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Abstract

There have been many studies of the volume-outcome relationship. In all of these,

the unit of analysis is the hospital or physician. However, this level of analysis is mostly

limited to the use of in-hospital mortality rates and is particularly sensitive to selective

referral. Moreover, the literature on agglomeration economies highlights the importance

of information spillovers within regions (Glaeser, 2010). To overcome these problems, our

study is the first that examines the volume-outcome relationship on a regional (county

or cancer registry) level. Using data from the National Cancer Institute’s Surveillance,

Epidemiology and End Results program we find that regions with relatively more of the

same cancer type exhibit relatively better health outcomes.
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1 Introduction and motivation

The positive relationship between volume and outcome is confirmed for a wide variety of differ-

ent procedures, time periods, and locations (Luft et al., 1979, Gillis and Hole, 1996, Begg et al.,

1998, Birkmeyer et al., 2002, Birkmeyer et al., 2003, Allgood and Bachman, 2006, and Barocas

et al., 2010; for a review see Halm et al., 2002) and has led to important health policy guidelines

such as using minimum volume requirements as a quality indicator (Sfekas, 2009). In all these

studies, the unit of analysis is the hospital or physician. However, this level of analysis is mostly

limited to the use of in-hospital mortality rates and is particularly sensitive to selective referral.

Moreover, the literature on agglomeration economies highlights the importance of information

spillovers within regions (Glaeser, 2010).

Information spillovers are especially important in health care where physicians’ learning

about new techniques and procedures occur from direct contact with other physicians. Coleman

et al. [1957] were among the first who find that doctors being integrated in the community of

their collegues are the first to adopt new drugs. On the regional level Baicker and Chandra [2010]

show that hospitals surrounded by higher quality hospitals improve in quality. Information

spillovers become even more relevant for the treatment of complex diseases such as cancer,

where several doctors from different institutions can be involved in the treatment process1.

This makes it difficult to attribute improved outcomes to a specific institution (Chandra and

Staiger, 2007). If information spillovers (e.g. between physicians and hospitals) are important,

the physician or hospital is not the appropriate unit of analysis for studying the volume-outcome

relationship - it is too narrow.

To overcome these problems our study examines the volume-outcome relationship on a re-

gional (county or registry) level. While this level of analysis does not only capture information

spillovers it is also less sensitive to selective referral. Using data from the National Cancer Insti-

tute’s Surveillance, Epidemiology and End Results program (SEER), we analyze whether more

cancer-specific knowledge in a given region leads to relatively higher survival rates compared

to regions with less cancer-specific knowledge.

The paper is structured as follows. Section 2 presents a simple model of cancer survival.

Section 3 is devoted to the econometric specification of the model and the data source. The

estimation results are presented in Section 4. Section 5 concludes.

1 E.g. it is common for patients to be diagnosed in one facility, receive surgery in a second one, have radiation
and chemotherapy in yet another facility, and receive postoperative care in an outpatient setting (Hoelscher,
2001)
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2 A simple model of cancer survival

The literature distinguishes three different types of survival rates (see e.g. Horner et al., 2008).

The observed survival rate (S ) is the probability of surviving all causes of death for a specified

time after diagnosis of cancer. It considers deaths from all causes, cancer or otherwise. The

expected survival rate (E ) is the survival rate of a comparable set of people who do not have

cancer. In turn, the relative survival rate (R) is defined as the ratio of the proportion of

observed survivors (of all causes of death) in a cohort of cancer patients to the proportion of

expected survivors in a comparable cohort of cancer-free individuals, S/E. For cancer survival,

epidemiologists estimate the relative survival rate since it controls for survival gains from other

diseases besides cancer.

The following model is based on Lichtenberg [2007b] and explains the survival rate as a

function of different input factors. We assume that the relative survival rate in year 2002

depends on the treatment quality and the disease progression at time of diagnosis, ω:

Rir = Sir/Eir = f1(Qir, Pirω) (1)

or

Sir = f2(Eir, Qir, Pirω) (2)

with,

• Rir: The relative survival rate for cancer originating at site2 i in region r in 2002

• Sir: The observed survival rate for cancer at site i in region r in 2002

• Er: The expected survival rate of the control group in region r in 2002

• Qir: Treatment quality for cancer at site i in region r

• Pirω: Disease progression of cancer at site i in region r at time of diagnosis ω

The observed survival rate is hypothesized to be an increasing function of the quality of treat-

ment (∂f2(·)
∂Qir

> 0) and the expected survival rate (∂f2(·)
∂Eir

> 0) and a decreasing function of

disease progression at time of diagnosis (∂f2(·)
∂Pirω

< 0).

