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Abstract 
 

This study estimated a dynamic logistic model to explain the diffusion Bt cotton in the United 
States.  Regional differences in the speed and extent of Bt cotton adoption were explained by 
differences in availability of Bt seed adapted to local conditions, potential seed supplier profits, 
and economic variables affecting grower gains from adoption.  The study also estimated the 
impact of Bt cotton on insecticide use, controlling for differences in pest infestations and prices 
and correcting for the endogeneity of the Bt adoption decision.  Bt cotton significantly reduced 
insecticide applications to control target pests – cotton bollworm, tobacco budworm, and pink 
bollworm.  Bt cotton has led to an overall reduction in these applications per total US cotton 
acres, ranging from 0.5 in 1996 to 1.8 in 2003.  Reductions in applications per infested acres 
ranged from 0.67 to 2.3.   
 
 



1.  Introduction 

Plants genetically modified to express a gene extracted from Bacillus thuringiensis (Bt) – 

a soil bacterium – produce a protein toxic to budworms, bollworms and pink bollworms.  Use of 

Bt cotton can reduce yield losses from these pests and reduce the need for pesticides.  In 1995, 

the year before the commercial introduction of Bt cotton, nearly two-thirds of U.S. cotton 

acreage was treated for these pests at a cost of $373 million (Frisvold and Tronstad).  In that 

year, bollworms and budworms reduced US cotton yields 4% (over a quarter of a billion dollars) 

even though growers’ made an average of four insecticide applications those pests (Williams).   

This study has two main objectives. First, it examines the role of economic factors in the 

diffusion of Bt cotton.  This is done by estimating a dynamic logistic diffusion model using time 

series – cross section data for 27 state and sub-state regions in the United States.  The dynamic 

diffusion model is an extension of the classic static diffusion model used by Griliches in his 

pioneering work on the spread of hybrid corn (Griliches. 1957, 1960).  In the dynamic 

specification, diffusion parameters are not fixed, but modeled explicitly as functions of economic 

variables that can vary across space and time. The approach taken here is similar to that of earlier 

work (Jarvis; Knudson; Gruber and Verboven; Fernandez-Cornejo et al.).     

The study’s second objective is to estimate the impact of Bt cotton adoption on insecticide 

use.  Several studies suggest that Bt cotton significantly reduces insecticide use (Carlson, et al.; 

Fernandez-Cornejo and McBride 2000; 2002; Gianessi, et al.; Huang, et al.; Ismael, et al.; Marra, 

2001; Marra et al.; Pray et al.; Qaim et al.; Qaim and Zilberman; Thirtle et al). Yet, the overall 

impacts of Bt cotton are still hotly debated (Benbrook 2001, 2003; Wolfenbarger and Phifer).  In 

a recent exchange in the journal Science, Wolfenbarger and Phifer call for, “[c]arefully designed 

experiments . . . to ascertain what effect individual transgenic crops have on agrochemical use, 
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independent of other important variables.”  Carpenter responds, “[al]though precisely measuring 

changes in pesticide use attributable solely to the adoption of GM crops remains a challenge, it is 

survey, not experimental, data that will address this question.”  Multivariate regression analysis 

is used to control for changes in cotton prices and insecticide application costs, as well as state 

participation in boll weevil eradication programs.  The analysis also controls for differences in 

the extent of pest infestations over space and time and tests for potential endogeneity of the Bt 

adoption variable.    

The paper is divided into six remaining sections. Section 2 discusses the general specification 

of a dynamic innovation diffusion model.  Section 3 discusses the econometric specification.  

Section 4 presents estimation results.  Section 5 specifies the econometric insecticide use equation, 

while Section 6 reports estimation results.  Section 7 concludes by summarizing main findings.  

2. Static and Dynamic Diffusion Models 

Before proceeding, a brief word on terminology is in order.  The term “dynamic” diffusion 

model may sound redundant because diffusion refers to the aggregate spread of technology over 

space and time, itself a dynamic process.  Static models estimate diffusion paths as functions of 

constant diffusion parameters (Griliches; Mansfield; Santarelli, E. and S. D'Altri).  Dynamic 

models, rather than treating diffusion parameters as scalar constants, directly estimate them as 

functions of time-varying exogenous variables.  It is specifying diffusion parameters as functions 

that vary across time (and space) that make modern diffusion models dynamic.     

 The static logistic diffusion is of the form  

(1)     P = K / [ 1 + e – a – bt ]  

where P measures the proportion of the innovation that is adopted.  This can be expressed either 

as the percent of producers adopting the innovation or as the percent of acreage where the 
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innovation is applied.  The term K is the adoption ceiling, representing the maximum rate of 

adoption in long-run equilibrium.  The term t is a time trend, while a and b are scalar constants.     

