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Meshfree Approximation for Multi-Asset Options



We price multi-asset options by solving their price partial differential equations using a meshfree approach
with radial basis functions under jump-diffusion and geometric Brownian motion frameworks. In the geo-
metric Brownian motion framework, we propose an effective technique that breaks the multi-dimensional
problem to multiple 3D problems. We solve the price PDEs or PIDEs with an implicit meshfree scheme
using thin-plate radial basis functions. Meshfree approach is very accurate, has high order of convergence
and is easily scalable and adaptable to higher dimensions and different payoff profiles. We also obtain
closed form approximations for the option Greeks. We test the model on American crack spread options
traded on NYMEX.
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1. I

The simplest way to price multi-asset options is to approximate the distribution of the returns of
a basket of assets to a univariate distribution and thus derive an approximate pricing formula.
But such single factor models have serious drawbacks, as they completely ignore the effects of
covariance between the individual assets. On the other hand, increasing the number of risk factors
can lead to an exponential rise in the complexity of the problem, and solving them would demand
extreme computational power.

Numerical methods such as finite difference methods (FDM) and finite element methods (FEM)
have been widely used to solve partial differential equations (PDE) to price various derivative
securities. For a given accuracy, they are much faster than simulation and more flexible than
tree based techniques. Many variations of FDM and FEM such as Galerkin, adaptive mesh and
finite volume methods have been proposed to solve complex problems that occur in finance. For
instance, Broadie and Glasserman (2004) use a stochastic mesh approach for high-dimensional
pricing problems while Lötstedt et al. (2007) use a space-time adaptive grid. In recent years fast
Fourier transforms have gained popularity for solving high dimensional PDEs. Carr and Madan
(1999), Dempster and Hong (2000) and Borak et al. (2005) use FFT to price spread options when
the joint characteristic function of the underlying assets is analytic. Although these methods are
scalable to high dimensions in theory, difficulty in implementing them renders them less useful.

A more recent method called meshfree approach that uses radial basis functions has considerable
advantages when compared to finite difference or finite element schemes. The meshfree method
allows for high-order, accurate approximations and to easily increase the dimension of the prob-
lem. Analytical approximate formulae can be easily derived even for higher order option price
sensitivities. The meshless nature of the approach makes it more suitable to adapt to problems with
complex payoff structures, such as barrier options. They also eliminate the time spent on building
the mesh which could be prohibitive for multi-dimensional problems with complex structure.

Recent work on meshfree approaches in finance include Hon and Mao (1999) who apply a col-
location scheme using global radial basis functions for solving option price PDEs. For European
options, they show that the degree of accuracy is more sensitive to time integration than to spatial
approximation. Fasshauer et al. (2004) employ Gaussian radial basis functions to price multi-asset
European options while Pettersson et al. (2007) use multi-quadratic radial basis functions to price
multi-asset American options. They both compare their approach with various finite difference
schemes and show that their approach is significantly faster. Larsson et al. (2007) use a generalised
Fourier transform to improve the efficiency of the radial basis functions approach particularly
for higher dimensional problems. By choosing the nodal points isometrically they obtain equiv-
ariant dense discretization matrices that can be diagonalised by applying a generalised Fourier
transform.3

Solving partial integro differential equations (PIDE) is more tedious than solving a PDE, as it
involves evaluating a non-local integral equation in addition to a partial differential equation.
Many approaches have been studied, starting with Andersen and Andreasen (2000) who combine
the fast Fourier transform with an alternate direction implicit finite difference scheme. Matache
et al. (2004) apply aθ-scheme in time and a wavelet Galerkin scheme in space. Cont and Voltchkova
(2005) and Briani et al. (2007) develop an implicit-explicit finite difference schemes, who handle the

3An equivariant matrix is one that commutes with a group of permutation matrices.
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differential operator implicitly and integral operator explicitly. They also study the convergence
and stability of the schemes and give bounds on errors due to localisation of the integral term.

In this paper we price multi-asset options under a multi-factor geometric Brownian motion (GBM)
and a jump-diffusion framework. Our contribution is two-fold - firstly, for the GBM framework
we propose a new accurate technique based on the work of Alexander and Venkatramanan (2009a)
to break the dimension of the problem. For a d-factor GBM model, this approach simplifies the
d-dimensional problem to solving multiple 3-D parabolic PDEs that can be solved independently.
The number of degrees of freedom reduces from Nd to 2(d− 1)N3, where N is the number of nodes
in one direction under the chosen numerical scheme. Secondly, we describe a fully implicit scheme
based on meshfree approach using thin plate spline radial basis functions to solve a general price
PIDE. The method is unconditionally stable, second order convergent in time and by choosing high
order radial basis functions we can achieve high order convergence in space. To our knowledge,
there is no literature available on fully implicit meshfree scheme for solving PIDEs that appear in
finance.

The structure of this paper is as follows. In the following section we derive a general multi-
dimensional PIDE under a jump-diffusion framework. We also introduce the compound exchange
option approach that is necessary to develop our fast GBM based pricing model and derive the
associated price PDEs. In section 3 we discuss the meshfree approximation that we use to solve
the partial integro-differential equations and also derive results on convergence. The empirical
results for two asset crack spread options are presented in section 4. Finally we summarize and
conclude.

