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ABSTRACT

This paper expresses the price of a spread option as the sum of the prices of two compound options. One
compound option is to exchange vanilla call options on the two underlying assets and the other is to ex-
change the corresponding put options. This way we derive a new analytic approximation for the price of
a European spread option, and a corresponding approximation for each of its price, volatilty and correla-
tion hedge ratios. Our approach has many advantages over existing analytic approximations, which have
limited validity and an indeterminacy that renders them of little practical use. The compound exchange
option approximation for European spread options is then extended to American spread options on assets
that pay dividends or incur carry costs. Simulations quantify the accuracy of our approach; we also present
an empirical application, to the American crack spread options that are traded on NYMEX. For illustration,
we compare our results with those obtained using the approximation attributed to Kirk [1996], which is
commonly used by traders.
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1. INTRODUCTION

A spread option is an option whose pay-off depends on the price spread between two correlated
underlying assets. If the asset prices are S1 and S2 the payoff to a spread option of strike K is
[ω(S1 − S2 − K)]+ where ω = 1 for a call and ω = −1 for a put. Early work on spread option
pricing by Ravindran [1993] and Shimko [1994] assumed each forward price process is a geomet-
ric Brownian motion with constant volatility and that these processes have a constant non-zero
correlation: we label this the ‘2GBM’ framework for short.

The 2GBM framework is tractable but it captures neither the implied volatility smiles that are de-
rived from market prices of the vanilla options on S1 and S2, nor the implied correlation smile
that is evident from market prices of the spread options on S1 − S2. In fact correlation ‘frowns’
rather than ‘smiles’ are a prominent feature in spread option markets. This is because the pay-off
to a spread option decreases with correlation. Since traders expectations are usually of leptokur-
tic rather than normal returns, market prices of out-of-the-money call and put spread options are
usually higher than the standard 2GBM model prices, which are based on a constant correlation.
Hence, the implied correlations that are backed out from the 2GBM model usually have the ap-
pearance of a ‘frown’.

Numerical approaches to pricing and hedging spread options that are both realistic and tractable
include Carr and Madan [1999] and Dempster and Hong [2000] who advocate models that cap-
ture volatility skews on the two assets by introducing stochastic volatility to the price processes.
And the addition of price jumps can explain the implied correlation frown, as in the spark spread
option pricing model of Carmona and Durrleman [2003a]. However pricing and hedging in this
framework necessitates computationally intensive numerical resolution methods such as the fast
Fourier transform (see Hurd and Zhou [2009]). Other models provide only upper and lower
bounds for spread option prices, as in Durrleman [2001] and Carmona and Durrleman [2005],
who determine a price range that can be very narrow for certain parameter values. For a de-
tailed survey of these models and a comparison of their performances, the reader is referred to the
excellent survey by Carmona and Durrleman [2003b].

Spread option traders often prefer to use analytic approximations, rather than numerical tech-
niques, for their computational ease and the availability of closed form formulae for hedge ratios.
By reducing the dimension of the price uncertainty from two to one, the 2GBM assumption al-
lows several quite simple analytic approximations for the spread option price to be derived (see
Eydeland and Wolyniec [2003]). The most well-known of these is the approximation stated in Kirk
[1996], the exact origin of which is unknown; it is commonly referred to by traders as Kirk’s ap-
proximation. Another approximation, due to Deng et al. [2008], is derived by expressing a spread
option price as a sum of one dimensional integrals, and Deng et al. [2007] extend this approxima-
tion, and Kirk’s approximation, to price and hedge multi-asset spread options.

All these approximations are based on the 2GBM assumption, where the underlying prices are
assumed to have a bivariate lognormal distribution, which is quite unrealistic for most types of fi-
nancial assets. However, they may be extended to approximations for spread options under more
general assumptions for the joint distribution of the underlying prices. For instance, Alexander
and Scourse [2004] assume the underlying prices have a bivariate lognormal mixture distribution,
and hence express spread option prices as a weighted sum of four different 2GBM spread option
prices, each of which may be obtained using an analytic approximation. The prices so derived
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display volatility smiles in the marginal distributions, and a correlation frown in the joint distri-
bution.

There is an indeterminacy problem with the 2GBM analytic approximations mentioned above.
The problem arises because all these approximations assume we know the implied volatilities of
the corresponding single asset options. Since the 2GBM assumption is unrealistic, the individual
asset implied volatilities are usually not constant with respect to the single-asset option strike - i.e.
there is, typically, an implied volatility skew for each asset. So the strike at which we measure the
implied volatility matters. However, this is not determined in the approximation. Thus we have
no alternative but to apply some ad hoc rule, which we call the strike convention. But the implied
correlation is sensitive to the strike convention; that is, different rules for determining the single-
asset option implied volatilties give rise to quite different structures for the correlation frown.
Indeed, many strike conventions infeasible values for implied correlations when calibrating to
market prices.

There are two sources of this problem. Firstly, some approximations (including Kirk’s approxima-
tion) are only valid for spread options of certain strikes. Secondly, and this is due to the indetermi-
nacy described above, correlation risk is not properly quantified in these approximations. In fact,
the sensitivity of the spread option price to correlation is constrained to be directly proprtional
to the option vega. Indeed, a problem that is common to all approximations that require an ad
hoc choice of strike convention, is that the hedge ratios derived from such approximations may
be inconsistent with the vanilla option Greeks, and as such, the errors from delta-gamma-vega
hedging could be inappropriately attributed to correlation risk.