As time passes (t gets large), adoption increases at first an increasing, then decreasing rate.  This 

produces the classic S-shaped diffusion curve.  Griliches (1960) noted that this specification, 

“[a]llows us to summarize large bodies of data on the basis of three major 

characteristics (parameters) of a diffusion pattern: the date of beginning (origin), 

relative speed (slope), and final level (ceiling) (p. 275)”  

Griliches was interested in answering three basic questions.  Why did some areas begin using 

hybrid corn before others? Why did hybrid corn spread faster in some areas in others?  Why did 

some areas reach higher adoption ceilings than others?   He related regional differences to 

differences in the origin (a), speed (b), and ceiling (K).  

 He characterized a – the origin parameter – as capturing the date of availability of hybrid 

corn and depending on the supply of suitable seed.  He hypothesized that seed suppliers would 

focus seed development and marketing in areas where they could make the most profits.  These 

would be in larger markets, ones where gains from adoption were larger, or both.  Another factor 

was whether experiment stations had developed new seed lines well adapted to local conditions.    

 While a was discussed in terms of supply-side factors, b measured the rate of acceptance of 

the new seed varieties by producers.  The speed of adoption (b) should increase with the profit 

advantage of the new technology.  Differences in the adoption ceiling K could be explained by 

differences in the average profit gain from adoption and that, except for marginal production 

areas, a common fixed ceiling would perform quite well. 

He acknowledged, though, that the ceiling would not be static, but would change with changes in 

market conditions, overall corn acreage and availability of other new technologies.     
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 To test these hypotheses, he assumed values for K and transformed equation (1) to  

(2)      ln [Pit  / (Ki – Pit )] = a + bt +  uit   

where uit  is an error term,  Ki values are  pre-specified, and a and b can be estimated through 

linear regression. The dependent variable is the natural log of  the ratio of  actual to potential 

adopting acres in time t. Griliches estimated different diffusion curves for different regions and 

then looked at the correlations between the different estimated bs and economic variables.  

Mansfield estimated separate diffusion curves for different innovations, obtaining different 

estimates of b.  He then regressed estimated values of b on profitability of the innovation and 

initial capital cost. As hypothesized, he found that the estimated bs were positively related to 

profitability and negatively to costs.   

 Dixon later raised questions about the restrictions implicit in a logistic function.  The logistic 

model imposes an S-shaped symmetric diffusion trend with a maximum diffusion rate at the 

point where the actual adoption rate reaches 50% of the potential adoption rate.  Other functional 

forms with S-shaped properties have different inflection points.  Re-estimating Griliches data, 

Dixon found that a Gompertz model (which assumes an inflection point at 37%) performed 

better than the logistic.   

 A more fundamental question, however, is not which fixed diffusion path to specify (say 

logistic versus Gompertz) but rather, why specify a fixed diffusion path at all?  If one believes 

that diffusion parameters depend on economic variables, why not explicitly model them as such?  

If the speed of adoption parameter b is a function of variables, Z, such that b = b(Z), then leaving 

them out of the original regression equation can lead to omitted variables bias.        

The general specification of a dynamic logistic function would be  

(3)    Pit  = K(W) / [ 1 + e – a(X)  – b(Z) t ] 
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where the adoption ceiling, origin, and speed of adoption are functions of vectors of exogenous 

variables W, X, and Z.  Because K = K(W), (3) cannot be transformed into a function that is 

linear in parameters. Equation (3) requires estimation through some type of non-linear technique. 

Gruber and Verboven (2001) estimate equation (3) in their study of diffusion of mobile 

telecommunications services in the European Union using non-linear least squares. Other studies 

have estimated dynamic diffusion models using special cases of equation (3).  In a study of 

diffusion of improved pastures in Uruguay, Jarvis specified K and b as functions of cattle prices. 

Knudson estimated a model of diffusion of semi dwarf wheat varieties where K depended on 

prices of grain, seed, and fertilizer.   

 A slightly less general specification is   

(4)     Pit  = Ki
 / [ 1 + e – a(X)  – b(Z) t ] 

Equation (5) can be linearized to  

(5)    ln [Pit  / (Ki – Pit )] = a0 + a1X1 + . . . + anXn +  b0 t + b1Z1 t + . . .  + bmZm t +   uit   

Fernandez-Cornejo et al. (2002) estimate this type of model using nonsample information to 

specify K, allowing them to linearize their model in a study of biotechnology diffusion. They 

also specify b as a function of  agricultural chemical prices and an index of biotechnology stock 

prices (to capture effects of consumer concerns over biotechnology).  The origin, a, varies by 

major farm resource regions.    