2. P M-A O

The aim of this section is to describe the PDE based approach to price multi-asset options when
the price of the underlying assets follow: 1) jump-diffusion processes, and 2) correlated GBM
processes. In the former case we assume that the individual asset prices are driven by correlated
Wiener processes each but by a central jump process. In the GBM case we adopt the compound
exchange option approach introduced by Alexander and Venkatramanan (2009a) to speed up the
computation of the basket option price by solving a system of 3D PDEs instead of a multidimen-
sional PDE.

2.1. Jump Diffusion Framework - General PIDE

We derive a multi-dimensional PIDE when the underlying assets follow mean reverting jump
diffusion processes. The derivation is quite straightforward and there are numerous references
available in the literature (see Cont and Tankov (2004), Cont and Voltchkova (2005) for a detailed
discussion). We therefore give only an outline of the derivation.

Let us assume that the risk-neutral price dynamics of d underlying assets are governed by expo-
nential Lévy processes of the form

Sit = Si0 exp (rt + Xit) ,

Copyright © 2009 Hanert and Venkatramanan 2
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for 1 ≤ i ≤ d. Xi is a Lévy process given by

Xit = Xi0 +
∫ t

0
σisdWit + λi

Nt∑

j=i

∆Xi j, (1)

where ∆Xi are i.i.d. random variables with a certain distribution, Wi are correlated Wiener pro-
cesses, Nt is a Poisson process with intensity µ and Λ = (λ1, . . . , λd)′ is a vector of real constants.
Let σi be a continuous non-anticipating process with

E

{∫ T

0
σitdt

}
< ∞ , for 1 ≤ i ≤ d,

ρi j be the correlation between Wi and W j, and ν a Lévy measure with
∫

R

min(1, x2)ν(dx) < ∞.

Under the risk-neutral probability measure Q, Xi has the characteristic triplet (σi,γi, ν) with:

γi(σi, ν) = −σ
2
i

2
−

∫ (
ey − 1− y1|y|≤1

)
ν(dy).

Then the risk neutral dynamics of Si is given by

dSit = rSit−dt + σitSit−dWit +
∫ ∞

−∞
(ex − 1) Sit− JXi(dx, ds), (2)

where JXi is the compensated random measure describing the jumps of Xi.

Let f = f (St, t) be the price of an option on d assets, with S = (S1, S2, . . . , Sd), whose prices are
described by equation (2) and let L be the infinitesimal generator of the Lévy process. Then, f
satisfies the partial integro-differential equation:

∂ f
∂t

(S) = L f (S)

=
d∑

i=1

rSi
∂ f
∂Si

(x) +
1
2

d∑

i=1

σixi


d∑

j=1

ρi jσ jx j
∂2 f
∂Si∂S j

(S)

− r f (S)

+
∫

−∞
∞ν(dy)

 f (SeΛy) − f (S) −
d∑

i=1

Si(eλi y − 1)
∂ f
∂xi

(S)

 (3)

with its associated boundary conditions.

Let, F(t, Z) = er(T−t) f (SeZ), Zit = log
Sit

Si0
and τ = (T − t). Then the above PIDE can be rewritten

as

∂F
∂τ

(Z) =
d∑

i=1

1
2
σ2 ∂F
∂Z

(Z) +
1
2

d∑

i=1

σi


d∑

j=1

σ j
∂2F

∂Zi∂Z j
(Z)



+
∫

−∞
∞

F(Z + Λz) − F(Z) −
d∑

i=1

(eλiz − 1)
∂F
∂Zi

(Z)

 ν(dz),

∂F
∂τ

(Z) = (D+ I) F(Z),

whereD and I represent the differential and integral operators respectively.

Copyright © 2009 Hanert and Venkatramanan 3
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2.2. GBM Framework - A Fast Dimension Reduction Technique

Here we assume the risk-neutral price dynamics of the underlying assets, given by equation (2),
are governed only by correlated GBM processes (there is no jump component. Then equation (3)
reduces to:

∂ f
∂t

(S) =
d∑

i=1

rSit
∂ f
∂Si

(S) +
d∑

i=1

d∑

j=1

1
2
ρi jσiσ jSiS j

∂2 f
∂Si∂S j

(S) − r f (S). (4)

We propose a new dimension reduction technique based on the recursive approach of Alexander
and Venkatramanan (2009a) to efficiently and accurately price basket options. For very high
dimensional problems, our approach leads to significant computational gains. By breaking the
multi-dimensional problem to multiple three dimensional independent problems, the total number
of nodes required at any point of time can be as low as n3, where n is the number of nodes in one
direction. Moreover, as the problem dimension increases, the computation time only increases
linearly and since the problems are independent of each other, they can be solved parallelly.

In this approach, the price of a basket option is computed as a sum of prices of two compound
exchange options. These compound exchange options are options to exchange European options
of same maturity written on a disjoint subset of the baskets of assets. Then the central idea of
this approach is to express these compound exchange options as exchange options written on
assets whose prices follow GBM processes. The prices of these compound exchange options are
computed by solving their associated price PDEs. The sub-basket options on which the compound
exchange options are written, are in turn priced in a similar fashion as a sum of compound exchange
options on their sub-baskets.

