated non-linear parabolic price PDEs for options on two asset with different payoff profiles.
More recently, Ouwehand and West [2006] have used the multivariate normal density approxima-
tion of West [2005] to price rainbow options on up to four assets.

1A best-of option is a rainbow option with zero strike and worst-of options may be priced as best-of options as
explained in the next section

2See Margrabe [1978]
3However, no mathematical justification is given for this formula.

Copyright © 2009 Alexander and Venkatramanan 1
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In this paper we present a new method for approximating the price of a linear multi-asset option.
We begin by assuming each asset price follows a standard GBM process, but later this assumption
is relaxed to allow for more general drift and local volatility components. If, under their respective
asset price processes, there exists an analytic solution for every single-asset vanilla option, then
we have an approximate analytic formula for the price of a linear multi-asset option. The key
idea is to rewrite the payoff as a sum of payoffs to various compound exchange options, each
with different pairs of sub-ordinate basket options. As a result, the option price can be expressed
exactly, as a sum of prices of compound exchange options on various sub-baskets of assets. Hence
the pricing of compound exchange options is central to our work. We derive two general log-
normality conditions, a strong condition under which almost exact prices can be obtained and
a weaker condition under which prices are more approximate. Then we price the compound
exchange options using the formula of Margrabe [1978] for exchange options on assets that follow
log-normal processes.

The outline of this paper is as follows: Section 2 introduces our recursive framework for pricing
linear multi-asset options and applies the recursion to basket options, rainbow options, and op-
tions on the best-of-N assets or worst-of-N assets; Having shown that all these linear multi-asset
option prices may be expressed in terms of exchange option and basket option prices, and that
the latter depends only on the prices of compound exchange options, Section 3 explains how we
approximate the prices of the compound exchange options for the recursion that is central to this
approach; Section 4 presents our approximations for basket option prices, which are based on ei-
ther strong or weak log-normality conditions; Section 5 presents some experimental results on the
accuracy of our approximation and an example illustrating the recommended approach to model
calibration; Section 6 concludes.

2. PRICING FRAMEWORK

We shall first introduce a recursive approach that relies on expressing the price of a European op-
tion on a basket of assets as a sum of prices of two compound exchange options. Each compound
exchange option (CEO) is an option to exchange two options. The sub-ordinate options in the
CEO are basket options, where the assets in the baskets are a subset of the assets in the original
multi-asset option. Then we show that the prices of other multi-asset options with a linear struc-
ture in their payoffs may be expressed in terms of basket option and CEO prices. This recursive
framework allows one to price linear multi-asset options by pricing various CEOs.

Consider N assets with prices St = (S1t, S2t, ..., SNt)′. Let bN = (θ1S1t, θ2S2t, ..., θNSNt)′ be a basket
of N assets with weights ΘN = (θ1, θ2, ..., θN), where θi are real constants. Let Bt = ∑N

i=1 θiSit be the
price of the basket at any time t and VNt be the price of an option on a basket bN with strike price
K. The payoff at expiry (time T) is given by:

VNT =
[
ω (BT − K)

]+ =
[
ω (Θ ST − K)

]+

=
[
ωΘ (ST −K)

]+
(1)

where ω = 1 and −1 for calls and puts respectively and K = (K1, K2, ..., KN)′ is a column vector
of strikes such that ΘK = K.

Now let bm = (θ1S1t, θ2S2t, ..., θmSmt)′ and bn = (θm+1S(m+1)t, θm+2S(m+2)t, ..., θNSNt)′ denote sub-

Copyright © 2009 Alexander and Venkatramanan 2
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baskets of b of sizes m and n respectively, with m + n = N, and denote the weights vectors of the
corresponding sub-baskets by Θm and Θn. Similarly, let S′t = (S′mt, S′nt) and K′ = (K′

m, K′
n). With

this notation, equation (1) may be rewritten as

VNT = [ω [Θm (SmT −Km) + χ Θn (SnT −Kn)]]
+

=
[
ω

(
Θm [SmT −Km]+ −Θn [χ (Kn − SnT)]

+
)]+

+
[
ω

(
Θn [χ (SnT −Kn)]

+ −Θm [Km − SmT]
+
)]+

, (2)

and

VNT =





[CmT − PnT]
+ + [CnT − PmT]

+ i f χ = 1,

[CmT − CnT]
+ + [PnT − PmT]

+ i f χ = −1,
(3)

where Cm, Pm and Cn, Pn are prices of basket call and put options on m and n assets respectively.
The role of parameter χ is to ensure that the prices of the sub-baskets are non-negative, in order
to be able to define call and put options on them. That is, χ = 1 or −1 such that Θ = (Θm, χ Θn)
and ΘmSmt and ΘnSnt are non-negative.

The European basket option price can then be computed as a sum of risk-neutral expectations of
the two replicating CEO payoffs, E1T, E2T, which appear on the right hand side of (3):

VNt = e−r(T−t)
(
EQ

{
E1T

∣∣∣Ft

}
+EQ

{
E2T

∣∣∣Ft

})
. (4)

Hence, if χ = 1, E1T and E2T are payoffs to exchange options on a basket call and a basket put; and
if χ = −1, they are payoffs to exchange options on two basket calls and two basket puts with a
different number of assets in each basket. The prices of the call and put basket options Cm, Cn, Pm

and Pn are in turn computed as CEOs on their sub-baskets as above.

Figure 1 illustrates the pricing of a 4-asset basket option in this framework. It depicts a tree where
a basket option price is recursively priced as a sum of exchange option prices. Due to lack of
space, we have only shown one leg of the tree as the other leg can be priced in a similar manner.
The basket option price is computed as a sum of prices of two CEOs, one on two sub-basket call
options and the other on two sub-basket put options. In order to compute the price of the CEOs
using Margrabe’s formula, we have to first compute the prices of the two pairs of call and put
sub-basket options. Extending this argument to the whole tree, we have to compute the prices of
one pair of CEOs on call and put two-asset sub-basket options, four pairs of CEOs on call and put
vanilla options, and four pairs of standard call and put vanilla options.

Note that we may use put-call parity, to obtain

EQ

{[
BT − K

]+
}
−EQ

{[
K− BT

]+
}

= EQ {BT − K} ,

CNt − PNt =
N

∑
i=1

θiSite−qi(T−t) − Ke−r(T−t), (5)

where qi is the dividend yield of asset i. Therefore, we only need to compute the sub-basket and
vanilla option prices for calls, because we can deduce the corresponding put prices using (5).
Alternatively, we can derive the put prices, and derive the call prices using (5). So, in the general

Copyright © 2009 Alexander and Venkatramanan 3
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FIGURE 1: Option on 4 Asset Basket as a CEO
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case of N assets, our approach requires 2(N − 1) evaluations of Margrabe’s formula to compute
the CEO prices and N evaluations of the Black-Scholes formula to compute the individual vanilla
option prices.