Quality in health care is hard to define and quantify (see Donabedian, 1988). Lichtenberg

[2007a] uses treatment vintage to measure treatment quality.3 However, treatment quality is

2 Site specifies the part of the body where the cancer originates, (e.g. breast colon, etc).
3 The vintage of a treatment is the year in which a new treatment was first used.
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also a function of knowledge and experience. According to Birkmeyer et al. [2002] low volume

hospitals with less than 3 pancreatic resections per year report a 11 percent higher mortality rate

than high volume hospitals with more than 16 cases.4 In our study we consider two mechanisms

in which it is thought that practice makes perfect. We distinguish between learning from recent

experience (denoted with Nirt−1 and Nirt−2) and learning from cumulative experience (denoted

with
∑2002

t=1992 Nirt), whereNirt is the number of patients diagnosed with cancer at site i in region

r in year t. Further, we include the current number of patients diagnosed with cancer at site i

in region r, Nirt. This variable captures possible economies of scale and specialization effects.

We assume that treatment quality for t = 2002 and cancer site i in region r is an increasing

function of recent experience, cumulative experience, and current volume:

Qir2002 = f3(Nir2001, Nir2000,

2002∑

t=1992

Nirt, Nirt) (3)

Substituting Eq. 3 into Eq. 2:

Sir = f2(Eir, Pirω, Nir2001, Nir2000,

2002∑

t=1992

Nirt, Nirt). (4)

This leads to the fowllowing hypotheses to be tested empirically in Section 4:

H1: What is the impact of experience on cancer survival rates?

H2: What is the impact of current volume on cancer survival rates?

H3: What is the relative impact of experience and current volume on cancer survival rates?

H4: Are the results sensitive to the definition of the geographical area?

3 Econometric Model and Data

Based on Section 2 we estimate the following model:

f(Sir2002) = β1Nir2002 + β2Nir2001 + β3Nir2000 + β4

2002∑

t=1992

Nirt + β5Er2002 (5)

+β6LOCir2002 + β7DISTir2002 + β8SURGir2002 + β9RADir2002 + ai + dr + ǫir

where
4 In a follow-up study similar results are found on the level of physicians Birkmeyer et al., 2003.
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• i : Cancer site; r : Place of diagnosis (cancer registry or county).

• Sir2002: Observed survival rate for cancer at site i in region r in 2002.

• Nir2002: The number of people diagnosed with cancer at site i in region r in 2002. Since

we include fixed site and region effects (see below) the variable measures whether cancers

at site i are more abundant in regions r than on average. Economies of scale have been

found to be the largest determinant of health outcomes assessed at the hospital level

(Gaynor et al., 2005). Ho [2002] and Huesch and Sakakibara [2009] also find that higher

volumes induce standardization of procedures leading to improved treatment processes.

Thus, we believe that the higher the extent of the market, indicated by Nirt, the higher

the scope for specialization and the higher the survival rate is likely to be.

• Nirt−1 and Nirt−2: Following Gaynor et al. [2005] and Ho [2002] we use the number of

people diagnosed with cancer at site i in region r in 2001 and 2002 as a proxy for recent

experience. This mechanism assumes that a provider’s own recent experience is more

important in driving performance than more distant experience or cumulative experience.

It is implicitly assumed that the stock of skills degrades quickly (Huckman and Pisano,

2006).

•

∑2002
t=1992 Nirt: The cumulative number of people diagnosed with cancer at site i in region

r between 1992 and 2002. The more traditional ‘learning-from-cumulative-experience’

mechanism assumes instead that the stock of historically acquired experience continues

to positively impact current health outcomes (Huesch and Sakakibara, 2009).

• Er2002: Expected survival rate of the control group in region r in 2002. This variable

controls for all factors that influence survival in general (e.g. gender, age, and race) but

that are not related to cancer treatment. We should observe a positive impact.

The next four variables indicate by how much the cancer has spread and are used as a measure

of mean progression of disease.

• LOCir2002: Share of cancer stage I or II for cancer at site i in region r in 2002. In stage

I and II cancers are localized to one part of the body. The higher the share of cancers in

stage I or II, the higher the survival rate is likely to be.

• DISTir2002: Share of cancer stage IV for cancer site at i in region r in 2002. In stage IV

cancers have often metastasized, spread to other organs, or spread throughout the whole
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body. The higher the share of cancers in stage IV, the lower the survival rate is likely to

be.