This approach is particularly effective for problems with dimensions greater than 5 as the total
number of nodes required in those cases reduces from Nd to 2(2d−1 − 1)N3. In order to price a
d dimensional multi-asset option we solve a total number of 2(2d−1 − 1) 3D PDEs along with d
Black-Scholes PDEs. For low dimension problems, although this approach may lead to a marginal
increase in number of nodes, it yields volatility skew consistent prices and hedge ratios due to
its built-in convention to choose the underlying asset volatilities.4 In section 4 we implement this
approach using a meshfree scheme to price two asset spread options.

Since pricing compound exchange options is central to our model we derive a generic price PDE
for a compound exchange option in the following subsection. The CEOs are to exchange two
options whose underlying asset prices are lognormally distributed.5 Later we describe the pricing
framework and show how a basket option payoff can be decomposed into compound exchange
option payoffs and hence priced in a recursive manner.

4See Alexander and Venkatramanan (2009b) for a detailed discussion on implied volatility skew consistent spread
option pricing.

5Since a stochastic integral or a non-linear transformation of a Lévy process (or a diffusion process) is not a Lévy (or
diffusion) process, the price of an option on a lognormal asset does not follow a GBM process naturally. Nevertheless, we
can express it as a GBM process by approximating the option volatility process. Then the compound exchange options
reduce to simple lognormal exchange options and the price of a basket option can be computed by solving for exchange
option prices repeatedly. However, when the asset prices follow jump-diffusion processes, such an approximation is
not straightforward and also does not lead to any meaningful representation of the option price processes.

Copyright © 2009 Hanert and Venkatramanan 4
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Compound Exchange Option Price PDE

Assume that the price of an asset i follows geometric Brownian motion process with constant
volatilities σi:

dSit = rSitdt + σiSitdWit,
〈dW1t, dW2t〉 = ρdt i = 1, 2.

Consider a compound exchange option on two vanilla options on assets 1 and 2. The payoff of
such an option is given by

f̃T = ω [U1T −U2T]
+ ,

where Uit is the price of a European option on asset i with strike Ki. By applying Itô’s lemma, the
two vanilla option price processes can be described by (see Alexander and Venkatramanan (2009a)
for details on derivation):6

dUit = rUitdt + ξitUitdWit, (5)

where

ξit = σi
Sit

Uit

∂Uit

∂Sit
. (6)

The associated SDE for ξi is given by:

dξit = ai(ξit, t) (−ξitdt + dWit) ,

where ai(ξit, t) = ξit (σi − ξit + c), and c = σiSit
Γit

∆Uit

is assumed constant.7

We now express the price of a compound exchange option as

f̃t = e−r(T−t)U2tEP
{
ω [XT − 1]+

}
,

where Xt = U1t
U2t

andP is a new martingale measure whose Radon-Nikodym derivative with respect
to Q is given by:

dP
dQ

= exp
(
−1

2
ξ2

2tt + ξ2tW2t

)
.

The solution to ξi is given by

ξit = σ̃i

(
1−

(
1− σ̃i

ξi0

)
exp

(1
2
σ̃2

i t− σ̃iWit

))−1

(7)

6An alternative formulation of the problem is to price the compound exchange option as an option on the spread Xt
with zero strike. By Itô’s lemma, the option price processes are described as:

dUit = rUitdt + ΣitdWit

where Σit = σiSit
∂Uit
∂Sit

. Then, for Xt = (U1t −U2t), we have f̃T = ωX+
T and

dXt = rXtdt + Σ1tdW1t − Σ2tdW2t.

The associated SDEs for Σi can be derived easily by applying Itô’s lemma.
7In section 4, we justify this assumption and find that the compound exchange option price is less sensitive to c.

Copyright © 2009 Hanert and Venkatramanan 5
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where σ̃i = σi + c, and it is easy to verify that E

{∫ T

0
|ξit|2dt

}
< ∞ which is necessary and sufficient

for dP
dQ to exist.

Let ft = f (Xt, ξ1t, ξ2t, t) be the price of a European option whose payoff is given by [XT − 1]+, so
that f̃t = U2t ft. Under P, Xt is a martingale and

dXt = ξXtdZt,

where Zt = Wt + W3t, Wt = W2t − ξ2t, W1t = ρW2t +
√

1− ρ2W3t, and ξ2 = ξ2
1 + ξ2

2 − 2ρξ1ξ2. Note
that Wt, W3t and Zt are martingales under this measure.