3. Econometric Specification and Data  

For this study, equation (5)  was estimated, where Pit is the percent of cotton acreage planted to 

Bt cotton in one of 27 state or sub-state regions in years 1996 to 2003.  The regions were 

Alabama-Central, Alabama-North,  Alabama-South, Arizona,  Arkansas-Northeast, Arkansas-

Southeast, California, Florida, Georgia, Louisiana, Mississippi Delta, Mississippi Hills, 
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Missouri, New Mexico, North Carolina, Oklahoma, South Carolina, Tennessee, Texas-Coastal 

Bend, Texas-Far West, Texas-High Plains, Texas-Lower Rio Grande Valley, Texas-North 

Central (N. Blacklands), Texas-North Rolling Plains, Texas-South Central (S. Blacklands),  

Texas-Southern Rolling Plains, and Virginia.  Data on adoption rates come from the Cotton Crop 

Loss Database, supported by the National Cotton Council and maintained at  Mississippi State 

University (Williams).  This is not the only source of Bt cotton adoption data.  The USDA, 

Agricultural Marketing Service, publishes an annual Cotton Varieties Planted report, which 

provides estimates of the percent of acreage planted to different seed varieties by state.  The 

USDA, National Agricultural Statistics Service publishes an annual Acreage  report that began 

reporting Bt cotton adoption rates for selected major cotton producing states, beginning in 2000.  

USDA’s Economic Research Service also reports adoption rates for Bt cotton for more aggregate 

regions from the Agricultural Resource Management Study (ARMS) surveys.  All of these sources 

provide slightly different estimates of adoption rates.  The Cotton Crop Loss data provides the most years 

of  coverage (1996-2003), combined with observations at a sub-state level.   

 Following Griliches’ (1960) verbal discussion, the X variables in a(X) are specified as 

supply-side variables.  The first, PARENT is the percent of acres planted to the recurrent parent 

varieties of the first commercially available Bt cotton varieties – Deltapine’s NuCotn 33B and 

NuCotn 35B in 1995.  The recurrent parents of these varieties are Deltapine 5415 and 5690.  

More widespread adoption of recurrent parent lines implies that these lines are well adapted to 

local growing conditions.  PARENT is meant to capture the extent to which the new Bt varieties, 

first available in 1995, were adapted to local conditions.  Data come from Cotton Varieties 

Planted (USDA, AMS).  Griliches also hypothesized that seed suppliers would target areas for 

development and marketing where profits from adoption would be greatest.  This is captured by 

the variable HISTLOSS, which is the historic cost per region of yield losses and pest control 
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expenditures for cotton bollworm, tobacco budworm, and pink bollworm, the main target pests 

of Bt cotton.  The Cotton Crop Loss database reports estimated yield damage and pest control 

costs, by pest, year and region.  HISTLOSS is the average annual loss plus control costs per 

region from 1991-5 in 2000 dollars.  It is in regions where HISTLOSS is largest that gains from 

Bt cotton would be largest and the surplus to be extracted by a monopolist seed developer 

(Monsanto) would be greatest.   

 Finally, CA is a dummy variable for California.  Until, 1999, California’s San Joaquin Valley 

(SJV) maintained the One-Variety Law, which effectively prohibited use of Bt cotton.  In the 

1920s, the scientists at the University of California and USDA, along with growers proposed that 

if everyone in the SJV grew the same, high quality cotton variety, they could better market 

California cotton (Marsh).  In 1925, the California Legislature enacted the One-Variety Law, 

allowing that only one Acala variety selected as the standard could be grown in the SJV.  In 

response to grower demand for short-season cotton varieties, the One-Variety Law was repealed 

in 1999.  In this case, the supply constraint on seed availability was institutionally sanctioned.  

The CA variable may also pick up the effects of California’s Pink Bollworm Program for the 

SJV.  Begun in 1967, the program’s goal is to prevent pink bollworm (PBW) from becoming 

established in the cotton growing areas of the San Joaquin Valley. The program uses trapping, 

sterile release, crop destruction, and occasional pheromone treatments (CDFA).  Pink bollworm 

and cotton bollworm are more of a problem in California’s Imperial Valley (Marsh, Williams)  

 The Z variables in b(Z) are those that  influence the rate of acceptance of Bt cotton.  The 

first, FEE is the per acre technology fee charged as a price premium for Bt cottonseed.  This fee 

declined over time and varies across states, from $32 per acre in Arizona to about $19 per acre in 

North Carolina.  The second LAGLOSS is bales lost per acre from budworm, bollworm and pink 
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bollworm in a region in the previous year.  Growers with greater yield losses in the previous year 

may expect more of a profit advantage from adopting Bt cotton.  Conversely, if pest pressure 

declines, the specification allows for de-adoption.  APPCOST  is the per acre cost of one 

insecticide treatment for the target pests.  Bt cotton substitutes for conventional insecticide 

applications.  BWEP is the percent of a region’s acreage that is participating in a boll weevil 

eradication program.  Boll weevil sprays can kill predators of bollworms and bollworms.  For 

this reason, growers in BWEP areas are advised to plant Bt cotton to control for secondary 

outbreaks of  bollworms and bollworms (Gianessi et al.; Karner et al.; Hardee et al., Lambert; 

Lentz, et al. ) The variables FEE, LAGLOSS, APPCOST, and BWEP all come from the Cotton 

Crop Loss database.  

