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ABSTRACT

This paper introduces a method for simulating multivariate samples that have exact means, covari-
ances, skewness and kurtosis. A new class of rectangular orthogonal matrices is fundamental to the
methodology, and these “ L-matrices” can be deterministic, parametric or data specific in nature. The
target moments determine an L-matrix, then infinitely many random samples with the same exact
moments may be generated by multiplying the L-matrix by arbitrary random orthogonal matrices.
The methodology is thus termed “ROM simulation”. We discuss certain classes of random orthogonal
matrices and show how each class produces samples with different characteristics. ROM simulation has
applications to many problems that are resolved using standard Monte Carlo methods. But since no
parametric assumptions are required there is no sampling error caused by the discrete approximation
of a continuous distribution, which is a major source of error in standard Monte Carlo simulations.
For illustration, we apply ROM simulation to determine the value-at-risk of a stock portfolio.
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INTRODUCTION

Parametric Monte Carlo simulation is the ubiquitous tool for generating multivariate random samples.
However, unless the sample size is very large there can be substantial differences between the target
distribution and the empirical distributions of the simulations. But generating very large samples can
be extremely time-consuming. For instance, when Monte Carlo simulation is applied to financial risk
assessment it is standard to use between 10,000 and 100,000 simulations, and for each simulation a
valuation model must be applied to each instrument in the portfolio. A typical portfolio held by a
large bank contains many thousands of financial instruments, and when the portfolio contains exotic
or path-dependent contingent claims the valuation models themselves require very large numbers of
simulations. Thus, assessing portfolio risk via simulation usually takes many hours of computational
time, even though most banks have highly sophisticated computers.!

This paper introduces a new, semi-parametric method for multivariate simulation based on random
orthogonal matrices, which we call “ROM simulation”. ROM simulation eliminates sampling error in
the sample mean vector, covariance matrix and the Mardia (1970) multivariate skewness and kurtosis
measures, so that in each simulation they are exactly equal to their target values. Methods for match-
ing the moments of a multivariate simulation have undergone many recent developments. In particular,
Lyhagen (2008) constructs multivariate samples using linear combinations of random variables with
known multivariate distributions. Although the distribution of this sum may be unknown, the co-
efficients of the combination may be optimised in order to control the moments of the multivariate
simulation. This approach is applied to the analysis of non-normal residuals, which are observed fre-
quently in empirical finance. Date et al. (2008) consider symmetric multivariate distributions and focus
on matching marginal kurtosis. They achieve this via an optimisation algorithm which constrains the
probabilities of simulated scenarios. Applications to portfolio risk management in finance and sigma
point filtering in engineering are discussed.

The methods of Lyhagen (2008) and Date et al. (2008) are statistical in nature. We attempt to solve
the same type of problem using linear algebra. By introducing a new class of rectangular orthogonal
matrices that are fundamental to ROM simulations, we provide constructive algorithms for generating
what we shall term “exact moment simulations”. We believe that ROM simulation, like Monte Carlo
simulation, will have numerous applications across many different disciplines. In quantitative finance
alone there are immediate applications to three very broad areas: exotic option pricing and hedging,
portfolio risk assessment and asset allocation techniques. Since this paper focuses on the theoretical
properties of ROM simulation there is only space to include a brief example of one such application.

To motivate our research, consider the multivariate normal (MVN) case where we have a target mean
vector, p, and a target covariance matrix, S, for n random variables. We want to generate a random
sample X,,,,, which contains m observations on the n random variables and where the sample mean
vector and sample covariance matrix of X,,,, match the target mean vector u, and covariance matrix
S,,.2 That is,?

mil(an - ]-mﬂ;l)/(xmn - 1m”;) = Sn (]-)

!This sampling error problem has spawned a voluminous literature on methods for increasing the speed and reducing
the sampling error when Monte Carlo methods are applied to financial problems. See Glasserman (2004) for a review.

2Throughout this paper we will use the following notation, unless stated otherwise: Vectors, will be columns vectors,
written in lowercase bold with a single index, e.g. a,. Rectangular matrices will be uppercase bold with a row and
column index, e.g. A,,n. Square matrices will have a single index, e.g. A,,.

3For ease of exposition we ignore any bias adjustments in sample moments, so that m rather than m —1 appears in the
denominator of the sample variances and covariances of our random variables. When samples moments are bias-adjusted
the equivalent formulae in our theoretical results are available from the authors by request.
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Clearly, setting
Xonn = Lipn + ]-m(p’;l - Z;?,)

where Z,,, is a MVN simulation with sample mean z,, yields a simulation with mean u,. However,
at first, it is not immediately obvious that a matrix X,,,, satisfying (1) will exist, for any covariance
matrix S,,. However, since S,, is positive semi-definite we can find a decomposition S,, = A/ A,,, where
A, is a Cholesky matrix, for example.* Then by considering the transformation

Won = mil/Q(an — L)AL (2)
it is clear that solving (1) is equivalent to finding a matrix W,,,, which satisfies
W, W, =1L, with 1, W,,, =0,. (3)

The condition (3) is fundamental to our work and we shall refer to it as the Exact Covariance Constraint
(ECC). By solving (3) and inverting transformation (2) we will be able to produce exact MVN samples
Ximn, given any desired sample mean p,, and covariance matrix S,,.

Characterising a sample via it’s mean and covariance matrix is sufficient for MVN random variables,
but it is not necessarily sufficient for more complex multivariate distributions. Moreover, in some
applications it may not be advantageous to assume any particular parametric form for the distribution
of Xy, For example, when assessing portfolio risk, most financial institutions prefer to perform
simulations that are based on historical data; this is the so-called “historical simulation” approach.
Here the portfolio return distribution is characterised by fitting a kernel to an historical distribution,
or by the moments of this distribution.® Therefore, the main focus of our research is to introduce
methods for generating exact covariance samples which also match the Mardia multivariate skewness
and kurtosis of the random variables in question. In this framework there is no need to specify a
parametric form for the distribution function.

The paper is outlined as follows. Section 1 introduces a new class of rectangular orthogonal matrices
which we call L-matrices, as m X n matrix solutions to the ECC. Deterministic, parametric and
data-specific techniques are described for constructing L-matrices and within each construction many
different types of L-matrices exist (but for the sake of brevity, here we specify only three distinct
types, being of increasing complexity). Section 2 develops exact moment simulation algorithms which
combine [L-matrices with other, random, orthogonal matrices. We have given the name “random
orthogonal matrix (ROM) simulation" to this approach. We characterise the skewness and kurtosis of
ROM simulations and, by focusing on a particular type of deterministic L-matrix, we investigate how
different orthogonal matrices can affect the dynamic and marginal characteristics of ROM simulated
samples. In section 3 we apply ROM simulation to estimate the value-at-risk for a portfolio invested
in Morgan Stanley Country Indices (MSCTI). Section 4 concludes. All proofs are in the Appendix.

1 L-MATRICES

In classical matrix theory a square matrix Q,, is orthogonal if and only if its inverse is equal to its
transpose. That is

Q;Qn = QnQ;L = L,. (4)

*Another alternative would be to set S, = Q,A, Q) where A, is the diagonal matrix of eigenvalues, and Q,, is the
1

orthogonal matrix of eigenvectors of S, so that A, = A,2Q,.
A recent survey found that, of the 65% of firms that disclose their value-at-risk methodology, 73% used historical
simulation, see Perignon and Smith (2009).
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This is equivalent to saying that the rows of Q,, form an orthonormal set of vectors, as do the columns
of Q,,. However for our work we need to extend definition (4) to rectangular matrices. We do this in
the obvious way, stating that Q,,, is a (rectangular) orthogonal matrix if and only if

From this definition, and the Rank-Nullity Theorem, it follows that we must have m > n. Then (5)
implies that the column vectors of the matrix Q,,, are orthonormal.®

We can now begin to think geometrically about the ECC given in (3). Essentially, in order to satisfy
the ECC we must find n orthonormal vectors in R”, which all lie on the hyper-plane

H={(h1,....hwm) ER™ | hy + -+ hy, = 0}.

Certainly H contains m — 1 linearly independent vectors and since H C R™, it follows that dim(H) =
m—1. So, provided that m > n, we will be able to select n vectors from an orthonormal basis for H. By
allocating these n vectors to the columns of a matrix W,,,,, we will have at least one solution fulfilling
the ECC. Therefore the key to exact moment simulation actually lies in finding an orthonormal set
within the hyperplane H.