In this paper we derive a new analytic approximation for spread option prices and hedge ratios,
based on the 2GBM assumption. We express the spread option price as the sum of the prices of
two compound exchange options. One compound option is to exchange two vanilla call options,
one on each of the two underlying assets, and the other compound option is to exchange the
corresponding put options. In this compound exchange option (CEO) approximation, the strikes
at which to measure the single-asset implied volatilities are endogenous to the model. Thus the
CEO approximation is free of any strike convention, and yields a unique implied correlation for
each spread option strike, even when there are implied volatility skews on the individual assets.
We shall demonstrate, using simulations of spread otption prices, and using real market spread
option prices, that the CEO approximation provides a very much closer fit to the spread option
price than does Kirk’s approximation. Moreover, the CEO hedge ratios are consistent with those
for the single asset options. Furthermore, correlation risk is not simply assumed to be proportional
to volatility risk, as it is in other analytic approximations. In fact, correlation sensitivities are
quantified independently of the single asset option vegas. We also derive a new, general formula
for the early exercise premium of an American spread option on spot underlyings. This is because
the majority of traded spread options are American-style options on assets that pay dividends or
have carry costs.

The outline is as follows: Section 2 provides a critical review of the existing analytic approxima-
tions for spread options, exploring in greater depth the claims made above. Section 3 sets out
the compound exchange option representation, and derives a new analytic approximation to the
price and hedge ratios of European spread options. In Section 4 we derive the early exercise pre-
mium for an American spread option on assets that pay dividends or incur carry costs. Section 5
reports the results of two empirical studies: it begins with a simulation exercise that demonstrates
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the flexibility and accuracy of the CEO approximation, and explores the practical difficulties that
arise on attempting to implement the approximation given by Kirk [1996]. Then we calibrate the
CEO approximation to market data for American crack spread options, comparing the fit and the
spread option hedge ratios with those obtained using Kirk’s approximation. Section 6 concludes.

2. BACKGROUND

Let
(

Θ,F , (Ft)t≥0 , Q
)

be a filtered probability space, where Θ is the set of all possible events θ
such that S1t, S2t ∈ (0, ∞), (Ft)t≥0 is the filtration produced by the sigma algebra of the price pair
(S1t, S2t)t≥0 and Q is a bivariate risk neutral probability measure. Assume that the risk-neutral
price dynamics are governed by two correlated geometric Brownian motions with constant volatil-
ities, so the dynamics of the two underlying asset prices are given by:

dSit = (r− qi)Sitdt + σiSitdWit, i = 1, 2 (1)

where W1t and W2t are Wiener processes under risk neutral measure Q, r is the (assumed constant)
risk-free interest rate and q1 and q2 are the (assumed constant) dividend yields of the two assets.
The volatilities σ1 and σ2 are also assumed to be constant as is the covariance:

〈dW1t, dW2t〉 = ρdt.

When the strike of a spread option is zero the option is called an exchange option, since the buyer
has the option to exchange one underlying asset for the other. The fact that the strike is zero allows
one to reduce the pricing problem to a single dimension, using one of the assets as numeraire. If
S1t and S2t are the spot prices of two assets at time t then the payoff to an exchange option at
the expiry date T is given by [S1T − S2T]+. But this is equivalent to an ordinary call option on
xt = S1t/S2t with unit strike. Hence, using risk-neutral valuation, the price of an exchange option
is given by

Pt = EQ
{

e−r(T−t)[S1T − S2T]+
}

= e−r(T−t)EQ
{

S2T [xT − 1]+
}

.

Margrabe [1978] shows that under these assumptions the price Pt of an exchange option is given
by

Pt = S1te−q1(T−t)Φ(d1)− S2te−q2(T−t)Φ(d2) (2)

where Φ denotes the standard normal distribution function and

d1 =
ln

(
S1,t
S2,t

)
+

(
q2 − q1 + 1

2 σ2
)
(T − t)

σ
√

T − t
; d2 = d1 − σ

√
T − t;

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2.

A well-known approximation for pricing European spread options on futures or forwards, which
is valid for small, non-zero strikes, appears to have been stated first by Kirk [1996]. When K ¿ S2t

the displaced diffusion process S2t + K can be assumed to be approximately log-normal. Then, the
ratio between S1t and (S2t + Ke−r(T−t)) is also approximately log-normal and can be expressed as a
geometric Brownian motion process. Rewrite the pay-off to the European spread option as:

[ω(S1T − S2T − K)]+ = (K + S2T)[ω(ZT − 1)]+
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where ω = 1 for a call and ω = −1 for a put, Zt = S1t
Yt

and Yt = S2t + Ke−r(T−t). Let W be a
Brownian motion under a new probability measure P whose Radon-Nikodym derivative with
respect to Q is given by:

dP
dQ

= exp
(
−1

2
σ̄2

2 T + σ̄2W2t

)
.

Then Z follows a process described by

dZt

Zt
= (r− r̄− (q1 − q̄2)) dt + σtdWt

with

σ =
√

σ2
1 + σ̃2

2 − 2ρσ1σ̃2,

where σ̃2 = σ2
S2t
Yt

, r̃ = r S2t
Yt

, q̃2 = q2
S2t
Yt

. Therefore, the price ft at time t for a spread option on S1 and
S2 with strike K, maturity T and payoff [ω(S1 − S2 − K)]+ is given by:

ft = EQ

{
Yte−r(T−t) [ω(ZT − 1)]+

}

= ω
[
S1,te−q1(T−t)Φ (ωd1Z)− (

Ke−r(T−t) + S2t
)

e−(r−(r̃−q̃2))(T−t)Φ (ωd2Z)
]

, (3)

where

d1Z =
ln (Zt) +

(
r− q1 − (r̃− q̃2) + 1

2 σ2
t

)
(T − t)

σt
√

T− t
;

d2Z = d1Z − σt

√
T− t.

Under Kirk’s approximation, the spread option’s deltas and gammas are given by

∆ f
S1

= ωe−q1(T−t)Φ(ωd1Z),

∆ f
S2

= −ωe−q1(T−t)Φ(ωd2Z),

Γ f
S1S1

= e−q1(T−t) φ(d2Z)
S1tσt

√
T − t

,

Γ f
S2S2

= e−(r−r̄+q̄2)(T−t) φ(d2Z)
(Ke−r(T−t) + S2t)σt

√
T − t

. (4)

The cross gamma, i.e., the second order derivative of price with respect to both the underlying
assets is given by

Γ f
S1S2

= −e−q1(T−t) φ(d1Z)
(Ke−r(T−t) + S2t)σt

√
T − t

= −e−(r−r̄+q̄2)(T−t) φ(d2Z)
S1tσt

√
T − t

, (5)

where ∆z
x denotes the delta of y with respect to x and Γz

xy denotes the gamma of z with respect to
x and y. The Kirk-approximation vegas are similar to Black-Scholes vegas and are easy to derive
using chain rule.

