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Abstract

In this paper we develop a continuous time factor model of commodity prices
that allows for higher order autoregression and moving average components. The
need for these components is documented by analyzing the convenience yield’s time
series dynamics. Making use of the affine model structure, closed-form pricing
formulas for futures and options are derived. Empirically, a parsimonious version
of the general model is estimated for the crude oil market using futures data. We
demonstrate the model’s superior performance in pricing nearby futures contracts
in- and out-of-sample. Most notably, the model improves the pricing of long horizon
contracts with information from the short end of the futures curve substantially.
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I Introduction

Commodity prices and their stochastic behavior play a central role for many economic and

financial decisions. Valuation and hedging of commodity-related securities and projects

is an important problem, bringing forward the need for appropriate stochastic models.

Brennan and Schwartz (1985) is one of the first works, proposing to employ financial

modeling techniques for the commodity price, to evaluate natural resource-related

projects.

More recent work extended this approach by recognizing that the inclusion of a second

stochastic factor, a convenience yield, describing the benefits of holding the underlying

commodity in stock1 significantly improves the models’ properties (see Gibson and

Schwartz (1990), Schwartz (1997) (model 2), and Schwartz and Smith (2000)). These

models have been extended for even more stochastic factors, e.g. Schwartz (1997) (model

3), Casassus and Collin-Dufresne (2005), and Geman and Nguyen (2005). It remains,

however, controversial whether a third factor can improve the models’ performance or

merely yields overparameterization.

In this paper we take a different, more parsimonious approach than adding additional

stochastic factors. All the studies mentioned above assume (explicitly or implicitly) that

the convenience yield follows an Ornstein-Uhlenbeck type process, which is the continuous

limit of a discrete AR(1) process. Notwithstanding, when analyzing the convenience

yield, we find that this assumption is not very satisfactory from an empirical point of

view (see Section IV.B). Adding a moving average component yielding an ARMA(1,1)

1See Kaldor (1939), Working (1949), or Brennan (1958) for a detailed discussion of the theory of
storage and the arising convenience yield.
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model, however, improves the statistical description of the convenience yield’s dynamics

significantly. Consequently, we propose to include this empirical feature in a continuous

time commodity pricing model.

Our main contribution is thus twofold. First, theoretically, we develop a continuous time

commodity pricing model which is able to incorporate higher order autoregression and

moving average terms. This enables us to capture the stylized facts observed for the

convenience yield without the need to add additional risk factors or leave the Gaussian

world. The latter fact allows us to derive closed-form futures and options valuation

formulas. Second, empirically, we implement a parsimonious specification of our model

for the crude oil futures markets. A comparison with the benchmark model of Schwartz

and Smith (2000), shows that the proposed model greatly improves the futures pricing at

the short end of the futures curve in-sample and out-of-sample. Most notably, the model

also improves the pricing of long horizon contracts with information from the short end

of the futures curve substantially.

The model in this paper can be regarded as a generalization of the well-known model of

Schwartz and Smith (2000). We follow their approach and do not consider an explicit

convenience yield but formulate the model in a latent factor form which facilitates

empirical implementation. Schwartz and Smith (2000) assume in their model that the

second factor, describing short-term deviations form the long-term equilibrium price,

follows an Ornstein-Uhlenbeck process. We generalize this approach by replacing it with

a continuous autoregressive moving-average (CARMA) process. CARMA processes have

been studied in the statistical literature for a long time (see Tsai and Chan (2000) or

Brockwell (2001) and the references therein) but have received very little attention in
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financial modeling. Benth et al. (2008) have recently proposed using CARMA processes

for interest rate modeling and discuss the merits of this approach.

The properties of the CARMA process, as opposed to the simple Ornstein-Uhlenbeck

process, are very desirable to model commodity futures prices.2 First, adding higher

order autoregression and, more importantly, moving average components to the model,

allows much more flexibility with respect to the shape of the futures curve and, second,

the term structure of volatilities. As a consequence, it is able to yield a much better

pricing performance. This is especially true for the short end of the futures curve, usually

the worst part of the curve with respect to pricing accuracy, due to the very high volatility

of the nearby contracts.

The remainder of this paper is structured as follows. In Section II we first introduce

the CARMA process in general and derive subsequently our commodity pricing model

and discuss its properties. In Section III we describe the Kalman filter-based estimation

approach of the model. Section IV presents our empirical study of crude oil futures.

Concluding remarks are provided in Section V.

II CARMA Dynamics and Valuation

A. CARMA(p,q) Processes

When deciding to include higher order autoregressive as well as moving average terms

in a model, many authors switch to discrete ARMA(p,q) models. However, a discrete

time approach has the big disadvantage of losing analytical tractability, especially for

2Note, that the Ornstein-Uhlenbeck process is a special case of a CARMA process.
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derivatives pricing. Therefore, we propose using continuous autoregressive moving-average

(CARMA(p,q)) models for commodity price modeling (see Tsai and Chan (2000) or

Brockwell (2001) for more detailed coverage of CARMA processes). A CARMA(p, q)

process (with 0 ≤ q < p) is defined as the solution of the differential equation of order p:

Ȳ
(p)
t − αpȲ (p−1)

t − ...− α1Ȳt − α0 = σ[W̄
(1)
t + β1W̄

(2)
t + ...+ βqW̄

(q+1)
t ] . (1)

The superscript denotes j-fold differentiation with respect to t. W̄t is a standard Brownian

motion; αi, i = 0, ..., p; βk, k = 1, ..., p−1 with βk = 0 for k > q; and σ > 0 are constants.

