WWW.ECONSTOR.EU

ECONSTOR

Der Open-Access-Publikationsserver der ZBW – Leibniz-Informationszentrum Wirtschaft The Open Access Publication Server of the ZBW – Leibniz Information Centre for Economics

Tinkl, Fabian

Working Paper

A note on Hadamard differentiability and differentiability in quadratic mean

IWQW discussion paper series, No. 08/2010

Provided in cooperation with: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Suggested citation: Tinkl, Fabian (2010) : A note on Hadamard differentiability and differentiability in quadratic mean, IWQW discussion paper series, No. 08/2010, http://hdl.handle.net/10419/41556

Nutzungsbedingungen:

Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche, räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen der unter

→ http://www.econstor.eu/dspace/Nutzungsbedingungen nachzulesenden vollständigen Nutzungsbedingungen zu vervielfältigen, mit denen die Nutzerin/der Nutzer sich durch die erste Nutzung einverstanden erklärt.

Terms of use:

The ZBW grants you, the user, the non-exclusive right to use the selected work free of charge, territorially unrestricted and within the time limit of the term of the property rights according to the terms specified at

 $\rightarrow\,$ http://www.econstor.eu/dspace/Nutzungsbedingungen By the first use of the selected work the user agrees and declares to comply with these terms of use.

IWQW

Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung

Diskussionspapier Discussion Papers

No. 8/2010

A note Hadamard differentiability and differentiability in quadratic mean

Fabian Tinkl University of Erlangen-Nuremberg

ISSN 1867-6707

A note on Hadamard differentiability and differentiability in quadratic mean

Working Paper, 21. Oktober 2010

Fabian Tinkl¹

University of Erlangen-Nuremberg Fabian.Tinkl@wiso.uni-erlangen.de

Keywords and phrases: Hadamard differential, Differentiability in quadratic mean

Abstract

We proof that Hadamard differentiability in addition with usual assumptions on the loss function for M estimates implies differentiability in quadratic mean. Thus both concepts are exchangeable.

¹Correspondence author: Fabian Tinkl, Department of Statistics and Econometrics, University of Erlangen-Nuremberg, Lange Gasse 20, D-90403 Nuremberg, E-Mail: Fabian.Tinkl@wiso.uni-erlangen.de

1 Introduction

As it was pointed out by [Pollard, 1997] there is a connection between differentiability in an L^2 sense, differentiability in quadratic mean and local asymptotic normality. The idea of local asymptotic normality (LAN) goes back to [LeCam, 1970], who showed that differentiability in quadratic mean implies an quadratic approximation for the log-likelihood function, without using the 2nd derivative. We will show, how a different concept of differentiability, namely the Hadamard differentials, are under mild regularity conditions equivalent to the definition of differentials in quadratic mean, and therefore the results of [Pollard, 1997], [LeCam, 1970] and [Fernholz, 1983] will coincide for M estimates. Thus it can be seen, that it is also sufficient for M estimates to be Hadamard differentiable to enjoy the LAN property.

2 The equivalence Theorem

Throughout this article we regard an σ -finite probability space and a sampling X_i (not necessarily iid.) from a measurable random variable $X : \Omega \to \mathbb{R}$, where X has a distribution function, which is absolutely continuous w.r.t. some σ -finite measure. Define a M estimate as the solution of the following minimization problem

$$\hat{\theta}_n = \arg\min_{\theta\in\Theta} \frac{1}{n} \sum_{i=1}^n \rho(X_i, \theta), \tag{1}$$

where θ is some unknown parameter, where $\theta \subset \Theta$, and Θ is some metric space with the uniform metric. Under standard conditions, that $\theta \to \rho(\theta)$ is continuous and Θ is compact as well as ρ is uniformly integrable w.r.t. θ , we get that $\hat{\theta}_n \xrightarrow{P} \theta_0$, where

$$\theta_0 = \arg\min_{\theta \in \Theta} E[\rho(X, \theta)].$$
(2)