Under the 2GBM assumption, other price approximations exist that also reduce the dimension of
the uncertainty from two to one.1 For instance let St = S1te−q1(T−t) − S2te−q2(T−t) and choose an

1See Eydeland and Wolyniec [2003]. The approximation derived in Deng et al. [2007, 2008] is not based on dimension
reduction. Nevertheless, it has the problem that the prices still depend on a subjective choice for the strikes of the single
asset implied volatilities.
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arbitrary M >> max {St, σt}. Then another analytic spread option price, this time based on the
approximation that M + St has a lognormal distribution, is:

ft = (M + St)Φ(d1M)− (M + K)e−r(T−t)Φ(d2M)

where

d1M =
ln

( M+St
M+K

)
+

(
r− q + 1

2 σ2
t

)
(T − t)

σt
√

T − t
;

d2M = d1M − σt

√
T − t;

σt =
√

σ2
1 + σ2

2 − 2ρσ1σ2
/
(M + St).

We remark that, in most of the analytic approximations which are derived by reducing the price
dimension from two to one, the spread option volatility will take the form:

σ =
√

ω1σ
2
1 + ω2σ

2
2 − 2ω3ρσ1σ2 , (6)

where the terms on the right hand side are assumed to be constant.

To avoid arbitrage, a spread option must be priced consistently with the prices of vanilla options
on S1 and S2. This implies setting σi in (6) equal to the implied volatility of Si, for i = 1, 2. Then the
implied correlation is calibrated by equating the model and market prices of the spread option.
But although the 2GBM model assumes constant volatility, the market implied volatilities are not
constant with respect to strike. So the strikes K1 and K2 at which the implied volatilities σ1 and
σ2 are calculated can have a significant influence on the results. Each of the spread option price
approximations reviewed above requires the single asset implied volatilities to be determined by
some convention for choosing (K1, K2) such that K1 − K2 = K. There are infinitely many possible
choices for K1 and K2 and, likewise, infinitely many combinations of market implied σ1, σ2 and
ρ that yield the same σ in equation (3). Hence the implied volatility and implied correlation pa-
rameters are ill-defined. Moreover, the sensitivity of volatility to correlation is constant, and this
implies that the price sensitivity to correlation is directly proportional to the option vega (i.e. the
partial derivative of the price w.r.t. σ).

Spread options may be delta-gamma hedged by taking positions in the underlying assets and
options on these. But hedging volatility and correlation may be much more difficult. Vega hedging
is complicated by the fact that the hedge ratios depend on the strike convention. For a given strike
K, there could be very many pairs (K1, K2) with K1 − K2 = K which provide an accurate price.
However, for each such pair (K1, K2) the spread option Greeks will be different, and if the strikes
are chosen without regard for vega risk, the hedging errors accruing from incorrect vega hedging,
along with every other unhedged risk, will be collectively attributed to correlation risk.

For this reason we should impose a further condition in the strike convention, i.e. that the spread
option Greeks are consistent with the vanilla option Greeks. If they are not, there could be sub-
stantial hedging error from gamma and/or vega hedging the spread option with vanilla options.
We define a compatible strike pair (K1, K2) with K1−K2 = K, to be such that the price and the hedge
ratios of the spread option with strike K are consistent with the prices and the hedge ratios of the
two vanilla options at strikes K1 and K2. A compatible pair (K1, K2) can be found by equating four
ratios: two of the spread option deltas relative to the single asset option deltas, and two of the
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spread option vegas relative to the single asset option vegas. There is no condition for gamma
because it is proportional to vega in the GBM framework.

Now, conditional on the two prices for the underlying assets at expiry, we can choose a unique pair
of vanilla options on the respective assets that replicates the spread option’s payoff.2 This unique
pair of single asset options best reflects the market expectations of the prices of their respective
underlying assets at the option’s expiry. Since the price of a spread option is a linear combination
of the conditional expectation of the underlying asset prices, these volatilities are expected to give
the most accurate spread option prices, assuming the market expectations are correct.

This hedging argument suggests that the strike convention should be selecting a compatible strike
pair; this is one of the strike conventions that we have followed in this paper. In addition, to ex-
plore whether more realistic implied correlations are obtained using non-compatible strike pairs,
we have employed several other strike conventions: using the single asset’s at-the-money (ATM)
forward volatility to calibrate spread options of all strikes; several conventions for which each Ki

is a linear function of K and Si, for i = 1, 2; and calibrating K1 as a model parameter, then setting
K2 = K1 − K. However, as we shall see in Section 5, in no case did we obtain reasonable results for
spread options of all strikes, when applied to either simulated or market data.

In the next section we present a new analytic approximation where a compatible pair of single
asset option strikes is endogenous. It is determined by calibrating the model to the vanilla option
implied volatility skews and to the implied correlation frown of the spread options of different
strikes.

3. COMPOUND EXCHANGE OPTION APPROACH

In this section we express the price of a spread option as a sum of prices of two compound ex-
change options, one on vanilla call options and the other on vanilla put options. The spread
option pricing problem thus reduces to finding the right call option pair (and the right put option
pair) and then calibrating the implied correlation between the two vanilla options. By establishing
a conditional relationship between the strikes of vanilla options and the implied correlation, the
spread option pricing problem reduces to a one dimensional problem. We also derive a correlation
sensitivity for the spread option price that is independent of the volatility hedge ratios.

