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Abstract

This paper considers estimation and inference in panel vector autoregressions
(PVARS) with fixed effects when the time dimension of the panel is finite, and the
cross-sectional dimension is large. A Maximum Likelihood (ML) estimator based on a
transformed likelihood function is proposed and shown to be consistent and
asymptotically normally distributed irrespective of the unit root and cointegrating
properties of the underlying PVAR model. The transformed likelihood framework is
also used to derive unit root and cointegration tests in panels with short time
dimension; these tests have the attractive feature that they are based on standard
chi-square and normal distributed statistics. Examining Generalized Method of

Moments (GMM) estimation as an alternative to our proposed ML estimator, it is
shown that conventional GMM estimators based on standard orthogonality conditons
break down if the underlying time series contain unit roots. Also, the implementation
of extended GMM estimators making use of variants of homoskedasticity and
stationarity restrictions as suggested in the literature in a univariate context is subject
to difficulties. Monte Carlo evidence is adduced suggesting that the ML estimator and
parameter hypothesis and cointegration tests based on it perform well in small
sample; this is in marked contrast to the small sample performance of the GMM
estimators.
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1 Introduction

Vector autoregressive models (VARs), whether postulated as reduced form econometric models or
built to examine long-run restrictions suggested by economic theory while allowing for unrestricted
short-run dynamics have become a widely used modelling tool in economics (for example, Hsiao,
1979, 1982, Sims, 1980, King, Plosser, Stock and Watson, 1991, Pesaran and Shin, 1999). It is well
known, though, that time-series inference on VARs critically depends on whether the underlying
processes are (trend) stationary or integrated, or cointegrated, and, if they are cointegrated, the
rank of cointegration (for example, Sims, Stock, and Watson, 1990, Phillips, 1991, Johansen, 1995,
and Pesaran, Shin, and Smith, 2000).

It is also widely recognized that panel data have the attractive feature that often a large number
of cross-sectional observations are available over time. The application of VARs to panel data is
often hampered by two issues, however: (i) The time dimension of the panel may be short. (ii)
Cross-sectional heterogeneity is present. The first issue gives raise to the problem of modeling
the initial observations (for example, Anderson and Hsiao, 1981, 1982, Bhargava and Sargan,
1983, Blundell and Smith, 1991, and Nerlove, 1999). The second issue gives raise to the classical
incidental parameters problem, Neyman and Scott (1948), if the cross-sectional heterogeneity is
modelled through fixed effects. Both issues can lead to the breakdown of the classical Maximum
Likelihood (ML) estimator.

Because of the difficulties with implementing likelihood based inference, Generalized Method
of Moments (GMM) estimators have been popular for the estimation of (predominantly univari-
ate) dynamic panel data models (for example, Holtz-Eakin, Newey, and Rosen, 1988, Arellano and
Bond, 1991, Ahn and Schmidt, 1995, and Arellano and Bover, 1995). However, conventional GMM
estimators based on standard orthogonality conditions have proved to have rather poor finite sam-
ple properties in the case of autoregressive panel data models with near unit roots (for example,
Blundell and Bond, 1998).! In this paper we show that for Panel VARs (PVARs), conventional
GMM estimators in fact break down altogether if the underlying time series contain unit roots.
We then investigate the possibility of obtaining GMM estimators that could be applied to PVAR
models when the unit root properties of the model are not known a priori. To this end we augment
the standard orthogonality conditions with homoskedasticity and stationarity implied moment con-
ditions proposed initially by Ahn and Schmidt (1995) and Arellano and Bover (1995) in the context
of univariate dynamic panel data models. Unfortunately, the implementation of extended GMM

estimators incorporating variants of these additional moment conditions is subject to difficulties.

"Monte Carlo experiments reported in Blundell and Bond (1998), Hsiao, Pesaran, and Tahmiscioglu (1999), and
in Section 10 below suggest that the finite sample properties of conventional GMM estimators of autoregressive panel
data models are poor even in the case of models with moderately large sized roots. Conventional GMM estimation

of autoregressive panel data models thus tends to be problematic for a wide range of applications.