We now demonstrate how the prices of other European linear multi-asset options may be ex-
pressed in terms of basket option and exchange option prices. An option on best-of-N assets,
whose payoff is given by max {S1T, S2T, ..., SNT} is just a special case of a rainbow option with
K = 0. Worst-of-N assets options can be priced as best-of options by noting that

min {S1T, S2T, ..., SNT} = −max {−S1T,−S2T, ...,−SNT} .

Hence we only need to consider a rainbow option on N assets.

The payoff to such an option may be written as sum of two payoffs, one to a best-of option on a
sub-basket and the other to a compound option, as follows: Let (n1, n2, ..., nN) be a permutation of
(1, 2, ..., N) and choose k to be some integer between 1 and N. By splitting the basket of N assets
into two sub-baskets, we have

max {S1T − K, S2T − K, ..., SNT − K} = max
{

Snk+1T, Snk+2T, ..., SnN T
}− K

+
[
max

{
Sn1T, Sn2T, ..., SnkT

}−max
{

Snk+1T, Snk+2T, ..., SnN T
}]+ .

In the above, k determines the size of the sub-baskets and the permutation (n1, n2, ..., nN) deter-
mines the assets in these sub-baskets.

For every permutation (n1, n2, ..., nN) and index k we obtain a different payoff decomposition for
the the rainbow option. An illustration of two alternative decompositions, for the case that N = 4,
are given below. Obviously, the value of the payoff will be the same in each case, and the model
should be calibrated in such a way that the option price is invariant to the choice of (n1, n2, ..., nN)
and k.4

4This is discussed in section 5.

Copyright © 2009 Alexander and Venkatramanan 4
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The best-of option payoff terms on the right hand side above may themselves be represented as
the sum of two such payoffs, until all sub-baskets are on one or two assets. When the sub-basket
size reduces to two, we have

max
{

SiT, SjT
}

= SjT + [SiT − SjT]
+ .

For illustration consider a rainbow option on 4 assets. It is convenient to use the notation Xni t for
the price of an option to exchange asset ni for asset ni+1. Choosing (n1, n2, n3, n4) = (1, 2, 3, 4) and
k = 2, the rainbow option’s payoff P4T may be written:

P4T = max {S1T − K, S2T − K, S3T − K, S4T − K}
= max {S3T, S4T} − K + [max {S1T, S2T} −max {S3T, S4T}]+

= S4T + [S3T − S4T]
+ +

[
S2T + [S1T − S2T]

+ − S4T − [S3T − S4T]
+]+ − K

= S4T + X3T + [S2T − X1T − S4T + X3T]
+ − K

= S4T + X3T + [BT]
+ − K, (6)

so that the price of the rainbow option is

P4t = S4t + X3t + Vt − Ke−r(T−t),

where Vt = e−r(T−t)EQ {[BT]+} is the price of a zero-strike basket option with four assets whose
prices are {X1t, S2t, X3t, S4t} and with weights {−1, 1, 1,−1}. Recall that, under the correlated GBM
assumption, an analytic solution exists for Xit. Hence P4t may be evaluated if we know the price
Vt of the basket option; and this may be expressed in terms of CEO prices, as in (4).

The choice k = 2 leads to the simplest form of payoff decomposition for a four-asset rainbow
option. In this case, given an arbitrary permutation (n1, n2, n3, n4), a similar argument to that
above may be applied to show that the payoff decomposition is:

P4T = Sn4T + Xn3T + [Sn2T − Xn1T − Sn4T + Xn3T]
+ − K,

so that a general expression for the price of a 4-asset rainbow option is

P4t = Sn4t + Xn3t + V4t − Ke−r(T−t),

where V4t = e−r(T−t)EQ {[BT]+} denotes the price of a zero-strike basket option with four assets
whose prices are {Xn1t, Sn2t, Xn3t, Sn4t} and with weights {−1, 1, 1,−1}.

Finally, we provide an example that illustrates how to extend this argument to rainbow options
on more than 4 assets. Following the lines of the 4-asset rainbow option, the payoff to a rainbow
option on 3 assets with prices S5, S6 and S7 can be written as:

P3T = max {S5T, S6T, S7T}
= S7T + [S6T − S7T]

+ +
[
S5T − S7T − [S6T − S7T]

+]+

= S7T + X6T + [S5T − S7T + X6T]
+ .

Hence, the price of a rainbow option on 7 assets is given by

P7t = P3t +EQ {[P4T − P3T]+} . (7)

Copyright © 2009 Alexander and Venkatramanan 5
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3. COMPOUND EXCHANGE OPTIONS

The basket options that were used to price linear multi-asset options in the previous section are
defined on a basket which may contain assets, options written on these assets or exchange op-
tions. For instance, the basket option on the right hand side of equation (6) is a compound four-
dimensional basket option defined on two assets and two exchange options. In the case of a simple
basket option, equation (4) expresses its price as a sum of prices of CEOs. Since multi-asset option
prices are based on multiple CEOs, pricing CEOs is central to our framework. In this section we
derive an analytic approximation for the price of such an option, first under the correlated GBM
assumption and then under more general assumptions for the asset price processes.

A compound exchange option is an option to exchange one option for another. In general, the
two underlying options may be on different assets, have different maturities or may themselves
be compound options. Here we describe an analytical approach to price CEOs that are written on
options on two different underlying assets with the same maturity as the CEO, as this will always
be the case for the framework described in the previous section. The key result is that the price
of such a CEO has an equivalent represention as a single-asset option price whose solution can be
easily derived.

Let
(

Ω,F , (Ft)t≥0 , Q
)

be a filtered probability space, where Ω is the set of all possible events
such that S1t, S2t ∈ (0, ∞), (Ft)t≥0 is the filtration produced by the sigma algebra of the price pair
(S1t, S2t)t≥0 and Q is a bivariate risk neutral probability measure. Assume that the risk-neutral
price dynamics are governed by :

dSit = rSitdt + σiSitdWit

〈dW1t, dW2t〉 = ρdt i = 1, 2,

where, W1 and W2 are Wiener processes under risk neutral measure Q, σi is the volatility of asset i
(assumed constant) and ρ is the correlation between them (assumed constant).

