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Abstract

We incorporate a renewable resource into an overlapping generations model with
standard, well-behaved utility and constant returns to scale production functions.
Besides being a factor of production the resource serves as a store of value. We
characterize dynamics, efficiency and stability of steady state equilibria and show
that the nature of steady state equilibrium depends on the value of the intertemporal
elasticity of substitution in consumption. In particular, if that elasticity is at least half,
but not exactly one, stationary equilibria are saddle points. The stationary equilibrium
is stable when the intertemporal elasticity of substitution is unity. For smaller values
of that elasticity we use a parametric example to demonstrate the existence of stable
equilibria (indeterminacy) and a subcritical flip bifurcation. Hence, an overlapping
generations economy with a renewable resource can display cycles and
indeterminacy even in the absence of externalities or imperfect competition.
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1. Introduction

The stability properties of overlapping generations models have been subject to a fairly large

amount of research since the mid 1980’s. It has been shown how idealized business cycles

may appear in a purely endogenous fashion even though “fundamentals” of the system, i.e.,

tastes, endowments and technologies or economic policies, do not vary over time.

Endogenous business cycles have been known to be possible in overlapping generations

models since Gale (1973). To mention a few more recent examples, Farmer (1986) and

Reichlin (1986) have shown using slightly different models the existence of limit cycles (Hopf

bifurcations) in planar systems, especially in the one-sector overlapping generations model of

capital accumulation. By applying the theory of flip bifurcations Grandmont (1985) has

shown how in a particular version of this class of models periodic equilibria can occur.

Grandmont (1998) presents an intuitive survey of some recent developments, which have

utilized geometric methods. For a comprehensive survey of the field, the reader may consult

Azariadis (1993).

Another issue associated with the properties of dynamic systems is indeterminacy. It

has been shown more recently that, for instance, a one-sector real business cycle model with

sufficient aggregate increasing returns to scale or a multisector model that has constant

returns to scale and market imperfections, may exhibit indeterminate steady state (i.e. sink)

that can be exploited to generate business cycles driven by “animal spirits”.1 Benhabib and

Farmer (1999) provide a survey of this literature from the macroeconomics viewpoint.

To demonstrate either bifurcation or indeterminacy in an overlapping generations

model, or in a real business cycle model, one usually has to make quite specific assumptions

about the fundamentals, e.g., postulating either increasing returns to scale or externalities.

These stability and indeterminacy issues have not been studied carefully in models

with renewable resource use, like forestry or fisheries. Traditional theories of renewable

resource use assume an infinitely lived agent or a social planner, and demonstrate that there

is one steady state equilibrium, which is a saddle. Equilibrium is a function of resource price

and exogenous real interest rate (for economics of forestry and fisheries, see e.g. Clark

                                                
1 Also the terms “sunspots” and “self-fulfilling beliefs” are used interchangeably in the literature to
refer to the same phenomenon.
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1990 and Johansson and Löfgren 1985). These models do not account for the fact that in

practice renewable resources are important stores of value between different generations.2

Hence, one can ask whether this standard renewable resource analysis is robust in an

overlapping generations economy, where agents have a finite life but resource stock may

grow forever, and where the real interest rate is endogenously determined.

Recent studies (Kemp and Long 1979, Löfgren 1991, and Mourmouras 1991,

1993) focusing on the sustainable use of renewable resources within the overlapping

generations framework have established the generally well-known fact that competitive

equilibria in overlapping generations economies may be inefficient.3  These papers share the

common feature that they study the steady state equilibrium without analyzing its transition

dynamics and thereby the stability properties. This is an unfortunate drawback for several

reasons. First, it is not obvious what the dynamic properties are when the model includes a

renewable resource with its own dynamics. Second, one may argue that stability properties

of the renewable resource exploitation are important especially for policy. If the utilization of

the resource tends to be unstable, competition may more easily lead to the destruction of the

whole resource, which naturally necessitates a more careful resource management.4 Olson

and Knapp (1997) is an interesting study of an overlapping generations economy with an

exhaustible resource. With the exception of the resource type, their basic model is quite

similar to ours.

Our purpose is to examine the dynamic properties of a conventional overlapping

generations economy augmented with a renewable resource which serves both as a factor of

production and a store of value. Because a renewable resource has its own dynamics and

growth function, we will get a planar system with harvesting and the resource stock as

dynamic variables. We characterize the steady state equilibrium of this overlapping

                                                
2 Tobin (1980), for instance, when criticizing the role of money as a store of value in overlapping
generations models, pointed out that “land and durable goods, or claims upon them are principal stores
of value” (p. 83).
3 Kemp and Long (1979) demonstrate that a competitive economy with constant population may under-
harvest its renewable resources as a consequence of the resource being inessential for production. In a
different vein, Mourmouras (1993) shows that both a low rate of resource regeneration relative to
population growth and a low level of saving may lead to unsustainable use of renewable resources, so
that consumption declines over time.
4 In addition to the above references, see e.g. Amacher et al  (1999) for an analysis of the effects of
forest and inheritance taxation on harvesting stand investment and timber bequests in an OLG model
with one-sided altruism.
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generations economy, compare competitive and efficient solutions, and in particular, study its

stability properties, which have thus far remained unexplored in the literature.

We construct a general equilibrium overlapping generations model where agents live

two periods and there is no population growth. The young are endowed with one unit of

labor and earn a competitive wage. They can consume or save in the financial asset or buy

the available stock of the renewable resource from the firm. During the first period of their

lives the young inelastically supply labor to firms, which transforms labor and resource,

which they buy from the old, into output by constant returns to scale technology. As the

focus is entirely on the extractive use of resource, we omit amenity services provided by the

resource. The resource stock may be interpreted as either forests or fisheries (with well-

defined property rights over fish stocks). Unlike Kemp and Long (1979) and Mourmouras

(1993), who make the unrealistic assumptions of constant and linear growth, respectively,

we utilize a general strictly concave resource growth function, which captures in a better way

the essential features of renewable resources.