Given the problems with GMM estimation, in this paper we propose a likelihood based estima-
tion and inference approach. We derive a transformed unconditional likelihood function for PVARs
with fixed effects that does not involve incidental parameters and provides a model-consistent way
of formulating the distribution of the initial observations. We show that the ML estimator associ-
ated with our transformed likelihood function always exists and is (as the cross-sectional dimension
of the panel, N, tends to infinity) consistent and asymptotically normally distributed, irrespective
of whether the underlying time series are (trend) stationary, integrated of order one, I(1), or I(1)
and cointegrated. We also suggest a consistent Minimum Distance (MD) estimator derived from
the transformed likelihood framework to be used as the initial estimator for the ML iterations.
Furthermore, we consider hypothesis testing based on the transformed likelihood function. In par-
ticular, Wald- and likelihood ratio-based panel testing procedures for the presence of unit roots
and for the cointegration rank are derived. An attractive feature of these tests is that they are
based on standard chi-square and normal distributed statistics. We also show how our likelihood
based estimation and inference approach can be extended to PVARs where under the long-run
forcing restriction a subset of the variables is modelled in terms of the remaining variables. Finally,
some Monte Carlo evidence regarding the small sample biases and root mean square errors of the
conventional GMM, the MD, and the ML estimators is adduced. The Monte Carlo simulations are
also employed to investigate the size and power properties of parameter hypothesis tests based on
the conventional GMM and the ML estimators, and to investigate the size and power properties of
cointegration rank tests based on the ML estimator. The Monte Carlo evidence suggests that the
ML estimator in small sample performs remarkably well, clearly outperforming the conventional
GMM estimators, and that the various ML estimator based hypothesis tests tend to have good
size and power properties. The Monte Carlo simulations also further document difficulties with the
implementation of extended GMM estimation.

The remainder of this paper is organized as follows: Section 2 introduces the PVAR under
fixed effects. Section 3 discusses how the incidental parameters problem arising in the estima-
tion of this model may be resolved by working with transformed model equations, and provides
a general expression for the unconditional joint probability distribution of the first differences of
the observations. Section 4 considers GMM estimation based on the transformed model equations,
showing that conventional GMM estimators break down in the presence of unit roots, and demon-
strating that the use of homoskedasticity and stationarity implied moment conditions to construct
an extended GMM estimator is subject to problems of its own. Section 5 presents the proposed
ML estimator, showing that it is consistent and asymptotically normally distributed irrespective
of whether the underlying time series are (trend) stationary, pure I(1), or I(1) and cointegrated.
Section 6 derives a MD estimator that we use as the initial estimator for the ML iterations. Section

7 discusses the estimation of long-run relations within the PVAR, framework, and examines model



identification when the variance-covariance matrix entering the transformed likelihood function is
treated as unrestricted. Hypothesis testing on the basis of the transformed likelihood function is
discussed in Section 8, which in particular proposes new tests for unit roots and cointegration rank
in panels with short time dimension. Section 9 considers the issue of how to carry out inference
in conditional models where a subset of the variables in the PVAR is modelled in terms of the
remaining variables. In Section 10, Monte Carlo simulation results are reported assessing the finite
sample performance of the GMM, MD, and ML estimators. Section 11 concludes and provides
some suggestions for future research. The extension of formulae derived in the body of the paper

for first-order PVARs to p-th order PVARs is described in an appendix.

2 A PVAR Under Fixed Effects

Let w;; be an m x 1 vector of random variables for the i-th cross-sectional unit at time t. We

assume that the wy’s are generated by the following PVAR model of order p, PVAR(p):

¢(L)(Wlt_l~l’z_7t):€1ta Z:1727aNa (21)
where
p .
(L) =L, — Y L7, (2.2)
j=1
®;,j=1,2,...,p, denote m xm matrices of slope coefficients, p; is an m x 1 vector of fixed effects,?

~ is an m x 1 vector providing the common deterministic trends/drifts across cross-sectional units,
g;¢ is an m X 1 vector of disturbances, I,,, denotes the identity matrix of dimension m x m, and L

the lag operator, Lw;; = w; ;1. We make the following assumptions:

(A1) The disturbance vectors € are independently and identically distributed across i and over t

with E (g4) = Omx1 and Var (g4) = Q, Q being a positive definite matriz.