 The effective price variable, PRICE,  is the lagged price received per pound by farmers in the 

state for upland cotton plus the loan deficiency (and market gain) payments received per pound. 

The cotton price dropped significantly from 1996 to 2003, while loan deficiency and market gain 

payments sheltered producers from much of the price decline, the effective price of cotton 

declined over the study period.  One would expect that the profitability of Bt cotton and the 

speed of acceptance would be positively related to price.  Data for price received comes from 

Agricultural Prices (USDA, NASS), while loan deficiency and market gain payment data come 

from the Price Support Division of USDA’s Farm Services Agency.  The final Z variable is 

PERHAR, the percent of planted acres that are harvested in a state.  This is an average over the 

previous 10 years. Data comes from USDA Historical Data.  A lower value for PERHAR 

implies a greater rate of crop failure and abandonment. One might expect slower adoption in 

areas with higher rates of crop failure from drought, floods, or hail. The Bt technology fee must 

be paid up front, while the gain of adoption will be more uncertain in marginal production areas.   
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In areas with more chance of crop failure, it may also be more difficult to judge how well a new 

seed variety is performing.  It is hypothesized that  a lower value of PERHAR will reduce the rate 

of Bt cotton acceptance.   

 Finally, to estimate equation (5) using linear methods, one must specify values for the 

adoption ceiling K.1 To slow the development of resistance to Bt cotton the Environmental 

Protection Agency requires that Bt cotton adopters plant refuges of non-Bt cotton to maintain a 

population of susceptible pests. There are different refuge options, but the smallest legal refuge is 

5 percent of Bt acreage. The specification reported in this paper sets K = 0.95 for all regions.2   

 4.  Diffusion model results and discussion  

4.1. Static and dynamic model results 

Table 1 provides descriptive statistics for variables used in diffusion model estimation.   Table 2 

compares regression results under both static and dynamic specifications.  Under the static 

specification, a = a0 and b = b0, while the other terms  a1 . . . an and b1 . . . bm are restricted to 

equal zero.  The dynamic model provides a better fit to the data than the static model, with an 

adjusted R-squared of 0.5210 versus only 0.1197 for the static model.  All the X and Z variables 

except insecticide application costs are significant at least the 5 percent level and all variables 

have the expected signs.  The hypothesis that the coefficients on the supply-side variables  

PARENT, HISTLOSS and CA  is strongly rejected, with an F-statistic [3, 205] = 34.96.  Results 

are consistent with Griliches’ hypothesis that differences in adoption rates can be explained by 

availability of locally adapted seed. The positive and significant coefficient for PARENT 

                                                 
1 With nonlinear regression, one can have an estimated K(W) below actual adoption rates.  This implicitly assumes 
that K is not an absolute ceiling.   For more discussion of  implications of specification of K in a classical and 
Bayesian setting, see Bewley and Griffiths.   
2 Alternative specifications based on historic percentages of acres infested or requiring treatments did not perform 
better than the assumption of a common K = 0.95 and are omitted to save space.  The specification K =0.95 did 
perform better than K = 1.0.  
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suggests that adoption, particularly early adoption, is positively associated with prior adoption of 

the recurrent parents of the first Bt cotton varieties. We interpret this as a measure of how well 

early Bt cotton varieties were adapted to local production conditions.  The negative coefficient 

for CA also is consistent with the delay in availability of seed varieties in California.   

 The positive, significant coefficient for HISTLOSS is also consistent with Griliches’ 

hypothesis that potential seed supplier sales revenues are important. The variable HISTLOSS  

measures the average historic, economic losses in a region from target pest damage and control 

costs.  It approximates the total potential surplus that a monopolist seed supplier could extract in 

a given region.   

 Turning to the rate of acceptance variables, the econometric evidence suggests that 

implementation of Boll Weevil Eradication Programs (BWEPs) has sped adoption of Bt cotton.  

This is consistent with anecdotal reports from a number of states (Gianessi et al.; Karner et al.; 

Hardee et al., Lambert; Lentz, et al.).   In addition, the rate of acceptance was greater when yield 

damage from target pests were greater in the previous year (tLAGLOSS positive).  The rate of 

acceptance was also greater in areas where crop loss / abandonment have been relatively lower 

historically (where tPERHAR is high).  As noted above Bt cotton requires additional sunk costs, 

which may be harder to recoup in areas with greater crop loss.   