Let U1T and V1T denote the payoffs to European call and put options respectively, on asset 1 with
strike K1; similarly, let U2T and V2T denote the payoffs to European call and put options on asset 2
with strike K2. We consider compound options to exchange a European call or put option on one
asset with another. For instance, if the CEO is on two calls, the payoff is given by [ω (U1T −U2T)]

+,
for ω = 1 or −1. The price ft of such an option can be obtained as a risk-neutral expectation of the
terminal payoff:

ft = e−r(T−t)EQ

{
[ω (U1T −U2T)]

+ ∣∣Ft

}
. (8)

We first describe the price processes for the two call and put options Ui and Vi, i = 1, 2. Applying
Itô’s lemma to (8) yields

dUit =
∂Uit

∂t
dt +

∂Uit

∂Sit
dSit +

1
2

∂2Uit

∂S2
it

dS2
it

=
(

∂Uit

∂t
+ rSit

∂Uit

∂Sit
+

1
2

σ2
i S2

it
∂2Uit

∂S2
it

)
dt + σiSit

∂Uit

∂Sit
dWit

= rUitdt + ξitUitdWit, (9)

Copyright © 2009 Alexander and Venkatramanan 6
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where, ξit = σi
Sit

Uit

∂Uit

∂Sit
. Similarly, for the put option price:

dVit = rVitdt + ηitVitdWit, (10)

where, ηit = σi
Sit

Vit

∣∣∣∣
∂Vit

∂Sit

∣∣∣∣.5

From now on we restrict our analysis to a CEO on calls, and solve for ξi and Ui. We derive a
closed form solution to the CEO price by first solving for the prices of the underlying options
Ui and their volatilities ξi. Finally, our main result provides a general condition under which a
CEO can be priced by reducing it to a single-asset option price under an equivalent measure. The
solutions for the put option volatilities and prices can be derived along similar lines.

Lemma 1. Given option price process (9), ξi follows a process described by:

dξit = ξit

(
σi − ξit + σiSit

Γit

∆it

)
[−ξitdt + dWit] , (11)

where ∆it =
∂Uit

∂Sit
and Γit =

∂∆it

∂Sit
are the delta and gamma of the call option with respect to underlying i.

Proof. Let θit =
∂Uit

∂t
and Xit =

∆it

Uit
. Dropping the subscripts, we have, by Itô’s lemma:

d∆ =
∂∆
∂t

dt +
∂∆
∂S

dS +
1
2

∂2∆
∂S2

dS2

=
∂θ

∂S
dt +

∂∆
∂S

(rSdt + σSdW) +
1
2

∂2∆
∂S2

σ2S2dt

=
∂

∂S

(
θ + rS∆ +

1
2

σ2S2Γ
)

dt− (
r∆ + Γσ2S

)
dt + σSΓdW

=
∂

∂S
(rU) dt− (

r∆ + Γσ2S
)

dt + σSΓdW

= −Γσ2Sdt + σSΓdW,

and
dX =

1
U

d∆− ∆
U2

dU +
∆

U3
dU2 − 1

U2
d∆dU

=
1
U

(−Γσ2Sdt + σSΓdW − ∆ (rdt + ξdW) + ∆ξ2dt− σSΓξdt
)

=
1
U

(
∆ξ2 − σSΓξ − r∆− Γσ2S

)
dt +

1
U

(σSΓ− ξ∆) dW.

Thus, dξ = σ (XdS + SdX + dSdX)

=
(

σξ − ξ2 +
σ2S2

U
Γ
)

[−ξdt + dW] ,

which can be rewritten as (11). �

5Since the delta of a put option is negative, we take the absolute value here. However, due to the symmetry of
Wiener process - i.e., upward and downward movements have equal probabilities - the sign of volatility does not
affect the distribution of the diffusion term ηidWit. The effect of using the absolute value is to change the sign of the
correlation between the Wiener process driving the put option, and any other process.

Copyright © 2009 Alexander and Venkatramanan 7
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Now we define σ̃i = σi
(
1 + SitΓit

/
∆it

)
and treat σiSitΓit

/
∆it as constant in equation (11). This is

the only approximation we make for pricing CEOs.6 Then, the (approximate) option volatility
processes are described by

dξit = ξit(ξit − σ̃i) (ξitdt− dWit) . (12)

Lemma 2. The solution to equation (12) is given by

ξit = σ̃

(
1−

(
1− σ̃

ξi0

)
exp

(
1
2

σ̃2t− σ̃Wit

))−1

. (13)

Proof. Dropping subscript i for convenience and letting yt =
1
σ̃

ln
(

ξt − σ̃

ξt

)
, we have

dy =
1
σ̃

(
1

ξt − σ̃
− 1

ξt

)
dx +

1
2σ̃

( −1
(ξt − σ̃)2

+
1
ξ2

t

)
dx2

=
dx

ξt(ξt − σ̃)
+

1
2
(σ̃− 2ξt)

(
dx

ξt(ξt − σ̃)

)2

= ξtdt− dW +
1
2
(σ̃− 2ξt)dt

=
1
2

σ̃dt− dW.

Thus
yt = y0 +

1
2

σ̃t−Wt.

Substituting yt into the above equation we obtain

1
σ̃

ln
(

ξt − σ̃

ξt

)
=

1
σ̃

ln
(

ξ0 − σ̃

ξ0

)
+

1
2

σ̃t−Wt

1− σ̃

ξt
= ke

1
2 σ̃2t−σ̃Wt

⇒ ξt = σ̃
(
1− keσ̃Zt

)−1 ,

where k = 1− σ̃

ξ0
and Zt = 1

2 σ̃t−Wt. �

6For in the money options, σiSitΓit
/

∆it << (ξit − σi). For example, in the Black-Scholes model, when S = 100,
T = 30 days, σ = 0.2, r = 5%, then the values are (4.13, 2.5), (1.66, 0.2), (0.78, 4E− 04), (0.46, 2.9E− 09), (0.29, 3.3E− 18)
for call options with strikes 100, 90, 80, 70 and 60 respectively. For out of the money options, σiSitΓit

/
∆it ≈ (ξit − σi),

which implies (ξit − σi + σiSitΓit
/

∆it) ≈ 2(ξit − σi). Therefore, by treating σi
(
1 + SitΓit

/
∆it

)
as constant we may derive

an approximate solution to ξi irrespective of the moneyness of the option. Moreover since the pricing framework
described in section 2 only requires the weighted sum of strikes of the single-asset options on all assets to be equal to
K, we can choose the strikes such that the approximation error is a minimum. However, the approximation error will
be high when the moneyness of the option swings between in-the-money and out of the money (when the asset price
crosses the strike frequently). This can be easily avoided by choosing either low or high strike values.
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Lemma 3. The call option price at time t is given by