(A1) is a common assumption in the dynamic panel data literature as reviewed by Arellano and
Honoré (2000). The coefficients making up the vectors p;, i = 1,2,... , N, and -, and the matrices

®;,7=1,2,...,p, and Q are assumed to be unknown.

(A2) The time dimension of the panel is finite with T' > p, and the available observations are w;,

Wity -y WiT.

2As a variety of fixed effects specifications have been considered in the literature, it may be worthwhile to spell
out what we mean by fixed effects in this paper. We view the individual-specific effects, p,, as fixed effects if they
are generated by a probability distribution function where the number of parameters characterizing this function is
allowed to increase at the same rate as the number of cross-sectional observations in the panel. As will be seen below,

for our proposed ML estimator to be valid, no further assumptions on the p,’s are needed.
3The common deterministic trend/drift ¢ in (2.1) could be replaced by more general time-specific effects v,

without adding any conceptual problems for estimation and inference.



(A3) The roots of the determinantal equation
[® (o) =0 (2.3)

are either equal to unity or fall outside the unit circle.

As our interest in this paper concerns (trend-) stationary, pure unit root, and cointegrated
PVAR models, the PVAR(p) model (2.1) ensures that if ¥ = 0,,x1, then the model intercepts are
restricted as otherwise {w;;} would exhibit no trend growth across 7 if all roots of the determinantal
equation (2.3) fell outside the unit circle, and {w;;} (or some of its linear combinations) would
exhibit differential trend growth across ¢ if one or more roots of the determinantal equation (2.3)
were equal to unity. Similarly, the PVAR(p) model (2.1) ensures that if v # 0,,x1, then the trend
coefficients are restricted as otherwise {w;;} (or some of its linear combinations) would exhibit
quadratic trends if one or more roots of the determinantal equation (2.3) were equal to unity.*

A number of well known time-series specifications can be obtained from the PVAR(p) model

(2.1) as special cases. We set out some of these for the reader’s convenience.

Case 1: Stationary PVAR with fixed effects
Let 4 = O,,x1, and let all roots of the determinantal equation (2.3) fall outside the unit circle.

Then (2.1) becomes

O (L) wit = big + €41, i=1,2,...,N, (2.4)
where by = —IIu,, with
p
T=—(I,—> . (2.5)
=1

J

Case 2: Trend-stationary PVAR with fized effects
Let all roots of the determinantal equation (2.3) fall outside the unit circle and v # 0,,x1. Then
(2.1) becomes

@(L)Witzai0+a1t+€it, 1=1,2,...,N, (26)

where a;o = —IIu,; + (I' +1II) ~, with

p
T=-T+) j®; (2.7)
j=1

“See Pesaran, Shin, and Smith (2000) for a further discussion of this issue in a time-series context. It may also be
worth noting that while we do not pursue the possibility of incidental deterministic trends/drifts, v,, in this paper,
these could be accommodated by working with the unconditional joint probability distribution function of the second

differences of the observations. This will become clear in Section 3 below.



and where a; = —Il.

Case 3: PVAR with unit roots (but non-cointegrated) and fixed effects
In this case 3°F_; ®j = In,. Then (2.1) becomes

* (L) A wy = —IT*y + &4, i=1,2,...,N, (2.8)

where A =1 — L,
p—1
(L) =T, — Y _ P57, (2.9)
=1

with % = — (Im — S, @,), j=1,2,....p—1, and where TI*= — (Im —yot @;).

Case 4: Cointegrated PVAR with fixed effects
In the case where some (but not all) roots of the determinantal equation (2.3) are equal to unity,

rank (IT) = r, 0 < r < m, and (2.1) may be rewritten in the form of a panel vector error correction

model as
p—1
Awy =Ty—(p— DTy +TE;, ,+ Y TjAw;, ;j+ex, i=12,...,N,
=1 (2.10)
where
j
Tj=-Tn+)Y @, ji=1,2...,p—1. (2.11)
=1

For ease of exposition, in what follows we shall motivate our remaining assumptions to be made
for estimation and inference on the PVAR(p) model (2.1) first for the case where p = 1, and then
generalize our discussion to the case where p > 1. Under p = 1, the PVAR model (2.1) reduces to

(L, — PL) (Wit — pb; — yt) = €3t i=1,2,...,N. (2.12)