• SURGir2002: Share of patients receiving surgery for cancer at site i in region r in 2002.

When a surgery is performed as a primary treatment, chances are high for cure, especially

if the cancer is localized and has not spread. However, a surgery can also be performed

in order to remove as much as possible of the tumor in order to make chemotherapy or

radiation more effective or to just improve the quality of life. Unfortunately we only know

whether a surgery was carried out or not.

• RADir2002: Share of patients receiving radiation for cancer at site i in region r. Radio-

therapy may be used as therapeutic treatment where the therapy has survival benefit or

as palliative treatment where cure is not possible anymore.

• ai: Fixed effect for cancer site i

• dr: Fixed effect for region r

• ǫir: Error term

Data are obtained from the National Cancer Institute’s Surveillance, Epidemiology, and

End Results (SEER) program. It contains information from population-based cancer registries5

covering approximately 26 percent of the US population. Since 1973, SEER program registries6

have collected data on patient demographics, primary tumor site, tumor morphology and stage

at diagnosis, first course of treatment, and follow-up for vital status. The variable of interest

in our study is the survival rate. Survival rates may be calculated for different time intervals.

To assess treatment effects for cancer the literature usually refers to 5-year survival rates. In

addition we also estimate models for the 1-, 2-, 3-, and 4-year survival rate.

For the purpose of our analyis we group each individual-based cancer record according

to region and aggregated cancer site. SEER provides two different geographical identifiers

(unfortunately not the hospital). We will use both, the registry and the county identifier, for

the estimation.

5 Cancer registries are a systematic collection of data about cancer and tumor diseases. The geographic area
of one SEER registry corresponds to approximately one U.S. state, except for the Californian registries,
Seattle, rural Georgia, Atlanta, and Detroit.

6 San Francisco-Oakland (since 1973), Connecticut (1973), Detroit (1973), Hawaii (1973), Iowa (1973), New
Mexico (1973), Utah (1973), Seattle ( 1974), Atlanta (1975), Alaska (1992), San-Jose Monterey (1992),
Los Angeles (1992), Rural Georgia (1992), remaining California (2000), Kentucky (2000), Louisiana (2000-
2004), and New Jersey (2000).
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Table 1: Summary statistics (registry and county level, aggregated sites) 2002

registry county

Variable Mean sd Min Max Mean sd Min Max
1-year observed survival 0.78 0.18 0 1 0.78 0.26 0 1
2-year observed survival 0.70 0.21 0 1 0.69 0.30 0 1
3-year observed survival 0.65 0.22 0 1 0.65 0.31 0 1
4-year observed survival 0.61 0.22 0 1 0.61 0.32 0 1
5-year observed survival 0.58 0.23 0 1 0.58 0.32 0 1
1-year expected survival 0.98 0.01 0.95 1 0.97 0.02 0.79 1
2-yearexpected survival 0.95 0.02 0.91 1 0.94 0.04 0.61 1
3-year expected survival 0.93 0.03 0.85 1 0.92 0.06 0.46 1
4-year expected survival 0.91 0.04 0.80 1 0.89 0.07 0.34 1
5-year expected survival 0.88 0.05 0.75 0.99 0.86 0.09 0.24 1
N2002 1,016 1,708 0 11,417 33 111 0 1904
N2001 1,011 1,690 0 11,144 33 111 0 1,744
N2000 990 1,658 0 10,919 32 109 0 1,821
LOC 0.53 0.38 0 1 0.51 0.41 0 1
DIST 0.24 0.32 0 1 0.24 0.34 0 1
SURG 0.60 0.31 0 1 0.60 0.36 0 1
RAD 0.30 0.20 0 1 0.28 0.28 0 1
max Observations 272 7,520

Note: The survival rates are weighted by Nir.

Table 1 contains the summary statistics separately for the registry and county level according

to aggregated sites.7 In total we are left with 272 observations at the registry level, and 7,520

at the county level. Survival rates are weighted by the number of people diagnosed, Nir2000.

Chances of surviving cancer one year, three years, and five years after diagnosis are 78 percent,

65 percent, and 58 percent respectively. The differences between survival rates across registries

are up to 23 percentage points and even higher across counties (32 percentage points).

Table 2 shows the number of people diagnosed according to SEER registry and aggregated

cancer site. Ideally we would have information on the place where the diagnosed patient receives

its treatment, however, this is not available in the SEER data.