Fortunately, we have the Gram-Schmidt procedure at our disposal, which provides a iterative method

for finding an orthonormal set from a set of linearly independent vectors.” Formally, let {v1,...,v,}
be a set of linearly independent vectors, equipped with an inner product. A set of orthogonal vectors
{ui,...,u,} can be found via the Gram-Schmidt procedure where
u; = Vi
u; = Vi —proj,, (v2)
n—1
u, = Vp— Z Projui (Vn)a (6)
i=1

and where, at each step, the projection operator proj, : R™ — R™, is defined as

: (u,v)
roj,(v) :=
Our final step is to map this orthogonal set to an orthonormal set {wy,...,w,}, using the standard
normalisation
w; = <ui,ui>71/2ui for 1 < 7 <n. (7)
For simplicity we write this transformation of n linearly independent vectors V,,,,, = {v1,...,v,} to
n orthonormal vectors W,,,,, = {w1,...,w,} as

Wi = GS (V).

With this notation we will often refer to W,,,,, as the GS image of V,,,, and V,,,, as the GS pre-image
of W

It is well known that the Gram-Schmidt procedure is subspace preserving. That is, if W,,,,, = GS(Vin)
then span(V,,,) = span(W,,,), where span(V,,,) denotes the subspace of R™ spanned by the n

SHowever, (5) does not necessarily imply that the row vectors of Q,, are orthonormal.
"Orthogonalisation methods employing Householder (1958) reflections or Givens (1958) rotations are also available.
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columns of V,,,. So, in particular, if the linearly independent columns of V,,, belong to H, then
W ., will satisfy the ECC.

The rest of this section explores a range of possible solutions to the ECC that can be found by specifying
different linear independent sets within the hyper-plane H C R™. Typically, solutions are constructed
as follows:

e Take a pair (m,n) € Z2 with m > n and pick N(m) linearly independent vectors in H to form a
matrix Vi, n(p), where m > N(m) > n;

e Apply the Gram-Schmidt procedure to Vi, x(;,) and hence find an orthonormal basis whose elements
form the columns of W, nmn);

e Select n columns from W, n(y,) to form a matrix Lip,,.

ECC solutions Ly, of this type will be referred to as “L-matrices”. In general, the properties of an L-
matrix are inherited from the linear independent vectors which are used in it’s construction. In section
1.1 we specify these vectors non-randomly, using zeros, ones and integer parameters. These vectors
produce deterministic L-matrices, whose properties are determined by the parameters specifying the
vectors. This contrasts with parametric L-matrices, which are defined in section 1.2. Here linearly
independent vectors are generated randomly, using parametric multivariate distributions. Properties
of these L-matrices are dependent upon the type of distribution used. Section 1.3 relies on existing
sample data to generate linearly independent vectors. These produce “data-specific” L-matrices, whose
properties, as the name suggests, are determined by the data in question.

1.1 Deterministic L-matrices

To construct a deterministic L-matrix take a pair (m,n) € Z% with m > n and set N(m) = m — 1.

Then define a matrix V,;, n(m) = (V1,..., Vn(m)) Whose columns are specified as
v;=10,...,0,1,—1,0,...,0]" for 1<j<N(m).
i= | ] j<N(m)
j—1 m—1—j

It is clear that {vi,...,Vy(n)} is a linearly independent set and that v; € H for 1 < j < N(m).
We then construct Ly, using the last n columns from the GS image of V,, n(yy. If we write L, =

(£1,...,£,), then after some algebraic manipulation we find that, for 1 < j <n,
g =[m—n+j-1m-n+i) (L. 1, ~(m-n+j-1),0...,0)" (8)
m—n+j— n—j

Copyright © 2009 Alezander and Ledermann
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Below we display Ly, n(m)- The last n columns of this matrix form Ly,,.

11 1 B S
V2 V6 G(+1) V/(m=1)m
-1 1 : :
V2 V6
—2
0 7%
0 :
y )
iG+1)
0
0o 0 .- 0 R W et VI

\ (m—1)m

This first and most elegant solution to the exact covariance simulation problem (3) was proposed by
Professor Walter Ledermann at the age of 98. For this reason we will often refer to the matrix (9) as
the “Ledermann matrix”.

In the following we define other ECC solutions L, . where k is an additional integer parameter, which
generalise the Ledermann matrix in the sense that L}, = L,,,. As is clear from (8), the entries of Ly,
only depend on the matrix dimension m and n. Now to define L*-matrices we consider triples of the
form (m,n,k) € Z:j’r. Each triple must satisfy m > n. Restrictions on k£ may also be imposed. With
the introduction of a “free” parameter k these L¥-matrices may be quite complex to express explicitly.

In the following we suggest three types of L*-matrices, although there are endless possibilities.

Type I

For Type I matrices we allow only those triples with 2k < m + 1 —n and set N(m) =m + 1 — 2k, so
n < N(m). We define the Type I matrix V,,, y(m) = (V1,-- -, VN(@m)) Dy setting

v;=100,...,0,1,-1,...,1,-1, 0,...,0 |" for 1<j<N(m). (10)
—_——— — — ' —(—
j—1 2k m+1—2k—j

Again it is straightforward to check that the columns of V,,, form a linearly independent set in H.

Now the Lfrm matrix of Type I is the last n columns of the GS image of V, 412k, defined above.

By considering GS pre-images it is clear that an L'-matrix is indeed the Ledermann matrix. One

can easily check that LF = will solve equation (3), but it is less easy to write down the form of LK
explicitly.®
Type 11
Again we start with a triple (m,n, k) € Z3, now satisfying the condition N(m) = m —k > n. In this
case the GS pre-image matrix V,, y(m) = (V1,...,Vn(m)) is defined by
v;=100,...,0,1,...,1,—k,0,...,0 for 1<j<N(m). (11)
——— N — ——
j—1 k m—k—j

8A direct specification of Type I, L*-matrices is available from the authors on request.
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ICMA Centre Discussion Papers in Finance DP 2009-09 6

We now define an L matrix of Type II as the last n columns of the GS image of Vim—k, defined
above. Once again this coincides with the Ledermann matrix when & = 1 and offers yet another

solution to the ECC. At this stage an explicit specification of Type IT matrices has not been found.

Type 111

In this case our triple (m,n,k) € Z2 x Z is only constrained by m and n since we simply set N(m) =
m — 2, and require that n < N(m). Note that, unlike the Type I and Type II definitions, k is allowed

to be negative. Now define V,, n(m) = (V1,..., VN(m)) Where
v;=100,...,0,k,—1,1 = k,0,...,0 for 1<j<N(m). (12)
j—1 m—2—j

Taking the last n columns of the GS image of the above yields L*-matrices of Type III.

It is easy the generalise Type III L¥-matrices further to allow for more free parameters. For example,
the GS pre-image columns could be defined as

V= 0,...,0,k1,—k2,k‘2 —kl,O,...,O]’ for 1 S]S N(m) (13)
j—1 m—2—j

This would then produce a matrix LEF2 which solves (3) with the flexibility of two parameters.
Continuing in this way, an abundance of interesting solutions can be found. Although some will be
rather complex, every matrix constructed in this way must satisfy the ECC.

1.2 Parametric L-matrices

In this section we construct linear independent sets in H from elliptical probability distributions.
This method can be interpreted as Monte Carlo simulation, adjusted to achieve exact covariance.
In this approach, the columns of our GS pre-image matrix V,,, = (v1,...,Vv,) are random vectors.
We assume that these vectors are drawn from a zero mean elliptical multivariate distribution, whose
marginal components are independent. That is,

an ~ D(Ona In)a

where D is an elliptical distribution. Of course, V., is just m random observations on the n random
variables, whose population distribution is D. So in particular, the sample mean of our observations
will only satisfy the approximation

VTL ~ OTL7
and hence the columns of V,,,, will not necessarily be members of H. However, we can simply re-define
Vi < Vi — 1m‘7;—u

so that the column vectors of V,,,, do indeed lie in H.? We would like to transform these vectors into
an orthonormal set using the Gram-Schmidt procedure. However we can only do this if our columns
vectors are linear independent. Once again, although we assumed independence for our multivariate
distribution D, the sample covariance matrix of V,,,, will only satisfy the approximation

m V! Vo = 1, (14)

9Other authors, such as Meucci (2009), augment their samples using negative complements in order to achieve a zero
mean sample.