As a Brownian motion is nowhere differentiable, the derivatives W̄
(j)
t do not exist in the

usual sense. As discussed by Tsai and Chan (2000), they can, however, be interpreted as

observation and state equations:

Ȳt = β′X̄ t, (2)

dX̄ t = (AX̄ t + α0ω)dt+ σωdWt, (3)

with dX̄ t = [Xt, X
(1)
t , ..., X

(p−1)
t ]′; ω = [0, 0, ..., 0, 1]′; β = [1, β1, ..., βp−1]′; and

A =



0 1 0 0 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

α1 α2 · · · · · · αp


.
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If p = 1, we set A = a1. The solution of (3) is given as (see Tsai and Chan (2000))

X̄ t = eAtX̄0 + α0

∫ t

0

eA(t−u)ωdu+ σ

∫ t

0

eA(t−u)ωdW̄u, (4)

where eM denotes the usual matrix exponential function.

B. Price Dynamics

The CARMA commodity pricing model presented in this article generalizes the well-known

two-factor models of Schwartz and Smith (2000). A further extension to more factor

models is straightforward. However, we consider the two-factor case, as we are convinced

that parsimony is a very desirable model property.

The long-term/short-term model of Schwartz and Smith (2000) assumes that the log spot

price of a commodity can be characterized by the sum of two stochastic factors, namely:

lnSt = Yt + Zt. (5)

In this model, the factor Zt denotes the long-term (non-stationary) equilibrium (log-)price

level, following a standard arithmetic Brownian motion:

dZt = µdt+ σ2dW2,t, (6)

where µ denotes the drift, σ2 > 0 the volatility parameter, and W2,t a standard Wiener

process.

The variable Yt, represents short-term deviation from the equilibrium price level, and is
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governed by an Ornstein-Uhlenbeck process as:

dYt = −a1Ytdt+ σ1dW1,t, (7)

with parameters a1 > 0, σ1 > 0, and another Wiener process W1,t which can be correlated

with W2,t. As the process Yt is mean-reverting towards zero, the log spot price will follow

the process Zt in the long term.

In this paper we focus on the mean-reverting factor Yt and replace the simple Ornstein-

Uhlenbeck process with a CARMA(p,q) dynamics described in the previous section. The

model we propose can be written similarly to (5) by replacing the dynamics of Yt with a

CARMA(p,q) dynamics described by (3). Under the equivalent martingale measure, the

resulting ABM-CARMA(p,q) model can be compactly written as:

lnSt = β′Xt. (8)

with β = [1, β1, ..., βp−1, 1]′, βk = 0 for k > q, and

dX t = (AX t + µ)dt+ V dWt, (9)
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where

A =



0 1 0 0 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 0

α1 α2 · · · · · · αp 0

0 0 0 · · · 0 0



,

µ = [0, 0, ..., 0, µ]′, dWt = [0, ..., 0, dW1, dW2]′,

V V ′ =



0 · · · 0 0 0

...
. . .

...
...

...

0 · · · 0 0 0

0 · · · 0 σ2
1 σ1σ2ρ

0 · · · 0 σ1σ2ρ σ2
2


,

and dX t = [X
(0)
t , X

(1)
t , ..., X

(p−1)
t , Zt]

′. It is worth mentioning that the model of Schwartz

and Smith (2000) is a special case of the ABM-CARMA(p,q) model, given by p = 1 and

q = 0. Furthermore, one should keep in mind that in contrast to the discrete ARMA(p,q)

model, pmust always be greater than q. Thus, for instance, a ABM-CARMA(1,1) model is

not possible. The most parsimonious model variant including a moving average component

is therefore the ABM-CARMA(2,1) specification.

The solution to the process is analogous to Equation (4):

X t = eAtX0 +

∫ t

0

eA(t−u)µ du+ σ

∫ t

0

eA(t−u)V dWu. (10)
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Note that we formulate the model directly under the equivalent martingale measure,

and, therefore, no risk premia are needed. This approach is taken, as previous studies

such as Schwartz and Smith (2000) and Geman and Nguyen (2005) have shown that

the drift under the physical measure and the risk premia can only be estimated with

very low precision. Since our final goal is derivatives pricing, modeling and estimation

directly under the equivalent martingale measure is favored, decreasing the error induced

by unprecise estimates of these parameters.

C. Futures and Options Valuation

Standard theory within affine frameworks implies that futures prices are equal to the risk

neutral expectation of the spot price at maturity3, i.e. conditional on information at time

t, the log futures price lnFt = lnF (Xt, t;T ) is of the form:

lnFt = Et[lnST ] + 1
2
Vt[lnST ]

= β′
(
A(t, T )X t + Bµ(t, T )

)
+ 1

2
β′Bσ2(t, T )β,

(11)

where Et[·] and Vt[·] denote the conditional expected value and variance under the risk

neutral measure respectively, and:

A(t, T ) = eA(T−t),

Bµ(t, T ) = µ(T − t),

Bσ2(t, T ) =
∫ T
t
eA(T−u)V V ′eA

′
(T−u)du .