 Differences in the rate of diffusion may also be explained by changes in relative prices.  The 

rate of adoption declines as the price of Bt cotton rises (tFEE negative), while it is increasing in 

the effective price of cotton (tPRICE positive).  The effective price includes coupled commodity 

program and is meant to capture realized per-pound revenues from cotton, lagged one year.  Again, 

results are consistent with Griliches’s hypothesis that higher output prices induce greater adoption.  This 

result is also consistent with earlier diffusion studies by Jarvis and by Knudson.  The variable APPCOST  

is the per acre cost of applying conventional insecticides.  Bt cotton is meant to substitute for insecticides.  
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The coefficient is positive, as one would expect, but not statistically significant.   The hypothesis that 

the coefficients on the demand variables  tBWEP, tLAGLOSS, tFEE, tAPPCOST, tPRICE, 

tPERHAR, is strongly rejected, with an F-statistic [6, 205] = 8.83.   

4.2. Fixed effects vs. supply-side effects 

Given that we have time series –  cross section (TSCS) data, there might be some other regional 

heterogeneity, not captured by the supply-side (X) and demand-side variables (Z) variables.  A 

standard approach to address this is to relax the assumption that each region has the same intercept.   

(6)    ln [Pit  / (Ki – Pit )] = ai + a1X1 + . . . + anXn +  b0 t + b1Z1 t + . . .  + bmZm t +   uit   

Equation (6) allows each region to have its own intercept, ai. Hsaio (1986: 41-43) has shown that 

fixed, rather than random effects are appropriate for making inferences about the observed units.   

Random effect models are appropriate where observed units are samples from a larger 

population.  Here, however, the regions themselves are of interest.   

 As Beck (2001) notes, including fixed effects “come at some cost (p. 285)” that require some 

modeling choices.  The variable CA will be subsumed as part of the region variables.  The other 

supply side variables, PARENT and HISTLOSS, however, do not vary over time.  These will be 

collinear with the fixed effects and must be dropped from the model.  One must choose between 

either time-invariant variables or fixed effects. 

 Table 3 presents the fixed-effects model (equation (6)) alongside the basic dynamic model 

(equation (5)).  In the fixed effect model, the R-squared increases from 0.521 to 0.799.   Based 

on an F-test, one rejects the hypothesis that all intercepts are equal.  For the Z variables, tBWEP, 

tFEE, and tPERHAR all remain significant at the 1% level.  The significance of tLAGLOSS 

declines to the 10% level, while the significance of tPRICE increases from the 5% level to the 

1% level.  The coefficients of the Z variables all decline (in absolute value).   
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 Table 4 reports the separate intercepts for each region.   The a coefficient in the logistic 

model acts to shift the initial level of adoption up or down in the first year of adoption (t = 1).  It 

thus captures regions that had high (or low) rates of initial adoption.   The more negative the 

number, the lower the initial adoption rate.  Griliches (1960)  observed that hybrid corn tended to 

diffuse along latitude lines first, then longitude lines later.  For Bt cotton, a similar geographic 

pattern  is discernible.  Regions with the lowest values of a tend to be the higher latitude regions.  

The bulk of California’s cotton production is in relatively higher latitude counties.   Regions in 

Texas also tend to have lower a values.  Of course, the fixed effect models cannot say why  

regions in higher latitudes or in Texas were later adopters.  Griliches suggested that the spread of 

technologies might depend on adoption rates in bordering areas, particularly those bordering to 

the east or west. One possibility for future research might be to explicitly account for spatial lags 

in the diffusion model.     

 To summarize, variables related to farm-level profitability of Bt cotton adoption go a long 

way in explaining regional differences in the speed of technology diffusion.  We also 

experimented with mutually exclusive sets of time-invariant supply-side variables and fixed 

effects.  The fixed effect model provides a better fit to the data and suggests some geographic 

patterns to the diffusion process.  The time-invariant variables, however, also were highly 

significant in the basic dynamic model.  While their inclusion did not improve the fit of the 

model as much as the fixed effects, they provide more economically appealing interpretations.   

5. Bt cotton and insecticide use 

As noted above, there has been a great deal of controversy over whether or to what extent insect-

tolerant crops such as Bt cotton or Bt corn reduce insecticide use.  For example, in discussing the 

budworm bollworm complex (BBW), Benbrook (2001) states,  
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“ . . .in Alabama, another high Bt-cotton adoption state (62% acres planted), BBW 

insecticide applications almost doubled from 1997 to 2000,” and also, “Some 

low-adoption Bt-cotton states have also markedly reduced BBW acre-treatments. 

Texas cotton (7% Bt-cotton), for example, was treated an average 1.3 times with 

BBW insecticides in 1995 and 0.65 times in 2000 - about a 50% drop.”  