We demonstrate that the nature of steady state equilibrium depends on the value of

the intertemporal elasticity of substitution in consumption. In particular, if the size of the

intertemporal elasticity of substitution is at least half, but different from one, then stationary

equilibria are saddle points. The equilibrium is stable under the logarithmic utility function

when intertemporal elasticity of substitution is equal to one. For smaller values of the

intertemporal elasticity of substitution we use a parametric example to demonstrate the

existence of a subcritical flip bifurcation for the case of an inefficient equilibrium. This means

that a repelling two-cycle emerges on the side of flip bifurcation, where the steady state is

stable. Thus we obtain cycles and indeterminacy from a model with standard well-behaved

utility function and constant returns to scale production function in the absence of

externalities or imperfect competition.

We proceed as follows. The elements of a conventional overlapping generations

economy augmented by dynamics and growth of a renewable resource is presented, and the

equilibrium conditions of the economy characterized in section 2. Conditions for a unique

steady state and its efficiency are described in section 3. In section 4 we study dynamic

equilibria of a planar system consisting of harvesting and stock of a renewable resource, and

end up with a characterization when all the stationary equilibria are saddle points. Section 5
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analyzes the case of the logarithmic utility function when the intertemporal elasticity of

substitution is unity. Since saddle point equilibria may not exist if the intertemporal elasticity

of substitution in consumption is low enough, section 6 studies what happens in this case. A

subcritical flip bifurcation is shown to occur under certain parametric constellations when the

steady state displays dynamic inefficiency. Finally, section 7 summarizes our findings.

2. The Model and the Equilibrium Conditions

We consider an overlapping generations economy where agents live for two periods. There

is no population growth. Agents maximize the following intertemporally additive lifetime

utility function

(1) )()( 21
tt cucuV β+= ,

where c i
t  denotes the period i (=1,2) consumption of consumer-worker born at time t and

1)1( −+= δβ  with δ  being the rate of time preference. We assume that 0>′u , 0<′′u

and the Inada conditions, i.e. 0)('
lim =

∞→
cu

c
 and ∞=

→
)('

0
lim

cu
c

. The young are

endowed with one unit of labor, which they supply inelastically to firms in consumption

goods sector. The labor earns a competitive wage. The representative consumer-worker

uses the wage to buy consumption good and to save. He can save in the financial asset or

buy the available stock of the renewable resource.

The firms in the consumption good sector have a constant returns to scale

technology, ),( tt LHF , to transform the harvested resource ( tH ) and labor ( tL ) into

output. This technology can be expressed in factor intensive form to give

)(/),( tttt hfLLHF = , where th  (= tt LH / ) is the per capita level of the harvest. The

per capita production function has the standard properties: 0>′f  and 0<′′f .

Furthermore, we assume ∞=′→ )(0
lim

th hf  and 0)(lim =′∞→ th hf .

The renewable resource in our model has two roles. It is both a store of value and

an input in the production of consumption good. The market for the resource operates in the
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following manner. At the beginning of the period the old agents own the stock, and also

receive that period’s growth of the stock. They sell the stock (growth included) to the firms,

which then decide how much of that resource to harvest and use as an input in the

production of the consumption good. The firm will sell the remaining stock of the resource to

the young at the end of the period. Alternatively we could think of the old deciding how

much to harvest of the resource and how much to sell to the young.

The growth of the resource (the growth function) is )( txg , where tx  denotes the

beginning of period t stock of the resource. )( txg  is assumed to be a strictly concave

function, i.e. 0<′′g . Besides owning the stock the current old generation (generation t-1 in

period t) will also get its growth, i.e. the stock they have available for trading is )( tt xgx + .

Furthermore, we assume that there are two values 0=x  and xx ~=  for which

0)~()0( == xgg . Consequently, there is a unique value x̂  at which 0)ˆ( =′ xg . Hence, x̂

denotes the level of stock where the growth is maximized, providing the maximum sustained

yield (MSY). x~  is the level at which the stock is so large that growth is zero. It is the

maximal stock that the natural environment can sustain. For instance a quadratic growth

function ( 2)2/1()( bxaxxg −= ) reflecting logistic growth for renewable resources fulfills

these assumptions.

The transition equation for the resource is

(2) )(1 tttt xghxx +−=+ ,

where th  denotes that part of the resource stock which has been harvested for use as an

input in production. The initial stock and its growth, )( txg , can be conserved for the next

period’s stock or used for this period’s harvest.

In addition to trading in the resource markets, the young can also participate in the

financial markets by borrowing or lending, the amount of which is denoted by ts .  The

periodic budget constraints are thus

(3) tttt
t wsxpc =++ +11
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(4) [ ] ttttt
t sRxgxpc 11112 )( ++++ ++=

where tp  is the price of the resource stock in terms of period t’s consumption, tw  is the

wage rate, and 11 1 ++ += tt rR  is the interest factor. The young generation buys an amount

1+tx  of the resource stock from the representative firm. The firm has harvested an amount

th  of the stock, and 1+tx  has been left to grow. According to (4) the old generation

consumes their savings including the interest, and the income they get from selling the

resource next period to the firm, [ ])( 111 +++ + ttt xgxp .

The periodic budget constraints (3) and (4) imply the lifetime budget constraint

(5)
[ ]

1

11111

1

2
1

)(

+

+++++

+

−+
+=+

t

tttttt
t

t

t
t

R

xpRxgxp
w

R

c
c

Maximizing (1) subject to (5) and to the appropriate nonnegativity constraints (which we do

not have to worry about because of our assumptions on the utility, production and growth

functions) leads to the following first-order conditions for ts  and 1+tx

(6) )(')(' 211
t

t
t cuRcu β+=

(7) [ ] )(')('1)(' 2111
t

tt
t

t cuxgpcup β++ += .

These conditions have straightforward interpretations. (6) is the Euler equation

which says that the marginal rate of substitution between today’s and tomorrow’s

consumption should be equal to the interest factor. According to (7) the marginal rate of

substitution between consumptions in two periods should be equal to the resource price

adjusted growth factor. (6) and (7) together imply the arbitrage condition for two assets

(8) [ ]
t

t
tt

p

p
xgR 1

11 )('1 +
++ += ,
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according to which the interest factor is equal to the resource price adjusted growth factor.

Using (8) we can rewrite the lifetime budget constraint as

(9)
[ ]

1

1111

1

2
1

)(')(

+

++++

+

−
+=+

t

tttt
t

t

t
t

R

xxgxgp
w

R

c
c .

The term in the square brackets is positive, since the growth function is strictly concave.