Copyright © 2009 Alezander and Ledermann
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We now normalise the columns of V,,,, by re-defining!®
vy vy vy

Since the vectors of V,,,, now have unit length, approximation (14) can be written more explicitly as
V! Von =1, + Py, (15)

where € is a small number, sometimes written as ¢ < 1, and P,, is a square matrix with zeros on the

diagonal. Due to sampling error, € # 0 almost always.

Recall that our aim is to show that the columns of V,,,, are linearly independent. We first note that a
key result in linear algebra states that the columns of a matrix, V,,,, are linearly independent if and
only if its corresponding Gramian matrix, Gy, is non-singular, where

Gy =V, Vo

Therefore for the classification of linear independence we must calculate the determinant of the matrix
Gy. Now using (15), and a perturbation result for determinants, we know that

det(Gy) = det(I, + €Py,) = 1 + tr(Py)e + o(e?)

Since tr(P,) = 0 we have that det(Gy) = 1+ o(e€?) # 0. Therefore the n column vectors of the
matrix V,,, = (v1,...,v,) are linearly independent and the Gram-Schmidt algorithm may be applied
to them. If we let LY = GS(V,,,), then we have yet another matrix which fulfils the ECC.

If we use this matrix for exact moment simulation, assuming a target mean of 0,, and covariance matrix
I,,, then from (2) our sample will simply be

Xy = m2LE
Since LY . = GS(Vn — 1,,V),) we have
Vin — 1 v, = LD R, (16)

where R, is an upper (or right) triangular matrix.!! Now, from the approximation (14) and the

orthogonality of LZ =~ we have R/, R,, ~ mI,. But I, is diagonal so R/, R,, ~ R,R/,. We require the

following lemma:

Lemma 1.1. Suppose that U, is an upper triangular matriz satisfying U, U, = U, U.. Then U, is
a diagonal matriz. In particular, if U, is orthogonal, then U, = diag(£1,...,+1).

Proof. See Prasolov (1994), chapter III, section 17, for example. O

Using an approximate form of lemma 1.1 we deduce that R, ~ diag(+y/m,...,++/m). Now, by
inspecting the Gram-Schmidt procedure further, we find that the diagonal elements of R,, must be
positive. Hence, R,, ~ m!/2I,, and, after inverting (16), we arrive at the approximation

~ =/

Hence X, is in fact very close to our original sample V,,,,. This shows that parametric L-matrices
generate simulations that are a small adjustment to standard parametric Monte Carlo simulations.

1ONormalisation at this step is applied to aid the argument of linear independence. In practise, it is superfluous at this
point, since the Gram-Schmidt algorithm, which is employed later, includes a normalisation.
"'This is an example of a Thin QR Decomposition, see Golub and Van Loan (1996).

Copyright © 2009 Alezander and Ledermann



ICMA Centre Discussion Papers in Finance DP 2009-09 8

1.3 Data-Specific L-matrices

We now introduce a method for exact covariance simulation when the covariance matrix is estimated
from existing data. It is applicable to both cross-section and time-series data, but for the sake of
exposition we shall assume that we observe a multivariate time series on n random variables. The
advantage of this approach is that the properties of an exact moment simulation will closely resemble
the corresponding properties of the original sample, if one exists.

Suppose that we have a sample matrix Y,,, representing m historical observations on n random
variables. The columns of this matrix need not have zero sample mean, so define

an = Ymn - 1m}_’;—u

whose columns will lie in H. We assume the columns of V,,, are linearly independent.'? Clearly,
LY = GS(V.,) satisfies the ECC. Now, given a target mean p,, and covariance matrix S,,, we use
this data-specific solution to form an exact sample

Xmn = ml/ZLﬁnAn + ]-mﬂ;—u

where Al A,, =S,,.

It is straightforward to show that X,,, = Y;u, when the target moments pu, and S,, are chosen to
match the moments of the existing data Y,,,."> However one may generate exact moment simulated
samples that differ from the existing sample by targeting moments that are different from the sample
moments. In this way one can “stress test” a covariance matrix, while keeping other, less quantifiable
characteristics of the existing data unchanged.

1.4 Hybrid L-matrices
A data-specific solution L2 can be combined with deterministic and/or parametric L-matrices to
produce “hybrid” ECC solutions which reflect both existing and hypothetical properties of the data.
Of course, in situations where little or no existing data are available only deterministic and parametric
L-matrices are applicable. For instance, we may construct a hybrid ECC solution which utilises both
the deterministic and parametric L-matrix methodologies, using the following lemma.

Lemma 1.2. Suppose we have k rectangular matrices QL. ..., QF € R™ satisfying

Q%) (@) = 6L, forall 1<i,j<Fk,

mn mn

where d;; is the Kronecker delta function. Then, given k non-zero scalars aq,..., o € R, the linear

combination of matrices
k
2
Smn = Z Oéi
i=1

1
2 k

Z Qg ann
i=1

18 a rectangular orthogonal matriz.

Let L,,, be a deterministic L*-matrix, which is constructed using one of the techniques from section
1.1. Also let V,,;,, be a random sample from an elliptical distribution D(0,,,I,,). Assuming that V,,,

121f any variable in the system is a linear combination of other variables then it is not necessary to simulate this
variable separately, and it should be removed.
13This assumes that the covariance matrix of Y, is positive definite.

Copyright © 2009 Alezander and Ledermann
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has been adjusted to have a zero sample mean, we construct the augmented matrix
Am,Qn = (Lmnu an)

We then apply the Gram-Schmidt procedure, setting Am’gn = GS(A, 2n) where

~

Am,Qn = (ffmnu an)

Because of the iterative nature of the Gram-Schmidt algorithm, and since Ly, is already orthogonal,
we know that L,, = Lj,,. Furthermore, the matrix V,,, will not only be orthogonal but will also
satisfy L., Vinun = 0. Therefore we can apply Lemma 1.2, so that for any e the matrix

Lrljm = \/% (Lmn + 6an> (17)
will be rectangular orthogonal. Since the columns of A, 9, lie in 'H, the subspace preserving property
of the Gram-Schmidt process ensures that the columns of Am,gn are also in H. Therefore Lﬁm defined
by (17) is another solution to the ECC. Provided that € is small this hybrid solution will maintain
some of the deterministic characteristics of L,,,. It is therefore a type of perturbation solution, since
samples simulated using (17) will combine deterministic structures with random “noise” effects.

2 ROM SIMULATION

The motivation for the research presented in this section is that, if L,,,, satisfies the ECC, then L,,, R,
satisfies the same ECC for any square orthogonal matrix R,,. Also, if Q,, is a permutation matrix then
QL also solves the ECC, since 1/,Q,, = 1/. Together, these two observations lay the foundation
for a new approach to generating infinitely many random samples that have identical sample mean
vectors and covariance matrices. Each random sample is generated as

where L, is an L-matrix, Q,, is a random permutation matrix, R,, is any random orthogonal matrix,
W is the target mean vector and A} A, = S,,, where S,, is the target covariance matrix. There are
many different of types of L-matrices, as we have shown in the previous section, and there are many
different classes of orthogonal matrices R,, that could be used in (18). Thus, (18) provides a novel and
very flexible method for generating random samples. Any deterministic, parametric or data-specific
L-matrix of type I, II or III may be applied and at least to begin with, for simplicity, we shall work
with the Ledermann matrix (8), since it is available in an elegant closed form. The focus of this section
is to examine how some specific random orthogonal matrices effect the skewness, kurtosis and other
characteristics of the random variables being simulated.

2.1 Skewness and Kurtosis

There are many ways to measure the skewness and kurtosis, even of a univariate sample, as discussed
by Cramer (1946). For our applications we require a statistic for the skewness and kurtosis of a
multivariate sample, and there are also many different definitions of multivariate skewness and kurtosis,
see Kollo (2008). In the following we employ the definitions introduced by Mardia (1970). However, as
highlighted by Gutjahr et al. (1999), samples from different distributions may have identical Mardia
characteristics. Even so, we choose to work with Mardia’s multivariate moments since, as scalar-valued
measurements, they are highly tractable.