There are (at least) two problems with making simple comparisons of means of state-level data, 

however.  First, comparisons of means do not control for other factors, such as differences in 

changing pest pressure, presence of Boll Weevil Eradication Programs, or differences in prices  

that affect insecticide use.  Second, regions are not randomly assigned to a treatment or control 

group as in a controlled experiment.  Rather, areas with more pest pressure will adopt Bt cotton 

more readily.  An unobserved variable –pest population – affects both decisions.  In the context 

of measuring farm-level impacts of biotechnology adoption, this becomes a sample selection 

problem (Maddala), which has been addressed in micro-level studies (Fernandez-Cornejo and 

McBride (2000), (2002); Fernandez-Cornejo et al. (2002)).   With regional data, the problem is a 

form of simultaneity bias, where Bt cotton adoption is a potentially endogenous regressor in a 

pesticide demand equation.    

The following insecticide use model was estimated 

(8)  dSPRAYit = β0 + β1 dCOSTit + β2 dPRICEit +  β3 BWEPit  +  δBtit  +  v it 

where v it is the stochastic error term.  Descriptive statistics for all are listed at the bottom of 

Table 1. Variable dSPRAYit is the change in applications per acre infested with bollworm, 

budworm, and pink bollworm from the 1991-5, pre-Bt cotton application rate. Our interest is 

explaining the change in insecticide applications from the 1991-5 (pre-Bt) base. Most areas have 

only bollworm / budworm pressure and the Cotton Crop Loss data makes no distinction between 
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the two pests.  California, Arizona, New Mexico, Texas – Far West, and occasionally Texas – 

High Plains also have pink bollworm.  For these regions, a weighted average application per 

infested acre rate was derived. The Cotton Crop Loss database reports percent of acres infested 

by particular pests.  Applications per total acres can differ simply because the extent of 

infestations can vary by year and by region.  While we do not have a measure of pest population 

per se, we can make use of information about when and where that population is zero.    

 The variable  dCOSTit  is the change in application costs per acre for bollworm, budworm, 

and pink bollworm between the given year and the 1991-5 average.  On average, the cost of 

insecticide applications was higher from 1996-2003 than the 1991-5 average.  Again, reduced 

insecticide use from 1996-2003 may be explained, in part, by the higher cost of insecticide 

applications.  The variable dPRICEit  is the change in the effective cotton price (defined as 

before) from the 1991-5 average. Even with loan deficiency and market gain payments, the 

effective price of cotton has fallen since the early-to-mid 1990s.  So, one might observe reduced 

insecticide applications as a consequence of lower realized revenues from cotton production.   

Noting the significant drop in insecticide applications for bollworm, budworm, and pink 

bollworm after 1995, Benbrook (2001) argues, “Two factors clearly account for this large reduction – 

the boll weevil eradication program and second, Bt cotton, especially in the western U.S.” We test 

this hypothesis formally below.  The variable BWEPit  is the percent of a region’s cotton acres 

newly enrolled in a Boll Weevil Eradication Program since 1995, while Bt is the proportion of 

cotton acres planted to Bt cotton. No Bt cotton was planted commercially before 1996.   

  The dependent variable dSPRAYit subtracts historical application rates from current rates, 

allowing us to use a region as its own control.  Figure 1 illustrates why we might want to do this.   

In Figure 1, the units on the y-axis are insecticide applications, while the units on the x-axis are 
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and Bt cotton adoption rates. The black rectangles (■) show a pairing of pre-Bt cotton insecticide 

applications with subsequent adoption rates.  As shown, regions with more insecticide 

applications before Bt cotton’s commercialization have higher adoption rates once Bt cotton 

becomes available. At the extreme, there is an observation at the origin with no adoption or 

applications. Fitting a line through this plot would yield line L0, which shows a positive 

correlation between past pest pressure and current Bt cotton adoption. Now, suppose that after 

Bt cotton is introduced insecticide applications fall.  This could arise because of Bt cotton, other 

factors, or both.  The plot of current applications on current Bt adoption rates is shown by the 

black triangles (▲).  As drawn, insecticide applications are lower post-adoption (except for the 

origin observation where there is no room to move).  We are interested in how much of the drop 

in insecticide use (the vertical distance between points) is attributable to Bt cotton versus other 

factors, such as changes in prices.  The vertical distances are dSPRAYit. Note, however, that if 

one simply fits a line to the ▲, one gets line L1, which shows a positive association between Bt 

cotton adoption and insecticide use!  Indeed, in the database, the partial correlation between 

current Bt adoption and current insecticide applications is slightly positive (0.11).   

6. Estimation Results 

Equation (8) was estimated both using ordinary least squares (OLS)  and with two-stage least 

squares (2SLS) to correct for endogeneity bias from the Bt variable (Table 5).  The instrumental 

variables used in the 2SLS estimation include the variables used in the diffusion equation.  In 

both specifications, the coefficient on dCOST is statistically significant and negative (as 

expected), suggesting that application rates are declining in application costs.  The variable 

dPRICE has the wrong sign, suggesting a negative relationship between lagged effective cotton 

price and insecticide use.  The coefficient is not statistically significant, however, so we fail to 
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reject the hypothesis that applications are insensitive to changes in lagged output price.  New boll 

weevil eradication programs (BWEP) do not appear to account for any changes in target pest 

applications. The coefficient is insignificant in both regressions.    