We now have the transformed set of equations:

dXt = ξtXtdZt,
dξ1t = a1(ξ1t, t) ((ρξ2t − ξ1t) dt + dZt) ,
dξ2t = a2(ξ2t, t)dWt. (8)

Then, it can be shown that f satisfies the following PDE:

∂ f
∂t

+
1
2
ξ2X2 fXX +

1
2

a2
1 fξ1ξ1 +

1
2

a2
2 fξ2ξ2 + Xa1ξ fXξ1

+Xa2ξρ fXξ2 + a1a2ρ fξ1ξ2 + a1 (ρξ2 − ξ1) fξ1 − r f = 0 (9)

along with the associated boundary conditions

f (X, ξ1ξ2, T) = [X − 1]+,
fX(X, ξ1, ξ2, t) = 1 as X→∞,
f (X, ξ1, ξ2, t) = X as ξ1 or ξ2 →∞,
f (0, ξ1, ξ2, t) = 0,

ft +
1
2
ξ2

1 fXX +
1
2

a2
1 fξ1ξ1 + a1Xξ2

1 fXξ1 − a1ξ1 fξ1 − r f = 0 , when ξ2 = 0 and f or all ξ1, X, t,

ft +
1
2
ξ2

2 fXX +
1
2

a2
2 fξ2ξ2 + a2Xξ2

2ρ fXξ2 − r f = 0 , when ξ1 = 0 and f or all ξ2, X, t. (10)

Multi-Asset Options as Compound Exchange Options

Let St = (S1t, S2t, ..., SNt)′ and bN = (θ1S1t, θ2S2t, ..., θNSNt)′ be a basket of N assets with weights
ΘN = (θ1,θ2, ...,θN), where θi are real constants. Let Bt = ΘNSt =

∑N
i=1 θiSit be the price of the

basket at any time t and VNT = [BT − K]+ be the payoff to a call option on a basket bN with strike
price K.

Now let bm and bn be sub-baskets of b of sizes m and n respectively (m + n = N), and Θm and Θn

be the weights of the corresponding sub-baskets such that Θ = (Θm, χΘn); χ = 1 or −1. Similarly,
let St = (Smt, Snt) and K = (Km, Kn).

Alexander and Venkatramanan (2009a) show that the payoff to a basket option on N assets can
be expressed in terms of compound exchange options on sub-basket options on m and n assets

Copyright © 2009 Hanert and Venkatramanan 6
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respectively. That is,

VNT = E1T + E2T =



[CmT − PnT]
+ + [CnT − PmT]

+ i f χ = 1

[CmT −CnT]
+ + [PnT − PmT]

+ i f χ = −1

where CkT and PkT are payoffs to call and put options on k assets.

The basket option price can then be computed as a sum of prices of two compound exchange
options:

VNt = e−r(T−t) (EQ {E1T}+EQ {E2T}) .

By approximating the prices of the sub-baskets to follow lognormal processes we may be able to
express the sub-basket option price and volatility processes as in equations (5) and (7) respectively.
Then the prices of the two compound exchange options in the right hand side of above equation
can be computed by solving exchange option PDEs as in equation (9).

For the compound exchange option on call options on m and n assets respectively, when χ = −1,
we replace U1t = Cmt and U2t = Cnt, Sit and σi as the prices and volatilities of the two sub-baskets,
in equations (5) and (6). The compound exchange option on put options is priced similarly but
with U1t = Pnt and U2t = Pmt. In both cases, the correlation ρ is the correlation between the two
sub-basket prices with m and n assets.

This procedure is repeated recursively where the call and put sub-basket option prices Cmt, Cnt,
Pmt and Pnt are in turn computed as a sum of compound exchange options. However, for a given
sub-basket bm or bn, we only need to compute either the call or put sub-basket option prices as
the other can be found using put-call parity. This leads to a tree like structure where every node
represents a basket option that involves solving two 3D PDEs and has two daughter nodes that
represent sub-basket options. At the final iteration or terminal nodes, the basket size reduces to
one and the option is just a plain vanilla option whose price can be computed by solving the
Black-Scholes PDE.

As an example, consider the case of a spread option on two underlying assets. The payoff to a
spread option of strike K is given by [ω(S1 − S2 −K)]+ where ω = 1 for a call and ω = −1 for a put.
The risk neutral price of a European spread option may be expressed as the sum of risk neutral
prices of two compounded exchange options. That is,

ft = e−r(T−t)
(
EQ

{
[ω [U1T −U2T]]

+
∣∣∣Ft

}
+EQ

{
[ω [V2T −V1T]]

+
∣∣∣Ft

})
, (11)

where U1T, V1T are pay-offs to European call and put options on asset 1 with strike K1 and U2T, V2T

are pay-offs to European call and put options on asset 2 with strike K2, respectively. The prices
of the two compound exchange options are found by solving two PDEs as in equation (9) with
Xt = U1t

U2t
and ξit = σi

Sit
Uit

∂Uit
∂Sit

in one PDE, and Xt = V1t
V2t

and ξit = σi
Sit
Vit

∂Vit
∂Sit

in the other.

Pricing spread options using this approach resolves the ambiguity in choosing the two underlying
asset volatilities and yields prices and hedge ratios that are consistent with the implied volatility
skew. Moreover, calibrating the model is simple and requires only a one dimensional solver.

Copyright © 2009 Hanert and Venkatramanan 7
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3. N S  PDE

In this section we describe an implicit scheme based on meshfree approach to solve PIDEs. The
meshfree approach involves approximating the PIDE solution using a linear combination of certain
basis functions, known as radial basis functions, over a scattered set of nodes in the problem
domain. In the spacial domain, we use a collocation scheme to find the solution and we adopt an
implicit Crank-Nicolson scheme to integrate in time.