There are two low volume registries, viz. Alaska and Rural Georgia with 260 and 509 cases

respectively and three high volume registries with above 20,000 cases, viz. Los Angeles (29,232),

New Jersey (38,172), and greater California (63,147). The cancers less common are at site eye

and orbit (528) and bones and joint (659). In contrast, most common cancers are at site male

genital system (51,864), digestive system (51,508), and breast (43,020).

7 In this study we use the 16 aggregated (to broad sites, following the National Cancer Institute) sites based
on the international classification of diseases for oncology, 3rd edition.
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Table 2: Number of diagnoses according to registry and aggregated site, 2002

Registry 0 1 2 3 4 5 6 7 8
San Francisco 371 2,891 1,924 34 101 582 2,677 920 2,843
Conneticut 304 3,020 2,216 33 104 649 2,395 901 2,809
Metropolitan Detroit 390 3,081 2,632 33 107 674 2,415 1,018 3,723
Hawaii 136 1,088 582 11 33 190 779 293 677
Iowa 289 2,480 1,802 22 66 541 1,911 744 2,116
New Mexico 143 1,111 770 16 45 293 960 391 1,223
Seattle Puget-Sound 370 2,696 2,188 33 80 842 2,773 947 2,911
Utah 129 978 424 16 41 351 891 367 1,425
Metropolitan Atlanta 233 1,474 1,170 24 78 537 1520 515 1,778
San Jose Monterey 166 1,374 831 16 61 316 1,222 434 1,434
Los Angeles 653 5,864 3,393 83 201 1,150 4,804 2,019 5,432
Alaska 5 86 47 3 3 1 41 7 27
Rural Georgia 19 97 93 4 2 14 76 27 91
Greater California1 1,488 11,372 8,664 166 444 3,425 10,218 3,656 11,417
Kentucky 424 3,200 3,764 44 104 735 2,454 974 2,749
Louisiana 442 3,516 3,012 41 114 477 2,472 933 3,372
New Jersey 726 7,180 5,133 80 240 1,622 5,412 2,391 7,837
total 6,288 51,508 38,645 659 1,824 12,399 43,020 16,537 51,864
Registry 9 10 11 12 13 14 15 total
San Francisco 923 29 227 321 797 168 376 15,184
Conneticut 1,160 25 219 319 759 197 386 15,496
Metropolitan Detroit 1,201 29 250 329 794 238 452 17,366
Hawaii 250 1 47 129 194 45 101 4,556
Iowa 943 27 201 262 648 147 429 12,628
New Mexico 411 8 92 211 264 88 205 6,231
Seattle Puget-Sound 1,099 35 268 362 842 180 441 16,067
Utah 326 14 128 235 329 70 211 5,935
Metropolitan Atlanta 478 15 149 253 438 117 206 8,985
San Jose Monterey 442 19 114 163 415 89 211 7,307
Los Angeles 1,770 66 447 747 1,451 339 813 29,232
Alaska 11 0 4 7 6 4 8 260
Rural Georgia 36 1 3 8 21 9 8 509
Greater California1 4,246 131 1,053 1,277 3,081 721 1,788 63,147
Kentucky 1,235 41 248 284 837 217 414 17,724
Louisiana 1,243 23 219 335 757 261 457 17,674
New Jersey 2,782 64 506 936 1,806 472 985 38,172
total 18,556 528 4,175 6,178 13,439 3,362 7,491 27,6473

Note: 0: Oral cavity, 1: Digestive System, 2: Respiratory System, 3: Bones and Joints, 4: Soft tissue incl. heart, 5:

Skin excl. basal and squamous, 6: Breast, 7: Female genital system, 8: Male genital system, 9: Urinary system, 10:

Eye and orbit system, 11: Brain, 12: Endocrine System, 13: Lympoma, 14: Myeloma, 15: Leukemia. 1: Excluding

San Francisco, Los Angeles, and San Jose Monterey.
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The aim of our analysis is to estimate the relationship between Sir, the proportion survived,

and the exogenous factors, X. As a first attempt, we will formulate the model as a linear

logistic regression of Sir on X, that is we will take the logit of Sir and represent the response

curve as a straight line:

ln(
Sir

1− Sir
) = γ0 + γ1X (6)

However, since we grouped the data (according to region and aggregated site) and these groups

differ in terms of size it is not possible to use a standard logistic regression to fit the model.