When the time dimension of the panel, T, is finite, in estimating (2.12) there arises a classical
incidental parameters problem as the number of fixed effects vectors, p,;, to be estimated increases
proportionately to the cross-sectional dimension of the panel, and there arises the problem of the
initialization of {w;}. Our formulation of the initial observation in the sample, w;o, makes use of
the fact that the PVAR(1) model in &;,, defined by

Eit = Wit — b — Ve, (2.13)
does not involve the fixed effects, w;, although it is still subject to the initial value problem:

(In — BL) &, = €41, i=1,2...,N. (2.14)



Suppose that the PVAR(1) model (2.12) started at time t = —M, M > 0. Then from (2.14) we
obtain
t+M—1
L =0ME i+ Y ey, t=—-M+1,-M~+2,...,T. (2.15)
§=0

In practice where the time-series properties of {£;;} are not known a priori, to characterize the
distribution of {&;,}L__,, 41 we need to distinguish between three main cases; namely {§;;} being
covariance stationary, pure I(1), or I(1) and cointegrated.

Suppose that the initial deviations, §; _,,, are independently and identically distributed across
¢ with mean vector zero and a finite variance-covariance matrix. In the case where all roots of the
determinantal equation (2.3) fall outside the unit circle, it is then clear from (2.15) and (A1) that
the variance-covariance matrix of §;; will also be finite over the sample period, ¢t = 0,1,...,T,
irrespective of whether
(1) {&4} has been in operation for a long period of time, namely M — oo, and the process
has reached covariance stationarity, so that E'(§;) = Omx1 and Var(§;) = >, PINDY | t =
0,1,....,T,
or
(17) {&€;+} has started in a finite period in the past not too far back from ¢ = 0.

We shall pursue possibility (i) in this paper;> and note that under (i) (2.15) becomes

e o]

§it = Z ey j, t<T. (2.16)
=0

In the case where all roots of the determinantal equation (2.3) are equal to unity, to ensure that
the variance-covariance matrix of &;; is finite over the sample period, t = 0,1,...,T, {£;;} must

have started in a finite period in the past. It follows that (2.15) in the pure unit root case becomes

t+M—-1
Co=&_m+ D Eiti t=-M+1,-M+2,...,T. (2.17)
j=0

It remains to consider the intermediate case where some (but not all) roots of the determinantal

equation (2.3) are equal to unity, and the remaining ones fall outside the unit circle. For this case,

it is helpful to work with the error correction representation of the PVAR(1) model (2.12) given by
Awy =~ +11&; 1 + €it, t=-M+1,-M+2,...,T, (2.18)
where

0= (L, - ®). (2.19)

®See Hsiao, Pesaran, and Tahmiscioglu (1999) for an analysis (in a univariate context) of possibility (i7).



As is well known from the cointegration literature, if rank (II) = r, r =1,2,... ,m — 1, then there

exist m X r matrices a and 3 such that
II=a8, (2.20)

where a and 3 have full column rank, and are commonly referred to as the error correction
coefficients and the cointegrating vectors, respectively. The following assumption is standard in

the cointegration literature:

(A4) If rank(Il) = r, r = 1,2,... ,m — 1, then &' B is of rank m — r, where oy and B, are

m x (m —r) matrices of full column rank such that &'c) = 0y (—p) and B8, = 07 (m—r)-

Under Assumptions (A3) and (A4) the elements of &;; are either I(0) or I(1). To ensure that
the variance-covariance matrix of &;; is finite over the sample period, ¢t = 0,1,... ,7, the m —r
pure unit root components in {&;,} must have started in a finite period in the past. To separate
the pure unit root components in {£;,} from the covariance-stationary ones, it will be useful to

introduce the matrix C defined as

-1
C=03,(a8)) o (2.21)
It is well known from the cointegration literature that under rank (II) = r, r = 0,1,... ,m, the
matrix C has rank m —r, and there are m —r pure unit root components in §;;, t = —M +1,—M +

2,...,T.T For consistency with (2.16), the r cointegrating relations 3'€;,, t = —M + 1, —M +
2,...,T, must have reached covariance stationarity. The following final assumption ensures both
that the variance-covariance matrix of &, is finite over the sample period, and that the cointegrating
relations (3'¢;;, have reached covariance stationarity, irrespective of the number of pure unit root

components in {&;, }.