3Strictly speaking, this is true for forward prices only. We are aware of the fact that futures and
forwards may have different values in certain economic environments. For a clear-cut exposition of the
differences in a similar framework, see, e.g., Miltersen and Schwartz (1998). In what follows we abstract
from these differences and treat the two instruments as equal.
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Note that the last term Bσ2(t, T ) can be evaluated in closed form.

Similarly, the price of a European option is the expected discounted pay-off at maturity

of the option under the risk neutral measure. There are three points in time of interest,

which are without loss of generality: today, which we normalize to zero, the maturity of

the option t, and the maturity of the underlying futures contract T . The price of a call

option C0 = C0(X0, 0; t, T ) with strike K is:

C0 = e−rtE0[ max{F (Xt, t;T )−K, 0} ]. (12)

As the latent state variables Xt are jointly normal and the log futures price in equation

(11) is an affine-linear function of the states, the futures price at the option’s maturity t

is log-normally distributed with mean:

µ0(t, T ) = E0[lnF (Xt, t;T )]

= β′A(t, T )E0[Xt] + βBµ(t, T )µ+ 1
2
β′Bσ2(t, T )β

= β′A(0, T )X0 + β′
(
A(t, T )Bµ(0, t) + Bµ(t, T )

)
µ+ 1

2
β′Bσ2(t, T )β,

and deterministic variance:

σ2(0, t, T ) = β′A(t, T )V0[Xt]A′(t, T )β

= β′A(t, T )Bσ2(0, t)A′(t, T )β.

(13)

Therefore, the call option in Equation (12) as well as the corresponding put P0 can be
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evaluated by the use of the Black (1976) option pricing formula:

C0 = e−rt
(
F0Φ(d1)−KΦ(d2)

)
P0 = e−rt

(
KΦ(−d2)− F0Φ(−d1)

)
,

(14)

where Φ(·) is the standard normal cumulative distribution function and:

d1/2 =
ln(F0/K)± 1

2
σ2(0, t, T )

σ(0, t, T )
.

D. Model Discussion

The futures price curve at some point in time t is:

lnF (Xt, t;T ) = β′A(t, T )Xt + β′Bµ(t, T )µ+
1

2
β′Bσ(t, T )β,

directly showing that the (log) futures curve is affine-linear in the state variables.

Therefore, the futures curve of the ABM-CARMA(p,q) model can be decomposed into

p+ 2 parts, namely one for each state variable and the constant term. Moreover, it is also

possible to disentangle the autoregressive and moving average components.

In the following we discuss the properties of the ABM-CARMA(2,1) model. This choice

is motivated by the fact that it is the most simple specification incorporating both

autoregressive and moving average components. The additive decompositions of the
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futures curve reads as follows:4

lnF (X t, t;T ) = Zt + A︸ ︷︷ ︸
ABM

+BẊt + CXt +D︸ ︷︷ ︸
CARMA

. (15)

The coefficients depend on (t, T ) only through the time to maturity τ = (T − t).

Furthermore, we can decompose these coefficients as:

B = BAR +BMA

C = CAR + CMA

D = DAR +DMA ,

where the precise formulas are provided in the Appendix.

To be able to better interpret the different components, we illustrate the resulting curves,

using the parameters estimated in the subsequent sections (see Table 2), in Figure 1.

The left part of Figure 1 shows the effects within the ABM-CARMA(2,1) model, resulting

from only the AR components; the right part displays the moving average terms. The

upper Panels 1a and 1b depict the components of the futures curves. Panel 2a and 2b

represent the coefficients (without the state variables) with respect to the underlying

process short-term deviation process Ẋt, and the lower Panels, 3a and 3b, give the

coefficients (without the state variables) with respect to the integrated process Xt.

Panel 2a graphs the coefficient BAR of the stochastic process Ẋt. It starts at zero with

slope one and approaches zero for long horizons. In between it attains a maximum at

4We commit a slight misuse of notation here, as A already denotes the coefficient matrix in the
CARMA process. No confusion should arise, as the meaning will be clear from the context.
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τ = −
ln

(
λ2
λ3

)
λ2−λ3

, where λi denote the eigenvalues5 of the matrix A. Consequently, this

component is influential in shaping the medium-term behavior of the term structure. In

the model of Schwartz and Smith (2000), this coefficient is always a monotonic decreasing

function, limiting the model’s flexibility.

The locally non-stochastic state variable Xt enters into the futures curve in a different

manner. The coefficient CAR originates at one and vanishes for long horizons. As Xt is

’slowly’ moving relative to the underlying stochastic factor Ẋt, its impact on the futures

price regarding an infinitesimal longer maturity is perfectly predictable. Technically, this

property results from the fact that the slope at the front end of the curve of CAR is zero.

The constant term DAR is not plotted separately. It is zero for τ = 0 and approaches a

constant for τ →∞.

Besides the autoregressive components, the futures curve consists of the non-stationary

long-term (equilibrium) process Zt. The futures curve resulting from this component

alone (Zt + A) is shown in Panel 1a as a dotted line. It starts at Zt and has a constant

slope of µ+ 1
2
σ2

2. The dotted-dashed line adds the short-term deviation, (Zt+A+BARẊt),

stemming from the state variable Ẋt, whereas the dashed line comprises the effect of all

three state variables, (Zt+A+BARẊt+CARXt). Finally, the solid line in Panel 1a shows

the entire future curve from the non-stationary and autoregressive parts of the model

(Zt +A+BARẊt +CARXt +DAR). Note that the resulting futures curve represents only

one point in time. As the state variables (Zt, Ẋt, Xt) evolve over time, the futures curve

will change its shape.