After presenting the elements of the model, we turn next to characterize the

equilibria and dynamics of the model. The competitive equilibrium is defined as follows.

Definition. A sequence of a price system and a feasible allocation,

  { }∞
=

−
1

1
21 ,,,,,, ttt
tt

ttt xhccwRp  is a competitive equilibrium, if

(i) given the price system consumers maximize subject to their budget constraints

and

(ii) markets clear for all t = 1,2,...,T,...

Market clearing conditions are

(10a) )(1
21 t
tt hfcc =+ −

(10b) )(1 tttt xgxhx +=++

(10c) 0=ts

(10d) tt phf =′ )(

(10e) tttt whfhhf =′− )()(

(10a) is the resource constraint for all t, and (10b) is the transition equation for the

renewable resource stock. The fact that there is only one type of a consumer per generation

and no government debt forces the asset market clearing condition to be such that saving

st = 0  for all t. Equations (10d) and (10e) in turn are the first-order conditions for profit

maximization, and determine the evolution of prices, tp  and tw .
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Market clearing condition (10b) and the first-order condition (7) for the resource

stock and harvesting imply the following planar system that describes the dynamics of the

model.

(11)  )(1 tttt xghxx +−=+

(12) [ ] =−− +1)(')(')(')(' tttttt xhfhhfhfuhf

[ ] [ ])('1))()(('')(' 11111 +++++ ++ ttttt xgxgxhfuhfβ

We have used the periodic budget constraints (3) and (4), and the equilibrium conditions

(10d) and (10e), to arrive at equation (12). Equations (11) and (12) are the main objects of

our study.5 Before analyzing the qualitative properties of this system we characterize the

stationary equilibrium.

3. Stationary Equilibria and Efficiency

In the steady states ( 0=∆ th  and 0=∆ tx ) the following equations hold

(13) )(xgh =

(14) [ ] [ ] [ ])('1))()(('')(')(')(' xgxgxhfuxhfhhfhfu ++=−− β .

Given the properties of the growth function, the curve defined by (13) is not monotonic.

Totally differentiating (14) we get

                                                
5 Instead of using Euler equation (12) we could have taken another route for the dynamic analysis by

concentrating on the evolution of savings defined as ),,,(),,,( 11111 tttt
t

ttttt ppRwcwppRwq ++++ −≡ .

It is straightforward to show that 0/ 1 <∂∂ +tRq , when the intertemporal elasticity of substitution is

less than unity. See discussion below on the crucial importance of this elasticity in our analysis.
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(15) 0
)('')('')(''

'')('')'1(')('''')('

1

2
2

22 >
+−+−

+++=
hxfhxfcu

fcugfcugcu

dx

dh

β
ββ

.

This means that the stationary Euler equation is an increasing curve in the hx -space. Next

we show that the curve defined by (14) goes through the origin in the hx -space.

Lemma. The point { }0,0 == xh  fulfills equation (14).

Proof. Suppose the Euler equation does not go through the origin. Since the curve is

upward sloping, there are two possibilities for the limiting behavior. First, if we let 0→x ,

then h  must go towards some positive number. Secondly, if we let 0→h , then x  must

approach some positive number. In the first case the right-hand side of (14) approaches

infinity (if )(' xg approaches infinity when x  approaches zero, this effect will reinforce the

argument), because ∞=→ )('0
lim cuc , but the left-hand side approaches some finite number.

Thus equation (14) cannot hold. In the second case when 0→h  the right-hand side

approaches zero, since 0)('lim =∞→ cuc , but the argument for the left-hand side (the first

period consumption) approaches a negative number, which is not a feasible solution to the

consumer’s optimization problem. Q.E.D.

It is quite straightforward to see that the steady state in our model is not necessarily

unique. When the growth rate is 0)(' >xg , the upward sloping Euler equation can cross the

growth curve in many points. For steady state to be unique, it is necessary that the Euler

equation cuts the growth curve from below. If it cuts the growth curve from above, there are

more than one equilibrium. For growth rate 0)(' ≤xg  the stationary equilibrium is

necessarily unique because of decreasing resource growth curve. In the subsequent analysis

we will concentrate on the nontrivial unique steady state.6

                                                
6 It can also be the case that the only point where the curves cross is the origin, especially, since we
have not imposed Inada conditions on the growth function.
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We will describe the loci 0=∆ tx  and 0=∆ th  in the hx -space. The slope of the

locus, )( tt xgh = , evaluated at the steady state is

(16) )('
0

xg
dx
dh

txt

t =
=∆

.

The slope of the locus (derived in Appendix 1) determined by equation (12), and evaluated

at the steady state is

(17)

[ ])'1(')('')'1)(('''')(')('')(''')(''
)'1(')('')'1('')(')'1(')(''

2211

3
221

0
gfgxfgcugcugxfcufcu

gfcuggcugfcu
dx
dh

tht

t

+−++−++−
+++++=

=∆
ββ

ββ

The slope in (16) can be positive, zero or negative. The slope in (17) is always positive

given our assumptions on the utility function and the fact that '1 g+  needs to be always

positive, because in the stationary equilibrium '1 g+  equals the interest factor (c.f. arbitrage

equation (8)).

The fact that we concentrate on the unique steady state means that the following

holds in the stationary equilibrium

(18)
00 =∆=∆

>
tt xt

t

ht

t

dx

dh

dx

dh
.

This means that Euler equation cuts the growth curve from below, see Figures 1 and 2

below.

To summarize, we have argued that a unique stationary equilibrium exists, when the

growth rate, )(' xg , is nonpositive. In the case of positive growth rate a necessary condition

for the steady state to unique is that the Euler equation cuts the growth curve from below.

There are multiple equilibria if )(' xg  is positive and Euler equation cuts the resource growth

curve from above.
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Are the stationary equilibria efficient? It is a well-known fact that the competitive

equilibria in overlapping generations models can be inefficient. Keeping in mind that )(' xg  is

the rate of interest in the steady state and the population growth rate is zero in our model,

we conclude that all those steady states for which 0)(' ≥xg  are efficient. This is the case

where the real interest rate exceeds population growth rate.

Steady states in which 0)( <′ xg  are inefficient, since consumption could be

increased for every generation by harvesting some of the resource stock during any period.