Uit = Ui0ert

(
exp

(
−1

2
σ̃2t + σ̃Wit

)
−

(
1− σ̃

ξi0

))
. (14)

Proof. Dropping subscript i and substituting ξt in equation (9) gives

Ut = U0 exp
(

rt− 1
2

∫ t

0
ξ2

t dt +
∫ t

0
ξtdWt

)

= U0 exp
(

rt− 1
2

∫ t

0

(
ξ2

t − σ̃ξt
)

dt−
∫ t

0
ξtdZt

)

= U0 exp
(

rt− 1
2

σ̃2k
∫ t

0
eσ̃Zt

(
1− keσ̃Zt

)−2 dt− σ̃
∫ t

0

(
1− keσ̃Zt

)−1 dZt

)
. (15)

Also

1
σ̃

d
(

ln
(

eσ̃Zt

1− keσ̃Zt

))
=

1
1− keσ̃Zt

dZt +
1
2

σ̃k
eσ̃Zt

(1− keσ̃Zt)2 dt

⇒ ln
(

eσ̃Zt

1− keσ̃Zt

)
=

∫ t

0

σ̃

1− keσ̃Zt
dZt +

∫ t

0

1
2

σ̃2k
eσ̃Zt

(1− keσ̃Zt)2 dt.

Substituting this in equation (15) gives

Ut = U0 exp
(

rt− ln
(

eσ̃Zt

1− keσ̃Zt

))

= U0ert

(
exp

(
−1

2
σ̃2t + σ̃Wt

)
−

(
1− σ̃

ξ0

))

= U0ert (e−σ̃Zt − k
)

.

�
From equation (14), we can see that when the initial option volatility ξi0 = σ̃i, then U follows a
log-normal process. By definition, we have

ξit = σi

Sit

Uit

∂Uit

∂Sit
. (16)

This implies that ξit → σi when ∂Uit
∂Sit

and Sit
Uit

both tend to one. This is possible when the strikes
of the call options are chosen such that they are deep-in-the-money. Then, σi ≈ σ̃i and therefore
ξi0 ≈ σ̃i. Moreover, from equation (13), ξit ≈ σ̃i for all t ∈ [0, T].7 We call this the weak form of
log-normality condition, under which the option price process follows approximate log-normal
process. It is important to note that the weak condition does not depend on the choice of drift of
the stochastic process of the underlying asset price. However, it is necessary for σi to be a constant.
This is particularly useful for pricing basket options, as discussed in section 4.

In the following theorem we provide a stronger condition under which the relative option price
follows a log-normal process. We call this the strong form of log-normality condition, and under

7An intuitive explanation of this is that the the price of a deep ITM exchange option is a linear function of the relative
price of the two underlying assets and, under the GBM assumption, the relative price distribution is log-normal. The
price of a deep OTM exchange option is approximately zero.
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this condition a CEO price may be expressed as a single-asset option price. This leads to an almost
exact solution to the price of a CEO.

Theorem 4. If the following condition holds

U1t

(
1− σ̃1

ξ1,0

)
−U2t

(
1− σ̃2

ξ2,0

)
= 0, (17)

then the CEO on calls has the same price as a standard single-asset option under a modified yet equivalent
measure.

Proof. The price of a CEO on two call options is given by:

ft = e−r(T−t)EQ
{
[ω (U1T −U2T)]

+}

= e−r(T−t)EQ

{[
U1ter(T−t) (

e−σ̃1Z1(T−t) − k1
)−U2ter(T−t) (

e−σ̃2Z2(T−t) − k2
)]+

}

= EQ

{[
U1te−σ̃1Z1(T−t) −U2te−σ̃2Z2(T−t) − (U1tk1 −U2tk2)

]+
}

= EQ

{[
U1t exp

(
−1

2

∫ T

t
σ̃2

1 ds +
∫ T

t
σ̃1dW1s

)
−U2t exp

(
−1

2

∫ T

t
σ̃2

2 ds +
∫ T

t
σ̃2dW2s

)]+
}

.

Let dW1t = ρtdW2t +
√

1− ρ2
t dW3t, where W2t and W3t are independent Wiener processes and P be

a probability measure whose Radon-Nikodym derivative with respect to Q is given by:

dP
dQ

= exp
(
−1

2
σ̃2

2 T + σ̃2W2t

)
.

Let Yt = U1t/U2t and W be a Brownian motion under P. Then the dynamics of Y can be described
by

dYt = rYtdt + σ̃tYtdWt,

where σ̃2
t = σ̃2

1 + σ̃2
2 − 2ρσ̃1σ̃2, and the price of the CEO can be written as the price of a single-asset

option written on Y, as

ft = U2te−r(T−t)EP

{[
Yt exp

(∫ T

t
rdt− 1

2

∫ T

t
σ̃2

s ds +
∫ T

t
σ̃sdWs

)
− 1

]+
}

= U2te−r(T−t)EP
{
[YT − 1]+

}
.

�
The above proof shows that, under (17), the relative prices of the vanilla options behave like log-
normal processes, so that a CEO can be reduced to a simple log-normal exchange option. The
price of such an option can be easily found by change of numeraire, as in Margrabe [1978]. The
strikes K1 and K2 = (K1 − K) for which the log-normality condition (17) holds can be found by
using a simple one-dimensional solver.

Theorem 4 allows one to price CEOs almost exactly when the underlying option prices satisfy
condition (17) almost exactly.8 In the next section we shall see that the theorem plays a vital role in

8The only approximation we make is to assume σiSitΓit
/

∆it is constant, in order to obtain an approximate option
volatility process described by equation (12). The derivation of the CEO price formula is otherwise exact. As discussed
earlier, the approximation error can be extremely small for certain strikes of the vanilla options. Since we are free to
choose these strikes, such an approximation can be justified.
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our main objective of pricing specific basket options. In its application to basket options note that
we are free to choose the strikes Ki of the underlying vanilla options of the CEOs that replicate the
basket option, as long as ∑ θiKi = K. Therefore we may be able to find particular strikes Ki for
which the relative price of vanilla options is log-normal. In order to demonstrate this, in figure
2 we plot the behaviour of condition (17) for two sample vanilla options. We can see that the
condition holds when the strikes of the options are equal to 65.3.