5In general, the eigenvalues are possibly complex. With our parametrization, they are real. Most
properties also hold in the general case.
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Panel 2b depicts the moving average coefficient BMA. It starts at β1 with a negative

slope, is of a humped shape with a minimum at τ =
−2 ln

(
λ2
λ3

)
λ2−λ3

, and converges to zero. It

is evident from comparing the graphs in Panel 2a and 2b that only the moving average

part of the model is able to explain fast movements of the short end of the futures curve.

As the autoregressive coefficient BAR of the ’fast’ moving factor Ẋt goes to zero for short

maturities, the AR components is not able to follow fast changes of the short end.

In Panel 3b the dependence of the futures curve on the ’slowly’ moving factor Xt is

illustrated. The influence on short maturities diminishes and the slope is negative. As it

converges to zero in the limit, it has a (negative) hump. The constant terms DMA behave

similarly to the constant autoregressive part DAR.

Taking everything together results in the entire futures curve, which is shown in Panel 1b.

As in Panel 1a, the dotted line represents the non-stationary model part (Zt + A). The

dotted dashed line represents the effects arising due to the ’fast’ moving state variable Ẋt

(Zt + A + BẊt), whereas the dot-dashed line also includes the impact of the integrated

state variable Xt (Zt + A + BẊt + CXt). Finally, the solid line gives the complete log

futures curve.

We wish to briefly discuss the role of the correlation coefficient ρ between the two

stochastic factors (Zt and Ẋt). Correlation has no impact on the coefficients B and C.

However, the correlation changes the slope in the medium/long term by adding an almost

constant term in D. For very long futures horizons, all model specification converge to

the futures curve of a pure non-stationary one-factor model for log spot prices, namely

into the ABM part Zt + A, since A is linear in τ .
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Finally, the model’s instantaneous volatility curve of futures

σ2(t, T ) = β′A(t, T )V V ′A(t, T )′β

is examined. Figure 2 shows the volatility curves of the ABM-CARMA(2,1) and also of

the Schwartz and Smith (2000) model. As in all Gaussian models, the volatility curve

is independent of the state variables and therefore constant over time. Moreover, in the

ABM-CARMA(2,1) case it can be decomposed into

σ2(t, T ) = σ2
2 + 2σ2ρσ1B + σ2

1B
2.

As B → 0 for τ →∞, the volatility of a very distant future is σ2, which is the volatility of

the equilibrium process Zt. If there is no moving average component, the volatility at the

short end will also be σ2, asBAR → 0 for τ → 0. Thus, to match a behavior of the volatility

curve which is in line with the Samuelson effect (i.e. a decreasing volatility curve), the

moving average part is necessary, since BMA(t, t) = β1. Inspecting the functions BAR and

BMA which are displayed in Panel 2a and 2b of Figure 1 one observes that the moving

average part shapes the short-term volatility, whereas the AR part the medium-term

structure.
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III Estimating the State Variables and Process

Parameters

As the latent state variables are unobservable we cannot estimate the processes’

parameters directly using spot price data, as there are more factors than spot price

observations per date. Furthermore, it was pointed out by Schwartz (1997) that spot

price information of a commodity is often so uncertain that it is preferred to use the

futures contract closest to maturity as a proxy for the spot price.

Therefore, we formulate our model in state space form and estimate it by employing

the Kalman filter methodology. For a rigorous treatment of Kalman filtering see, e.g.,

Harvey (1989) and the references therein.6 The Kalman filter is a recursive procedure for

computing the optimal estimator of some unobserved state variables based on observations

of related quantities (in our case the futures prices). The observed quantities, i.e. the

futures prices, are assumed to be measured with some noise, taking into account bid-ask

spreads, price limits, nonsimultaneity of data, and errors in the data etc. (see Schwartz

(1997)).

The measurement equation of the state space representation is obtained by adding serially

and cross-sectionally uncorrelated zero mean noise to the futures valuation formula.

The unobservable state variables follow the transition equation, which can be deduced

from the assumed factor dynamics. When the factor dynamics are driven by Gaussian

noise, and the observations are measured with Gaussian errors, the Kalman filter allows

the estimation of the processes’ parameters via maximum likelihood methods. The

6The Kalman filter approach has been applied to models of commodity derivatives by Schwartz (1997),
Schwartz and Smith (2000), Geman and Nguyen (2005), and also Cortazar and Naranjo (2006).
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log-likelihood function can be written as the sum of conditional log-likelihood terms,

which remain Gaussian.

It is worth noting that using the Kalman filter approach we are able to explore time series

as well as cross-sectional properties of the data at the same time. Furthermore, we can

make use of all observations available and do not have to decide which two contracts to

use when trying to estimate the parameters via an inversion of the measurement equation.

It is also worth noting that in linear and Gaussian models the Kalman filter is the optimal

filter.