Copyright © 2009 Alezander and Ledermann
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Given a random sample X,,, = (x},...,x},), written using row vector notation where x; = (41, ..., Zin)
for 1 < i < 'm, Mardia (1970) proposes the following measures for the multivariate skewness and kur-
tosis of X, n:

TM(an) = m_2 Z Z {(Xz - X)S;(l(xj - )—()/}3

i=1 j=1

ot Xo) = m Y {6~ 087 (xi — %)’}
=1

where Sx is the n X n sample covariance matrix of X,,,, and X is the row vector of sample means.
Mardia (1970) proves that these measures are invariant under non-singular, affine transformations.
That is, Ta7(Ymn) = 7 (X)) and &3 (Yomn) = 3 (Xinn ), whenever

Ymn = anBnn + 1mbn (19)

where B,,,, is any invertible matrix and b,, is any row vector. This invariance property is of particular
significance in ROM simulation, since the transformation (18) is a (random) non-singular affine trans-
formation of the L-matrix L,,,. Therefore 73;(Ly,,) and kpr(Lyn,) will determine the multivariate
skewness and kurtosis of all ROM simulated samples X,,,,.

Proposition 2.1. Let L,,,, be the Ledermann matriz, defined by (8). Then

(L) = n[(m=3)+ (m —n) 7| = f(m,n) (20)
kv (Lin) = n[(m —2)+ (m — n)*l] =:g(m,n) (21)
Proof. See section A.1 of the appendix. O

By comparing equations (21) and (20) we see that a very simple relationship links the multivariate
kurtosis and multivariate skewness of the Ledermann matrix. That is, for m > n, we have

KM(Lmn) - TM(Lmn) =n.

The expected skewness and kurtosis of MVN variables are also closely linked, since their ratio is a
simple function of n and m. See Proposition 2.3 below.

We now study the asymptotic behaviour of the Mardia skewness and kurtosis derived from large
samples that are generated using Ledermann matrices. For a fixed n and a comparatively large m,
written m >> n, we have that (m —n)~! ~ 0. Hence we can approximate (20) and (21) as

f(m,n) ~n(m —3), g(m,n) = n(m — 2) for  m>n. (22)

So the functions g(m,n) and f(m,n) are asymptotically linear, with gradient n, and will become
unbounded as m becomes large. It is also true that if ng > ny then f(m,ng2) > f(m,n;) for all
m > max{n,no} and that f(m,ng) will tend to infinity faster than f(m,n;), as m tends to infinity,
and similarly for g(m,n).

Note that if we use a Ledermann matrix in ROM simulation then we can target either skewness
or kurtosis but not both, by choosing an appropriate value m, since the number of variables n is
typically fixed. To target both moments we shall need to use a generalised L-matrix, with an additional
parameter k. Before we discuss this we remark that higher moments targeting inadvertently places a
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constraint on the size m of a single simulation. In many cases, the value of m which achieves a desired
skewness or kurtosis level will be much smaller than the number of observations required for a standard
simulation problem. The obvious solution is to repeat simulations of size m until enough observations
have been generated, and we refer to this technique as sample concatenation. Each small simulation
will have the desired mean, covariance matrix and multivariate skewness or kurtosis but what can we
say about the first four multivariate moments of the concatenated sample?

Definition 2.1. Suppose that we have two different samples X, » = (x},....%},) and Y,,, , =
(¥4,.-.,y.,), on the same n random variables. We define their multivariate co-skewness as
mx my
TC(XmX7n7YmY7 ) (mX + mY - ZZ {2 - X SX + SY) ( yi— y)/}gv (23)
i=1 j=1

where X, y and Sx, Sy are the sample means and covariance matrices of X, n, Yy n respectively.
In can be shown that 7¢ is invariant under certain non-singular affine transformations. See appendix

A2,

Proposition 2.2. Consider v random samples X, n, ..., Xy, n, each with sample mean p, and

sample covariance matriz Sy,. Set m =Y my and define Xy = (X7, -, X0, ) . Then
m_lllmen = p;z and m_IX;men =S,,

with the multivariate skewness and kurtosis satisfying,

T T
7 Kn) = m 2> mias (X ) +2m72 ) (mgy 4+ m0)* 70 (Xing ns Xonyn),
k=1 k<l

,
kv (Xpn) = m_IkamM(kam).
k=1

Proof. See appendix A.3. O

The first half of Proposition 2.2 states that sample means and covariance matrices are preserved
under sample concatenation, provided that the smaller samples that build the concatenation have
identical sample means and covariances. In particular, a large exact moment simulation, which targets
a covariance matrix S,,, can be constructed by concatenating many smaller exact moment simulations,
each with the same target covariance matrix S,,.

However, to draw similar conclusions from the second half of Proposition 2.2, regarding concatenated
skewness and kurtosis, we must be more restrictive. Firstly, for kurtosis to be preserved under con-
catenation, our small samples must have equal size and have identical kurtosis. In a ROM simulation,
this amounts to using the same L-matrix for each small simulation. That is,

!/
Xy = Loty + V7 (Lo RD) - (LR ) A (24)
So even for different orthogonal matrices Rg), . ,Rg) our large sample X, , will have mean py,,

covariance matrix A/ A, = S,, and kurtosis kK (Xrmn) = £ar(Limn), where ka7 (Ly, ) is calibrated
via m.

The behaviour of multivariate skewness is more complex, due to the presence of co-skewness terms.
Noting that

TC(an, an) = TM(an)/47
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Proposition 2.2 informs us that to ensure that 7a7(Xym ) = Tar(Limn) we must concatenate ROM
simulations of the form

Xrmn = 1rmu; + \/rm(L;m, - ,L;m)’RnAn. (25)
——— —
r times

Since (25) is a special case of (24), X,,, will still have sample mean p,, and covariance matrix S,,,
with multivariate kurtosis satisfying &7 (Xymn) = £ar (Limn)-

We have defined a method for generating large samples of size rm, with exact target first and second
moments and third and fourth moments that are determined by the skewness and kurtosis of the L-
matrix used in (25). With n fixed, the skewness and kurtosis of a matrix L¥  is a function of m and
k. In general, these functions are not available in closed form, so a numerical optimisation must be
applied to calibrate the values of m and k£ which achieve the target skewness and kurtosis. With these
moment targeted, a simulation of the form (25) ensures that these moments are preserved in large
simulations.

We now study the skewness and kurtosis of ROM simulations which employ parametric L-matrices, as
defined in section 1.2. Recall that a parametric L-matrix L  is a Gram-Schmidt orthogonalisation of
a random sample V,,,,, drawn from an elliptic multivariate distribution. One can show this orthogo-
nalisation process in an invertible affine transformation and hence the skewness and kurtosis of L |
will equal the skewness and kurtosis of V,,,,,. Unlike the deterministic case, 7as(LE ) and r(LE))
depend on a random sample V,,,, and will therefore be random quantities themselves. However, if
Viun is drawn from a multivariate normal distribution, then we can use the following result of Mardia
(1970), to find the expected values of 7y (LZ ) and xp (LE)).

Proposition 2.3. Let V,,, be a random sample drawn from any multivariate normal distribution
N(prn,Xy). Then

Eltv(Vin)] = n(n+1)(n+ 2)m71,
Elkpm(Vin)] = n(n+2)(m —1)(m+1)"1.

Therefore for large m the skewness and kurtosis of a parametric L-matrix generated from a multivariate
normal distribution will be:

E[mn (L) = 0,
n(n + 2).

=
=
=
-
™
l

Hence, the skewness and kurtosis in a parametric ROM simulation is restricted by the underlying
distribution, and these moments are also prone to sampling error.

By contrast, when using deterministic L-matrices in ROM simulations one can target a range of different
skewness and kurtosis levels. There will also be no sampling error since the deterministic values
T (L) and Kps (L) fix the multivariate skewness and kurtosis of all ROM simulated samples.
One can also concatenate deterministic L-matrix ROM simulations and parametric L-matrix ROM
simulations and the moments of this concatenated sample may be estimated using Proposition 2.2.

Example 1. Concatenating deterministic and parametric ROM simulations. Using the same target
mean and covariance matrix, suppose we use ROM simulation to generate two samples X,,, , and
Xns,m- The first sample is simulated from the Ledermann matrix and the second sample is a simulated
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from a normally distributed parametric L-matrix. Assuming that m; and msy are large, the multivariate
kurtosis of the concatenated sample X, = (X7, ,, X7,,, ), has approximate expected value

Elkar(Xonn)] = (my +ma)~t {min(my — 2) + man(n +2)}.

Concatenation is not the only way of combining deterministic and parametric ROM simulations. One
can also use perturbed L-matrices, as defined in (17).

Example 2. Kurtosis of perturbed L-matrices. Let Lﬁm be a e-perturbation of the deterministic L-
matrix L,,,. Then, provided that € is small, it is straightforward to derive the approximation

KM (Lmn)

k(L) = RETEER

Finally, we note that the skewness and kurtosis of data-specific L-matrices are completely determined
by the underlying data. So, similar to parametric ROM simulations, the higher moments of data specific
ROM simulations are limited. However, if desired, one can affect these limits while maintaining some
characteristics of the existing data by using a concatenation or perturbation approach.