(A5) The initial deviations §; _ys are given by

o0
57:’_]\/[ - Z ((p'] - C) EZ’,*M*]’ + an, (222)
j=0
where g4, 1=1,2,... ,N; t <T, are independently and identically distributed across i and over t,
and v;, 1 =1,2,... N, are independently and identically distributed across i, with

i - 0 g
El " ) =o0gmer, and Var| % )= , (2.23)
v; v; v 3

§ being a positive definite matriz.

5See, for example, Johansen (1995, Ch. 4).
"See, for example, Johansen (1995, Ch. 4).



Substituting (2.22) back into (2.15), and noting from the definition of C that IIC = 0,,, and
thus C = ®C, we have that

o t+M—1
it = Z (®' = C)eir—j+C Z €it—j | + Coy, (2.24)
J=0 j=0

t=—-M+1,—M+2,...,T, and therefore also

o0
,3,51'75 = ﬁ, Z (Djei,tfj, (2-25)
§=0

E(B'€;) = Omx1, and Var (8¢;,) = 8 (2;‘;0 qﬂmﬂ') Bt = -M+1,-M+2,...,T. It is
thus seen that (A5) indeed implies that the cointegrating relations 3'¢;; have reached covariance
stationarity, irrespective of the number of pure unit root components in {&;}. Furthermore, in
the case where all roots of the determinantal equation (2.3) fall outside the unit circle, C = 0,
and (2.24) reduces to (2.16). In the case where all roots of (2.3) are equal to unity, C = & = I,
and (2.24) reduces to (2.17), with &, = v;. Also note from (2.24) that since {®7 — C};io is
absolutely summable irrespective of the number of eigenvalues of ® that are equal to unity, the
variance-covariance matrix of §;;,, t = —M +1,—M +2,... T, is finite. Furthermore, it is worth
noting that there are (m —r) (m — r + 1) /2 free parameters in the variance-covariance matrix of
Cu;, which corresponds directly to the number of pure unit root components in {§;;}. Finally,
since the pure unit root components in {£,,} have started in a finite period in the past, there are m
individual-specific intercepts present in {w;;} irrespective of whether {;,} is covariance stationary,

pure I(1), or I(1) and cointegrated.
Our initialization of the PVAR(1) model (2.12) can be readily extended to the PVAR(p) model
(2.1) for p > 1. It is now assumed that o/, '3 is of rank m —r, with o, o), 3, and B, defined as

before, and that the initial p deviations in the sample, namely &;,, ¢ =0,1,... ,p — 1, are given by
&, =C"(L)ei + Csit + C¢,, i1=1,2,... ,N;t=0,1,... ,p—1, (2.26)

where 80 = Opmx1, Sit = 31—y €i1, C* (L) = >0 C;ij, Ci=I.-C,C;=C; +Cj;_,j > 1,
C(L) = Y72,Ci7, C = 372,Cj, Cg = Iy, C1 = — Iy = ®1), Cj = Y7, Cj Py, j > 2
(with C; = 0, for j < 0),® and ¢; is independently distributed across i with E (¢;) = Omx1,
and Var (¢;) = F, F being a positive definite matrix. It is readily verified that when p = 1, the
specification (2.26) of the initial sample deviations is equivalent to the one implied by (A5), with

¢, =0+ Zjﬁgl €i—j, and F = § + M (2 + £). The specification (2.26) again ensures that the

8 Johansen (1995, Ch. 4) discusses the properties of the matrix polynomials C (L) and C* (L) in some detail, and

in particular shows that both {Cj};‘;o and {C;};’;O are absolutely summable. See also Pesaran, Shin, and Smith

(2000).



variance-covariance matrix of §;, is finite over the sample period, ¢ = 0,1,... 7, and that the r
cointegrating relations B'¢,;, t = 0,1,...,T, have reached covariance stationarity, irrespective of
the number of pure unit root components in {£;,}. The same processes generating the covariance-
stationary components of {Eit}fzp also generate those of {£,, }f:_& , and the same processes generating

the pure unit root components of {Eit}tT:p also generate those of {ﬁit}f;[)l .