From Equation (9) and the solution in (10), the exact transition equation is given by:

xt+∆t = Gxt + c+ η∆t , (16)

for time step ∆t and η∆t serially uncorrelated, normally distributed disturbances with

zero mean and constant variance and

c = µ∆t ,

G = eA∆t ,

E[η∆t] = 0 ,

V [η∆t] =
∫

∆t
eA(∆t−u)V V ′eA

′
(∆t−u)du ,

(17)

where ∆t demotes the length of the time steps as a fraction of one year. Note that the

last integral can be evaluated analytically.

Writing the observed log futures prices lnF (t, Ti) at time t for maturities Ti, i = 1, ..., k,

as yt = [lnF (t, T1), ..., F (t, Tk)]
′, the measurement equation at time t is given by adding
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measurement errors εt to the futures valuation formula (11). Hence

yt = d+Hxt + εt , (18)

with

d = [β′Bµ(t, T1) + β′Bσ2(t, T1)β, ...,β′Bµ(t, Tk) + β′Bσ2(t, Tk)β]′ ,

H = [β′A(t, T1), ...,β′A(t, Tk)]
′ ,

E[εt] = 0 ,

V [εt] = Ξ ,

(19)

and Ξ being a diagonal matrix of k serially and cross-sectionally uncorrelated error terms,

i.e. Ξ = diag([ξ2
1 , ..., ξ

2
k]
′). All parameters are collected in the set Ψ.

In general, one could allow the error terms to be cross-sectionally correlated. However,

this would greatly complicate the estimation procedure. Therefore, we follow Schwartz

(1997) and Schwartz and Smith (2000) and assume a diagonal covariance matrix for the

measurement errors.

To start the Kalman filter-based estimation, one has to supply starting values Ψ0, as

well as initial values for the (unobserved) state vector x0. We follow Harvey (1989) and

include the state vector at t = 0 in the set of parameters to be estimated.

IV Estimation Results and Model Comparison

In this section we describe our empirical study. Motivated by our preliminary analysis

of the convenience yield in part B of this section, we implement the most parsimonious

18



ABM-CARMA model including a moving average component, i.e. an ABM-CARMA(2,1)

model. We then analyze the model’s futures pricing ability in and out-of-sample by

comparing it to the benchmark model of Schwartz and Smith (2000).

We would like to mention that we also implemented and estimated a ABM-CARMA(2,0)

model, although our theoretical analysis already showed some severe disadvantages of not

including a moving average component. This was affirmed by the empirical results. The

ABM-CARMA(2,0) performed relatively poorly, thus we do not report the results to keep

the focus on the most interesting. Note that an ABM-CARMA(1,1) is not feasible, as the

CARMA model requires p > q.

A. Data

Our data set consists of prices of crude oil futures contracts traded at the New York

Mercantile Exchange (NYMEX), which is one of the most heavily traded commodity

contracts worldwide. The short position in this contract commits the holder to deliver

1,000 barrels of domestic crude oil in Cushing, Oklahoma.7 We consider weekly

observations, sampling Wednesday settlement prices between 01/01/1996 and 12/10/2008,

yielding 676 observation dates. Crude oil futures are listed 9 years forward with monthly

maturity for the first 6 years, and semiannual maturity thereafter. As the liquidity is

rather low for longer-term contracts, we consider only the first 24 (i.e. the first two years)

in our analysis. Thus, we yield a total number of 16,224 futures prices. We conduct our

study using settlement values of futures prices, as they are classically considered to be

7The following domestic oil grades are deliverable: West Texas Intermediate, Low Sweet Mix, New
Mexican Sweet, North Texas Sweet, Oklahoma Sweet, South Texas Sweet. Specific foreign crudes may
also be deliverable, however, at a discount. For details on the specification of deliverable crudes and
delivery locations see www.nymex.com.
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representative for a trading day (see Geman and Nguyen (2005)). As maturity, we take

the last day of trading.8 All data is obtained via Bloomberg.

Table 1 contains summary statistics for the futures price data, where F01 is the contract

closest to maturity, F02 the second contract closest to maturity and so on. In line with

prior research, the average futures curves is in backwardation, although on a much higher

level, which is mainly due to the peak of the most recent observations (see Figure 3 for a

time series plot of the closest to maturity future F01).

B. Preliminary Analysis of the Convenience Yield

In this subsection we conduct a preliminary analysis of the convenience yield in the

crude oil market. The analysis is complicated by the fact that the convenience yield

is not observable. Thus, we have to rely on some approximation. Using the well-known

relationship between spot and futures price when storage costs st, interest rates rt, and

net convenience yields ct are non-stochastic

F (t, T ) = Ste
(st+rt−ct)(T−t) = Ste

δt(T−t), (20)

enables us to estimate monthly forward total convenience yields δt. This total convenience

yield already includes the costs of storage and capital. We can estimate this quantity as:

δt,T−1,T = ln

(
F (t, T )

F (t, T − 1)

)
. (21)

8Trading ends at the close of business on the third business day prior to the 25th calendar day of
the month preceding the delivery month. If the 25th calendar day of the month is a non-business day,
trading shall cease on the third business day prior to the business day preceding the 25th calendar day.
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As we do not have spot price data corresponding to the futures data, we use the two

futures contracts closest to maturity. This procedure has been proposed by Gibson and

Schwartz (1990). It is well known that the convenience yield exhibits a mean-reverting

behavior which motivated previous research, for example Gibson and Schwartz (1990)

and Schwartz and Smith (2000), to model the second stochastic factor in their models as

Ornstein-Uhlenbeck processes, which is the continuous time equivalent of a discrete AR(1)

process. Having a time series of convenience yields at hand, it is easy to test whether this

kind of model provides as satisfactory fit to the data.