2.2 Orthogonal Matrices and Sample Characteristics

In section 2.1 we used the multivariate skewness and kurtosis measures of Mardia (1970) to quantify
how different L-matrices affect ROM simulations. We now turn our attention to the random square
orthogonal matrices which pre- or post-multiply a given L-matrix during a ROM simulation. Geomet-
rically, square orthogonal matrices fall into three categories: permutations, reflections and rotations.
Methods for generating such matrices are numerous, particularly in the latter case. We choose to
focus on rotation matrices which appear in upper Hessenberg form. However techniques involving
skew-symmetric matrices and Cayley (1846) transforms, or the matrix exponential function, may also
be used to generate random, rotation matrices, see Courant and Hilbert (1953). For the sake of clarity
and because this matrix has a relatively simple explicit form, L,,, will again denote the Ledermann
matrix defined by (8), unless otherwise specified. Continuing the notation of (18), we shall now in-
vestigate how random permutation, reflection and other random orthogonal matrices can alter the
characteristics of multivariate time series ROM simulations.

Permutation matrices are the primary means of controlling the time ordering of observations in mul-
tivariate time series ROM simulation. Such a matrix, denoted by Q,,, is a square matrix of order
m, which has exactly one entry 1 in every row and every column, and has entries 0 everywhere else.
Pre-multiplying any m x n matrix A,,, with Q,, permutes the rows of A,,,. For example,

010 a1 a2 a1  a22
QnA,=10 0 1 a1 az | = a3 az
100 as1  as2 ail a12

To see how permutation matrices can affect ROM simulations we first recall the structure of Lj,,,
inferred from (9). From this we see that the largest values in L,,, appear on the diagonal of it’s
lowest n x n block. Therefore, when the Ledermann matrix is applied to ROM simulations without
permutations, large values only appear at the end of the simulated sample paths. However, by including
a random permutation matrix Q,, in (18) we can ensure that these large values are randomly positioned
throughout the whole sample path. Furthermore, by restricting the permutation matrix, and hence
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controlling the rows of the L-matrix that are fixed and those that are randomly permuted, we can
influence the random times at which these large values appear.

In times series analysis one regularly observes areas of large changes (positive or negative), followed by
areas of small changes. This phenomenon is referred to as volatility clustering.'* Cyclic permutation
matrices enable us to produce ROM samples which exhibit this volatility clustering feature. When
a random cyclic permutation matrix pre-multiplies a matrix the rows of the matrix are all offset
downwards by means of a random shift, thus maintaining their ordering. By using random cyclic
permutations in ROM simulation the large values of the Ledermann matrix can be made to appear
together in a random cluster. Alternatively, to remove the volatility clustering that is implicit in the
L-matrix, a general random permutation matrix can be used.

To illustrate these effects, figure 1 exhibits plots for three different simulated sample paths. Each
simulation has the form (18), with R,, fixed as the identity. However, in the top path Q,, is also
the identity, in the middle path Q,, is a random cyclic permutation and in the bottom path Q,, is a
general random permutation matrix.

1

05— -
o
-0.5— —

FIGURE 1: Three plots demonstrating how permutation matrices affect volatility clustering in sample
paths simulated from the Ledermann matriz

The assertion in (18) that Q, must be a permutation matrix, while R,, can be any orthogonal matrix,
is made for the following reason. Let X,,, be a ROM simulated sample, generated from L,y,,. In order
for the sample mean of X,,, to be u,, we must have that

1, QmLymRyA, =0, (26)

Now, since Ly, satisfies the ECC, given by (3), we know that 1/ L,,, = 0,,. If Q,, is a permutation
matrix then 1/, Q,, = 1/, and (26) will hold regardless of the form of R,,. However, this may not be
the case if Q,, is not a permutation matrix. So now, assuming that Q,, is a permutation matrix, we
discuss possible choices for the random orthogonal matrix R,,.

Although we have examined the multivariate kurtosis of ROM simulations, as defined by Mardia (1970),
we have not yet discussed marginal kurtosis, that is, the kurtosis of the individual variables within the
simulation. Since permutation matrices only re-order our samples, we must find orthogonal matrices
which can affect the magnitude of our simulated observations. An wupper Hessenberg matrix H,, of

1411 finance, these volatility clusters are often apparent in historical returns series, see Mandelbrot et al. (1997).
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degree n, is a matrix with zero entries below the first subdiagonal. Berry et al. (1995), Gemignani
(2005) and many other authors show that we can construct orthogonal upper Hessenberg matrices
using Givens rotation matrices. A Givens rotation G;(6;) is the identity matrix except for the 2 x 2

Gj[j,j+1;j,j+1]—( cos(0y)  sin(0;) ) (27)

principal submatrix

—sin(0;) cos(0;)

Orthogonal upper Hessenberg matrices H,, can be constructed as a product of n — 1 Givens rotations
via

H, = G1(01)G2(65) ... Gp_1(0n_1). (28)

In order to produce random orthogonal upper Hessenberg matrices we allow the arguments of (28)
to be stochastic, choosing 6; in the interval [0,27) for 1 < j < n — 1 at random.'An example of a
low-dimensional Hessenberg matrix is given below, where we simplify notation by setting ¢; = cos(6;)
and s; = sin(6;) for 1 <i < 3.

cgc —s1 0 0 1 0 0 O 10 0 O
H4 _ 51 C1 0 0 0 Coy —S89 0 0 1 0 0
0 0 1 0 0 S92 Co 0 0 0 c3 —S83
0 0 01 0 0 0 1 0 0 s3 «c3
1 —S51C2 5182C3 —818253
_ §1 €€ —C182C3 (15283
- 0 59 CoC3 —C9283
0 0 S3 C3

In ROM simulation we can use products of random upper Hessenberg matrices to form the orthogonal
matrix R,,, which post-multiplies the L-matrix appearing in (18). Recall that the magnitudes of the
elements of an L-matrix depend on its degree, which depends on the number of observations m we
want to simulate. When m is large, the large elements on the lowest diagonal of the L-matrix create
a ‘pulse’, where clusters of large positive and negative observations are interspersed with ‘flat’ periods
of less activity in the sample (see the third plot in figure 1 for example). Permutation matrices only
control the timing of such pulses, but we may also like to affect their magnitude and have the potential
to eliminate the flat periods. Crucially, unlike permutation matrices, post-multiplying an L-matrix
with many random Hessenberg matrices diminishes and dissipates the effect of the large elements,
randomly throughout the sample. Figure 2 shows how the three samples paths shown in figure 1 are
affected by post-multiplication with random Hessenberg matrices.

The number of Hessenberg matrices used in the orthogonal product affects the marginal kurtosis of
the random variables. The bottom n x n block of an L-matrix L,,, is upper triangular. Furthermore,
the number of non-zero elements in each column of L,,, increases by one every time we post-multiply
L,.» by a random upper Hessenberg matrix. Therefore, to remove all zeros from L,,,, we must include
the product of at least n — 1 upper Hessenberg matrices in the random orthogonal matrix R,, of (18).

Having looked at multivariate skewness in section 2.1, we now show how to induce some degree of
positive or negative marginal skewness into ROM simulations. For this we will use an orthogonal
matrix B,, of the form

B, :diag{(—l)dl,...,(—l)dm}, (29)

5Random orthogonal H,, can be generated quickly in MatLab using the function gallery (’randhess’,n), see Higham
(1996).
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FIGURE 2: Three plots demonstrating how upper Hessenberg and permutation matrices affect the char-
acteristics of sample paths simulated from the Ledermann matriz

where each index d; is either zero or one. When the indices are realisations of Bernoulli variables, we
call such a matrix a random sign matrix. It will multiply the rows of any matrix it pre-multiplies by
plus or minus one.

Suppose R, is chosen in (18) to be a product of random upper Hessenberg matrices. This matrix
pre-multiplies a matrix A,,, which realises the target covariance matrix S,,. We write this product as

T, =R,A,.