This case corresponds to the situation where the real interest rate is less than the population

growth rate. This overaccumulation is inefficient.7

4. Dynamical Equilibria: Saddles

To study the qualitative properties of our model we start by considering paths for which

tt xx ≥+1  and tt hh ≥+1 . It follows from (11)

(19) tttttt xxghxxx ≥+−⇔≥+ )(1 tt hxg ≥⇔ )( .

This means that x  is increasing below the growth curve, and it is decreasing above the

curve.

Considering paths for which tt hh ≥+1 , requires more work. In Appendix 1

(equation A.3) we derive the following expression (evaluated at the steady state) for the

derivative of the right-hand side of equation (12) above with respect to 1+th  (denoted also

by A )

(20) A
c

ufg
h
RHS

t

≡





−+=

∂
∂

+ )(
1

1''')'1(
21 ρ

β ,

                                                
7 Efficiency outside steady states is a more involved problem. One can study the efficiency of
nonstationary paths by modifying the criterion developed by Cass (1972) to the needs of the model at
hand.
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where )(cρ  ( [ ])(''/)(' ccucu−= ) is the reciprocal of the elasticity of the marginal utility of

consumption. This quantity is also known as the intertemporal elasticity of substitution, and it

depends inversely on the curvature of the periodic utility function. We can see that given the

values of tx  and th , the right-hand side of equation (12) is an increasing  (decreasing)

function of 1+th , if ρ  is less (greater) than unity.8

If 1>ρ  we get from (12)

(21) [ ] ≤−−⇔≥ ++ 11 )(')(')(')(' tttttttt xhfhhfhfuhfhh

[ ] [ ])('1))()(('')(' 111 +++ ++ ttttt xgxgxhfuhfβ

Equation (21) is equivalent to the following statement

(22)
[ ]

[ ] [ ] 1
)('1)()((''

)(')(')('

111

1 ≤
++

−−

+++

+

tttt

ttttt

xgxgxhfu

xhfhhfhfu

β

If 1<ρ , the inequalities in (21) and (22) are reversed. All this means that the motion of h

on both sides of the curve, where tt hh =+1 , depends on the value of intertemporal

elasticity of substitution. This fact points out to the possibility that dynamics of the system

can drastically change when ρ  passes through unity.  When 1=ρ , the preferences are

logarithmic. We will return to this case later on in section 5.

The crucial role of ρ  is illustrated in Figures 1 and 2. In Figure 1, where the

intertemporal elasticity of substitution is greater than one, the arrows indicate a possibility of

saddle point equilibrium.9 In this section we give a formal proof for this intuition. In Figure 2,

where the intertemporal elasticity of substitution is less one, the arrows describing the motion

                                                
8 When the utility function belongs to the class of constant relative risk aversion (CRRA) functions, the
inverse of the relative risk aversion measure is the intertemporal elasticity of substitution. See e.g
Deaton (1991) for a further discussion.
9 The direction of h on both sides of the hh curve in diagrams 1 and 2 can be obtained as follows.
Consider equation (21) as an equality. Differentiate both sides with respect to h keeping x fixed. E.g . in
the case of  1>ρ , the left-hand-side decreases and the right-hand side increases, which means that

above the curve, h is increasing and below it is decreasing (c.f. equation (21) again). Analogously, it can
be shown that the direction of the arrows is reversed when ρ <1.
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of harvesting are reversed. This suggests a possibility for the stable equilbrium. One should

notice, however, that orbits in discrete dynamical systems are sequences of points in the

relevant state spaces. This qualitative information drawn from discrete phase diagrams is

quite tentative and must be confirmed analytically, which we will do in detail in the next

section.

In order to study formally the stability properties of dynamical equilibrium, we first

rewrite equation (11) as follows

(23) ),()(1 tttttt hxGxghxx ≡+−=+

Substituting the RHS of (11) for 1+tx  in (12) gives an implicit equation for 1+th ,

(24) ),(1 ttt hxFh =+

The planar system describing the dynamics of the renewable resource stock and harvesting

consists now of equations (23) and (24). The Jacobian matrix of the partial derivatives of the

system (11)-(12) can be written as

(25)










 −+
=







=
A

B

A

C
g

FF

GG
J

hx

hx
1'1

,
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Figure 1. Elasticity of intertemporal substitution greater than one

Figure 2. Elasticity of intertemporal substitution less than one
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where A  has been derived above in equation (20) and B  and  C  are the partial derivatives

of equation (12) with respect to th  and tx  respectively, and have been derived in Appendix

2. By defining 
1

ˆ
−

=
ρ

ρρ  the two ratios in the Jacobian matrix can then be expressed as

(26) ρ
β

ˆ
''
'''

)('''
)'1)(('''

)('''
)('''

2

2
2

2

2

1
2









−+−−=
f

gf

cuf

gcuf

cuf

cuf

A

C

(27)  ρ̂
)'1(''

'''
)('''

)('')'1('
)('''
)('''

)('
))(('''

1
2

2
2

1

1
2

1

1









+
+++++−=

gf

gf

cuf

cugf

cuf

cuf

cu

hxcuf

A

B
,

where we can see the importance of the magnitude of the intertemporal elasticity of

substitution for the stability analysis. These elements of the Jacobian change signs whenever

ρ  passes through unity, since the bracketed term in AC /  is negative and in AB /  is

positive.

The trace and determinant of the characteristic polynomial of our system can be

calculated as

(28)






 +

−+=
)('

))(('''
1ˆ)'1(

1

1

cu

hxcuf
gD ρ

(29)

ρ̂
)'1(''

'''
)('''

)('')'1('
)('''
)('''

)('
))(('''

1)'1(
2

2
2

1

1
2

1

1









+
+++++−++=

gf

gf

cuf

cugf

cuf

cuf

cu

hxcuf
gT .

Armed with these calculations (see Appendix 2 for details) we get the following Proposition

Proposition 1.  If the intertemporal elasticity of substitution is at least one half,

and differs from unity, all the stationary equilibria are saddle points.

Proof. See Appendix 3.
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According to Proposition 1, stationary equilibria are saddle points for a wide range

of the values for the intertemporal elasticity of substitution. Empirical evidence on the size of

this elasticity does not, however, necessarily coincide with these parameter values, but often

points out to lower values.10  It is therefore of interest to study also the characteristics of

equilibria of the special case when 1=ρ  and when 2/1<ρ . These equilibria are studied in

the next two sections.