Theorem 1. The risk neutral price of a European spread option may be expressed as the sum of risk neutral
prices of two compounded exchange options. That is,

ft = e−r(T−t) (
EQ

{
[ω [U1T −U2T]]

+ ∣∣Ft
}

+EQ
{
[ω [V2T −V1T]]

+ ∣∣Ft
})

(7)

where U1T, V1T are pay-offs to European call and put options on asset 1 and U2T, V2T are pay-offs to European
call and put options on asset 2, respectively.

2To see why, consider a call spread option with zero strike, for example. In the above construction, when S1,T ≥ S2,T
the pay off will be equal to K1 − K2.
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Proof. Let K1 and K2 be positive real numbers such that K1 − K2 = K and

L = {θ ∈ Θ : ω (S1T − S2T − K) ≥ 0}
A = {θ ∈ Θ : S1T − K1 ≥ 0}
B = {θ ∈ Θ : S2T − K2 ≥ 0}

Since a European option price at time t depends only on the terminal price densities, we have

ft = e−r(T−t)EQ{ω1L [S1T − S2T − K]}
= e−r(T−t)EQ

{
ω1L

(
1A[S1T − K1]− 1B[S2T − K2]

+ (1− 1A)[S1T − K1]− (1− 1A)[S2T − K2]
)}

= e−r(T−t)EQ

{
ω

(
1L⋂A[S1T − K1]− 1L⋂B[S2T − K2]

+ 1L(1− 1B) [K2 − S2T]− 1L(1− 1A) [K1 − S1T]
)}

= e−r(T−t)EQ

{ [
ω

(
[S1T − K1]

+ − [S2T − K2]
+)]+

}

+ e−r(T−t)EQ

{[
ω

(
[K2 − S2T]

+ − [K1 − S1T]
+)]+

}

= e−r(T−t) (
EQ

{
[ω [U1T −U2T]]

+}
+EQ

{
[ω [V2T −V1T]]

+})
. (8)

where U1T, V1T are pay-offs to European call and put options on asset 1 with strike K1 and U2T, V2T

are pay-offs to European call and put options on asset 2 with strike K2 respectively.

The CEO representation of a spread option is a special case of the general framework for multi-
asset option pricing introduced by Alexander and Venkatramanan [2009]. Let Uit and Vit be the
Black-Scholes option prices of the calls and puts in equation (7), and set K1 = mK to be the strike of
U1 and V1 and K2 = (m− 1)K to be the strike of U2 and V2, for some real number m ≥ 1. Choosing
m so that the single asset call options are deep in-the-money (ITM),3 the risk neutral price at time
t of a European spread option on 2GBM processes may be expressed as:

ft = e−r(T−t)ω [U1tΦ(ω d1U)−U2tΦ(ω d2U)− (V1,tΦ(−ω d1V)−V2tΦ(−ω d2V))] (9)

where

d1A =
ln

(
A1t
A2t

)
+

(
q2 − q1 + 1

2 σ2
A

)
(T − t)

σA
√

T− t
;

d2A = d1A − σA

√
T − t; (10)

3In the framework of Alexander and Venkatramanan [2009], the exchange options and the vanilla calls and puts in
the exchange options need not be traded. Hence we are free to choose the strikes of the vanilla options as we please.
However, it should be noted that if their strikes are very far outside the normal range for traded options, the spread
option price will be subject to model risk arising from the method used to extrapolate the volatility smile.
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and

σU =
√

ξ2
1 + ξ2

2 − 2ρξ1ξ2,

σV =
√

η2
1 + η2

2 − 2ρη1η2, (11)

ξi = σi
Sit

Uit

∂Uit

∂Sit
,

ηi = σi
Sit

Vit

∣∣∣∣
∂Vit

∂Sit

∣∣∣∣ .

The correlation ρ used to compute the exchange option volatility σU in equation (11) is the implied
correlation between the two vanilla calls (of strikes K1 and K2), which is the same as the implied
correlation between the two vanilla puts, because the puts have the same strikes as the calls.
And, since each vanilla option is driven by the same Wiener process as its underlying price, the
implied correlation between the vanilla options is the implied correlation of the spread option
with strike K = K1 − K2. As the deltas of the two vanilla options vary with their strikes, the
implied correlation does too. For instance, if we fix K1 then, as the spread option strike increases,
K2 decreases and the difference between the two deltas increases. Hence, the implied correlation
will decrease as K increases, and increase as K decreases. In other words the correlation skew or
frown becomes endogenous to the model.

Proposition 2. The spread option deltas, gammas and vegas of the price - refer to equation (9), are given
by:

∆ f
Si

= ∆ f
Ui

∆Ui
Si

+ ∆ f
Vi

∆Vi
Si

Γ f
SiSi

= Γ f
Ui

(
∆Ui

Si

)2
+ ΓUi

Si
∆ f

Ui
+ Γ f

Vi

(
∆Vi

Si

)2
+ ΓVi

Si
∆ f

Vi

Γ f
S1S2

= Γ f
S2S1

= Γ f
U1U2

∆U1
S1

∆U2
S2

+ Γ f
V1V2

∆V1
S1

∆V2
S2

V f
σi

= V f
σU

∂σU

∂σi
+ V f

σV

∂σV

∂σi
+ VUi

σi
∆ f

Ui
+ VVi

σi
∆ f

Vi
(12)

where, ∆z
x and V z

x denotes the delta and vega of z with respect to x respectively, and Γz
xy denote the gamma

of z with respect to x and y.

Proof. Differentiate equation (9) using chain rule.