Due to the absence of an underlying mesh, the meshfree approach can be easily scaled and adapted
to changes in the geometry of the domain. This eliminates the time spent on building a mesh which
could be substantial. Although the approximate solution is expressed in terms of a finite set of
nodal values, the solution and its derivatives are uniquely defined over the entire computational
domain. Moreover, the functional form of the solution also lets us derive explicit formulae for
option Greeks.

Unlike the FDM and FEM, the meshfree method is a global method. The solution value at a given
node depends on the value of the solution over the entire computational domain and not just on
its value in the immediate neighbourhood of the node. As a result the accuracy and computational
cost per degree of freedom is larger for the meshfree method. This property of meshfree approach
makes it more suitable for path-dependent options like American and barrier options and even
more attractive for solving PIDEs which involve a non-local integral term.

3.1. Meshfree Approach

We approximate the model solution with a linear combination of basis functions defined in the
d-dimensional space Rd. The unknown solution is evaluated over a distribution of nodes in the
computational domain leading to a system of linear equations. We then obtain the solution by
solving the system of linear equations. However, the problem is well-posed and a solution exists if
and only if the coefficient matrix is non-singular. Therefore we restrict ourselves to strictly positive
definite basis functions, such as radial basis functions, that are known to yield strictly positive
definite system matrices which are always non-singular.

Let us define

f (x, t) ≈ f h(x, t) =
N∑

i=1

fi(t)ϕ(ri), (12)

where x = (x1, x2, ..., xd) denotes the coordinate of an arbitrary point i in the computational domain
D ⊂ Rd, fi is the unknown nodal value at node i, ri = ‖x − xi‖2 is the Euclidian distance between
x and xi, and ϕ is a radial basis function (RBF). Note that since ϕ only depends on the Euclidean
distance, increasing the dimension of the problem just requires one to redefine the Euclidean
distance in that dimension. Also, unlike FDM or FEM, the system matrices in a meshfree approach
are dense. But they are much smaller in size as the basis functions are high-order global functions
and hence the approximate solution requires less degrees of freedom.

Some commonly used RBFs that are globally supported functions and conditionally strictly positive
definite are:

Copyright © 2009 Hanert and Venkatramanan 8
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Finitely Smooth RBF

Thin plate spline : r2k log r k ∈N

Power : rβ β > 0, β < 2N

Infinitely Smooth RBF

Gaussian : ϕ(r) = e−εr2

Multiquadratic : ϕ(r) = (1 + ε2r2)β β > 0, β < N

where ε is a smoothing parameter that can be tuned based on the problem under consideration.

In this paper, we use the finitely smooth thin plate spline radial basis function with k = 2:

ϕ(r) = r4 log(r). (13)

Note that the solution to equation (3) must be at least twice continuously differentiable and the
above choice of RBF satisfies that.

Collocation method to compute the discrete solution

The unknown nodal values fi are found by using a collocation method, which requires that the
discrete solution f h satisfies the model equation on each node xi. For the sake of simplicity, let us
write the model equation as:

∂ f
∂t

(x, t) = (D+ I) f (x, t), (14)

whereD andI are differential and integral operators representing the right-hand side of the model
equation. The collocation method then amounts to imposing that the discrete solution f h satisfies
the model equation (14) at every node i. Such a condition can be expressed by the following set of
N equations:

∂ f h

∂t
(xi, t) = (D+ I) f (xi, t) ∀i = 1, . . . , N and ∀t. (15)

These N equations will allow us to compute the N unknown coefficients fi defining the discrete
solution.

Collocation method is a special case of weighted residual methods such as minimum variance
(MV) and Galerkin methods, with Dirac function as the weight function. This implies that the
residual are minimised only at the nodal points while in the case of a MV or Galerkin method it
is minimised over the entire domain. Larsson and Fornberg (2003) compare various schemes and
show that RBF collocation is far superior in accuracy to standard second-order finite differences or
even a standard Fourier-Chebyshev pseudospectral method. Also, the difficulty in implementing
MV and Galerkin schemes in higher dimensions makes collocation schemes a preferred alternative.

The collocation method is quite susceptible to the distribution of the nodes in the domain and the
solution might vary with the choice of nodes. Therefore, in order to reduce the total residual of the
approximate solution the nodes should be chosen carefully. An easy alternative to minimise the
variance of the solution is to randomly scatter the nodal points according to certain distributions
(see Fasshauer (2007)). In this paper we use uniform distribution but other commonly used
distributions include Halton, Sobol, Chebyshev, latin hypercube and normal distributions.
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The PIDE given by equation (3) involves a non-local integral term over R. But, this can be
evaluated only within the localised computational domain of the grid as the solution is defined
only within this region. Cont and Voltchkova (2005) give estimates for the truncation error due
to this and show that it decays exponentially as the bounds increase. When compared to FDM
and FEM, the meshfree method is intrinsically a global method and hence is more suitable and
efficient for problems with non-local terms for two main reasons. Firstly, since the FDM or FEM
solution is defined only at discrete points, the numerical integration scheme is forced to evaluate
the integrand only at the discrete points defined on the grid. Therefore, if the spacial step size is
not small enough, the computation error could be very high. On the other hand, making the grid
finer will drastically increase the overall computation time. However, in the meshfree approach,
the approximate solution is continuously defined over the computation domain and the integral
can be evaluated with greater accuracy. Secondly, employing an implicit time stepping scheme for
the integral term, in a FDM or FEM, will result in a large, dense mass matrix instead of a sparse
matrix. Therefore, one is forced to handle the integral term explicitly in which case the time step
has to be sufficiently small to ensure stability and accuracy. In the meshfree method, this does not
add to affect the system matrix and the integral term can be handled implicitly.