We suppress the dependence of ρ on $\omega \in \Omega$ from now on, and treat ρ as a function of the parameter(-vector) θ . If ρ is differentiable w.r.t. to θ , one may take a firstorder Taylor series expansion around $\hat{\theta}_n$ in neighborhood of θ_0 , where (2) attains its minimum:

$$\rho(\hat{\theta}_n) = \rho(\theta_0) + (\hat{\theta}_n - \theta_0)^T \rho'_{\theta}(\theta_0) + Rem(\theta)(\hat{\theta}_n - \theta_0).$$
(3)

Suppose that $Rem \to 0$ in some proper sense. If $Rem \stackrel{L^2}{\to} 0$, i.e. $E[|Rem(\hat{\theta_n} - \theta_0)|^2] = 0$, we call ρ differentiable in quadratic mean (DQM). If ρ is Hadamard differentiable,

then $Rem \xrightarrow{P} 0$, see [Fernholz, 1983]. Under usual regularity conditions on ρ and its derivative we can conclude, that $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightarrow N(0, \sigma^2)$, with $\sigma^2 = var(\phi(X))$, and ϕ is the influence function. Define Hadamard differentials as follows (see [van der Vaart, 1998]):

Definition 1 A function $\rho : D_{\theta} \to W$ is Hadamard differentiable (or compact differentiable) at $\theta \in D_{\theta}$ if there exists $\rho'_{\theta} \in L_1(D_{\theta}, W)$ such that for any compact set Γ of D_{θ} ,

$$\lim_{t \to 0} \left\| \frac{\rho(\theta + th_t) - \rho(\theta)}{t} - \rho'_{\theta}(h) \right\|_W \to 0, \tag{4}$$

for every $h_t \to h$, s.t. $\theta + th_t \in D_{\theta}$ for t > 0 and t small enough.

One may write instead of (4):

$$Rem_1(\hat{\theta}_n - \theta_0) = \rho(\hat{\theta}_n) - \rho(\theta_0) - (\hat{\theta}_n - \theta_0)^T \rho_{\theta}'(\theta_0)$$
(5)

as the remainder term of (3). Note that ρ'_{θ} indicates the Hadamard derivative. It is shown by [Fernholz, 1983], that if

$$\lim_{\theta \to \theta_0} \frac{Rem_1(\theta - \theta_0)}{|\theta - \theta_0|} = 0,$$

then: $\sqrt{n}Rem_1(\theta - \theta_0) = o_P(1)$. DQM can be defined using (3):

Definition 2 $\rho(\theta)$ is said to be DQM if there exists a function $D\rho_{\theta} \in L^{2}(P)$, s.t.

$$\lim_{\theta \to \theta_0} \frac{\|\rho(\theta) - \rho(\theta_0) - (\theta - \theta_0)^T D \rho_\theta(\theta_0)\|_2}{\|\theta - \theta_0\|} = 0$$
(6)

Once again we write for (3):

$$Rem_2(\hat{\theta}_n - \theta_0) = \rho(\hat{\theta}_n) - \rho(\theta_0) - (\hat{\theta}_n - \theta_0)^T D\rho_\theta(0)$$
(7)

We now state the result:

Theorem 1 Suppose $\rho(\theta)$ is Hadamard differentiable w.r.t. θ in a neighborhood N_{θ} of θ_0 , $\sup E[|\rho(\theta)|] < \infty$ and $\sup E[\rho^2(\theta)] < \infty$ for $\theta \in N_{\theta}$ and $\hat{\theta}_n$ is a consistent estimate for θ_0 , then $\rho(\theta)$ is also differentiable in quadratic mean, and both derivative coincide on N_{θ} . **Proof** Write $t = \hat{\theta}_n - \theta_0$, $\theta = \theta_0$ and $h_t \to 0$ in (4), so we can rewrite (4):

$$\lim_{\hat{\theta}_n \to \theta_0} \left\| \frac{\rho(\hat{\theta}_n) - \rho(\theta_0) - (\hat{\theta}_n - \theta_0)^T \rho_{\theta}'(0)}{\hat{\theta} - \theta_0} \right\|_W = 0$$
(8)