3 Resolving the Incidental Parameters Problem

To overcome the incidental parameters problem due to the fixed effects and the initial observations
when T is finite, following the analysis in Hsiao, Pesaran, and Tahmiscioglu (1999) of a univariate
dynamic panel data model we work with the unconditional joint probability distribution of the first

differences Aw;1, Awga, ..., AW, AW; pi1, ..., AW, which we decompose as?

PI‘(AWH, AWZ‘Q, ey Awip, Awi,pﬂ, “e ,AWZ‘T) (31)

= PI“ (AWH, Awig, ey AWlp) . Pl“ (Awi’p+1, AWi’p+2, ceey AWZT| A W1, Awig, e ,Awip) .

To obtain the first component on the right-hand side of (3.1), namely the unconditional joint
probability distribution of Aw;i, Aw;a, ..., Aw;y, we invoke the specification (2.26) of the initial
deviations in the sample. Combining the covariance-stationary representations in first differences
of the observations dated t = 1,2,...,p — 1 implied by (2.26) with the error correction repre-
sentation of the PVAR for ¢ = p one obtains the unconditional joint probability distribution of
AW;i, AW, . .., Awyy, free of the incidental parameters and initial value problems. From (2.26) it

is readily verified that the following first-difference representation holds for t =1,2,... ,p — L:
Awit—’)’:C(L)Eit, t:1,2,...,p—1. (32)

Also, substituting for &;, from (2.26) into the error correction representation (2.10) for ¢t = p, after

re-arranging terms and noting that IIC = 0,, one obtains that

p—1
Awip =y =Y Tj (AW j =) + i, (3-3)
j=1
where
Nip = nc* (L) €i0 + Eip. (34)

Collecting the disturbance terms in (3.2) and (3.3),

¢; =vec| C (L) €il, C (L) €i2y ..., C (L) Eip—1, nip ] ) (35)

9Recall that the available observations are wso, Wi1, . .. , Wi, irrespective of the order of the PVAR, p < T.



we have that E (¢;) = Oppx1, and Var (¢;) = X, where

G G G - Gpo Hi
g; Go G - Gp3 Ha
¥, = : : s : : , (3.6)
;/;—2 1/9—3 ;/9—4 T Go  Hp
Hy My Hy - M,y W

with

G =) CiQCj,, 1=01,....p—2 H=|> CuQCy | 1=12,...,p-1,
j=0

=0 (3.7)
and
o0
U=1I|) CiCy | I+ Q. (3.8)
j=0
The variance-covariance matrices G, l = 0,1,... ;)p—2, H;, I =1,2,... ,p—1, and ¥ under our

assumptions are well defined irrespective of whether some or all of the roots of the determinantal
equation (2.3), |® (¢)| = 0, are equal to unity. For the pure unit root case, note that II = 0,,, and
thus ¥ becomes equal to 2, and H; becomes equal to 0,,,, [ = 1,2,... ,p—1. For the cases of trend-
stationary and cointegrated PVARs where some but not all roots of |® (¢)| = 0 may be equal to
unity, it should be noted that {C; };‘;0 as well as {C;‘}oi are absolutely summable. Also note that
all elements of 3, are fully specified by ®;, j =1,2,...,p, and/or Q. The parameters of the distri-
bution of {;, i =1,2,... , N, do not enter X, for any r = 0,1,... ,m. Observing that the Jacobian
of the transformation from e; to (Awgl, AWy, . .. ,Aw§p>l is unity, Pr (Aw;1, Awga, ..., Aw;p)
can be derived, and is, for normally distributed errors, provided in the appendix.

The second component on the right-hand side of (3.1), namely the conditional joint probability
distribution of Aw; pi 1, AW, pya, ..., Awyr given Aw;p, Awga, ..., AWy, can be derived using the
first differences of (2.1) fort=p+1,p+2,...,T:

P
Awit—'yzzq)j(Awi,t_j—'y)+Aeit, t=p+1Lp+2,...,T. (3.9)

j=1
Note that the first-differencing eliminates the fixed effects for the last T'— p time-series observations

in the panel. Collecting the disturbance terms in (3.9),

/
fi = ( Aeipis DEipyar —oos Degp ) v (3.10)

using linear projection we have that E (f;le;) = Cov (f;, ¢;) S, 'e;, which simplifies to E (f;le;) =
/