FIGURE 2: Plot of condition (17) against strike

(S1 = 75, S2 = 65, σ1 = 0.25, σ2 = 0.25, r = 4%, T = 6 months)
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So far we have only discussed the pricing of CEOs when the underlying asset prices followed
GBM processes. However, theorem 4 may be extended to cases where the underlying asset prices
follow certain non-GBM processes. In particular, assume that the risk-neutral price dynamics are
governed by a more general three-factor model:

dSit = µi(Sit, t)dt + σi(Sit, t)dWit

〈dW1t, dW2t〉 = ρdt i = 1, 2,

where ρ is assumed constant. It is easy to show that when µi(Sit, t) and σi(Sit, t) satisfy
(

∂σit

∂t
+ µit

∂σit

∂Sit
+

1
2

σ2
it

∂2σit

∂S2
it

)
= σit

∂µit

∂Sit
, (18)

the option price processes will still be given by (14). For example, this holds for affine functions
µi = ai + biSi and σi = αi + βiSi with ai/αi = bi/βi; where ai, bi, αi and βi are real constants.

4. BASKET OPTION PRICE FORMULA

In this section we derive analytic approximations to the price of a basket option based on the
recursive approach described in section 2. In order to price the CEOs, we apply theorem 4 and this
leads to a recursive application of the log-normal exchange option pricing formula of Margrabe
[1978]. For specific examples of basket options with sizes equal to two or three, we show that our
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approach leads to an almost exact solution to the basket option price. However, when the number
of assets in the option is four or more the log-normality condition in theorem 4 is too strong. Thus
we introduce a more general, but weaker condition under which we derive approximate analytic
prices for linear multi-asset options on N assets.

4.1. Pricing under Strong Form of Log-Normality Condition

Recall that when the single-asset option price processes are described by equations (9) or (10), then
a CEO on them can be priced by dimension reduction under (17). Now consider a CEO written on
two log-normal exchange options, both having a common asset. By Margrabe [1978], the exchange
options can be equivalently priced as vanilla options on a single asset by choosing the price of the
common asset as numeraire. Then, by using the single-asset argument of section 3, the exchange
option price processes may be described by equations (9) or (10). Thus, the CEO can be priced by
applying theorem 4 under the strong log-normality condition.9

To illustrate this we consider 2-asset basket options with non-zero strike and 3-asset basket options
with zero strike.

(a) The payoff to a 2-asset basket option can be written as a sum of payoffs of two CEOs on
single-asset call and put options, as in section 3. Since the CEOs are written on vanilla options it is
straightforward to compute their prices using theorem 4 under the strong log-normality condition.

(b) Consider a 3-asset basket option with zero strike, when the signs of the asset weights Θ are a
permutation of (1, 1,−1) or (−1,−1, 1). This is just an extension of the 2-asset case, where we have
an additional asset instead of the strike. The 3-asset basket option can be priced as a CEO either to
exchange a 2-asset exchange option for the third asset or to exchange two 2-asset exchange options
with a common asset. For example, consider a 3 : 2 : 1 spread option that is commonly traded in
energy markets:

PT = [3S1T − 2S2T − S3T]
+

=
[
3 [S1T − S2T]

+ − [S3T − S2T]
+]+

+
[
[S2T − S3T]

+ − 3 [S2T − S1T]
+]+

.

Here the two CEOs can be priced by dimension reduction by choosing S2 as the numeraire.

In the general case of basket options on N underlying assets, except for the ones discussed above,
the two replicating CEOs are no longer written on plain vanilla or log-normal exchange options,
but on sub-basket options. Since the prices of these sub-basket options are computed as a sum
of prices of CEOs, it is not straightforward to express their processes in a form that would lead
to an exact solution to the basket option price. Thus exact pricing under the strong log-normality
condition is only possible in special cases, and in general we can only find an approximate price
under the weak log-normality condition described in the next sub-section.

9Carr [1988] introduced an alternative change of numeraire approach to price sequential exchange options where an
exchange may lead to further exchanges. His approach is based on Geske [1977] and Margrabe [1978] who discuss the
pricing of compound vanilla options and log-normal exchange options respectively. However, he only discusses the
pricing of CEOs on a log-normal exchange option and a log-normal asset that is the same as the asset delivered in the
exchange option. His approach is difficult to extend to higher dimensions and also does not apply to our case where
both the underlying assets of the CEO are options.
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For instance, consider a 4-asset basket option with zero strike. Here we can write the payoff as:

PT = [S1T − S2T − S3T + S4T]
+

=
[
[S1T − S2T]

+ − [S3T − S4T]
+]+

+
[
[S4T − S3T]

+ − [S2T − S1T]
+]+

.

Since the two replicating CEOs are written on log-normal exchange options with no common
asset, the CEO prices cannot be priced using theorem 4. Nevertheless, by adjusting the volatilities
of the CEOs under the weak log-normality condition, the sub-basket option price processes can
be approximately described by GBM processes. Then the relative sub-basket option prices follow
approximate log-normal processes and the two replicating CEO prices can be computed by using
the formula of Margrabe [1978].

4.2. Pricing under Weak Form of Log-Normality Condition

Let
(

Ω,F , (Ft)t≥0 , Q
)

be a filtered probability space, where Ω is the set of all possible events
such that (S1t, S2t, . . . , SNt) ∈ (0, ∞)N, (Ft)t≥0 is the filtration produced by the sigma algebra of
the N-tuplet (S1t, S2t, . . . , SNt)t≥0 of asset prices and Q is a multi-variate risk neutral probability
measure. We assume that the underlying asset prices processes Si are described by:

dSit = µi(Sit, t)Sitdt + σiSitdWi (19)
〈dWit, dWjt〉 = ρijdt, 1 ≤ i, j ≤ N,

where Wi are Wiener processes under the risk neutral measure Q, σi is the volatility of ith asset
(assumed constant), µi(.) is a well defined function of Sit and t, and ρij is the correlation between
ith and jth assets (assumed constant).

To price a European CEO on basket options we need to know the distribution of their payoffs at
time T. We have already discussed the pricing of CEOs when the underlying assets followed GBM
processes, in section 3. Hence we start by describing the price process VN of the basket option on N
assets when χ = −1. As before, we assume that the prices of the call and put sub-basket options on
m and n assets follow log-normal processes. We then show that, when the basket option volatility
is approximated as a constant, the basket option price process VN can be expressed as a GBM
process. Since Cm, Cn, Pm and Pn are prices of basket options themselves, we may also express
their processes as GBM process if their sub-basket option prices follow log-normal processes. In
the end, an assumption that sub-basket call and put option prices follow log-normal processes
will lead to an approximate log-normal process for the price of a basket option on N assets.