5. Dynamical Equilibria under the Logarithmic Utility Function:

    Stability

Next we consider the case, where the intertemporal elasticity of substitution is unity, i.e. the

periodic utility function is logarithmic, ccu ln)( = . In this case (12) can be written as

(30)
[ ]

)(
)('1

)(')(')(
)('

11

1

1 ++

+

+ +
+=

−− tt

t

ttttt

t

xgx
xg

xhfhfhhf
hf β

.

Using (11) in (30) gives a relation between th  and tx , defined as )( tt xPh = . Hence

1+th disappears from the Euler equation (12) so that our planar system (11)-(12) is reduced

to a first-order nonlinear difference equation for x

(31) ).()(1 tttt xgxPxx +−=+

Once the evolution of x is determined, the behavior of h can be obtained from (12) so that

the system has become recursive. What are the dynamic properties of this system?

The slope of the first-order nonlinear difference equation (31) is

(32) )(')('11
tt

t

t xgxP
dx

dx +−=+ .

                                                
10 See the discussion e.g. in Deaton (1991, pp. 63-75).
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In order to develop the expression for )(' txP  we take into account (11) and rewrite (30) as

(33) [ ] =+−++− ))(()()(' xghxgxghxhf

[ ][ ])(')(')(')()(('1 xghfxhfhfxghxg −−+−+β .

We totally differentiate (33) with respect to h  and x , and define )(xghxx +−=  to get

(34)

[ ] [ ] [ ]{ }dhxgxffxgxgxffxgxgfxgxf ))(('''))('1())((')(''))('1(')('' +−+−+−++−+ ββ

[ ]{ }dxxgffxgxgxffxgxg ))('1(''))('1())((')(''))('1( +−+−+−+= ββ

Denoting the term in braces on the left-hand side by Y and on the right-hand side by Z we

get

(35)
[ ]{ }

{ } 0
)('1

)(' >+==
Y

Zxg
xP

dx

dh
,

since both Y and Z are negative. Next we evaluate (35) in the steady state, where xx = .

Note that now [ ])'1(1)('' ggxfZY ++++= β , which means that '1)('0 gxP +<< ,

because 1<Y
Z . From here it follows that 0)(')('1 >+− xgxP .

To prove the stability of the steady state we need to have

)(')('1)(')('1 xgxPxPxg >⇔<−+ . This condition holds for all inefficient equilibria (

where 0)(' ≤xg ), which are thus stable. What about the stability of efficient equilibria

(where 0)(' >xg )? If the stationary equilibrium is unique, then the upward sloping Euler

equation cuts the resource growth curve from below so that the inequality (18) holds. This is

equivalent to the stability condition )(')(' xgxP > . Hence we can summarize our findings in
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Proposition 2.  Under the logarithmic utility function, the planar system reduces

to a nonlinear first-order difference equation for the natural resource stock. If the

stationary equilibrium is unique, it is stable regardless of whether the equilibrium is

efficient or not.

As Proposition 2 reveals, the logarithmic utility function is very special. When the

intertemporal elasticity of substitution becomes unity, the planar system turns to a first-order

nonlinear difference equation for the resource stock, saddle point equilibria vanish and stable

equilibria emerge. Next we turn to examine the case, where 2/1<ρ .

6. Dynamical Equilibria: Indeterminacy and Flip Bifurcations

In the above discussion we found that when 1>ρ , the determinant (D) and the trace (T) of

the system are positive, and furthermore that D-T+1 < 0. Stationary equilibria are thus

saddles. These equilibria are in area Χ in Figure 3 in which we have reproduced the familiar

graphical description of dynamical equilibria in a planar system (see e.g. Azariadis 1993).

Stable equilibria lie in area Β, and the other saddle point equilibria are in area Α. Thus

complex roots are not possible in our model, which in turn means that we cannot get Hopf

bifurcations.

When 1<ρ , the determinant of the system becomes negative, and D-T+1 positive.

This means that the saddle-node bifurcations (they require among other things that D-T+1 =

0) are not possible. We already proved that stationary equilibria are saddles for

2/11 ≥> ρ . Since D+T+1 cannot be unambiguously signed for 21<ρ , it is possible to

have flip bifurcations in our model (see areas Α and Β in Figure 3).

In the following we assume 2/1<ρ  (i.e. 0ˆ <ρ  and 1ˆ <ρ ). Inspecting the general

case above seems to point out to the fact that it is possible to get stable equilibria and flip

bifurcations. Since 0ˆ <ρ , we consider the case where D < 0. We have also established in

the proof of Proposition 1 that, when 2/1≥ρ  (and 1≠ρ ) D-T+1 > 0. To get stability, we

need to have D+T+1 > 0 as well.  Because we have rigorously shown the existence of
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saddles when D < 0, we can also show the existence of flip bifurcations, if we can show the

stability of equilibria.

Figure 3. Characteristics of stability in a planar system

To proceed we rewrite D+T+1 as follows

(36) { }1ˆ)'1( ++= MgD ρ

(37) { }1ˆ)'1( ++++= NMgT ρ ,

where

0
)('

))(('''

1

1 >
+

−=
cu

hxcuf
M

0
)'1(''

'''
)('''

)('')'1('
)('''
)('''

2

2
2

1

1
2

>












+
+

+
+=

gf

gf

cuf

cugf

cuf

cuf
N .

D

T

D+T+1=0D-T+1=0

ΑΑ

Β

Χ

1

-1

2-1 1-2
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Using this shorthand notation we can express D+T+1 after some manipulation

(38)  D+T+1 = )ˆ1)('2(ˆˆ)'2( ρρρ +++++ gNMg .

This shows that at least in principle D+T+1 can be zero or positive, if the last term, the only

positive term in the expression, dominates. Note that when D <0, D-T+1 > 0 and D+T+1 =

0 we have a flip bifurcation (see the line between areas Α and Β).