We fit an AR(1) model to the convenience yield time series δt and analyze the

residuals. The Ljung-Box statistic testing the null hypothesis of independence yields

27.63 corresponding to a p-value smaller than 0.001. It seems, therefore, desirable to

include higher order autoregressive and/or moving average components to describe the

time series behavior of the convenience yield. In the spirit of parsimonious modeling, the

next obvious step is to include a moving average term and to estimate an ARMA(1,1)

model.9 Repeating the Ljung-Box test with the resulting residuals yields a test statistic

of 0.098 and a corresponding p-value of 0.75, providing clear evidence for no dependence

in the remaining residuals. The inclusion of the moving average term clearly improves the

discrete modeling of the convenience yield and serves as motivation to also include such

a component in a continuous time pricing model.

9The alternative was to include higher order autogression terms in the model. We fitted AR(p) models
up to p = 8, all providing a fit inferior to the ARMA(1,1) model. Besides providing a worse representation
of the data, this approach also conflicts for higher values of p with the principle of parsimony.
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C. Parameter Estimates

We estimate the most parsimonious ABM-CARMA model incorporating a moving average

component, namely ABM-CARMA(2,1) and, as a benchmark, the model of Schwartz and

Smith (2000). Thus, we have to estimate seven parameters in the model of Schwartz and

Smith (2000), Ψ = (κ, µ, σ1, σ2, ρ,X0, Z0), and ten parameters for the ABM-CARMA(2,1)

model Ψ = (a1, a2, µ, σ1, σ2, ρ, β,X0, Ẋ0, Z0), plus the k terms in the covariance matrix

for the measurement errors Ξ in both cases. Table 2 reports the maximum likelihood

parameter estimates of the two considered models.10 We do not report the estimated

variance parameters of the measurement errors ξi, i = 1, ..., 24. The average value of

these is 0.15 · 10−3 for the ABM-CARMA(2,1) model and 0.2 · 10−3 for the Schwartz and

Smith (2000) model.

The first thing to note is that all parameter estimates of the ABM-CARMA(2,1) model

are highly significant. This suggests that the model is able to improve the ability to

describe the underlying price dynamics. One should keep in mind that estimation was

conducted directly under the equivalent martingale measure, and thus no risk premia were

needed.

In both models, the short-term volatility is substantially higher than the long-term

volatility. The correlation between the two factors is, for both models, negative. The

coefficient β, which weights the differentiated process Ẋt, is estimated as 0.96, indicating

the gain of adding a moving average term to the model (β equals zero by definition in the

CARMA(2,0) model).

10The model of Schwartz and Smith (2000) was also estimated by means of Kalman filtering and
maximum likelihood.
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D. In-Sample Model Comparison

Comparing the log-likelihoods (reported in Table 2) of the ABM-CARMA(2,1) and the

Schwartz and Smith (2000) model, 78,676.52 against 76,498.50, indicates that the former

provides a significantly better fit to the data. As the two models are not nested in the

usual sense, however, a standard likelihood-ratio test cannot be applied. Therefore, we

conduct a series of other tests to compare the models’ pricing abilities.

When comparing the two models, one should take into account that both contain different

numbers of parameters. Therefore, we compare the models with respect to two different

goodness of fit criteria, namely the Akaike information criterion (AIC) and the Schwarz

information criterion, which take the number of model parameters explicitly into account:

AIC = 2K − 2 ln(L(Ψi)), (22)

SIC = K lnT − 2 ln(L(Ψi)), (23)

where ln(L(Ψi)) denotes the log-likelihood values, T the number of observations, and K

the number of parameters of the respective model, i.e. K = 34 for the ABM-CARMA(2,1)

model, and K = 31 for the Schwartz and Smith (2000) model. The Schwarz information

criterion penalizes a greater number of parameters more heavily than the Akaike

information criterion.

Plugging the respective values into (22) and (23) yields

AICABM−CARMA = −157, 285, AICSS2000 = −152, 935,

SICABM−CARMA = −157, 131, SICSS2000 = −152, 795.
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Both criteria attain the best (i.e. lowest) values for the ABM-CARMA(2,1) model,

providing more evidence for the better in-sample performance of this model.

In the real world, pricing accuracy is one of the most important features of a pricing

model. We therefore compare the models with respect to their pricing precision. Table

3 reports the pricing errors of the (log-) futures prices.11 We report root mean squared

errors (RMSE) and mean absolute errors (MAE) for each maturity on an absolute (Panel

A) and relative (Panel B) basis. Furthermore, we report the overall pricing errors in the

last row of Table 3.

Considering the overall fit first, one can observe that the RMSE (MAE) decreases from

0.0141 (0.0065) to 0.0122 (0.0057) when switching from the Schwartz and Smith (2000)

to the ABM-CARMA(2,1) model. This corresponds to a reduction of the absolute RMSE

(MAE) of 13.3 % (12.4 %).

For the individual contracts, the highest pricing error is observed for the closest future for

both the ABM-CARMA(2,1) model and the model of Schwartz and Smith (2000). The

former, however, improves the in-sample fit clearly, reducing the absolute RMSE (MAE)

from 0.0486 (0.0370) to 0.0409 (0.0318).