Thus, eq.5 is estimated using a GLMmodel with a logit link function and a binomial distribution

function where the denominator is the number of diagnoses (see Stata, 2007). To control for

disease and regional specific characteristics we include fixed effects for cancer site i and region

r. A significant coefficient for the variable Nir2002 would then imply that the ratio of the odds

of surviving from cancer at site B to the odds of surviving from cancer at site A is positively

correlated, across regions, with the ratio of the number of patients diagnosed with cancer at

site B to the number of patients diagnosed with cancer at site A (ceteris paribus, generalized

to i cancer sites).

4 Estimation results

Table 3 contains the estimation results for the five different survival intervals. The standard

errors are in parentheses and clustered according to each registry since observations within

registries are possibly correlated (see Bertrand et al., 2002).

The coefficient for current volume is significant for all five survival intervals. Whereas recent

experience is only weakly significant for the 1-year survival interval. Cumulative experience is

not significant in all specifications. The value of the expected survival rate (remember this is the

survival rate of a comparable set of people not having cancer) is only significant for the 4-, and 5-

year survival rates, but has the expected positive sign in all specifications (except for the 1-year

survival rate). The progression rate of cancer is especially important for survival when cancer

belongs to the distant category. Metastasized cancer reduces survival chances considerably

from the 2-year survival interval onwards. An important determinant for all survival intervals

is the variable surgery whereas the variable radiation is only significant from the 3-year survival

interval onwards.
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Table 3: Estimation results (registry level), 2002

Coefficients for (t)-year survival rates
(1) (2) (3) (4) (5)

lnN2002 0.400** 0.331** 0.381** 0.367** 0.435***
(0.194) (0.165) (0.154) (0.159) (0.148)

lnN2001 -0.236* -0.0846 -0.115 -0.198 -0.186
(0.137) (0.143) (0.148) (0.139) (0.148)

lnN2000 -0.215 -0.231 -0.241 -0.183 -0.173
(0.196) (0.197) (0.170) (0.150) (0.151)∑2002

t=1992 Nt 0.200 0.101 0.100 0.128 0.0162
(0.231) (0.284) (0.272) (0.214) (0.222)

lnEt -0.151 1.740 1.603* 1.937** 2.365***
(3.657) (1.383) (0.967) (0.825) (0.628)

LOC 0.411 0.114 0.444 0.500 0.548
(0.709) (0.584) (0.536) (0.526) (0.470)

DIST -1.030 -1.464** -1.588*** -1.793*** -1.730***
(0.683) (0.573) (0.545) (0.464) (0.379)

SURG 1.010*** 0.816*** 0.732*** 0.664*** 0.587***
(0.228) (0.178) (0.143) (0.141) (0.134)

RAD 0.219 0.333 0.431** 0.465*** 0.373***
(0.328) (0.232) (0.194) (0.151) (0.129)

AIC 6.89 7.31 7.47 7.49 7.50
BIC -906.70 -890.63 -889.91 -900.46 -909.20
LogLikelihood -906.69 -942.16 963.36 -966.83 -967.11
Observations 269 269 269 269 269

*** p<0.01, ** p<0.05, * p<0.1. Note: No complete observations for registry Alaska available. Fixed registry
and cancer site effects are included, see Appendix; clustered standard errors are given in parentheses.

As an alternative to the broadly defined registries we also estimated Eq. 5 on the county

level. The 17 registries are divided into 470 different counties leading to a maximum number

of 7,520 observations. While this tests the robustness of our model it has the disadvantage

that some of the site-county categories contain only a small number of diagnoses. Thus, in

addition to the estimation results of the whole sample in Table 4 below we performed another

estimation exluding the two least common cancer sites. The results are similar and relegated to

the Appendix. The coefficient for current volume is again positively related to the survival rate

and significant on the 1 or 5 percent level (except for the 1-year survival interval). However,

this time the effects are smaller in terms of magnitude. Now, the highest effect is found for the

3-year survival rate instead of the 5-year as in the previous estimation. The smaller effects are

likely due to the fact that the volume effect operates at a broader level than that of a given

county, e.g. counties sometimes only have one hospital. Recent experience and cumulative

experience is not significant for all five time intervals. Thus, with regard to the hypothesis H3
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Table 4: Estimation results (county level), 2002

Coefficients for (t)-year survival rates
(1) (2) (3) (4) (5)

lnN2002 0.0348 0.0803** 0.0934*** 0.0801** 0.0921**
(0.0426) (0.0382) (0.0362) (0.0360) (0.0360)

lnN2001 -0.0379 -0.00368 -0.0184 -0.0109 0.0184
(0.0404) (0.0342) (0.0325) (0.0324) (0.0303)∑2002

t=1992 Nt 0.0722 0.0293 0.0596 0.0436 0.00420
(0.0768) (0.0659) (0.0638) (0.0624) (0.0610)

lnEt 14.43*** 7.023*** 4.853*** 3.914*** 3.447***
(0.903) (0.429) (0.268) (0.204) (0.162)