Equation (12) shows that the CEO model Greeks are functions of their respective single asset
option Greeks. Therefore, it is possible to construct a portfolio with single asset call and put
options to replicate the spread option. For instance, to hedge the price and volatility risk of a call
spread option due to of asset 1, we can buy (∆ f

U1
+ VU1

σ1 ) call options on asset 1 with price U1 and(
∆ f

V1
+ VV1

σ1

)
put options on asset 1 with price V1. Other risks can be hedged in a similar manner.4

A limitation of the analytic approximations reviewed in the previous section is that correlation
risk is not properly quantified: the spread option correlation sensitivity must be a constant times

4Hedge portfolios of single asset call and put options are constructed by picking the coefficients of the corresponding
single asset Greeks on the right hand side of equation (12) and adding them together. This implies that the CEO model
hedge ratios are indeed consistent with the endogenous single asset option strikes given in Theorem 1.
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the option vega. By contrast, the CEO approximation yields a closed form formula for the sen-
sitivity of the spread option price to correlation. Write the approximate spread option price as
f = f (U1, U2, V1, V2, σU, σV). The approximation is structured so that the implied correlation is
directly related to m, the only independent and therefore central parameter. The exchange option
volatilities in equation (11) are therefore also determined by m, so we may write

∂ f
∂ρ

=
∂ f
∂m

∂m
∂ρ

,

where
∂ f
∂m

=
∂ f

∂U1

∂U1

∂m
+

∂ f
∂U2

∂U2

∂m
+

∂ f
∂V1

∂V1

∂m
+

∂ f
∂V2

∂V2

∂m
+

∂ f
∂σU

∂σU

∂m
+

∂ f
∂σV

∂σV

∂m
.

Now, unlike other analytic approximations, in the CEO approximation the volatility and correla-
tion hedge ratios could be independent of each other, depending on our choice for m. The corre-
lation affects the spread option price only through its effect on σU and σV, and we may choose m
such that dσU

dρ
= dσV

dρ
= 0. We call the spread option volatility at such a value for m the pure spread

option volatility. Thus, we may choose m so that

∂ f
∂m

= K
(

∂ f
∂U1

∂U1

∂K1
+

∂ f
∂U2

∂U2

∂K2
+

∂ f
∂V1

∂V1

∂K1
+

∂ f
∂V2

∂V2

∂K2

)
,

in which case, at the pure spread option volatility, we have:

∂ f
∂ρ

= Kg (ξ1, ξ2, ρ; m)−1
(

∂ f
∂U1

∂U1

∂K1
+

∂ f
∂U2

∂U2

∂K2
+

∂ f
∂V1

∂V1

∂K1
+

∂ f
∂V2

∂V2

∂K2
.
)

(13)

where

g (x, y, z; m) = (xy)−1

((
∂x
∂m

x +
∂y
∂m

y
)
− z

(
∂x
∂m

y +
∂y
∂m

x
))

.

We call (13) the pure correlation sensitivity of the spread option price because it is independent of
the volatility sensitivities ∂ f

∂σU
and ∂ f

∂σV
. That is, the pure correlation sensitivity of the spread option

price is the correlation sensitivity at the pure spread option volatility. In the following proposition
we establish a precise relationship between the pure correlation sensitivity of the spread option
price and our central parameter m:

Proposition 3. Let m = m(ρ, t) be such that m : [−1, 1] × [0, T] → [1, ∞). Then at the pure spread
option volatility we have

g (ξ1, ξ2, ρ; m) = g (η1, η2, ρ; m) . (14)

Proof. The total derivative of σU is:

dσU =
∂σU

∂ξ1
dξ1 +

∂σU

∂ξ2
dξ2 +

∂σU

∂ρ
dρ.

Hence

dσU

dρ
=

∂σU

∂ξ1

dξ1

dm
dm
dρ

+
∂σU

∂ξ2

dξ2

dm
dm
dρ

+
∂σU

∂ρ

= A
dm
dρ

− ξ1ξ2

σU

(15)
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where

A = σ−1
U

(
dξ1

dm
(ξ1 − ρξ2) +

dξ2

dm
(ξ2 − ρξ1)

)
.

Similarly

dσV

dρ
= B

dm
dρ

− η1η2

σV

(16)

where B = σ−1
V

(
dη1

dm
(η1 − ρη2) +

dη2

dm
(η2 − ρη1)

)
.

When dσU
dρ

= 0, equation (15) implies that

dm
dρ

= A−1 ξ1ξ2

σU

= ξ1ξ2

(
dξ1

dm
(ξ1 − ρξ2) +

dξ2

dm
(ξ2 − ρξ1)

)−1

= ξ1ξ2

((
dξ1

dm
ξ1 +

dξ2

dm
ξ2

)
− ρ

(
dξ1

dm
ξ2 +

dξ2

dm
ξ1

))−1

= g (ξ1, ξ2, ρ; m)−1 .

Similarly, when dσV
dρ

= 0,

dm
dρ

= η1η2

((
dη1

dm
η1 +

dη2

dm
η2

)
− ρ

(
dη1

dm
η2 +

dη2

dm
η1

))−1

= g (η1, η2, ρ; m)−1 .

Therefore g (ξ1, ξ2, ρ; m) = g (η1, η2, ρ; m). Finally, note that dm
dρ

is well-defined throughout ρ ∈
[−1, 1] because if

ρ =
(

dξ1

dm
ξ1 +

dξ2

dm
ξ2

) (
dξ1

dm
ξ2 +

dξ2

dm
ξ1

)−1

then g (ξ1, ξ2, ρ; m) = 0 and g (η1, η2, ρ; m) = 0 if ξi = ηi or ηi = 0. But ξi can never be equal to ηi,
and when ηi = 0, the spread option is replicated by the CEO on calls (there is no CEO on puts)
and we do not need equation (14). Therefore,

ρ 6=
(

dη1

dm
η1 +

dη2

dm
η2

) (
dη1

dm
η2 +

dη2

dm
η1

)−1

.

Proposition 2 provides a condition (i.e. g (ξ1, ξ2, ρ; m) = g (η1, η2, ρ; m)) that we shall use to cal-
ibrate the CEO approximation at the stationary spread option volatililty. This way we obtain a
correlation sensitivity for the spread option price that is not constrained to be directly propor-
tional to its volatility sensitivity. At time t we calibrate a single parameter m = m(ρ, t) for each
spread option, by equating the market price of the spread option to its model price (9). Let fMt

be the market price of the spread option and ft(m, ρ) be the price of a spread option given by
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equation (9). Then, for this option, we choose m such that || fM − f (m, ρ)|| is minimized, subject
to the constraint that g (ξ1, ξ2, ρ; mj) = g (η1, η2, ρ; mj) at each iteration j.5 Then, a compatible pair
of single asset options’ strikes is uniquely determined by setting K1 = mK and K2 = (m − 1)K,
where K is the strike of the spread option.