For some mid-term futures, some very small pricing errors are observed for the Schwartz

and Smith (2000) case. The nine months and seventeen months futures are even priced

almost perfectly. This is a well-known feature of the model, already observed by the

authors. It stems from the fact that by having two state variables, it is possible to perfectly

match two futures prices. We can observe a similar, but less pronounced pattern for the

ABM-CARMA(2,1) model.

11We analyze log prices due to their use in the Kalman filter estimation.
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The pricing at the long end of the futures curve also improves, although on a smaller

absolute level, as pricing errors are small for both models anyway. Overall, it can be

concluded that the inclusion of a moving average term does indeed substantially improve

the model’s ability to explain the commodity futures prices, especially the nearby futures

contracts.

E. Out-of-Sample Model Comparison

To perform an out-of-sample comparison between the two models, two types of tests are

performed, one based on the cross section of futures prices, the other one based on the

time series of futures prices.

In the cross section-based test, we split the data set into two samples. The first one,

containing the first twelve nearby futures (F01 - F12), is used for estimation. The

second, containing the longer-term futures (F13 - F24), is used to evaluate the models’

performance. In some sense, this is not a true out-of-sample test, as information of the

entire observation period is used to value the futures at each date. A similar procedure,

namely estimating parameters with every second contract (F01, F03, etc.) and then

evaluating the pricing performance of the other ones (F02, F04, etc.), has been employed

by Schwartz (1997). We consider our procedure as much more useful to evaluate the

models’ performance as, in reality, it is a frequently occurring case that short-term futures

contracts are traded liquidly in the market, whereas longer-term contracts are only thinly

traded and prices have to be determined by some kind of model. It is thus a critical

question whether a model is useful in pricing longer-term contracts employing information

from the short end of the futures curve.
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Table 4 shows the RMSE and MAE for the out-of-sample contracts F13 to F24. The

RMSE (MAE) for all twelve contracts amounts to 0.0179 (0.0126) for the model of

Schwartz and Smith (2000), and to 0.0144 (0.0100) for the ABM-CARMA(2,1) model,

improving the pricing accuracy by 19.6 % (20 %). Inspecting the pricing performance of

the individual contracts, it can be seen that the improved model outperforms the standard

model in every instance, i.e. for every maturity month.

As a second test, we perform a truly out-of-sample procedure. We split the entire data set

of 676 weekly observations into two equally sized subsamples. The first one, containing the

time series of all 24 futures prices of the first 338 weeks, is used for parameter estimation.

The second subsample, containing the time series of all 24 futures prices of the weeks 339

to 676 is then used to evaluate the models’ out-of-sample pricing performance.

Table 5 contains the results of this test. Considering the overall pricing performance,

a rather small improvement of the ABM-CARMA(2,1) model is observed. The RMSE

(MAE) considering all contracts decreases from 0.0381 (0.0290) to 0.0375 (0.0288) which

equals a relative decrease of 1.74 % (0.66 %). However, inspecting the differences in pricing

accuracy more thoroughly, it can be seen that a big difference exists for the closest to

maturity futures. The RMSE (MAE) decreases from 0.0627 (0.0509) to 0.0564 (0.0451), a

reduction of more than 10 %. The second and third closest futures show an improvement

of about 6 % and 3 %, respectively.

Overall, the ABM-CARMA(2,1) model improves the pricing of long term contracts using

information from the short end of the futures curve by 20 %. The out-of-sample pricing of

the short term maturity futures improves by more than 10 %. We consider both of these

improvements to be economically substantial.
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V Conclusion

Assumptions regarding the underlying stochastic factors play a central role in financial

modeling of commodity prices and commodity derivatives. In this paper we have argued

that a simple AR(1) representation for the short-term factor (i.e. the convenience yield)

is not sufficient to model the futures curve. We therefore develop a new model, which

we label ABM-CARMA(p,q) model, relying on continuous time autoregressive moving

average (CARMA) models. Closed-form futures and options valuation formulas were

derived.

We then implement the ABM-CARMA(2,1) model for the crude oil futures market and

find that the inclusion of the moving average component considerably improves the quality

of short-term futures pricing in- and out-of-sample. Moreover, the model improves the

ability to price long maturity contracts using information from the short end of the futures

curve.

Finally, we wish to conclude the paper by outlining some future research. Theoretically,

the ABM-CARMA(p,q) model allows for much greater flexibility of the term structure

of volatilities. The volatility curve is especially important for options pricing. Having

already derived European options pricing formulas, it is the obvious next step to evaluate

the model’s options pricing performance empirically. This aim is, however, complicated

by the fact that most commodity options are of the American type.

Another direction of future work is to broaden the empirical basis by considering different

commodity markets, e.g. the markets for agricultural commodities. As shown by

Fama and French (1987), commodity markets with different seasonalities of supply and
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demand may lead to different behavior of the convenience yield, and thus different model

performance.
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A Appendix

For CARMA(2,1) we have

A =


0 1 0

α1 α2 0

0 0 0

 ,

which can be decomposed into

ΛD(λ)Λ−1,

where

(λ1, λ2, λ3)′ =

(
0,

1

2

(
α2 −

√
α2

2 + 4α1

)
,
1

2

(
α2 +

√
α2

2 + 4α1

))′
= (0, x+ ıy, x− ıy)> ,

are the eigenvalues, Λ is the matrix of corresponding eigenvectors, and ı2 = −1.