Eq. (15) requires to evaluate the partial derivatives and integrals of the option price. The former
have the following expression:

∂ f h

∂t
(xi, t) =

N∑

j=1

d f j

dt
(t)ϕ(ri j),

∂ f h

∂xik
(xi, t) =

N∑

j=1

f j(t)
dϕ
dr

(ri j)
∂r j

∂xik
(xi)

=
N∑

j=1

f j(t)r2
i j(4 log ri j + 1)(xik − x jk), (16)

∂2 f h

∂x2
ik

(xi, t) =
N∑

j=1

f j(t)


(xik − x jk)2

r2
i j

d2ϕ

dr2
(ri j) +

dϕ
dr

(ri j)
∂2r j

∂x2
ik

(xi)



=
N∑

j=1

f j(t)
[
(xik − x jk)2(12 log ri j + 7) +

(
r2

i j − (xik − x jk)2
)
(4 log ri j + 1)

]
,

where ri j = ‖xi − x j‖2 and xi = (xi1, xi2, . . . , xid)T.

LetM ⊂ Rd be the localised computational domain and Ml, Mu ∈ R such thatM = [λkMl,λkMu]d,
for 1 ≤ k ≤ d. Let Bl

i = min
1≤k≤d

{
Ml − 1

λk
xik

}
and Bu

i = min
1≤k≤d

{
Mu − 1

λk
xik

}
. Then the terms appearing the
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integral part are given by:

I f h(xi) =
∫

M

 f h(xi + Λz) − f h(xi) −
d∑

k=1

(eλkz − 1)
∂ f h

∂xik
(xi)

 ν(dz)

=
N∑

j=1

f j


∫ Bu

j

Bl
i

ϕ(r̃i j)ν(dz) −
∫ Mu

Ml
ϕ(ri j)ν(dz) −

∫ Mu

Ml

d∑

k=1

(xik − x jk)(eλkz − 1)r2
i j(4 log ri j + 1)ν(dz)



=
N∑

j=1

f j

r2
i j(4 log ri j + 1)

d∑

k=1

(xik − x jk) −ϕ(ri j)


∫ Mu

Ml
ν(dz)

−
N∑

j=1

f jr2
i j(4 log ri j + 1)

d∑

k=1

(
(xik − x jk)

∫ Mu

Ml
eλkzν(dz)

)
+

N∑

j=1

f j

∫ Bu
j

Bl
i

ϕ(r̃i j)ν(dz)

where r̃i j represents the distance between xi + ᾱz and x j. This also shows that the integral does not
depend on the distribution of the nodes (step size) as it did in the case of FDM.

The set of equations can then be expressed in matrix form as:

M
d
dt

f = (D + I) f (17)

where Mi j = ϕ(‖xi − x j‖) and f = ( f1, f2, . . . , fN)′.

D and I are the discrete operators corresponding toD and I, respectively. Since ϕ depends only
on the Euclidean distance between a pair of nodes, it is radially symmetric about a point and
therefore M is symmetric.

The initial conditions required to integrate Eq. (19) in time are also found by using a collocation
principle. If f h(x, 0) = g(x), then by collocating that equation we obtain:

f h(xi, 0) = g(xi) ∀i = 1, . . . , N

which is equivalent to
Mi jf j(0) = g(xi).

Time integration

We implement an implicit Crank-Nicolson scheme to integrate equation (17) in time. This is given
by

M
1

∆t

(
fn+1 − fn

)
= (D + I)

1
2

(
fn+1 + fn

)

(18)

This can be rewritten as
Afn+1 = Bfn,

where the final system and conversion matrices are given by

A = M− 1
2

∆t (D + I)

B = M +
1
2

∆t (D + I)
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Such a scheme is second order accurate and unconditionally stable. Note that since all the matrices
obtained with the meshfree method are dense, using an implicit time integration scheme does not
add to any computational overhead.