Because $\hat{\theta}_n \xrightarrow{P} \theta_0$ is a Cauchy sequence we have for $\hat{\theta}_n \in N_{\theta}$, that $|\hat{\theta}_n - \theta_0| \to 0$ and we get expression (6). We now have to show, that both remainder terms converge in a L^2 sense, as well as in probability to zero. Then from (3) we can deduce that $Rem_1 = Rem_2$ a.s. and therefore both derivatives must coincide a.s.. From the assumptions imposed on ρ we can conclude that ρ is uniformly integrable (see corollary 6.22 in [Klenke, 2006]). If $\hat{\theta}_n \xrightarrow{P} \theta_0$ we have that $\sqrt{n}Rem_1(\hat{\theta}_n - \theta_0) = o_P(1)$ and $\sqrt{n}Rem_2(\hat{\theta}_n - \theta_0) \xrightarrow{L^2} 0$. As $\rho(\theta) \in L^2(P)$ it follows with continuity of $\rho(\theta)$ w.r.t. θ that $h = |\rho'_{\theta}| \in L^2$, where ρ'_{θ} is the Hadamard derivative. Therefore we have $Rem_1(\hat{\theta}_n - \theta_0) \in L^2$ for n large enough. We now have: Rem_1 is uniformly integrable, and $Rem_1 \xrightarrow{P} 0$ and thus

$$|\sqrt{n}Rem_1(\hat{\theta}_n - \theta_0)|^2 \stackrel{n \to \infty}{\to} |0|^2$$

Write $g = |\sqrt{nRem_1(\hat{\theta}_n - \theta_0)} - 0|^2$, then $g_n \xrightarrow{P} 0$ and g_n is uniformly integrable, as

$$g_n = |\sqrt{n}Rem_1(\hat{\theta}_n - \theta_0)|^2 \le 4 \cdot |o_P(1)|^2.$$

Therefore $g_n \in L^2(P)$ and thus $D\rho_\theta = \rho'_\theta$ a.s. in N_θ .

1		

3 Conclusion

We proved the equivalence of Hadamard differentiability and differentiability in quadratic mean for M estimates usually considered in robust statistics. This result can be used to deduce alternative assumptions imposed on M estimators to be consistent and asymptotically normally distributed.

References

[Fernholz, 1983] Fernholz, L. (1983). Von Mises calculus for statistical functionals. New York: Springer-Verlag.

- [Klenke, 2006] Klenke, A. (2006). Wahrscheinlichkeitstheorie. Berlin: Springer-Verlag.
- [LeCam, 1970] LeCam, L. (1970). On the assumptions used to prove asymptotic normality of maximum likelihood estimates. The Annals of Statistics, 41, 802– 828.
- [Pollard, 1997] Pollard, D. (1997). Another look at differentiability in quadratic mean. In Festschrift for Lucien Le Cam: Research papers in probability and statistics (pp. 305-314). Springer-Verlag.
- [van der Vaart, 1998] van der Vaart, A. (1998). Asymptotic statistics. Cambridge: Cambridge University Press.