The calibration problem can be solved using a one-dimensional gradient method. The first order
differential of f with respect to ρ is given by equation (13). The first order derivatives of ξi and
ηi with respect to m can be calculated from their respective implied volatilities σ1 and σ2 either
numerically or by assuming a parametric function, such as a cubic spline, on their strikes. Then m
can be calculated either numerically, or by finding the roots of the resulting polynomial equation.6

Therefore, the model calibration will just involve using a one dimensional solver method, so the
computation time will be minimal.

4. PRICING AMERICAN SPREAD OPTIONS

The price of an American-style option on a single underlying asset is mainly determined by the
type of the underlying asset, the prevailing discount rate, and the presence of any dividend yield.
The option to exercise early suggests that these options are more expensive than their European
counterparts but there are many instances when early exercise is not optimal, for instance for
calls on non-dividend paying stocks, and calls or puts on forward contracts (see James [2003]).
Since no traded options are perpetual, the expiry date forces the price of American options to
converge to the price of their European counterparts. Before expiry, the prices of American calls
and puts are always greater than or equal to the corresponding European calls and puts. In the
moving boundary pricing method, the price of an American option can be expressed as a sum
of its European counterpart and an early exercise premium (EEP).7 Here the optimal stopping
problem is transformed to one that involves finding the boundary point at which it is optimal to
exercise. The EEP is then the expected value of the net gains from the payoff, conditional on the
underlying asset price crossing the optimal boundary.

Pricing American spread options is more complicated than pricing single-asset American options,
for two reasons: 1) the optimal boundary value of one asset is now a function of the other asset’s
price (see Detemple [2005] for more details), and 2) the conditional expectation of the net gains
from the payoff upon early exercise is not easy to compute. Even in the case of European spread
options, we saw that the option price, which is just the conditional expectation of the payoff at
expiry, does not have an analytic solution.

In order to overcome this problem we use the CEO conditional probabilities for the spread option
to be ITM, to express the EEP as a sum of three components. In so doing we may separate the
early exercise boundary into two boundaries, one for each underlying asset. This allows us to
treat the American spread option problem as an extension of the single-asset American option
price problem. As a result, we may use a two-dimensional extension of an existing numerical
scheme, such as Kim [1990], to compute the optimal boundaries.

5Recall that the approximation error will be smallest when we choose the vanilla options in the exchange options to
be as deep ITM as possible.

6For instance, when implied volatilities can be closely fitted by a cubic function, equation (14) reduces to a cubic
equation, whose roots can be found very easily.

7See McKean [1965], Carr et al. [1992], Kim [1990] and Jacka [1991] for single-asset American option examples.
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Let St,T be the set of all stopping times between t and T. Then the price of an American option is
given by

PA
t (S1, S2, K, q1, q2, σ, T) = sup

τ∈St,T

EQ

{
e−r(τ−t)Yτ

∣∣∣Ft

}
, (17)

where Yt = ω [S1t − S2t − K]+ is the spread option payoff at time t. Applying Tanaka-Meyer’s
formula (see Karatzas and Shreve [1991]) to the pay-off, we may write

Yt = Y0 + AY
t + MY

t ,

where MY is a Q-martingale and AY is a difference of non-decreasing processes null at 0, adapted
to the filtration (F )t≥0. Now the value of an American spread option at t ∈ [0, τ0] can be expressed
as

PA
t (S1, S2, K, q1, q2, σ, T) = e−r(T−t)EQ {YT}+EQ

{∫ T

τ0

e−r(s−τs)1τs=s
(
rYsds− dAY

s

)}
(18)

where τt = inf
{

s ∈ [t, T] : Ys = supτ∈Ss,T
EQ

{
e−r(τ−t)Yτ

}}
.

Next we note that there is an alternative formulation for the CEO spread option price (9) that may
be used to derive the price of an American spread option. This is:

ft = S1te−q1(T−t)P1 − S2te−q2(T−t)P2 − Ke−r(T−t)P3

where

P1 = P1(S1t, S2t, K, q1, q2, σ, t) = P (S1T ≥ S2T + K)
= Φ (d11) Φ(ω d1U)−Φ (−d11) Φ(−ω d1V),

P2 = P2(S1t, S2t, K, q1, q2, σ, t) = P (S2T ≤ S1T − K)
= Φ (−d12) Φ(−ω d2V)−Φ (d12) Φ(ω d2U), (19)

P3 = P3(S1t, S2t, K, q1, q2, σ, t) = P (K ≤ S1T − S2T)
= ω [(m− 1) (Φ(d22)Φ(ωd2U) + Φ(−ωd2V)Φ(−d22))

− m (Φ(d21)Φ(ωd1U) + Φ(−ωd1V)Φ(−d21))]

Note that P1, P2 and P3 are just the ITM conditional probabilities when the numeriare is each of
the underlying asset prices and the bond price, respectively.

In the case of a spread option we have

Yt = ω [S1t − S2t − K]+ , and dAY
t = ω ((r− q1)S1tdt− (r− q2)S2tdt) .

Therefore, in the exercise region, where the spread option is ITM,

rYsds− dAY
s = rω (S1s − S2s − K) ds−ω ((r− q1)S1s − (r− q2)S2s) ds

= ω(q1S1s − q2S2s − rK)ds.