The coefficient for Bt is negative and statistically significant under both specifications.  The 

coefficient is -2.8861 in the OLS regression, but more negative, -3.9354, in the 2SLS 

specification.  The Hausman test was applied by: 

(1) regressing the variable Bt on the set of instrumental variables 

(2) re-estimating equation (8) with the residuals from the first regression as an additional 

regression. 

The test of exogeneity is a test of whether the coefficient for the residuals equals zero. 

Table 5 shows that the null hypothesis of exogeneity of the Bt variable can be rejected at the 

0.1% level.  The results suggest that estimating insecticide use on Bt cotton adoption using OLS 

leads to a downward bias in the estimate of the impact of Bt cotton on insecticide use.  The 2SLS 

coefficient of  –3.9354 implies that if a region’s adoption rate fell by 25 percentage points (e.g. 

from 75% to 50%) then the region would have one additional application per infested acres. 

        One can use the results to extrapolate impacts of Bt cotton adoption up to a national level.  

This is done by summing up δBtit  =  –3.9354 Btit  by time and region. Figure 2 shows the impact 

of Bt cotton adoption on applications per infested acre and per total cotton acres.  These 

reductions are only reductions in applications for the target pests – cotton bollworm, tobacco 

budworm, and pink bollworm.  Results suggest Bt cotton adoption has led to an overall reduction 

in these applications per infested US cotton acres, ranging from 0.67 to 2.3.  Reductions in 

applications per total acres ranged from 0.5  in 1996 to 1.8 in 2003.  From 1996-98, Bt cotton 
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adoption rates were still low, nationally.  As adoption rates rose, however, the national-scale 

impacts grew more pronounced.   

7. Conclusions  

This study estimated a dynamic logistic diffusion function to examine how differences in the 

speed and rate adoption of Bt cotton throughout different parts of the United States.  Economic 

variables affecting grower gains from adoption significantly influenced the rate of acceptance.  

Supply-side variables, such as initial availability of Bt seed adapted to local conditions and 

potential seed supplier profits, were also important.  These latter variables were time invariant 

and could not be used with an alternative fixed effect model.  The hypothesis of no fixed effects 

was rejected.  The significance of demand-side grower acceptance variables were also significant 

in the fixed effect model.   

The study also estimated the impact of Bt cotton on insecticide use, controlling for target pest 

infestations and prices and correcting for the endogeneity of the Bt adoption variable.  Bt cotton 

adoption was found to be an endogenous regressor in an insecticide use equation.  The 

coefficient measuring the effect of Bt cotton adoption on insecticide use had a downward bias 

relative to a two-stage least squares estimate.   

Bt cotton significantly reduced insecticide applications to control target pests – cotton 

bollworm, tobacco budworm, and pink bollworm.  The 2SLS coefficient estimate implies that if 

a region’s adoption rate fell by 25 percentage points (e.g. from 75% to 50%) then the region 

would have one additional application per infested acres. Results suggest Bt cotton adoption has 

led to an overall reduction in these applications per total US cotton acres, ranging from 0.5  in 

1996 to 1.8 in 2003.  Reductions in applications per infested acres ranged from 0.67 to 2.3.   
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Table 1. 

Descriptive statistics for (untransformed) variables used in regression estimations 

Variable Name Definition Mean S.D. 

Bt Proportion of acres planted to Bt cotton  0.365 0.292 
 
PARENT 
 

 
Proportion of acres planted to recurrent parents 
of first Bt varieties in 1995  0.101 0.148 

HISTLOSS 
 
 

 
Cost per region of damages and costs to control 
budworm, bollworm and pink bollworm; 
1991-5 average (constant 2000) $ millions   14.775 15.121 

BWEP 
 

 
Proportion of region’s acres in boll weevil 
eradication program  0.367 0.453 

LAGLOSS 
 
Bales lost per acre in previous year  0.055 0.109 

FEE 
 
Bt technology fee (constant 2000) $ / acre 27.307 7.9971 

APPCOST 
 

 
Cost of insecticide application for target pests  
(constant 2000) $ / acre 10.633 2.6467 

PRICE 
 
 

 
Effective price of cotton: prices received by 
farmers in state + loan deficiency and market 
gain payments (constant 2000) $ / pound 0.655 0.100 

PERHAR 
 

 
Harvested acres as a percent of planted acres 
(1986-1995 average)  0.940 0.047 

dSPRAY 
 

 
Target pest insecticide applications per infested 
acre in year t  – 1991-5 average  -1.741 1.853 

dCOST 
 

 
Per acre cost of insecticide application for 
target pests in time t  – 1991-5 average 0.485 3.367 

dPRICE 
 

 
Effective price of cotton in time t – 1991-5 
average -0.101 0.098 
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Table 2 