Now T, will be a random matrix containing both positive and negative entries. Since T, post-
multiplies Ly, in (18), large positive elements of T,, will combine with the large negative diagonal
elements of the L-matrix to form large negative observations in our simulated sample matrix X,,,.
Similarly, large negative elements of T, cause large positive observations in the sample. However,
pre-multiplying T, by a random sign matrix B,, affects these large negative or positive values.'6
Without this extra pre-multiplication, large positive and negative elements appear equally often in
T, resulting in a simulated sample which is approximately symmetric. A judicious choice for the
Bernoulli probabilities can ensure that the product B,,T,, has more large negative elements then large
positive elements (or vice versa). Thus positive (or negative) marginal skewness is introduced into
ROM simulated samples.'”

There are many ways to influence skewness by altering the Bernoulli probabilities. For instance, letting
t; denote the i-th row of T,,,, we can set

minj {tij : tz‘j S tz‘}
minm {tij : tij S Tmn}

pi = (30)

16 Algebraically, we are simply including a sign matrix into the Hessenberg product which comprises R.,.

171f there are more large positive elements in B,, Ty, than large negative elements, the samples will have negative
skewness. If there are more large negative elements in B,,T,,, than large positive elements, the samples will have
positive skewness.
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Then, randomly selecting r € (0,1), assign:

1, ifr<p .
N p— < < .
di { 0, otherwise for1<i<m

If there is a large negative entry in row t; then the Bernoulli probability p; will be close to one.
Therefore the index d; is more likely to take the value 1 and hence row t; will change sign when T,,,
is pre-multiplied by B,,. Thus this particular Bernoulli sign matrix converts large negative elements of
T, to large positive elements. As a result negative marginal skewness is introduced into simulations.
Positive marginal skewness can be introduced by defining the p; using maxima rather than minima in
(30).

This section has shown how different classes of orthogonal matrices affect the characteristics of ROM
simulated samples in very different ways. Although we have focussed on the Ledermann matrix, the
above techniques can also be applied to ROM simulations involving other L-matrices. Investigating
these more general ROM simulations, and exploring further classes of orthogonal matrices, is left to
future research.

3 APPLICATION TO VALUE-AT-RISK

ROM simulation has applications to virtually any problem that may be resolved using Monte Carlo
simulation. Generally, such problems require the forecasting of future multivariate distributions, using
historical or scenario sample data. In finance these problems include the pricing and hedging of
complex options, any decision problem based on a future distribution, such as portfolio optimisation,
and financial risk assessment where, since its introduction during the 1990’s, the value-at-risk (VaR)
of a portfolio has become the industry benchmark. This section demonstrates how ROM simulation
may be applied to VaR estimation.

The portfolio VaR is the loss that would be equalled or exceeded, with a given probability «, over a
certain period of time (which is called the ‘risk horizon’) if the portfolio is left un-managed during this
interval. Measured as a percentage of the current portfolio value, the 100a% h-day VaR is minus the
a-quantile of the distribution of the portfolio’s h-day returns, in present value terms. For example, if
the h-day excess returns on the portfolio’s risk factors have a multivariate normal distribution and the
portfolio return is a linear function of it’s risk factor returns, the 100a% h-day VaR, expressed as a
percentage of the current portfolio value is:'®

VaR(a,h) = @711 — a)ay, (31)

where ®71(1 — @) is the lower a-quantile of a standard normal distribution and o, is the standard
deviation of the normal h-day portfolio returns distribution.

However, a multivariate normal assumption is not usually appropriate and many portfolios have returns
that are non-linear functions of the risk factor returns, so it is very common to use simulation to
estimate portfolio VaR. Monte Carlo simulation assumes a parametric multivariate risk factor returns
distribution and thus generates i.i.d. simulations on each risk factor. To each simulation we then apply
the portfolio mapping, which gives the portfolio value as a function of the returns on its risk factors,
to obtain a simulated h-day return. Repeating the simulations many times generates a distribution
for the portfolio’s h-day return and the Monte Carlo VaR, expressed as a percentage of the portfolio

18This formula applies if the portfolio is expected to return the discount rate over the risk horizon. Otherwise, a small
mean adjustment applies. See Alexander (2008) Section IV.1.5.
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value, is estimated as minus the a-quantile of this distribution. However, in addition to the sampling
error described in the introduction, the parametric assumptions underlying Monte Carlo simulation
pose a significant source of model risk. That is, different distributional assumptions typically give rise
to quite different VaR estimates. It is well-known that the empirical characteristics of financial asset
returns are often misrepresented by multivariate normal or Student-¢ distributions, yet it is usually
not clear what distributional assumption is most appropriate.

For these reasons historical simulation is by far the most common VaR resolution method used in
the finance industry. Standard historical simulation uses a large number of historical returns on the
portfolio to build an empirical distribution and hence estimate the VaR from a lower quantile. An
advantage is that it does not make parametric assumptions regarding the risk factor returns; a major
disadvantage is data limitation. A long historical sample may be difficult to obtain for all risk factors,
or may be thought to be inappropriate since market behaviour has changed considerably in recent
years. Thus the empirical distribution is typically built using only 3 - 5 years of daily returns, i.e. a
sample size of around 750 - 1,250 data points, so the accuracy of the quantile estimator is severely
impaired.!” Moreover, due to lack of sufficient weekly or monthly historical data, 1-day historical
VaR estimates are usually scaled up to h-day estimates for A~ > 1 and for this crude assumptions are
commonly made, such as a “square-root-of-time” scaling rule. Although square-root scaling is very
common, it not justified because it requires the portfolio returns to be independent and identically
normally distributed. Hence the scaling of historical VaR to risk horizons longer than 1 day is a
significant source of model risk, especially in options portfolios.??

3.1 ROM VaR Methodology

Using ROM simulation to estimate portfolio value-at-risk can circumvent the disadvantages of existing
VaR methodologies summarized above. Suppose that we have a portfolio on n assets. Similar to
elliptical Monte Carlo VaR, ROM VaR starts by targeting a mean vector u® and covariance matrix
S” for the h-day returns on risk factors under examination. We then simulate a sample X! = using a
ROM simulation of the form (18). This matrix X" represents m observations for the h-day returns on
the portfolio’s n risk factors. Since ROM simulation is an exact covariance simulation technique, the
sample mean and covariance matrix of the simulated risk factor returns X’ will match the targets u”
and S! exactly. Assuming a portfolio mapping, 7 : R® — R, we construct a vector of h-day portfolio

returns’ Y?@”L = (ylu s 7ym)/, deﬁning
yi =7(x;) for 1<i<m

where x; denotes the i-th row of X?,m So given the a-quantile estimator ¢, : R™ — R, we calculate
ROM VaR as
VaR(a, h) = —ga(Yh): (32)

Typically the covariance matrix S” will have a large influence on ROM VaR.?! But VaR, being a lower
quantile of the portfolio returns distribution, is also much affected by the skewness and kurtosis of the
risk factor returns, and this is one reason why the (non-parametric) historical VaR model is favoured
by many practitioners. However, the limitation of using only one realistion of the risk factors - i.e. the
one that was observed historically - is that it assumes that history will repeat itself, in the sense that

19Some practitioners bootstrap the sample, i.e. they re-sample randomly many times from the same set of returns,
but this only serves to make the tails of the distribution blunt, as no new information is added. See Alexander (2008)
Section IV.3.2

20See Alexander (2008) Section TV.6.2.

21 This is similar to normal VaR, and to Student-t VaR where S” affects the VaR through the portfolio variance oy,.
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the risk factor returns distribution over the risk horizon will be identical to their distribution in the
historical sample.

With ROM VaR we can simulate a very large number of realisations for the risk factor returns, each
being consistent with the sample moments that were observed in the historical sample. Alternatively,
when stress testing a portfolio for extreme realisations of its risk factors, we can target other sample
moments that are consistent with periods of financial crisis. As we saw in sections 1 and 2, different
L-matrices and different orthogonal matrices will affect the characteristics of a ROM simulation and in
particular, the effect of skewness and kurtosis can be incorporated into ROM VaR through a judicious
choice of these matrices.??

ROM simulation has numerous applications to VaR estimation. For example, in stress-testing portfolios
arisk manager would hypothesise values for sample moments that are believed to reflect stressful market
conditions, apply ROM simulations to generate samples that have exactly these moments, and compute
the stress-VaR as a lower quantile of the simulated distribution. In general, ROM VaR can be thought
of as an extension of historical VaR, or a form of scenario VaR, where there is no need for the crude
time-scaling approximations that are normally used because definition (32) does not explicitly depend
on h; the risk horizon is implicit within each of the ROM simulations (18).