LOC 0.159 0.221 0.380*** 0.317** 0.390***
(0.168) (0.159) (0.142) (0.136) (0.132)

DIST -1.849*** -1.992*** -1.892*** -1.908*** -1.872***
(0.172) (0.161) (0.155) (0.154) (0.150)

SURG 1.061*** 0.805*** 0.740*** 0.724*** 0.671***
(0.0905) (0.0851) (0.0822) (0.0764) (0.0728)

RAD 0.163* -0.0502 -0.0151 0.0217 0.0161
(0.0877) (0.0792) (0.0736) (0.0699) (0.0662)

AIC 3.01 3.30 3.41 3.47 3.50
BIC -38,838 -38,501 -38,505 -38,437 -38,340
LogLikelihood -7,866 -8,663 8,959 -9,109 -9,181
Observations 5,554 5,552 5,549 5,540 5,530

*** p<0.01, ** p<0.05, * p<0.1. Note: lnN2000 is dropped because of collinearity. Fixed county and cancer
site effects are included; clustered standard errors are given in parentheses.

raised in Section 2 we can conclude that current volume (which is positively associated with

specialization) has by far a higher impact on cancer survival rates than recent and cumulative

experience for both levels of analysis. While the lack of influence of experience on outcomes is

in contrast to many volume-outcome studies it is supported by Ho [2002], Sfekas [2009], Gaynor

et al. [2005], and Huesch [2009] who cannot establish a positive relationsip between experience

and outcomes for cardiac surgery on the hospital and surgeon level. As a possible explana-

tion they argue that forgetting and high turnover rates for teams might be responisble for the

absence of a relationship (a similar argument is put forward in Benkard [2000] who analyzed

learning and forgetting in the context of aircraft production). Expected survival is now signif-

icant across all five survival intervals. Also the share of localized cancers becomes significant

from the 3-year survival rate onwards. It is positively correlated with cancer survival whereas

the share of distant cancers is significantly negatively correlated with surival rates of all five

different survival rate intervals. Again the share of surgeries performed is positively related to

survival while the share of performed radiation does not seem to be a significant determinant
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of survival. To sum up, the results for the county level estimation confirm the results found on

the registry level providing evidence on the robustness of the estimated model.

Limitations

Our study is subject to some limitations. First, the measures of current volume and experience

are highly correlated. Therefore, eq.5 is reestimated on the county level including only the

variable current volume. Thus, the estimated effect is hypothesized to reflect both volume and

experience and represents an upper-bound estimate. The point estimates forN2002 become more

precise with smaller clustered standard errors compared to the previous estimation. Except for

the 1-year survival rate they are significant at the one percent significance level. The magnitude

of the effect is almost the same as in Table 4, confirming that most of the improved survival

chances are exclusively due to current volume.

Table 5: Estimation results without experience variables (county level), 2002

Coefficients for (t)-year survival rates
(1) (2) (3) (4) (5)

lnSpec2002 0.0447 0.0758*** 0.0975*** 0.0803*** 0.0872***
(0.0290) (0.0282) (0.0268) (0.0256) (0.0249)

lnEt 13.97*** 7.055*** 4.897*** 3.915*** 3.451***
(0.883) (0.401) (0.256) (0.194) (0.157)

LOC 0.149 0.178 0.345** 0.345*** 0.419***
(0.159) (0.149) (0.140) (0.133) (0.132)

DIST -1.858*** -2.065*** -1.973*** -1.935*** -1.888***
(0.167) (0.152) (0.149) (0.146) (0.144)

SURG 1.109*** 0.835*** 0.752*** 0.733*** 0.666***
(0.0870) (0.0817) (0.0784) (0.0726) (0.0689)

RAD 0.196** -0.0452 -0.0309 -0.00607 -0.00903
(0.0845) (0.0748) (0.0699) (0.0665) (0.0630)

AIC 2.85 3.13 3.24 3.28 3.32
BIC -43,385 -42,967 -42,902 -42,840 -42,703
LogLikelihood -8,167 -9,009 9,339 -9,489 -9,557
Observations 6,078 6,075 6,071 6,062 6,047

*** p<0.01, ** p<0.05, * p<0.1. Note: Fixed county and cancer site effects are included; clustered standard
errors are given in parentheses.