[ — (QRe;), 01 xm(T—p-1) } , where R denotes the m x mp matrix formed by the last m rows of

10



.1 and that Var (file;) = Var (§;) — Cov (§;, ¢;) B *Cov (¢4, §;), which simplifies to Var (f;]e;) =

¥sle, where

B O
-0 20 -Q 0
0 -0 20 —-Q
—Q 20
with
B =20 — QSQ, (3.12)

and S denoting the m x m matrix formed by the last m columns of R. Observing that the Jacobian

/
of the transformation from f; to (Awg PRTVAN /S ,AW§T> is unity,
Pr (Awi,erl, AWi7p+2’ ey AWZT’ A Wi1, AWZ'Q, ey AWQP)

can be derived, and is, for normally distributed errors, provided in the appendix.

The unconditional joint probability distribution function of the transformed observations, Aw;1,
AWig, ..., AWip, AW pi1, ..., AW, can now be assembled as in (3.1), and in contrast to the
probability distribution function of the untransformed model, (2.1), is not subject to the incidental
parameters problem. Before establishing the properties of the resultant ML estimator, we shall
consider the use of the transformed model equations (3.2), (3.3), and (3.9) for GMM estimation.
Having discussed the difficulties with GMM estimation even after the incidental parameters problem
has been resolved, in Section 5 we shall establish the properties of the ML estimator and discuss

its computational implementation.

4 GMM Estimation

Most discussions of GMM estimation of dynamic panel data models are within a single equation
context (for example, Arellano and Bond, 1991, Ahn and Schmidt, 1995, Arellano and Bover, 1995,
Blundell and Bond, 1998).1% However, just like Three Stage Least Squares (3SLS) estimation of a
system of equations can be more efficient than the single equation based Two Stage Least Squares
(2SLS), we shall generalize GMM estimation to a systems context, and then show that if the PVAR
contains unit roots, the conventional GMM approach using instruments that are orthogonal to the

disturbance terms of the model equations breaks down. We then investigate if the use of variants

10 An exception is Holtz-Eakin, Newey, and Rosen (1988), who study a multivariate setting also, but in a framework

different than ours.
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of homoskedasticity and stationarity implied moment conditions as suggested by Ahn and Schmidt
(1995) and Arellano and Bover (1995) can help resolve the issue.

To simplify the exposition, for much of the remainder of this paper we set p = 1, and consider
the PVAR(1) model (2.12). The counterparts of the transformed model equations (3.3) and (3.9)
for the PVAR(1) model (2.12) are given by!!

Awil - = N1 (4.1)

where 1, is given by (3.4) for p = 1, namely

o0
My =€ — (Ln— @)Y e, (4.2)
=0
and
Awit - = ) (AWi’t,1 — ")’) + Asit, t = 2, 3, e ,T. (43)

Also, from (4.1) it follows that for the PVAR(1) model (2.12) it holds that
AW“ e “'\‘d (Olea \Ij) ) (44)

where W as before is given by (3.8), which in the case where p = 1 can be written as
U= (In—®) | Y #0" | I, — @) + Q. (4.5)
§=0

The appendix provides many of the results derived in the remainder of the paper for p = 1 for the

case where p > 1.

4.1 Conventional GMM Estimation

The conventional GMM estimator, developed for (trend-) stationary models, employs instruments
that are orthogonal to the model disturbances. For the first-differenced PVAR(1) model (4.3), such
instruments are given by a constant and levels of the dependent variables, w;;, lagged two or more

periods (which are predetermined). The standard orthogonality conditions are thus given by

E {[(szt - 7) - @ (Aw’i,t—l - 7)} q7,,t} = OmX[(tfl)mﬁ»l}? t=2,3,....,7T,
(4.6)

where

/
=1 W Wh. . W, ) (4.7)

"Note that (3.2) need only be considered in the case where p > 1.
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To obtain the conventional GMM estimator using the moment conditions (4.6), note that the
first-differenced PVAR(1) model (4.3) can in stacked form be written as