Suppose a portfolio manager holds a large portfolio of n assets and would like to gauge his risk exposure
by calculating VaR. The only information available is an historical sample on the portfolio risk factor
returns, which we denote H,,,. Empirically he discovers that the historical data does not strongly
resemble any elliptical multivariate distribution. In particular, the multivariate historical kurtosis is
much larger than the kurtosis of a multivariate normal distribution. The length m of the historical
data is typically too small to be confident in the accuracy of historical quantile estimates, especially for
small a. Anyway, the manager does not believe that history will repeat itself exactly, only that the risk
factor’s sample moments are related to those observed in the historical sample. He is not performing
a stress test, so he will use ROM simulations that target exactly the historical sample means and
covariance matrix of the risk factor returns. However, given the recent crisis in the banking industry,
investors are now seeking quite conservative estimates of potential losses, and want to be careful to
incorporate large outliers into the VaR simulations. For this reason he would like the multivariate
kurtosis of the simulated weekly returns to be 1008% greater than the historical kurtosis level.

Given the scenario painted above, we choose to adopt a technique for ROM VaR where the L-matrix of
our simulations is chosen to reflect the manager’s views on kurtosis, while preserving other properties
of the historical data. Starting with the historical sample H,,,, we calculate the historical mean vector
W, the historical covariance matrix S,,, and the historical multivariate kurtosis k = kp;(Hy,y) of the
weekly returns. Asin section 1.3, we orthogonalise our historical data sample to produce a data-specific
L-matrix LY = GS(H,,,). We also construct a deterministic L-matrix, Ly, of the form (8), where
the integer parameter p will be determined by our kurtosis target.

First, targeting the historical mean vector and covariance matrix, the ROM simulated weekly risk

factor returns take the form
1,0 m LY
Xopipn = |+ v L A, (33)
+p, ,
1,u,, VP Lpn Ry,

where R,, is a product of random orthogonal matrices and A/ A,, = S,. Within R,, we include
n — 1 random upper Hessenberg matrices and a random sign matrix, which induces negative marginal

22This contrasts with Monte Carlo methods, where parametric assumptions place strong restriction on the higher
moments.
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skewness, to convey the specific concern for large negative weekly returns. By applying proposition
2.2 to the concatenated sample X,, 4, », and recalling the invariance property of Mardia’s measures,
we deduce that

(m+p)em (Xmpn) = m“M(Lan) + prar(Lpn)-

The kurtosis of L2, by definition, equals the historical kurtosis . But we would like the kurtosis of our
simulated sample to be 1003 percent more than the historical value. That is, £ (Xp4pn) = (14 5)k.
This will be achieved through an appropriate choice of p. Using approximation (22) for s (Lyy), we
find that p must satisfy:

(m+p)(1+ p)k = mk + pn(p — 2). (34)

Provided that 3 is positive, this quadratic equation always yields a positive solution p*. Taking the
closest integer part of this solution, we set p = int(p™*), and use L, for our ROM simulations (33).

Now the portfolio risk manager knows that the ROM VaR simulations will resemble historical data
through LL | while representing his views on kurtosis via Ly,. Targeting kurtosis in this way would
not be possible with parametric VaR. And the presence of random orthogonal matrices in (33) ensures
that we are not simply relying on our single historical sample, as we are forced to do with historical

VaR.

3.2 Empirical Results

In this section we compare four VaR models. The first is the ROM VaR method described above, which
utilises deterministic and historical L-matrices. The second and third are parametric Monte Carlo VaR,
based on mutlivariate normal and Student-t distributions for the risk factors. Since ROM VaR is based
on an exact covariance simulation method, we will adjust our Monte Carlo VaR simulations to achieve
this same precision. This is equivalent to using parametric L-matrices in (18), without any random
orthogonal matrices. Our final method is standard historical VaR, which will form the benchmark of
our investigation.

In order to test the accuracy of the different VaR methods we assume that the portfolio risk manager
holds a portfolio of 10 MSCI World country indices.?*For this portfolio we will calculate 1-day and 5-day
(or 1-week) VaRs at 0.1%, 1% and 5% levels.2*Our historical data sample spans the period January
1995 to July 2009 (3789 days, 757 weeks). Starting in January 2000 we will use the first 5 years
(1300 days, 260 weeks) of the historical sample to calculate historical means, covariances and higher
moments of our weekly risk factor returns. We assume that we have an equally weighted portfolio,
which corresponds to the portfolio mapping:

T (21, xn) — (1 + -+ xp) /0

Assuming that 3 = 0.1 the kurtosis of future returns will be 10% more than that of the historical
returns, so we solve (34) for p and use ROM simulations of the form (33) to generate 10,000 returns
on each of our 10 risk factors.?> The mean and covariance matrix of our simulated sample will match
the corresponding historical moments exactly. We then use our equally weighted portfolio mapping 7
to form 10,000 observations for the total portfolio return and then apply the quantile function, as in
(32), to obtain the ROM VaR.

24We include indices for the United States, United Kingdom, Japan, Germany, France, India, China, Switzerland,
South Africa and Australia in the portfolio.

2Very often weekly rather than daily historical data are used by portfolio managers for allocation decisions. This is
because re-balancing is rarely done on a daily basis and, without the external regulatory control placed upon investment
banks, risk assessment may be performed on a weekly rather than daily basis.

%5 A minimum of 10,000 simulations are standard in the VaR models used by the financial industry.
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To test the accuracy of the VaR models we employ unconditional coverage tests, introduced by Kupiec
(1995), and the independence and conditional coverage tests, introduced by Christoffersen (1998).
To perform these tests we first determine the number of “exceedences”, i.e. the number of days (or
weeks) when the portfolio lost more than the VaR that was estimated for that period. Under the null
hypothesis of the unconditional coverage test, the proportion of exceedances should equal a. Over
the period January 2000 - July 2009 there are 2489 daily observations in total period, the ROM VaR
model yields 4 exceedances of the 0.1% VaR, 36 exceedances of the 1% VaR and 162 exceedances
of the 5% VaR,; that is the proportion of exceedance was 0.2%, 1.5% and 6.5% respectively. Out of
497 weekly observations the number of exceedances at the 0.1%, 1% and 5% levels were 1, 11 and
31 respectively, which correspond to exceedance proportions of 0.2%, 2.2% and 6.2%. This indicates
that ROM simulation performs well, in general, for VaR estimation. However, one of the assumptions
underlying the unconditional coverage test is that exceedances are independent events. If they are not,
VaR estimates could be exceeded many days or weeks in succession, in which case they would not be
capturing a change in market conditions adequately. In other words, the VaR model would not be
sufficiently risk-sensitive.

Tables 1 and 2 report the results of unconditional and conditional coverage tests, and of the independent
exceedence tests, for each of the four VaR models considered in this exercise. A successful VaR model
must be sensitive to changes in kurtosis, but since normal VaR can only adapt to changes in the mean
and standard deviation of returns, this model fails to cope with periods of exceptional returns. Student-
t VaR performs better than normal VaR since, with 6 degrees of freedom, the marginal distributions
have positive excess kurtosis. The best performing models are ROM and historical VaR. In some
cases these two VaR methodologies have identical coverage test statistics. However when these test
statistics differ, the ROM VaR method performs better than historical VaR. This is especially visible
for 0.1% weekly historical VaR, where quantile estimation is inaccurate given the small in-sample
period. Overall, the four VaR methods appear to be better at forecasting weekly, rather than daily,
value-at-risks. In particular few VaR estimates pass the daily independence test, even though their
unconditional performance is generally quite good.

Coverage Test Unconditional ‘ Independence Conditional
Quantile 0.1% 1.0% 5.0%|01% 1.0% 5.0% | 01% 1.0% 5.0%
ROM 0.77 440 1094 | 0.01 14.85 26.62 | 0.79 19.25 37.55

Historical 1.96 6.01 10.38 | 0.02 13.80 27.18 | 1.98 19.80 37.56
Student-t 65.94 64.03 13.28 | 10.51 16.47 37.83 | 76.45 80.49 51.11
Normal 131.19 77.83 10.38 | 14.31 17.06 32.56 | 145.50 94.89 42.94

TABLE 1: Daily Coverage Test Statistics. The 1% critical values are 6.63 for the Unconditional and
Independence tests and 9.21 for the Conditional test. Values in the table shown in red therefore reject
the appropriate null hypotheses at 1% significance.