When χ = −1, the basket option price is computed as a sum of two CEOs - one on two call sub-
basket options and the other on two put sub-basket options. Now, consider the CEO on calls. For
i = m or N, we have

dCit = rCitdt + σCiCitdW̃it, (20)

where σCm, σCn are the volatilities and W̃m, W̃n are the Wiener processes driving the two call basket
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options. Applying Itô’s lemma:

dE1t =
∂E1t

∂t
dt + ∑

i=m,n

(
∂E1t

∂Cit
dCit + ∑

j=m,n

1
2

∂2E1t

∂Cit∂Cjt
dCitdCjt

)

=

(
∂E1t

∂t
+ ∑

i=m,n

(
rCit

∂E1t

∂Cit
+ ∑

j=m,n

γijσCiσCjCitCjt
∂2E1t

∂CitCjt

))
dt + ∑

i=m,n

σCiCit
∂E1t

∂Cit
dW̃it

= rE1tdt + ∑
i=m,n

σCiCit∆Cit dW̃it. (21)

The price of the CEO on puts E2t will follow a similar process to the one described by equation
(21) with Ci replaced by Pi.10

Then, by equation (4), VNt = E1t + E2t and so we have

dVNt = dE1t + dE2t

= r (E1t + E2t) dt + ∑
i=m,n

σCiCit∆Cit dW̃it − ∑
i=m,n

σPiPit∆Pit dW̃it

= rVNtdt + VNt

((
σCm

Cmt

VNt

∂E1t

∂Cmt
− σPm

Pmt

VNt

∂E2t

∂Pmt

)
dW̃mt −

(
σCn

Cnt

VNt

∂E1t

∂Cnt
− σPn

Pnt

VNt

∂Ent

∂Pnt

)
dW̃nt

)

= rVNtdt + VNt

(
(ξmt − ηmt) dW̃mt − (ξnt − ηnt) dW̃nt

)
.

Let W̃m and W̃ be independent Wiener processes with dW̃nt = γmn dW̃mt +
√

1− γ2
mn dW̃t and γmn

is the correlation between the basket options written on bm and bn. Define, σ̃mt = (ξmt − ηmt) and
σ̃nt = (ξnt − ηnt), with

ξit = σCi

Cit

VNt

∂E1t

∂Cit
and ηit = σPi

Pit

VNt

∂E2t

∂Pit
. (22)

Then VN can be described as
dVNt = rVNtdt + σ̃tVNtdW̃t, (23)

where the basket option volatility, σ̃t is given by

σ̃t =
√

σ̃2
mt + σ̃2

nt − 2γmnσ̃mtσ̃nt, (24)

and the covariance between the sub-basket options written on baskets bm and bn is given by

γmndt = C (bm, bn)
= C (bm1, bn1)− C (bm1, bn2)− C (bm2, bn1) + C (bm2, bn2) , (25)

for i = m, n and j = 1, 2. C (a, b) is the covariance between the Wiener processes driving the assets
in baskets a and b, and bijs are the sub-baskets of bi, that is, bi = {bi1, bi2}.

10When χ = 1, the two CEOs are written on call and put sub-basket options. Their price processes will be similar to
equation (21) but now each has a call and put option component. For instance,

dE1t = rE1tdt + σCmCmt∆Cmt dW̃mt + σPnPnt∆Pnt dW̃nt.
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The weak form of the log-normality condition is most likely to hold when we choose the two
CEOs to be deep in-the-money (ITM). That is, we shall choose the strikes of the sub-basket call
and put options such that the call option on m assets and the put option on n assets are deep

in the money. The reason for such a choice is that both
∂E1t

∂Cmt
and

∂E2t

∂Pnt
tend to one, while

∂E1t

∂Cnt

and
∂E2t

∂Pmt
tend to zero. Thus, by choosing the strikes of the sub-basket options so that the basket

option price is obtained from deep ITM call and put options, we may approximate ξit and ηit as
constants. Thus, ξm ≈ σCm, ηn ≈ σPn and ξn, ηm ≈ 0 and we may therefore approximate the basket
option volatility to be constant; σ̃t = σ̃. The basket option price will then follow an approximate
log-normal process described by

dVNt = rVNtdt + σ̃VNtdW̃t.

Equation (20), describing the two call sub-basket option prices, can be derived in a similar fashion,
starting with their sub-basket option price processes. Ultimately, when the sub-basket size reduces
to one, we will have a plain vanilla option whose processes will be described by equations (9) and
(10).

Theorem 5. Let E1t and E2t be the prices of the two CEOs above. Then the price of the basket option on B
at time t is given by the recursive formula:

VNt(Θ, St, K, T, ω) = EQ

{
VNT

∣∣∣Ft

}

= E1t(Θ, St, K, T, ω) + E2t(Θ, St, K, T, ω), (26)

where

E1t(Θ, St, K, T, ω) = ω (Vmt(Θm, SmT, Km, +1)Φ(ωd11)−Vnt(Θn, SnT, Kn,−χ)Φ(ωd12))
= ω

(
V1

mtΦ(ωd11)−V1
ntΦ(ωd12)

)
, say

E2t(Θ, St, K, T, ω) = ω (Vnt(Θn, SnT, Kn,χ)Φ(ωd21)−Vmt(Θm, SmT, Km,−1)Φ(ωd22))
= ω

(
V2

ntΦ(ωe1)−V2
mtΦ(ωe2)

)
, say (27)

and

di1 =
ln

(
V i

mt

/
V i

nt

)
+ 1

2 σ2
Ei(T− t)

σEi

√
T − t

; di2 = di1 − σEi

√
T − t ;

where σE1 and σE2 are the volatilities of the two CEO prices E1 and E2 respectively.

Proof. Recall that Cm, Pm and Cn, Pn are themselves prices of options on baskets of sizes m and n
respectively. Therefore these prices can be computed by applying equation (26) recursively. Their
volatilities σCm, σCn, σPm, and σPn will be given by equation (24). This procedure is followed until
the size of a sub-basket reaches one.