Second, as outlined in the beginning of this paper the positive effect of volume on outcomes

may be due to endogeneity. Regions with higher survival rates may attract additional patients

because of their reputation for better care. In principle, patients could migrate to receive their

diagnosis and care at places other than their place of residence. We used data from the U.S.

vital statistics which records every death in the U.S. according to cause of death to check where
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patients indeed seek health care for particular cancer treatments. However, in 2002 only 13

percent of individuals died in a different county than their place of residence and only 8 percent

died in a different state, speaking in favor of an exogenous Nir. This finding also makes the

use of the number of diagnoses as a proxy for treatment less restrictive and provides indirect

support for the finding of Wennberg [1999] who states that admissions to the hospitals generally

take place within a relatively short distance of where patients live or have been diagnosed with

cancer.

Third, and related to the previous issue raised, improved survival rates may be only due

to improved earlier detection of cancers - caused e.g. by new screening procedures. As the

proportion of specific cancer types detected at screening increases in some regions, presumably

as a result of increased screening efforts of local health authorities, the respective patient survival

rates will increase, because they are based on survival time after diagnosis.8 However, since

we control for expected survival and cancer progression, we believe that our estimates are

not subject to lead-time bias. Thus, the increased survival rates we find are mainly due to

specialization gains.

Finally, the assignment of a given stage to a particular cancer may change over time due

to advances in diagnostic technologies. Introduction of new technologies can give rise to a

phenomenon known as stage migration. Stage migration occurs when diagnostic procedures

change over time, resulting in an increase in the probability that a given cancer will be diagnosed

in a more advanced stage.9 The likely result would be to remove the worst survivors—those with

previously undetected distant metastases - from the localized and regional categories and put

them into the distant category. As a result, the stage-at-diagnosis distribution for a cancer may

become less favorable over time, but the survival rates for each stage may improve (Feinstein

et al., 1985). However, since we focused on a given time period the impact of the introduction

of new technologies can be excluded.

8 The interval between the time a cancer is diagnosed by a screening procedure and the time when the cancer
would have been diagnosed in the absence of screening is called lead-time (Zelen, 1976).

9 For example, certain distant metastases that would have been undetectable a few years ago can now be
diagnosed by computer tomography (CT) scan or by magnetic resonance imaging (MRI). Therefore, some
patients who would have been diagnosed previously as having cancer in a localized or regional stage are
now diagnosed as having cancer in a distant stage.



Impact of Specialization on Health Outcomes 13

5 Conclusion

From a simple model of cancer survival we derived the testable hypothesis whether regions with

relatively more disease-specific knowledge exhibit higher survival rates. Using data from the

National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) our results

support the notion that the physician or hospital level of analysis to examine the volume-

outcome relationship may be too narrow since it does not account for possible information

spillovers. We find that patients tend to survive longer in those areas where relativly more

cancers of the same site occur. We further find that current volume has by far a higher impact

on cancer survival rates than recent and cumulative experience at both the registry and the

county level.

Thus, the effects of health care policies that aim to centralize health care provision into

larger units may be overestimated since it is likely that the disease-specific knowledge of a local

health care area influences treatment quality as well.
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Table 6: Complete estimation results (registry level), 2002

Coefficients for (t)-year survival rates
(1) (2) (3) (4) (5)

lnSpec2002 0.400** 0.331** 0.381** 0.367** 0.435***
lnN2001 -0.236* -0.0846 -0.115 -0.198 -0.186
lnN2000 -0.215 -0.231 -0.241 -0.183 -0.173∑2002