Since the existence of stable equilibria (indeterminacy) and a flip bifurcation cannot

be proved analytically in our model we consider a parametric example. We use the following

standard explicit functional forms:


















−+=′+−=′′−=′⇒−=

−=′′=′⇒=

−==⇒
−

=

−−

−−−
−

bxagbgbxagbxaxxg

hfhfhhf

ccuccu
c

cu

11,,
2
1

)(

)1(,)(

1
)('',)('

1
1

)(

2
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1
11

1
1

ααα

ρρ
ρ

ααα

ρ
ρ

Note that ρ  in the utility function is exactly the intertemporal elasticity of substitution. In the

stationary equilibrium 2)2/1( bxaxh −= .  Using this expression for h , the Euler equation

and budget constraints, we end up with the following expression (see Appendix 4) for the

stock of the renewable resource in a stationary equilibrium

(39) αα
β ρρ −=

−
+

−++
1

2
1)1(1

1

bxabxa
.

A straightforward but tedious calculation yields the expression for D+T+1



21

(40) 
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In the sequel we undertake a numerical analysis for a calibrated version of the

parametric example of our model. We assume the following values for parameters of the

growth function and the discount factor: 1== ba  and 2/1=β .11 The values for growth

parameters mean that 1ˆ =x  and 2~ =x , and furthermore that the condition 0)('1 ≥+ xg

holds for all 20 ≤≤ x . Economically more interesting parameters are the output elasticity of

resource (α ), which determines the price elasticity of resource demand, and the

intertemporal elasticity of substitution (ρ ). For this reason our focus will be to find out for

what values of these parameters we will get stability and flip bifurcations.

Solving α  from equation (39) and plugging that value into (40) we find out for what

combinations of x  and ρ  D+T+1 is greater or less than zero or exactly zero. Solving α

from (39) we get

(41) 





−++−+

−−
−+

−= ρρ β
α

)1(1
1

22
2

22
2

bxabxa
bxa

bxa
bxa

.

Plugging this relationship (41) into (40) gives the following relatively complicated expression

(42) 





−
−−++−+−+





−

=++
ρ
ρβ

ρ
ρρ

1
21

)2()1)(2(
1

1
1 bxabxabxaTD

                                                
11 If we want to interpret literally the length of the period in our overlapping generations economy to be
around 25 years, then the annual discount factor 0.975 (or the rate of time preference about 2.6 percent)
means that the discount factor for 25 years should be around ½.
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ρ )1(122
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1
1
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.

To get a more precise idea where to look for stable equilibria, note that the only

positive term in this expression is the second term. Combining this term and the first term we

get after rearranging

(43) [ ]ρρ βρ
ρ

)1()21(
1

2
bxa

bxa −+−−





−

−+
.

As we have already mentioned, we assume that 2/1=β  and 2/10 <<ρ . Consider first the

efficient allocations, which lie on the left-hand side of the maximum sustained yield, i.e.

bax /0 ≤≤ . It is quite straightforward to see that the term in the brackets of (43) is

negative. This means that all the stationary equilibria are saddles. Therefore, we should look

for possible stable equilibria from the right-hand side of the MSY, where equilibrium is

inefficient.

The stationary equilibrium condition (39) indicates that there is an inverse

relationship between α  and x. Because we will now concentrate on such allocations for

which bax /> , the value of α  must be relatively small for equation (39) to hold.

Our approach will be the following. We will first graph the plane defined by equation

(42) in the (D+T+1) ρx - space. Then we set D+T+1 = 0, and graph those values of x  and

ρ  for which D+T+1 = 0 holds.
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Figure 4. D+T+1.
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Figure 5. A characterization of indeterminacy and flip bifurcations

Figure 4 is the three dimensional graph of equation (42) (when α  has been

substituted in for the expression of D+T+1). It points out to the fact that D+T+1 will be

positive only for extremely high (i.e. values which are close to x~  (= 2) levels of the

renewable resource stock.

In Figure 5 we have projected those values of the resource stock x  and the

elasticity of intertemporal substitution ρ  for which D+T+1 is exactly zero, i.e., for which we
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have flip bifurcations. Values of x  and ρ , which lie above the curve will yield stable

equilibria, and for the values of x  and ρ  below the curve we have saddle point equilibria.

In Figure 6 we have depicted α , x  and ρ  in the same diagram, i.e. we have

graphed equation (41). This figure indicates that to get stable equilibria and flip bifurcations

the value of α  needs to be quite small. E.g. if 01.0=α  and 03.0=ρ  we get the level of

the stationary equilibrium stock to be 1.95664 and the level of harvesting 0.04242. We also

get 00119886.01=++ TD . And if we let 011.0=α , we get the equilibrium stock to be

1.95228, the level of harvesting 0.04658, and 00373852.01 −=++ TD .
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1.98

x

0.1

0.2

r

0

0.005

0.01

0.015

a

1.94

1.96

1.98

x

Figure 6. Equation (34).

We have shown that there is a nontrivial set of parameter values of α  and ρ , for

which our parametrized economy exhibits stable equilibria, i.e., indeterminacy,  and flip

bifurcations. In contrast to previous literature, indeterminacy arises here under standard

assumptions on utility and production functions. This also means that there can be

endogenous cycles in our model, since the characteristic roots are of different sign.12

                                                
12 Interestingly, Grandmont (1985) has shown in a different overlapping generations model with money
that a succession of flip bifurcations may occur when the Arrow-Pratt relative risk version of the old
agents  exceeds two, which is equivalent to the condition that the intertemporal elasticity of substitution
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Flip bifurcations are called period-doubling because they give rise to stable

periodic orbits whose period is twice that of the stability losing equilibrium. There are two

cases to consider regarding stability. In a supercritical flip bifurcation a stable two-cycle

emerges on the side of the bifurcation value where the steady state is saddle. In a subcritical

flip bifurcation, an unstable two-cycle emerges on the side of the bifurcation value where the

steady state is stable.13

To investigate the type of flip bifurcation, i.e. on which side of the flip bifurcation a

two-cycle exists in our model, we resort to numerical simulations. We asked whether it is

possible to find four numbers { }2211 ,;, hxhx , which solve the following transition and Euler

equations.