When ω = 1, rewriting equation (18) in terms of moving boundaries Bi for i = 1, 2, the price of a
call spread option is given by:

PA
t (S1, S2, K, q1, q2, σ, T) = PE

t (S1, S2, K, q1, q2, σ, T)

+EQ
{∫ T

t
e−r(s−t)1{S1s≥(B1s+K); S2s≤(B2s−K)} (q1S1s − q2S2s − rK) ds

}
.
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Now, using the CEO probabilities (19), the American call spread option price can be expressed as

PA
t (S1, S2, K, q1, q2, σ, T) = PE

t (S1, S2, K, q1, q2, σ, T) +
∫ T

t
q1S1te−q1(s−t)P1(S1t, B1s, K, q1, q2, σ, s− t)ds

−
∫ T

t
q2S2te−q2(s−t)P2(B2s, S2t, K, q1, q2, σ, s− t)ds

−
∫ T

t
rKe−r(s−t)P3(B1s, B2s, K, q1, q2, σ, s− t)ds. (20)

The value match condition is given by

B1t − B2t − K = PE
t (B1t, B2t, K, q1, q2, σ, T) +

∫ T

t
q1S1te−q1(s−t)P1(B1t, B1s, K, q1, q2, σ, s− t)ds

−
∫ T

t
q2S2te−q2(s−t)P2(B2s, B2t, K, q1, q2, σ, s− t)ds

−
∫ T

t
rKe−r(s−t)P3(B1s, B2s, K, q1, q2, σ, s− t)ds. (21)

For i = 1, 2, the high contact conditions are given by

1− ∂PE
t (B1t, B2t, K, q1, q2, σ, T)

∂Bit
=

∂

∂Bit

(∫ T

t
q1S1te−q1(s−t)P1(B1t, B1s, K, q1, q2, σ, s− t)ds

−
∫ T

t
q2S2te−q2(s−t)P2(B2s, B2t, K, q1, q2, σ, s− t)ds

−
∫ T

t
rKe−r(s−t)P3(B1s, B2s, K, q1, q2, σ, s− t)ds

)
. (22)

5. EMPIRICAL RESULTS

We begin by calibrating the CEO approximation to simulated spread option prices and comparing
the calibration errors with those derived from Kirk’s approximation. For the simulations we have
used prices S1 = 65 and S2 = 50, and spread option strikes ranging between 9.5 and 27.5 with
a step size of 1.5 and maturity 30 days. To simulate market prices with implied volatility skews
and a correlation frown, we used quadratic local volatility and local correlation functions that are
assumed to be dependent only on the price levels of the underlying assets and not on time. The
dividend yields on both underlying assets are zero, the ATM volatilities were both 30% and the
ATM correlation was 0.80.

In Kirk’s approximation we set the strike convention and hence fix the single asset implied volatili-
ties. Then we use an iterative method to back-out the implied correlation for each option by setting
Kirk’s price equal to the simulated price. When we match Kirk’s prices to our simulated market
prices it is very often impossible to derive a feasible value for the implied volatility, and/or for
the implied correlation of the spread option in Kirk’s formula. Instead we must constrain both
these parameters to lie within their feasible set, and because of this there may be large differences
between the Kirk’s price and the market price.

Of several strike conventions considered, the one that produced the smallest pricing errors (with
both simulated and market data) was

K1 = S1,0 − K
2

, K2 = S2,0 +
K
2

.
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Still, in our simulated data, the root mean square calibration error (RMSE) was very high, at 9%.8

By contrast, the CEO approximation’s pricing errors are extremely small: the RMSE was 0.1% on
the simulated data. Moreover, the CEO implied correlation skews showed much greater stability
over different simulations than those obtained using the Kirk approximation, with any of the
strike conventions.

This simulation exercise illustrates a major problem with the approximations for spread options
surveyed in Section 2. That is, we have to apply a convention for fixing the strikes of the implied
volatilities σ1 and σ2, take the implied volatilities from the single asset option prices and then
calibrate the implied correlation to the spread option price. Moreover, using Kirk’s approximation
for illustration, we obtained unrealistic results whatever the strike convention employed, because
for high strike spread options the model’s lognormality assumption is not valid.

We now test the pricing performance of the CEO approximation using market prices of the 1:1
American put crack spread options that were traded on NYMEX between September 2005 and
May 2006. These options are on the gasoline - crude oil spread and are traded on the price dif-
ferential between the futures contracts of WTI light sweet crude oil and gasoline. Option data for
American style contracts on each of these individual futures contracts were also obtained for the
same time period, along with the futures prices. The size of all the futures contracts is 1000 bbls.

Figure 1 depicts the implied volatility skews in gasoline and crude oil on several days in March
2006, these being days with particularly high trading volumes. Pronounced negative implied
volatility skews are evident in this figure, indicating that a suitable pricing model should be able
to capture a skewed implied correlation frown.

Table 1 compares the results of Kirk’s approximation with the CEO approximation by reporting
the average absolute and percentage pricing errors on spread options with different strikes, where
the average is taken over all consecutive trading days between 1st March and 15th March 2006.
The models were calibrated to the market prices of both the gasoline - crude oil crack spread
options and the individual gasoline and crude oil options.

Using Kirk’s approximation led to exactly the same calibration problems as were encountered
with our simulated data. For high strikes, Kirk’s approximation based on feasible values for the
implied correlation (between -1 and +1) gave prices that were far too low, and the opposite was the
case with the low strikes. Only for a few strikes in the mid range were feasible values of the im-
plied correlation found without constraining the iteration. Kirk’s approximation, with constrained
values for the spread option’s implied volatility and correlation, gives an error that increases dras-
tically for high strike values, as was also the case in our simulation results. By contrast, the CEO
approximation errors were again found to be close to zero for all strikes on all dates.

Figure 2 plots the CEO parameter m as a function of the spread option strike, for the same days
as in Figure 1.9 Notice that, even though the implied volatilities shown in Figure 1 are quite
variable from day to day, m is very stable at all strikes. The stability of m allows us to choose

8Errors are reported as a percentage of the option price. For comparison, the RMSE was 9.3% when we used the
constant ATM volatility to determine σ1 and σ2. Results for other strike conventions are not reported for reasons of
space, but are available on request.

9The average values of the strike K1 = mK of the corresponding vanilla call and put options on gasoline are given
in paranthesis.
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accurate starting values for calibration, and this reduces the calibration time to just a few seconds
on a standard PC. Figure 3 shows that the implied correlations that are calibrated from the CEO
approximation exhibit a realistic, negatively sloped skew on each day of the sample.