When the size of the basket reduces to one, the basket option price is merely the price of a vanilla
option under the chosen model. Then for St = (Sit), K1 = (Ki) and Θ1 = θi, for some 1 ≤ i ≤ N,
the single-asset option price is given by

E1(Θ, St, K, T, ω) = ωe−r(T−t)θi (FitTΦ(ωd1)− KiΦ(ωd2)) ,
E2(Θ, St, K, T, ω) = 0, (28)
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where FitT is the ith asset futures price and

d1 =
ln

(
FitT
Ki

)
+

(
r + 1

2 Σ2
i

)
(T − t)

Σi
√

T − t
; d2 = d1 − Σi

√
T − t

For instance, when µi = (r − qi) in equation (19), FitT = Site(r−qi)(T−t) and Σi = σi. Or more
generally, when µi = κ(θ(t)− ln Sit):11

FitT = exp
(

e−κ(T−t) ln Sit +
∫ T

t
e−κ(T−s)θ(s)ds +

σ2
i

2κ

(
1− e−2κ(T−t))

)

Σi = σi

√
1− e−2κ(T−t)

2κ

�

One of the main advantages of our approximation is that we can derive analytic formulae for
the multi-asset option Greeks which, unlike most other approximations, capture the effects that
individual asset’s volatilities and correlations have on the hedge ratios.

Below we present the deltas, gammas and vegas of a basket option; the corresponding formulae
for a rainbow option (or a best-of or worst-of option) would then follow from it’s basket-option
representation, which we have shown how to derive, using the principles of Section 2. Differ-
entiating the basket option price given in theorem 5, using the chain rule, yields the following:

Proposition 6. The basket option deltas, gammas and vegas of our basket option price f are given by:

∆ f
Si

= ∆ f
Cj

∆
Cj
Si

+ ∆ f
Pj

∆
Pj
Si

Γ f
Si

= Γ f
Cj

(
∆

Cj
Si

)2
+ Γ

Cj
Si

∆ f
Cj

+ Γ f
Pj

(
∆

Pj
Si

)2
+ Γ

Pj
Si

∆ f
Pj

V f
σi

= V f
σE1

∂σE1

∂σi
+ V f

σE2

∂σE2

∂σi
+ VCj

σi ∆ f
Cj

+ V Pj
σi ∆ f

Pj
(29)

where j is equal to m when 1 ≤ i ≤ m and equal to n when m + 1 ≤ i ≤ N; ∆z
x, Γz

x and V z
x denote the

delta, gamma and vega of z with respect to x respectively.

5. EMPIRICAL RESULTS

This section describes how to implement our approximation to price a basket option. For illustra-
tion we assume the option is written on four assets, and has payoff [S1 − S2 − S3 + S4]+. The asset
prices follow correlated GBM processes with constant volatilities and correlations. The interest
rate was 4% and dividend yields were assumed to be zero.

We begin with an experiment which takes the model parameters as given, and compares the prices
obtained using our approximation with the prices that are obtained using simulation of the mul-
tivariate log-normal asset price processes. The initial underlying asset prices, basket weights,

11see Pilipovic [2007]
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volatilitites and correlations were chosen to be:

S =




100
90
85
75


 , Θ =




1
−1
−1

1


 , Σ =




0.10
0.15
0.18
0.20


 , C =




1 0.8 0.6 0.2
0.8 1 0.55 0.65
0.6 0.55 1 0.57
0.2 0.65 0.57 1


 . (30)

FIGURE 3: Comparison of our model prices with simulated prices across various basket option maturities
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Permutation 1

Following the payoff decomposition discussed in section 2, we can decompose the payoff into a
CEO written on two simple exchange options, each on a pair of assets. By choosing the size of the
sub-baskets to be equal to 2 (i.e. setting k = 2), this can be done in four different ways.12 That is,
the two pairs of assets can be permuted in four different ways. However, due to symmetry, a call
option to exchange asset 1 for 2 is equivalent to a put option to exchange asset 2 for 1. Hence the
permutations (1, 2, 3, 4) and (1, 3, 2, 4) are equivalent to (4, 3, 2, 1) and (4, 2, 3, 1) respectively and
yield the same prices. We therefore evaluate the performance of our approximation for the former
two permutations only, and our experiment will compare our results with the simulated prices.13

We call these permutations p1 and p2.

Figure 3 shows the simulated basket option price and model price under permutations p1 and
p2, with the same set of model parameters, but for different maturities, from 1 to 12 months.
The model price under p2 seems to match the simulated prices closely for all maturities, but this
is not the case when we price the CEO using p1. The price difference between the two permu-
tations mainly arises due to the difference in the way the individual volatilities and correlation

12While there are 4! permutations possible, most of them lead to redundant representations while some others, for
instance, (1, 4, 2, 3), lead to a CEO on two 2-asset options written on the sum of asset prices. This is equivalent to an
exchange option with negative strike.

13We also tried to compute the price of the basket option using the Black-Scholes model. Here we expressed the
basket option as a simple exchange option to exchange a 2-asset basket on assets 1 and 4 for another on assets 2 and 3.
By assuming that the 2-asset basket prices followed GBM processes, price was found using Margrabe [1978]. However
we do not use these prices because they were highly inaccurate, and ranged between 0.5 and 1.5 across all maturities.
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affect the basket option price. In permutation p1, the correlations ρ12 and ρ34 affect basket option
price through the exchange option prices and volatilities, while in p2 they affect the price only
through the correlation γ between the sub-baskets. A similar argument applies to ρ13 and ρ24

in permutations p2 and p1. The approximation error creeps in while approximating the basket
option volatility, as in equation (24), whose sensitivity to different correlations depends on the
chosen permutation.

The results in figure 3 are for a particular choice of volatilities and correlations for the underly-
ing assets. In order to check the performance of our approximation with other correlation values,
we calculated our model prices, and the simulated prices, for a random sample of uniformly dis-
tributed correlation matrices. The maturity of the basket option was 6 months. We calculated
the range of our model prices, and the range of simulated prices, as the correlation matrices were
changed randomly. The minimum and maximum simulated prices were 2.12 and 10.61 respec-
tively, while the minimum model prices under permutations p1 and p2 were 0.2 and 1.13, and the
maximum model prices were 10.48 and 10.83 respectively. Hence, the simulated prices form a
subset of the possible model prices under permutation p2.

We now move to an illustration of how to price a basket option in practice. Instead, we would
want to calibrate the model parameters, including the volatilities and correlations to match the
benchmark price. For an N-asset basket option, there are N asset price volatility and N(N − 1)/2
correlation parameters and there are infinitely many possible combinations of values for which
the model price of the basket option would be equal to its market price, if indeed a sufficiently
liquid market price exists. But not all values will yield implied volatility and implied correlation
skew consistent prices and hedge ratios.