(44) 2
11112 2

1
xxhxx −+−=   and  

[ ] [ ]ρα

α

ραα

α

α

β

αα
1

21
1

2

2
1

2
1

2
1

11

1
1

)(

)2(

)1( hxh

xh

xhh

h

+

−=
−− −

−

−

−

(45) 2
22221 2

1
xxhxx −+−=   and 

[ ] [ ]ρα

α

ραα

α

α

β

αα
1

12
1

1

1
1

1
1

1
1

22

1
2

)(

)2(

)1( hxh

xh

xhh

h

+

−=
−− −

−

−

−

If we find a four-tuple that fulfills the equations (44)-(45), then a two-cycle exists. We fixed

004.0=α , and chose the values of the intertemporal elasticity of substitution from both

sides of the Flip bifurcation curve in Figure 5. In Figure 7 we have chosen to depict the

emergence of the two-cycle for the resource stock x (the vertical axis). The same

phenomenon happens, of course, to the level of harvesting, which we have not depicted.

The flip bifurcation occurs for values of ρ  (the horizontal axis) between 0.1825 and

0.1826. If ρ  = 0.1826, we have a saddle, and if it is 0.1825 we have a stable equilibrium.

As the Figure indicates the period doubling occurs on the stable side, which means that we

have a subcritical flip bifurcation.

                                                                                                                                           
is smaller than one half. In this case saving in Grandmont’s model is a decreasing function of the rate of
interest, c.f. footnote 5 on page 10.
13 See e.g. Devaney (1989, pp. 90-92), Grandmont (1988, pp. 55-61) and in particular Guckenheimer and
Holmes (1983, pp. 156-160) for a formal description of the flip bifurcation and its specific types.
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Figure 7. Subcritical flip bifurcation

In overlapping generations models with one dimensional dynamics flip bifurcations

have been shown to exist when the elasticity of intertemporal substitution has been less than

one (see footnote 12), which also means that saving has been a decreasing function of the

rate of interest (backward bending offer curves). The logistic growth function is a typical

example of a simple dynamical system, which allows for complex dynamics.

Although there are no nonconvexities and market imperfections, except the typical

overlapping generations structure, in our model, it seems that the case that flip bifurcations

and complex dynamics emerge in our model due to the mixture of low elasticity of

substitution in consumption and logistic growth.

The parameter values for the intertemporal elasticity of substitution for which we get

stability and flip bifurcations are empirically quite plausible. The parameter values for the

production function parameter (α ), for which we obtain stability and bifurcations, are quite

small. The parameter α  measures the share of natural resources in total output. It varies

across countries and can be relatively low.

7. Conclusions

The stability properties of an overlapping generations model with capital accumulation, like

periodic equilibria and indeterminacy of equilibria, have been subject to a fairly large amount

of research since the mid 1980s. These issues have not, however, been studied carefully in

models with renewable resource use, like forestry or fisheries. Our purpose in this paper has

been to do just that. We have examined the dynamic properties of an overlapping

generations economy under the standard assumptions about the utility and production

functions, but augmented with a renewable resource. In addition to a factor of production it

serves as a store of value. Because a renewable resource has its own growth function and

dynamics, we get a planar system consisting of harvesting and the resource stock. After

having characterized the steady state equilibrium and efficiency we turned our main focus to

studying the stability properties of our model.

We showed that the nature of the steady state equilibrium depends on the value of

intertemporal elasticity of substitution in consumption. In particular, if the intertemporal
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elasticity of substitution is at least one half, but different from unity, then stationary equilibria

are saddle points, but the stationary equilibrium is stable under the logarithmic utility function

with the intertemporal elasticity of substitution being equal to unity. Interestingly, for smaller

values of the intertemporal elasticity of substitution, which are equally plausible on the basis

of empirical evidence from consumption behavior, we use a parametric example to

demonstrate the existence of a subcritical flip bifurcation for the case of inefficient

equilibrium. This means that a repelling two-cycle emerges on the side of flip bifurcation

where the steady state is stable. Hence, an overlapping generations economy with a

renewable resource may display cycles and indeterminacy under standard well-behaved

utility and constant returns to scale production functions without externalities or imperfect

competition as is usually required to get bifurcations and indeterminacy from stability

analyses.
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Appendix 1. The slope of equation [17] and the RHS of equation [12] as a
function of  1+th

• The right-hand side of equation (12) as a function of 1+th .

The RHS of (12) is

A.1 [ ] [ ])('1))()(('')(')( 111111 ++++++ ++= tttttt xgxgxhfuhfhRHS β

Differentiating this with respect to 1+th  we get (dropping the arguments)

A.2 [ ]))(('')(''')'1(''')'1()(' 21 xgxfcufgufghRHS t ++++=+ ββ
      [ ]''))(('''')'1( uxgxfufg +++= β

Keeping in mind that ))(('2 xgxfc +=  we get

A.3 





−+=+ )(

1
1''')'1()('

2
1 c

ufghRHS t ρ
β

where 
)(''
)('

)(
ccu

cu
c

−=ρ . In the case of constant Arrow-Pratt relative risk aversion utility

functions )(cρ  is exactly the elasticity of intertemporal substitution. From A.3 it is now easy
to see that )0(0)(' 1 <>+thRHS when )1(1)( <>cρ .

• The derivation of the slope of equation (17)

We first rewrite equation (12), and take into account the fact that we consider paths, where

tt hh =+1  for all t  but tx  may vary.

A.4 [ ] [ ] ))('1())()(('')(')(')(' 1111 ++++ ++=−− ttttttttt xgxgxhfuxhfhhfhfu β

Totally differentiating A.4 and taking into account equation (10) we get

A.5 { [ ] −+++− + )('')(''))(('')('' 121 t
t

tt
t xgcufxgxfcu β

[ ] } ttttt
t dhxgxgfxgxfcu ))('1()('1('))(('')('' 11112 ++++ ++++β

=
{ ++++ + ))('1)(('')(')('1(')('' 121 tt

t
t

t xgxgcuxgfcu β

[ ][ ] } ttttt
t dxxgxgxgxgfcu ))('1())('1)((')('1')('' 112 ++ ++++β .
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Rearranging and evaluating A.5 at the stationary point, tt hh =+1  and tt xx =+1 , yields

equation (17) in the text.

Appendix 2. Development of the Jacobian Matrix of the Partial Derivatives

For the purposes of stability analysis we develop the Jacobian matrix, its determinant and
trace.

A.6 ),(1 ttt hxGx =+

A.7 ),(1 ttt hxFx =+

The stability of the steady-state depends on the eigenvalues of the Jacobian matrix of the
partial derivatives









=

hx

hx

FF

GG
J .

Calculating the partial derivatives of the Jacobian matrix we first obtain

)('1),( tttx xghxG += , 1),( −=tth hxG .