In calculating the matrices A(t, T ),Bµ(t, T ) and Bσ2(t, T ) the following expressions are

substituted

eλi(T−t) = ψ(λi, t, T ),

−1− eλi(T−t)

λi
= φ(λi, t, T ).

With these substitutions, the decomposition in Section 2.D reads

A = µ(T − t) + 1
2
σ2

2(T − t)

BAR = ψ(λ3,t,T )−ψ(λ2,t,T )
λ3−λ2

BMA = β1λ3ψ(λ3,t,T )−β1λ2ψ(λ2,t,T )
λ3−λ2

CAR = λ2ψ(λ3,t,T )−λ3ψ(λ2,t,T )
λ2−λ3

CMA = β1λ2λ3(ψ(λ3,t,T )−ψ(λ2,t,T ))
λ2−λ3

DAR = 1
2

(
hAR2 σ2

1 + 2hAR1 σ1ρσ2

)
DMA = 1

2

(
hMA

2 σ2
1 + 2hMA

1 σ1ρσ2

)
where

hAR1 = φ(λ2,t,T )−φ(λ3,t,T )
λ2−λ3

hMA
1 = β1(λ2φ(λ2,t,T )−λ3φ(λ3,t,T ))

λ2−λ3

h2 = φ(2λ2,t,T )(β1λ2+1)2

(λ3−λ2)2
− 2(β1λ3+1)φ(λ2+λ3,t,T )(β1λ2+1)

(λ3−λ2)2
+ (β1λ3+1)2φ(2λ3,t,T )

(λ3−λ2)2

hAR2 = h2|β1=0 hMA
2 = h2 − (h2|β1=0)
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Using the boundaries

ψ(λ, t, T )
T→∞→ 0 ψ(λ, t, T )

T→t→ 1

φ(λ, t, T )
T→∞→ − 1

λ
ψ(λ, t, T )

T→t→ 0

and the derivatives
dφ(λ,t,T )

dT
= ψ(λ, t, T )

dψ(λ,t,T )
dT

= λψ(λ, t, T )

the results in the model discussion in Section II.D can be easily verified.
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Figure 1: Futures Curve Decomposition

This figure shows the different components of the ABM-CARMA(2,1) log futures curve using the
parameters estimated in Section IV. The entire resulting futures curve is shown as a solid line in
Panel 1b. The maturity τ = T − t is given in years.
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Figure 2: Volatility Term Structure

This figure shows the instantaneous volatility of futures prices for different maturities, ranging from
zero to five years. The solid line shows the term structure of volatilities for the ABM-CARMA(2,1)
model, the dashed line for the model of Schwartz and Smith (2000).
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Figure 3: Futures Prices

This figure shows weekly future prices of the closest to maturity future F01 from 01/01/1996 to
12/10/2008. Prices are in US dollars per barrel.
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Table 1: Statistics of Crude Oil Futures Contracts
This table reports statistics for weekly observations of crude oil futures contracts from
January 3, 1996 to December 10, 2008. Prices are in dollars per barrel. F01 denotes
the one month futures contract, F02 the two months contract and so on.

Mean Price SE Maturity SE

F01 40.43 26.48 0.0450 0.0243

F02 40.42 26.65 0.1284 0.0243

F03 40.35 26.79 0.2119 0.0244

F04 40.24 26.91 0.2951 0.0244

F05 40.11 27.01 0.3785 0.0243

F06 39.98 27.09 0.4620 0.0244

F07 39.84 27.16 0.5453 0.0244

F08 39.71 27.22 0.6288 0.0244

F09 39.58 27.26 0.7121 0.0245

F10 39.45 27.29 0.7954 0.0244

F11 39.33 27.31 0.8789 0.0243

F12 39.22 27.33 0.9623 0.0244

F13 39.10 27.34 1.0456 0.0244

F14 38.99 27.34 1.1291 0.0244

F15 38.89 27.35 1.2124 0.0244

F16 38.79 27.35 1.2958 0.0243

F17 38.70 27.34 1.3793 0.0244

F18 38.61 27.33 1.4626 0.0245

F19 38.53 27.32 1.5460 0.0244

F20 38.45 27.31 1.6295 0.0244

F21 38.38 27.30 1.7128 0.0245

F22 38.31 27.28 1.7961 0.0244

F23 38.25 27.26 1.8796 0.0244

F24 38.19 27.25 1.9628 0.0243
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Table 2: Kalman Filter Parameter Estimates
This table reports the estimated parameters and their standard errors estimated from
weekly data using the Kalman filter maximum likelihood methodology.

ABM-CARMA(2,1) Schwartz/Smith (2000)

Parameter Estimate Standard error Estimate Standard error

µ 0.0260 0.0045 -0.0179 0.0013

a1 -0.5339 0.0207 0.8593 0.0058

a2 -1.9636 0.0303 - -

σ1 0.7146 0.0343 0.3129 0.0100

σ2 0.2359 0.0102 0.1918 0.0052

ρ -0.5910 0.0448 -0.0894 0.0427

β 0.9552 0.0201 - -

X0 -0.5315 0.0452 0.1089 0.0439

Ẋ0 0.8902 0.1076 - -

Z0 2.6910 0.0442 2.7999 0.0269

Log-likelihood 78676.52 76498.50
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