Our approximation provides a natural convention for choosing the underlying asset volatilities;
they should be set equal to the implied volatilities of the vanilla options on individual assets with
the strikes that appear in the terminal step of the recursive procedure. For instance, in the present
example, for the exchange option on assets 1 and 2, σ1 will be equal to the implied volatility of an
option on S1 with strike S2, and σ2 will be equal to the implied volatility of an option on S2 with
strike S1. The volatilities σ3 and σ4 are chosen in a similar manner. This yields prices and hedge
ratios that are volatility skew consistent.

Secondly, certain asset correlations will be set equal to the implied correlations that are backed-out
from the market prices of any liquid spread options, or 2-asset basket options, using the volatilities
that are calibrated as above. Then we calibrate the remaining correlations so that the basket option
model prices under different permutations match each other. This way we eliminate any bias from
using a certain permutation.

As in the specific example discussed above, the way that different correlations affect the basket
option price depends on the chosen permutation. For a given permutation, correlations between
assets that appear in different legs of the tree (figure 1) affect the basket option price only through
the correlation γ between the sub-basket options. However, if the assets belong to the same leg
of the tree, then the correlations between these assets affect the basket option price through the
sub-basket prices and the sub-basket volatilitites. For instance, recall that in permutation p1 the
correlations ρ12 and ρ34 affect the basket option price through the two exchange option prices,
whereas in permutation p2 they affect the basket option price through the CEO price. Therefore,
depending on the chosen permutation, these correlation values affect the price in a different man-
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ner. A similar argument applies to correlations ρ13 and ρ24.

To illustrate this, in figure 4 we plot the squared difference between the prices from permuta-
tions p1 and p2 against these correlations. We compute the price differences for a correlation, ρij,
by using the value for all the other parameters given by (30) and we only vary the value of that
particular correlation, shown on the horizontal axis. However, these correlation values were con-
strained, in order to keep the sub-basket correlation, given by equation (25), within −1 and 1.
Figure 4 shows that the prices from permutations p1 and p2 can indeed be matched by calibrating
the correlations. For instance, the two basket option prices will be equal when ρ12 is 0.61, ρ34= 0.01,
ρ13 = 0.3 and ρ24 = 0.73.14

FIGURE 4: Squared difference between our model prices from permutations (1, 2, 3, 4) and (1, 3, 2, 4)
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Thirdly, irrespective of the permutation, some correlations only affect the sub-basket option corre-
lation γ and not the sub-basket option prices or volatilities. Therefore, these would not have been
calibrated in the previous step, but they can be calibrated now by matching the model price to
the benchmark price of the basket option. In the basket option considered above, for example, the
correlations ρ23 and ρ14, unlike the rest, affect the basket option price only through the sub-basket
correlation γ. While the other correlations were tuned to match the prices obtained under the two
possible permutations p1 and p2, ρ23 and ρ14 can be used to calibrate the model price to the market
price of the basket option. For a given value of ρ12, ρ34, ρ13 and ρ24, we only need to choose ρ23 and
ρ14 such that the model price is equal to the market price. Although this procedure does not al-
ways identify a unique values for each correlation, it identifies the vanilla options and sub-basket
options that replicate the basket option.

Figure 5 plots the behaviour of the basket option price with respect to these correlations, when
ρ12 = 0.6 and when 0.9. For example, if the benchmark price for the basket option were 6, as
indicated by the dotted horizontal line in the figure, then we would calibrate the following values

14The convexity of the ρ34 curve in the region of 0 is very low, but there is actually only one value for which the two
prices are equal.
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FIGURE 5: Basket option price variation with respect to correlation between assets 1 and 4, and assets 2
and 3
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FIGURE 6: Deltas with respect to all 4 underlying asset prices
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of ρ23 and ρ14. For ρ12 = 0.6, ρ23 and ρ14 will be equal to 0.4 and 0.04 respectively; and for ρ12 = 0.9,
ρ23 and ρ14 will be equal to 0.5 and 0.14 respectively.

Finally figure 6 plots the deltas of the basket option with respect to the four underlying assets.
These were computed using equation (29). Due to the positive weights of assets 1 and 4, the deltas
with respect to those asset prices resemble the delta of a vanilla call option, whereas the deltas with
respect to prices of assets 2 and 3 resemble the delta of a vanilla put option, due to their negative
weights. For the parameter values given in (30), the basket option is at the money with respect to
every underlying asset. That is, the price of every asset is equal to the weighted sum of prices of
the other 3 assets. However, due to differences in their volatilities and correlations, the respective
deltas at the given price values are different from each other. For instance, at S1 = 100, ∆1 ≈ 0.5
while at S2 = 90, ∆2 ≈ −0.4. This property is not captured by any other existing approaches
to analytic approximations for multi-asset options, because they ignore the effects of asset price
volatilities and correlations on the basket option deltas.

6. CONCLUSION

This paper develops a recursive framework for pricing and hedging multi-asset options, such as
basket and rainbow options, with a linear payoff structure. Most of the existing approaches to
pricing basket options are based on approximating the distribution of the basket price, or they are
limited to pricing average price basket options, or they apply only to options on a small number
of assets. We derive an approximate pricing formula for a general, N-asset basket option, by
expressing the basket option price as a sum of prices of compound exchange options on sub-
basket options. For an N-asset basket option, our approach involves computing the prices of
2(N − 1) compound exchange options and N vanilla option prices. The approximation error can
be minimised by a judicious choice of the strikes of these N vanilla options on the individual
assets. We discuss the extension of our approximation to other linear multi-asset options, such
as rainbows, best-of and worst-of options, where we express their price in terms of basket option
and simple exchange option prices. Also, when the basket contains no more than three assets, our
approach yields an almost exact price.

This recursive approach has several advantages over those already developed in the literature.
Firstly, the underlying asset prices may follow heterogeneous GBM processes. For instance, some
asset prices could follow mean-reverting processes whilst others follow standard GBM processes.
Secondly, our framework provides a convention for selecting the implied volatilities of vanilla
options on the individual underlying assets that are used to price the basket option. This yields
volatility skew consistent prices. Moreover, our prices may also be consistent with implied corre-
lations from any two-asset options used in the calibration set, although there is no convention for
setting these, as we have for the implied volatilities. Thirdly, we can derive analytic approxima-
tions for multi-asset option Greeks, and unlike other approaches, these Greeks will be influenced
by the individual asset price volatilities and correlations. Hence hedge ratios are consistent with
the individual asset implied volatility and implied correlation skews. Finally, we have demon-
strated how to calibrate the model parameters using a 4-asset rainbow option as an example.
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