To get the partials of ),(1 ttt hxFh =+ we first do the implicit differentiation in the following

manner

A.8 ttt CdxBdhAdh +=+1 ,

where A, B and C  are appropriate partial derivatives to be presented in a moment.
Calculating these we take into account the other dynamical equation of our system:

)(1 tttt xghxx +−=+ . Given the definitions of A, B and C  we will then have

A

C
hxF ttx =),( , 

A

B
hxF tth =),( .

As for A (as evaluated at the steady state) we get from A.3

A.9
ρ

ρβ 1
)(''')'1( 2

−+= cufgA ,

where ρ  has been defined in the text. For the future developments we define 
1

ˆ
−

=
ρ

ρρ .

Clearly, 0)(<>A , as 1)(><ρ . Totally differentiating (12) with respect to th  (again taking

into account the transition equation) we obtain
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A.10 [ ]+++−+= )('))()(('')('')(')(')('' 11 tttt
t

t
t

t hfxgxhfcuhfcuhfB

[ ] [ ] 0)('')(')(')('1)('')(' 121
2

12
2

1 <++ ++++ t
t

tt
t

t xgcuhfxgcuhf ββ ,

and totally differentiating (12) with respect to tx  (again taking into account the transition

equation) we have

A.11 [ ] [ ] [ ]−+−+−= ++ )('1)('')(')(')('1)('')(' 1211
2

tt
t

tt
t

t xgxgcuhfxgcuhfC β

[ ] [ ] [ ] 0)('1)('1)('')(' 2
12

2
1 >++ ++ tt

t
t xgxgcuhfβ .

Next we evaluate A, B and C at the steady state. By taking into account the Euler condition
at the steady state )(')'1()(' 21 cugcu β+= , we get

A.12i ρ
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Clearly, 0)(/ <>AC  when )1(1 ><ρ , and 0)(/ <>AB  when )1(1 <>ρ .
We can now rewrite the Jacobian as follows

A.13










 −+
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A

B

A

C
g

J
1'1

.

The determinant (D) and the trace (T) of the Jacobian matrix, J, are D = 
A

C

A

B
g ++ )'1( and

T = 
A

B
g ++ '1 respectively.  Using equations A.9, A.10 and A.11 we have the following

expressions
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A.15
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Appendix 3. Proof of Saddle-Point Stability

We analyze the stability of system (23) and (24) on the basis of (11) and (12).

The characteristic polynomial associated with the system (23) – (24) expressed in terms of
D and T is

A.16 0)( 2 =+−= DTp λλλ

It is known from the stability theory of difference equations (see e.g. Azariadis, 1993, pp.
63-67) that for a saddle point the roots of 0)( =λp  need to be on both sides of unity. Thus
for a saddle we need that D-T+1 < 0 and D+T+1 > 0 or D-T+1 > 0 and D+T+1 < 0.

When ρ̂  is positive, i.e. 1>ρ , it is easy to conclude that both the determinant and the trace
in A.14 and A.15, respectively, are positive, which also means that that D+T+1 > 0 holds.
Making inferences about the sign of D-T+1 requires more work. A straightforward
calculation yields

A.17 D-T+1=
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A.17 cannot be signed yet for 0ˆ >ρ  (i.e. 1>ρ ). To get the sign of D-T+1 we use the
assumption that our steady state is unique. This is assured by comparing slopes of the
curves, where tt hh =+1  and tt xx =+1 . We develop the condition

A.18
00 =∆=∆

>
tt xt

t

ht

t

dx

dh

dx

dh
,

as
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A.19
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+++++
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ββ .

Multiplying both sides of A.19 by the denominator (negative sign) on the left-hand side we
get

A.20 <+++++ 3
221 )'1(')('')'1('')(')'1(')('' gfcuggcugfcu ββ

')('')'1)((''''')(''''))(('''')('' 2211 ghxfgcuggcugfhxcugfcu ++−++− ββ
'')'1)(('' 2

2 gfgcu ++ β .

and collecting terms A.20 can be re-expressed as

A.21 '''))(('')'1(')('''')('')('' 1
2

221 gfhxcugfcugcufcu +++++ ββ
0')('')'1)(('' 2 <+++ ghxfgcuβ .

Dividing by ( 0)(''' 2 <cuf β ), using Euler condition and the fact that )('2 hxfc +=  yields
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Now we multiply both sides by )'1/(' gf +  (>0) to get
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Rearranging and taking into account the definition of ρ̂  yields
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If 0ˆ >ρ  (i.e. 1>ρ ) we get by multiplying with ρ̂
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A.25
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Note that this is exactly D-T+1, which means that we have a saddle when 1>ρ .
If 0ˆ <ρ  (i.e. 1<ρ ) we get by multiplying with ρ̂
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which means that D-T+1 is positive. To get a saddle in this case, we need to have D+T+1
to be negative. To explore this possibility we check the sign of D+T+1 when 0ˆ <ρ  (i.e.

1<ρ ). To make this calculation more transparent we rewrite D and T as follows

A.27i { }1ˆ)'1( ++= MgD ρ
A.27ii { }1ˆ)'1( ++++= NMgT ρ ,
where
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Using this shorthand notation D+T+1 can be expressed after some manipulation

A.28 D+T+1 = )ˆ1)('2(ˆˆ)'2( ρρρ +++++ gNMg .

Note that, we are now considering the case, where 0ˆ <ρ  (i.e. 1<ρ ). The first two terms
in (A28) are negative. The third term is also negative when 0ˆ1 <+ ρ . This happens when

2/1>ρ . So we have a saddle in this case, too. This completes the proof of Proposition 1.
Q.E.D.

Appendix 4. Derivation of equation (39)

Given the assumed functional forms, the Euler equation can be written

A.29 [ ] 12 )'1( cgc ρβ+= .
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Plugging this into the equilibrium condition, )(21 hfcc =+  and using the budget constraint
))()(('2 xgxhfc += gives

[ ]
ρρ

α

β)1(1
))2/1((

1
bxa

bxax
c

−++
−=  and  

[ ] [ ]
))2/1((

)2/1(1))2/1((
2

bxa

bxabxax
c

−
−+−=

αα
.

If we plug these expressions for consumption back into the equilibrium condition we get
equation (32) in the text.
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