Diskussionspapiere 2010 Discussion Papers 2010

- 01/2010 **Mosthaf, Alexander, Schnabel, Claus and Stephani, Jens:** Low-wage careers: Are there dead-end firms and dead-end jobs?
- 02/2010 Schlüter, Stephan and Matt Davison: Pricing an European Gas Storage Facility using a Continuous-Time Spot Price Model with GARCH Diffusion
- 03/2010 **Fischer, Matthias, Gao, Yang and Herrmann, Klaus:** Volatility Models with Innovations from New Maximum Entropy Densities at Work
- 04/2010 **Schlüter, Stephan, Deuschle, Carola:** Using Wavelets for Time Series Forecasting Does it Pay Off?
- 05/2010 **Feicht, Robert, Stummer, Wolfgang:** Complete closed-form solution to a stochastic growth model and corresponding speed of economic recovery.
- 06/2010 **Hirsch, Boris, Schnabel, Claus:** Women Move Differently: Job Separations and Gender.
- 07/2010 **Gartner, Hermann, Schank, Thorsten, Schnabel, Claus:** Wage cyclicality under different regimes of industrial relations.

Diskussionspapiere 2009 Discussion Papers 2009

- 01/2009 **Addison, John T. and Claus Schnabel:** Worker Directors: A German Product that Didn't Export?
- 02/2009 **Uhde, André and Ulrich Heimeshoff:** Consolidation in banking and financial stability in Europe: Empirical evidence
- 03/2009 **Gu, Yiquan and Tobias Wenzel:** Product Variety, Price Elasticity of Demand and Fixed Cost in Spatial Models
- 04/2009 **Schlüter, Stephan:** A Two-Factor Model for Electricity Prices with Dynamic Volatility

- 05/2009 **Schlüter, Stephan and Fischer, Matthias**: A Tail Quantile Approximation Formula for the Student t and the Symmetric Generalized Hyperbolic Distribution
- 06/2009 **Ardelean, Vlad:** The impacts of outliers on different estimators for GARCH processes: an empirical study
- 07/2009 **Herrmann, Klaus:** Non-Extensitivity versus Informative Moments for Financial Models - A Unifying Framework and Empirical Results
- 08/2009 **Herr, Annika:** Product differentiation and welfare in a mixed duopoly with regulated prices: The case of a public and a private hospital
- 09/2009 **Dewenter**, Ralf, **Haucap**, Justus and **Wenzel**, Tobias: Indirect Network Effects with Two Salop Circles: The Example of the Music Industry
- 10/2009 **Stuehmeier**, Torben and **Wenzel**, Tobias: Getting Beer During Commercials: Adverse Effects of Ad-Avoidance
- 11/2009 **Klein**, Ingo, **Köck**, Christian and **Tinkl**, Fabian: Spatial-serial dependency in multivariate GARCH models and dynamic copulas: A simulation study
- 12/2009 **Schlüter**, Stephan: Constructing a Quasilinear Moving Average Using the Scaling Function
- 13/2009 **Blien,** Uwe, **Dauth,** Wolfgang, **Schank,** Thorsten and **Schnabel,** Claus: The institutional context of an "empirical law": The wage curve under different regimes of collective bargaining
- 14/2009 **Mosthaf**, Alexander, **Schank**, Thorsten and **Schnabel**, Claus: Low-wage employment versus unemployment: Which one provides better prospects for women?

Diskussionspapiere 2008 Discussion Papers 2008

01/2008 **Grimm, Veronika and Gregor Zoettl**: Strategic Capacity Choice under Uncertainty: The Impact of Market Structure on Investment and Welfare

- 02/2008 **Grimm, Veronika and Gregor Zoettl**: Production under Uncertainty: A Characterization of Welfare Enhancing and Optimal Price Caps
- 03/2008 **Engelmann, Dirk and Veronika Grimm**: Mechanisms for Efficient Voting with Private Information about Preferences
- 04/2008 **Schnabel, Claus and Joachim Wagner**: The Aging of the Unions in West Germany, 1980-2006
- 05/2008 **Wenzel, Tobias**: On the Incentives to Form Strategic Coalitions in ATM Markets
- 06/2008 **Herrmann, Klaus**: Models for Time-varying Moments Using Maximum Entropy Applied to a Generalized Measure of Volatility
- 07/2008 **Klein, Ingo and Michael Grottke:** On J.M. Keynes' "The Principal Averages and the Laws of Error which Lead to Them" Refinement and Generalisation