Static and Dynamic Models for Bt Cotton, 1996-2003 

 
Static 
Model 

Dynamic 
Model 

a variables   
Intercept -3.2548 -3.9748 
 (-8.03)* (-8.04)* 

PARENT  6.1449 
  (5.39)* 

HISTLOSS  0.0256 

  (2.29)** 

CA   -6.1425 
  -6.89* 
b variables   

t  0.4415 -3.3190 
 (5.50) * -4.12* 

tBWEP  0.3095 
  4.21* 

tLAGLOSS  1.6250 
  3.05* 

tFEE  -0.0175 
  -3.34* 

tAPPCOST  0.0136 
  1.20 
tPRICE  1.1708 
  2.12** 

tPERHAR   3.3047 
  3.94* 

   

R-squared 0.1197 0.5210 
   

Log-Likelihood -520.37 -450.00 

* significant at 1% level; ** significant at 5% level;  *** significant at 10% level 
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Table 3. 
Bt Cotton Dynamic Diffusion Models  

with Time-Invariant Regressors and with Fixed Effects  

 Dynamic Model 
Dynamic Fixed-
Effects Model 

a variables   

Intercept -3.9748 —a 
 (-8.04)*  

PARENT 6.1449  
 (5.39)*  

HISTLOSS 0.0256  
 (2.29)**  

CA  -6.1425  
 (-6.89)*  

b variables   

t  -3.3190 -1.6430 
 (-4.12)* (-2.65)* 

tBWEP 0.3095 0.2786 
 (4.21)* (7.63)* 

tLAGLOSS 1.6250 0.4372 
 (3.05)* (1.67)*** 

tFEE -0.0175 -0.0123 
 (-3.34)* (-3.28)* 

tAPPCOST 0.0136 -0.0013 
 (1.20) (-0.21) 

tPRICE 1.1708 0.8510 
 (2.12)** (3.70)* 

tPERHAR  3.3047 1.7327 
 (3.94)* (2.60)* 

R-squared 0.5210 0.7990 

Log-Likelihood -450.000 -315.59 

a. Group effects shown separately in Table 4.   
* significant at 1% level; ** significant at 5% level; *** significant at 10% level 
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Table 4. 
Intercepts from Fixed Effects Model 

Region Intercept 
Alabama Central -0.17 
Arizona -0.25 
Alabama North  -0.30 
Florida -0.64 
Alabama South -0.85 
Mississippi Hills -1.02 
South Carolina -1.11 
Georgia -1.17 
Louisiana -1.37 
Mississippi Delta -1.51 
Texas Southern Rolling Plains -1.69 
Arkansas Southeast  -1.82 
Texas Far West -2.36 
North Carolina* -2.54 
Tennessee* -2.70 
Oklahoma -2.94 
New Mexico -3.04 
Texas Coastal Bend -3.12 
Texas South Central (S. Blacklands) -3.18 
Texas North Central (N. Blacklands) -3.59 
Arkansas Northeast* -3.90 
Virginia* -4.46 
Missouri* -4.72 
Texas North Rolling Plains -5.50 
Texas High Plains -6.05 
Texas Lower Rio Grande Valley -6.21 
California* -8.79 
Median  -2.54 
Mean  -2.78 
* denotes higher latitude cotton production area 
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Table 5. 
Regression equations for factors affecting changes in insecticide applications for bollworm, 

budworm, and pink bollworm from 1991-95 base 
OLS Regression 

R-Square Adjusted:  0.2378 
Variable Coefficient Standard Error t-ratio  P-value

  
Constant -0.75601  0.1991  -3.80  0.000  
Bt -2.8861 0.4042 -7.14 0.000
dCOST -0.10889  0.0330  -3.29  0.001
dPRICE -1.0222  1.219  -0.84  0.403
BWEP 0.05194 0.2515  0.21  0.837
  
     

Hausman endogeneity test for Bt cotton variable  
Variable Coefficient Standard Error t-ratio  P-value

  
Residual  2.8350  0.8161  3.474  0.001
    

2SLS Regression  
R-Square Adjusted:  0.2135 

Variable Coefficient Standard Error t-ratio  P-value
  
Constant -0.49905 0.2164 -2.306 0.022
Bt -3.9354  0.5174 -7.606 0.000
dCOST -0.09795 0.03375 -2.902 0.004
dPRICE -1.9802 1.271  -1.558 0.121
BWEP 0.11886 0.2562 0.4638 0.643
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Figure 1.  Correlations between Bt cotton adoption, pre-adoption insecticide use, 
and post-adoption insecticide use   
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Figure 2. 
Reductions US insecticide applications to control 

bollworm,  budworm, and pink bollworm 
attributable to Bt cotton adoption 
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