3.2 Stability and Convergence

In order to ensure stability of the scheme, we could choose a RBF such that the system matrix is
properly conditioned. In the case of Gaussian or multiquadratic RBFs, the condition number can
be improved against the rate of convergence by choosing an optimal value for the parameter ε
but this is not possible for thin plate spline RBFs. Nevertheless, for a given RBF, we can check the
stability of the scheme by deriving bounds for the condition number of the system matrix. For
positive definite matrices, the condition number can be computed as a ratio of the largest and the
smallest eigenvalues. Since a system matrix is always positive definite, we can find the upper
bound for the condition number by evaluating the bounds for the eigenvalues.8

We prove the convergence of the meshfree method applied on PIDEs such as (3), by showing that
it converges for both, the differential and integral parts. Following Schaback and Wendland (1999)
and Iske (2003), we can derive a bound for the error between the discrete and exact solution under
a meshfree scheme to solve a general second order linear PDE. They show that

| f (x, t) − f h(x, t)| ≤ Chk‖ f (x, t)‖, (19)

where h = supx∈Mmin1≤ j≤N ‖x − x j‖ is the so-called local fill distance at position x, which is a
measure of the nodes density around x and ‖.‖ is a suitable norm.

For RBF methods, we have a more general result on the bound for the error between the differentials
of approximate and exact solutions:

|Dm f (x) −Dm f h(x)| ≤ PX,ϕ(x)m‖ f ‖, m ∈N, (20)

where Dm f represents the mth order derivative of f and PX,ϕ(x) is the so called power function.
The power function can be bounded above by:

PX,ϕ(x)m‖ f ‖ ≤ CF(h)

for some constant C and function F that depends on the chosen RBF. For instance, in the case of
thin plate spline, F(h) = hk−m (for other RBFs see Iske (2003) and references therein).

Now consider, the integral term in equation (3):

I f h(xi) =
∫

M

 f h(xi + Λz) − f h(xi) −
d∑

k=1

(eλkz − 1)
∂ f h

∂xik
(xi)

 ν(dz). (21)

We can prove that the meshfree scheme is consistent for solving the integral equation if |I f (x) −
8See Ball et al. (1992) and Narcowich et al. (1994) for bounds on condition numbers that is based on the results of

Ball (1992) on eigenvalues of distance matrices.
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I f h(x)| → 0 as h→ 0. Since ν(dz) < ∞, equations (19) and (20) imply

|I f (x) −I f h(x)| ≤
∫ Bu

j

Bl
i

∣∣∣ f (xi + Λz) − f h(xi + Λz)
∣∣∣ ν(dz)

−
∣∣∣ f (xi)) − f h(xi)

∣∣∣
∫ Mu

Ml
ν(dz) −

∣∣∣∣∣∣
∂ f
∂xik

(xi) −
∂ f h

∂xik
(xi)

∣∣∣∣∣∣
d∑

k=1

∫ Mu

Ml
(eλkz − 1)ν(dz)

≤ C1hk‖ f ‖ −C2hk‖ f ‖ −C3hk−1‖ f ‖
≤ Chk−1‖ f ‖

for some constants C, C1, C2 and C3. This shows that the presence of the integral term in a PIDE
reduces the overall spacial order of convergence from k to k− 1 . Nevertheless, we can improve the
order of convergence by choosing higher order radial basis functions. This is another advantage
of using a meshfree scheme which is not possible in the case of FDM or FEM.

4. E R

We implement the dimension reduction technique for the GBM framework using a meshfree
approach in order to price Crude oil - Gasoline crack spread options. The crack spread options
were traded on NYMEX in March 2006. The spread options were of one month maturity and were
on the prompt futures on crude oil and Gasoline.

In the CEO approach the price of a spread option given by equation (11) is computed as a sum
of prices of two compound exchange options - one CEO to exchange a call on Gasoline for a call
on crude oil and another to exchange a put on crude oil for a put on Gasoline. Hence, in order to
price a spread option we need to solve two 3D price PDEs as in (9), one for each CEO price. We
use the thin-plate spline RBF with k = 2 to solve these price PDEs. In all the figures, we use the
following notation: X = U1/U2, Uit, Vit and ξit, ηit are prices and volatilities of single asset call and
put options respectively; the correlation was set to 0.8.

Since, Ui, ξi, Vi and ηi are uniquely determined by their option strikes Ki respectively, and K1 −K2 =
K, we choose K1 as the only free parameter. Therefore, calibration just involves finding the strike K1

for which the final solutions of the two PDEs evaluated at
(

U1
U2

, ξ1, ξ2

)
and

(
V1
V2

, η1, η2

)
, yield option

price that matches the market price of the spread options.

T 1: Computation time and condition numbers

No. of nodes 3 6 9 12

Generating nodes distribution 0.0245 0.0080 0.0235 0.0274
Initialisation 0.458 1.409 1.634 3.078
Building the system matrix 0.0268 0.1297 1.748 9.606
Integration in time 1.96 2.88 12.78 81.27

Condition number of system matrix 4058 1.51E+06 2.92E+07 2.27E+08
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Since the true solution is uniquely defined over the entire computational domain the Greeks may
be evaluated continuously over the same. For instance, the delta of a spread option with respect
to asset k in the CEO approach is given by:

∂ f
∂Sk

≈ ∂ f h

∂Sk
=

N∑

i=1

fir2
i (4 log ri + 1)X

∂X
∂U1

∂U1

∂Sk
, k = 1, 2.

Analytic expressions for other model Greeks can be easily derived from equations (16) by applying
chain rule to differentiate.