Table 2 compares the two deltas and the two gammas of each model, averaged over the sample
period from 1st March and 15th March 2006, as a function of the spread option strike. For low
strikes the Kirk’s deltas are greater than the CEO deltas, and the opposite is the case at high strikes.
On the other hand, the CEO gammas are higher than Kirk’s at most strikes. This demonstrates
that, in addition to serious mispricing, the use of Kirk’s approximation will lead to inaccurate
hedging, as was claimed in Section 2.

Figures 4, 5, and 6 depict the two deltas, gammas and vegas of the CEO approximation, as a
function of the spread option strike.10 At the ATM strikes the absolute deltas are close to 0.5 and
the gammas are close to their maximum value. The vegas are greatest at ITM strikes, and their
values depend on the implied volatility levels of the individual vanilla options used. In our data,
the implied volatilities of gasoline were higher than those of crude oil in general, hence the peak
of the vega with respect to gasoline is further to the right than the peak of the crude oil vega.
Moreover, at every strike, vega varies considerably from day to day, because its value depends on
the level of the spread and on the level of the respective underlying asset price. This is in sharp
contrast to the hedge ratios derived using Kirk’s approximation, which are only affected by the
level of the spread and not by the level of the underlying asset prices. Finally, Figure 7 depicts the
CEO vega with respect to the pure spread option volatility. Its strike dependence is quite similar
to that of a Black-Scholes vanilla option vega, in that it takes its maximum value close to the ATM
strike.

6. CONCLUSION

This paper begins by highlighting the difficulties encountered when attempting to price and hedge
spread options using analytic approximations based on a reduction of the price dimension. Firstly,
in the presence of market implied volatility smiles for the two underlyings, an arbitrary strike
convention is necessary, and since the approximate prices and hedge ratios depend on this con-
vention, they are not unique. As a result, the implied correlations that are implicit in the ap-
proximation may vary considerably, depending on the choice of strike convention. Secondly, the
approximation may only be valid for a limited strike range. Thirdly, since the spread option prices
are affected only by the relative price levels of the underlying assets and not by their individual
levels, the probability that the spread option expires ITM is not tied to the price level. Thus,
when equating the price approximation to a market price, we may obtain infeasible values for
the implied volatilty and/or correlation of the spread option. Fourthly, depending on the strike
convention used, the hedge ratios derived from such approximations may be inconsistent with
the single asset option Greeks. And finally, the correlation sensivity of the spread option price is
simply assumed to be proportional to the option’s vega.

10The deltas shown are those for put spread options. The call delta with respect to gasoline increases with strike be-
cause the call spread option price increases as gasoline prices increase, and the delta with respect to crude oil decreases
with strike because the call spread option price decreases with an increase in crude oil prices. As the options move
deeper ITM the absolute value of both CEO deltas approach one, and as the options move deeper OTM, they approach
zero.
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We have developed a new analytic approximation based on an exact representation of a Euro-
pean spread option price as the sum of the prices of two compound exchange options, and have
derived an extension of this approximation to American spread options. Using both market and
simulated data we have demonstrated that our approximation provides accurate prices and real-
istic, unique values for implied correlation at all strikes. Another feature of our approximation
that is not shared by other approximations is that the spread option Greeks are consistent with
the single asset option Greeks. This should lead to more accurate delta-gamma-vega hedging of
spread option positions, using the two underlyings and vanilla calls and puts with strikes that are
calibrated in the approximation.
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FIGURE 1: Implied volatility of gasoline (left) and crude oil (right)
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FIGURE 2: CEO parameter m with average strike of gasoline options (K1 = mK)

4 6 8 10 12 14
2

4

6

8

10

12

14

16

18

20

Strike

Mar 01st, 2006
Mar 02nd, 2006
Mar 03rd, 2006
Mar 06th, 2006
Mar 07th, 2006
Mar 08th, 2006
Mar 13th, 2006

(54.02)

(54.93)

(55.99)

(57.19)

(57.69)

(58.51)
(59.47)

(59.99)
(60.22)

(59.68)

(53.52)

FIGURE 3: Implied correlation skews of CEO approximation
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FIGURE 4: CEO delta with respect to gasoline (left) and crude oil (right)
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FIGURE 5: CEO gamma with respect to gasoline (left) and crude oil (right)
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FIGURE 6: CEO vega with respect to gasoline (left) and crude oil (right)
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FIGURE 7: CEO vega with respect to spread option volatility
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TABLE 1: Average absolute (percentage) pricing errors

Strike 4.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 15.0

CEO 0.0017 0.0059 0.0046 0.0048 0.0038 0.0000 0.0001 0.0082 0.0146 0.0003

(0.64%) (0.69%) (0.68%) (0.47%) (1.01%) (0.001%) (0.002%) (0.24%) (0.55%) (0.005%)

Kirk’s 0.4969 0.6941 0.7585 0.8422 0.8998 0.92396 0.9158 0.8802 0.8696 0.8236

(179.1%) (122.7%) (176.7%) (120.1%) (84.7%) (60.5%) (44.1%) (32.2%) (26.1%) (13.2%)

TABLE 2: Average difference between Kirk’s and CEO deltas and gammas (put spread options)

Strike 3.0 4.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 15.0

∆S1 0.0405 0.0467 0.0462 0.0486 0.0463 0.0112 -0.0186 -0.0455 -0.0652 -0.0669 -0.0603

∆S2 0.0331 0.0338 0.0206 0.0180 0.0160 -0.0248 -0.0549 -0.0786 -0.0928 -0.1006 -0.0828

ΓS1 0.0091 -0.0010 -0.0364 -0.0492 -0.0478 -0.0519 -0.0522 -0.0469 -0.0375 -0.0234 -0.0080

ΓS2 0.0136 -0.0002 -0.0547 -0.0623 -0.0510 -0.0509 -0.0576 -0.0541 -0.0389 -0.0111 0.0162
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