Coverage Test Unconditional | Independence | Conditional
Quantile 0.1% 1.0% 5.0%]01% 1.0% 5.0% ] 01% 1.0% 5.0%
ROM 0.39 549 149 | 0.00 5.52 4.06 | 0.40 11.02 5.55

Historical 0.79 549 149 | 0.04 552 4.06 | 583 11.02 5.55
Student-t 257 18.05 6.35 | 0.02 236 5.16 | 2.58 20.41 11.51
Normal 14.12 2330 6.35 | 0.10 1.69 5.16 | 14.22 2499 11.51

TABLE 2: Weekly Coverage Test Statistics. The 1% critical values are 6.63 for the Unconditional and
Independence tests and 9.21 for the Conditional test. Values in the table shown in red therefore reject
the appropriate null hypotheses at 1% significance.
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It is worth noting that the length of the in-sample period (5-years) was not optimised for this study,
and neither were the L-matrices and the random orthogonl matrices used in the ROM simulations.
The close relationship between our results for ROM VaR and historical VaR arises through the use
of data-specific L-matrices. If less emphasis were placed on data specific L-matrices the difference
between ROM and historical VaR would be more significant.
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4 SUMMARY

This paper began by addressing the problem of finding a sample whose covariance matrix matches a
target covariance matrix exactly. In order to form such a sample we introduced L-matrices, which
satisfy the constraints of exact covariance simulation. Techniques from linear algebra were used to
construct deterministic L-matrices, while existing Monte Carlo methods were orthogonalised to produce
parametric L-matrices. L-matrices engineered from existing data were also considered.

Each L-matrix, can be combined with random, orthogonal matrices to generated infinitely many exact
covariance samples. We call this approach ROM simulation. For certain deterministic L-matrices,
we derive exact formulae for the multivariate skewness and kurtosis of ROM simulations. We then
demonstrate how to target these moments exactly by appropriately choosing the parameters of the
ROM simulation. That is, in addition to exact covariance simulation, we have no simulation error
for these higher moments. There is an extremely small rounding error which arises when many large
matrices are multiplied together, but this is minuscule. Since Monte Carlo methods are parametric,
simulation errors may still have a significant influence on the higher moments for ROM simulations
based on parametric L-matrices.

We also explored the effect that different classes of orthogonal matrices have on the dynamic sample
characteristics, and on the features of marginal distributions. Note that the multivariate sample
moments are left invariant by these ROMs, so we can generate many different types of sample paths that
have the exactly the same multivariate moments. Features such as volatility clustering, or mimicking
certain features of marginal distributions, may be important in some applications.

Finally we carried out an empirical study that compared four different VaR methods; this demonstrated
some clear advantages of ROM simulation as a VaR resolution methodology. Clearly, the application of
ROM simulation to VaR estimation - and by extension to portfolio optimisation - will be a productive
area for future research.

The ability of ROM simulation to produce infinitely many random samples which capture both his-
torical and hypothetical characteristics may have greater significance in other areas of finance, where
simulation is required for problem resolution. Further investigation into the scope of ROM simulation
for VaR estimation, portfolio optimisation and the pricing and hedging of complex financial instruments
is left to future research.
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A APPENDIX
A.1 Proof of Proposition 2.1
(1) Kurtosis
We start by expressing the Ledermann matrix in row vector notation, writing Ly, = (€},...,£,,)".
Our objective is to evaluate kps(Ly,y), for all n < m. Now since Ly, is an L-matrix we know that it

has sample mean vector u,, = 0, and sample covariance matrix S,, = m~'I,. Simply observing that
S,,! = mlI,, we have deduce the following:

IiM(Lmn) = %Z{elm1"£;}2
i=1

— mi A
i=1

Recall that L,,, is obtained by deleting the first » = m — 1 — n columns of the L-matrix L, -1,
displayed in 9. We first consider the rows £; where r +2 <+¢ < m. The first ¢ — r — 2 entries of row ¢
are all zero. Therefore

— 2
- (4] )
(1—1) pa k(k+1)

1—1 m—1

) ma
m—1 .
= —— for r+2<i<m.
m

For the remaining rows £;, with 1 <14 <r + 1 we have that

;o 1 Y m—(r+1)
b= 2 (m) TS &

k=r+1

Replacing r with n we calculate that

KM(Lmn)

(2) Skewness

Once again, knowing the sample mean and covariance matrix of L,,, exactly we can write:

) = S0 (T )

i=1 j=1

= mZ{M’} +2mZ{M

1<j
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As with the evaluation of kurtosis, we consider two cases separately. Firstly, for 1 <i,j <r 41, we
observe that £; = £; and hence, using 35, we deduce that

m— (r+1)
m(r+1)

Our second case concerns rows £; and £; such that r +2 < j <m and ¢ < j. In this case we see that

Eifg»: for 1<¢,7<r+1.

m—1 2
—1)
g, — “U-U
’ (7 —1)j ZJ<¢7>>
]_ _
S S
J mj
_ 1
- m

Combining all these terms, and after some simplification, we calculate that

(m — n)n? +n(m—1)3+2{(m—n)(m—n—1)n3+n(2m—n—1)H

m3(m —n)3 m3 2m3(m —n)3 2m?

T (Lmn) = m[

= n{(m—S)-l—(m—n)_l}.

A.2 Invariance of Co-Skewness

Let us begin with two different samples X, », = (x},...,x},) and Y,y n = (¥],---,¥,), on the

same n random variables. Let X, y and Sx, Sy denote the sample means and covariance matrices of
X ,ns Ymy n respectively. Given any invertible matrix B, and column vector b, we define

Xy = Xy .nBn + Ly bl and Yoy = Yoy By + 1y bl (36)

Now the means of me,n and me n are XB,, + b}, and yB,, + b}, while the covariance matrices are
B/,SxB,, and B! SyB,,. So, noticing that

{2(x;B,, +bl, - xB,, — b,,)B;; (Sx + Sy) '(B;")(y;Bn + b}, —yB, — b,)'}’
{2(x; — %)(Sx + Sy) (y; — 3}’

we deduce that Tc(Xme,YmYm) = 7¢(Xsyxns Ymy n). Hence 7¢ is invariant under non-singular
affine transformations of the form (36).

A.3 Proof of Proposition 2.2

Our proposition begins with r random samples X, »,..., X, n, each with sample mean pu, and
sample covariance matrix S,,. We adopt the following row vector notation

Xmpn = : for 1<k<r, (37)
m

and setting m = >, _, my, we write our concatenated sample as

Xppn = (X! XY

mi,mo My ,n
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Throughout this proof we will use the dot product notation

xy’ for row vectors,
X y=
Y x'y for column vectors.

(1) Concatenated Mean Vector

The mean of our concatenated sample X,,,,, is

r r
—147/ —1 / —1
m~ 1, Xy =m E 1kamk,n =m § Min = Un.
k=1 k=1

(2) Concatenated Covariance Matriz

Having established the mean of our concatenated sample, we can calculate the covariance matrix of
X,un as
T T
X X =m Y X X = m S, =S
m mn<ymn — TN my,n<xmg,n = 1 mESn = On.
k=1 k=1

(3) Concatenated Skewness

We now calculate the Mardia (1970) skewness of the concatenated sample X, in terms of the skewness
of the sample components X, p, ..., X, . Since we know that Mardia’s measure are invariant under
non-singular affine transformations, we begin by defining

L = (X — 1mﬂ;1)A7;1

where A}, A, = S,,. Then we can write Zy, = (Zy,, - - -5 Ly, ), Where each component

Ly = (ka,n — 1y, NIn)A:Ll

As a result of these non-singular affine transformations Z,,, will have sample mean vector 0,, and
covariance matrix I,,. This will also be the case for each component Z,,, ,, for 1 <k < r. Adopting a
row notation equivalent to (37), we can express

TM(Zmn) = m72ZZ(Zi'Zj)3

i=1 j=1
r mr Mg r my Mg
-2 k k\3 k 1\3
S5 SER T NS 5 SR
k=1 =1 j=1 k<1 =1 j=1
r r
= m2 ZszM(kam) + o2m 2 Z(mk + ml)QTc(kam, Zml,n)
k=1 k<1

The third statement of the proposition follows immediately from the non-singular affine invariance
property of 7as and 7¢.

(4) Concatenated Kurtosis

Copyright © 2009 Alezander and Ledermann



ICMA Centre Discussion Papers in Finance DP 2009-09 27

For Mardia’s kurtosis we calculate that

KM(Zmn) = milz(zi'zi)Q
=1
) mk(zé’*'sz}

T
k=1

Applying the non-singular affine invariance property of s yields the final expression of the proposition.
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