t=1992 Nt 0.200 0.101 0.100 0.128 0.0162
lnEt -0.151 1.740 1.603* 1.937** 2.365***
LOC 0.411 0.114 0.444 0.500 0.548
DIST -1.030 -1.464** -1.588*** -1.793*** -1.730***
SURG 1.010*** 0.816*** 0.732*** 0.664*** 0.587***
RAD 0.219 0.333 0.431** 0.465*** 0.373***
Conneticut 0.000552 0.0109 0.0221 0.0335** 0.0435***
Metropolitan Detroit -0.178*** -0.135*** -0.106*** -0.104*** -0.0899***
Hawaii 0.160 0.0579 0.0578 0.0205 -0.0190
Iowa -0.0644** -0.0594* -0.0436 -0.0165 -0.00682
New Mexico 0.0549 0.0206 0.0380 0.0246 -0.0214
Seattle Puget Sound -0.0454** -0.0128 0.0164 0.0518*** 0.0523***
Utah 0.0471 0.0765 0.127 0.140 0.133
Metropolitan Atlanta 0.0594 0.0503 0.0549 0.0379 0.00381
San Jose Monterey 0.175* 0.156 0.177* 0.184** 0.192**
Los Angeles -0.188** -0.184** -0.175* -0.160* -0.156*
Alaska 0.603 0.366 0.389 0.199 0.0809
Rural Georgia 0.341 0.0971 0.132 0.0935 0.110
Greater California -0.0988 -0.180 -0.166 -0.0969 -0.207
Kentucky 0.0346 -0.116 -0.0916 -0.0555 -0.200
Louisiana -0.00386 -0.145 -0.139 -0.0915 -0.229
New Jersey 0.0666 -0.0373 -0.0285 0.0305 -0.0775
Digestive system -0.872*** -0.521* -0.357 -0.212 -0.155
Respiratory system -1.020*** -0.973*** -0.854*** -0.747*** -0.733***
Bones and joints 0.927*** 0.820** 0.915*** 0.880*** 0.764**
Soft tissue incl. heart 0.370** 0.413** 0.486** 0.496*** 0.452***
Skina 1.120*** 1.179*** 1.154*** 1.131*** 1.065***
Breast 1.049*** 1.098*** 0.936*** 0.861*** 0.806***
Female genital system 0.297 0.485*** 0.577*** 0.633*** 0.608***
Male genital system 2.136*** 1.861*** 1.970*** 1.940*** 1.925***
Urinary system -0.143 0.214 0.301 0.375** 0.401***
Eye and Orbit system 2.273*** 1.762*** 1.461*** 1.170*** 1.067***
Brain -0.854 -1.127** -0.792 -0.725 -0.660
Endocrine system 1.305*** 1.644*** 1.686*** 1.712*** 1.653***
Lymphoma 0.360 0.353 0.721 0.797* 0.820**
Myeloma 1.563*** 1.652*** 1.917*** 2.036*** 1.843***
Leukemia 1.341*** 1.679*** 2.166*** 2.446*** 2.388***
Constant -0.864 -0.639 -1.228 -1.356 -0.958
AIC 6.89 7.31 7.47 7.49 7.50
BIC -906.70 -890.63 -889.91 -900.46 -909.20
LogLikelihood -906.69 -942.16 963.36 -966.83 -967.11
Observations 269 269 269 269 269

*** p<0.01, ** p<0.05, * p<0.1. Note: The fixed site and registry effects have to be interpreted relative to the
San Francisco and Oral cavity intercept. aExcluding basal and squamous. No complete observations for registry
Alaska available.



Impact of Specialization on Health Outcomes 18

Table 7: Estimation results (county level) excluding site bones/joints and eye/orbit, 2002

Coefficients for (t)-year survival rates
(1) (2) (3) (4) (5)

lnN2002 0.0297 0.0736* 0.0880** 0.0792** 0.0865**
(0.0433) (0.0393) (0.0368) (0.0364) (0.0365)

lnN2001 -0.0412 -0.00254 -0.0182 -0.0160 0.0141
(0.0408) (0.0347) (0.0333) (0.0331) (0.0310)∑2002

t=1992 Nt 0.0753 0.0255 0.0591 0.0427 0.00821
(0.0769) (0.0669) (0.0647) (0.0633) (0.0617)

lnE2002 14.12*** 6.911*** 4.866*** 3.938*** 3.474***
(0.915) (0.438) (0.277) (0.208) (0.166)

LOC 0.138 0.223 0.365** 0.329** 0.409***
(0.172) (0.161) (0.147) (0.142) (0.139)

DIST -1.871*** -2.020*** -1.917*** -1.920*** -1.885***
(0.177) (0.163) (0.161) (0.157) (0.154)

SURG 1.058*** 0.797*** 0.735*** 0.741*** 0.688***
(0.0920) (0.0868) (0.0844) (0.0787) (0.0750)

RAD 0.187** -0.0359 -0.00322 0.0214 0.0186
(0.0886) (0.0805) (0.0747) (0.0708) (0.0667)

Observations 5343 5341 5338 5329 5320
AIC 3.09 3.37 3.47 3.52 3.55
BIC -36,971 -38,501 -36,707 -36,670 -36,580
LogLikelihood -7,759 -8,506 8,776 -8,897 -8,965
Observations 5343 5341 5338 5329 5320

*** p<0.01, ** p<0.05, * p<0.1. Note: lnN2000 is dropped because of collinearity. Fixed county and cancer
site effects are included; clustered standard errors are given in parentheses.
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