F 1: Calibrated parameter m = K1
K against spread option strike
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In section 3.2 we showed that, for solving PIDEs, the scheme is unconditionally stable, second
order convergent in time and have high order of convergence in space. Although the presence
of an integral term may alter the condition numbers of the system matrix, we can ensure that the
convergence and stability are not compromised by choosing a suitable high-order RBF. Therefore,
we suppose that the results on convergence and accuracy for solving PIDEs will be similar to the
ones presented in this section for solving PDEs.

Table 1 shows the computation times of different tasks and condition numbers of matrices for a
number of nodes. The most expensive step is that of solving a dense system of linear equations at
every time step. This seems to increase exponentially as the number of nodes increases.9

Figure 1 plots the calibrated strike parameter m = K1/K of the compound exchange option
approach against the spread option strike over various trading dates. In order to justify approxi-
mating c = σiSitΓit/∆Uit as constant in equation (7), we checked the sensitivity of the solution to c
and found it to be insignificant. A possible reason for this could be that the calibrated strikes of
the single asset options, in figure 1 are such that the call options are ITM and the put options are

9The calculations were run on a standard Dell Inspiron laptop with a 1.8 GHz processor and 2GB RAM. The authors
would be happy to provide other results upon request.
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OTM. Then c << (ξi − σi) and its effect on the solution will be insignificant as observed. The strike
parameter m also shows reasonable stability over consecutive trading days allowing one to choose
suitable starting values to speed up calibration.

F 2: Convergence of solution
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Figure 2 shows the rate of convergence of the meshfree solution as the number of nodes increases.
The convergence result was obtained by using the calibrated strikes values of Gasoline and crude
oil options from N = 12 to compute the model price for different values of N. It is easy to observe
that the rate of convergence is at least quadratic as expected. Since accurate solutions can be
computed even with a few number of nodes, the scheme can be scaled to higher dimensions by
keeping the number of nodes to a minimum. This allows for solving high dimensional problems
even on a PC with limited memory and computation resources.

F 3: Solution error with respect to Gasoline strike K1
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Figure 3 plots the squared model error as a function of strike parameter m for a spread option with

Copyright © 2009 Hanert and Venkatramanan 15



ICMA Centre Discussion Papers in Finance DP2009-07

F 4: Initial solution : N = 3
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F 5: Initial solution : N = 12
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F 6: Final solution : N = 12
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K = 13. Calibration basically involves finding the right value of single asset option strike K1 (or
K2) for which this error is a minimum. The plot shows that the value of m at which the error is
minimum can be uniquely found. By choosing the implied volatilities σi of the single asset options
corresponding to these strike values, we resolve the ambiguity in choosing the volatilities of the
underlying assets. Thus we obtain volatility skew consistent spread option price and hedge ratios
making calibration more meaningful.

Figures 4 and 5 show the initial solution of the CEO on calls for N = 3, 12, across a cross section
of ξ1 and ξ2. Recall that the meshfree approach involves approximating the solution using radial
basis functions that are at least finitely differentiable throughout the domain. Therefore in order
to approximate functions with singular points, the nodal points have to be carefully distributed.
In figures 4 and 5, the initial solution is not differentiable at X = 1. When N = 3 we can see that
the initial solution is very different to a typical payoff curve. Whereas when the N is increased to
12, the initial solution fits the payoff well even around X = 1. Since any interpolation scheme is
prone to have oscillations around the nodes, the number of nodes and their distribution have to be
suitably chosen. For instance, when N = 3 such oscillations are present around the nodes along
ξ1 and ξ2 axes.

Figures 6 and 7 show the final solution for a CEO on calls across different cross sections. When
the option volatilities range between 0.5 and 1.5, the CEO price is more sensitive to the volatility
of crude oil than to Gasoline but for higher values of volatilities the price behaves otherwise.

5. S  C

We discussed the pricing of multi-asset options when the underlying asset prices followed jump-
diffusion or geometric Brownian motion processes. When the underlying assets followed geo-
metric Brownian motion processes we employed the compound exchange option approach to
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F 7: Final solution : N = 12
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decompose a multi dimensional problem into multiple 3D problems. This approach yields accu-
rate prices while substantially reducing the computational time and memory requirements. In the
jump-diffusion case, we outline the derivation of the multi-dimensional price PIDE.

The multi-asset option prices are computed by solving the associated partial (integro) differential
equation using a fully implicit meshfree method with thin-plate spline radial basis functions.
The meshfree method has several advantages compared to the existing schemes such as finite
differences and finite elements, particularly for solving PIDEs. It is easily scalable to higher
dimensions and flexible to changes in payoff profiles or geometry of the domain. We can also
derive explicit analytic formulae to various option Greeks.

In this paper we applied a collocation method in space and Crank-Nicolson method in time to find
the solution of the multi-dimensional price PIDE. We showed that our method is unconditionally
stable and has high order comvergence in both space and time. We tested the meshfree scheme
with compound exchange option approach on crack spread option data obtained from NYMEX. We
provided empirical results to suggest that our approach has considerable benefits when compared
to existing finite difference or finite element methods.
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