S; = RiA + E;, (4.8)
i1=1,2,..., N, where
S; = ( Awge, Awis, ..., Awr )l, E; = ( Nego, Neis, ..., Ner )/,
(4.9)
Ri= (P tr ), Pi=( Awa, Awa, .., Awirs )', (4.10)
A= ( o, a )', a1 = (L, — ®) 7, (4.11)

and ¢p_1 denotes a (T — 1) x 1 vector of ones.
Pre-multiplying (4.8) by the (mT'/2+ 1) (T — 1) x (T' — 1) block-diagonal instrumental variable

matrix Q;,
di2 Om+yx1 O@mt1)x1
0(2m+1)x1 Qi3 O2m+1)x1 0
Qi =] O@minx1 O@mi1)x1 Q4 , (4.12)
0 QT
one obtains
Q:S: = QiRA + QE;, (4.13)

the transpose of which in vectorized form becomes
(Qi ® Lp) vee (S7) = (QiRi @ Iny) A + (Q; ® L) vee (Ej) (4.14)

where A = vec (A’). The conventional GMM estimator of A is obtained by minimizing

-1

TN
[Z (Qi ®Ln) Z(Qi @ L)’

i=1

N
[Z (Q; ® L,,) vec (S;) —(QiR; ®IL,) A

i=1

N
' [Z (Qi ® L) vec (S}) — (QiRi @ L) A] , (4.15)

i=1
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where

20 —-Q
- 20 -Q 0
Y= (4.16)
0 -Q 20 -Q
—Q 2Q
The moment conditions relevant to the estimation of 2 are given by
E{[Awiy —v =@ (Awip1 —7)] [Awi — v — @ (Aw, i1 — )] — 20} = 0y,
(4.17)

for t = 2,3,...,T. Also note that in the case of a trend-stationary PVAR, upon estimation of a;

from (4.15), v may be consistently estimated as
o~ - 71 A~
g = (Im - <I>) aj. (4.18)

The conventional GMM estimator is consistent if all eigenvalues of ® fall inside the unit circle,
but breaks down if some eigenvalues of ® are equal to unity.'? Note that a necessary condition for
the GMM estimator (4.15) to exist is that rank <N‘1 Zf\il QiR4~> =m-+1as N — oo. In the case
where ® =1,,, rank (N‘l Zf\il QiRZ) as N — oo is less than m + 1, however. This is because
when ® =1,,, Aw; = v + €4, and Wi = Wy + vt + 54, with s;; as before given by s;; = Zle Eil,
and thus it follows that for t =2,3,...,7,5=0,1,... ,t —2, a8 N — o0

N N

1 1 . .

N D Awipawy = N > (v + 1) (Wio + 77 +5i5) D (Wio + v5) (4.19)
=1 =1

(where 2, denotes convergence in probability), which is of rank one. In other words, when ® =1,,,,
the elements of q;; are not legitimate instruments. For the PVAR(p) model (2.1) (with p > 1),
although N1 Zf\il Awi,t,lng, t=23,...,7T,7=0,1,... ,t—2, may be of full rank as N — oo,

N

1

N § it [ (Awi,t—l — ")/),, (Awi’t_g — ’y),, ey (Awi’t_p — ")/)/ ] 5 (420)
i=1

2Note that if there are no restrictions on the deterministic trend terms, that is, the PVAR(1) model is written as
(L, — ®L)wi = p; + vt + €4t, then when the roots of |I,, — ®p| = 0 are equal to unity, minimizing (4.15) can yield
consistent estimates of A if m = 1, but not for m > 1. Note that if there are no restrictions on the deterministic trend
terms, then when the roots of |I,, — ®g| = 0 are equal to unity, the model contains both a linear and a quadratic
deterministic trend, whereas it only contains a linear deterministic trend when all roots of |I,, — ®g| = 0 fall outside

the unit circle.

14



t=1,2,...,T, will have deficient rank as N — co. To see this, note from (2.8) that if Egzl ;=
I, then (2.1) may be written as

" (L) (Awit — ) = €it, (4.21)
/
with ®* (L) given by (2.9). Post-multiplying (4.20) by ( L, —®, —®, .., —&%, ) it
follows that for t =2,3,... ,T,as N — o0
1 N
N Z%ﬁé,tq L O[m(t71)+1]><m' (4~22)
=1

In the event that the PVAR(p) model (2.1) contains unit roots, the conventional GMM estimator

breaks down.

4.2 Conventional GMM Estimation Incorporating Initial Conditions

In the case of models with non-zero deterministic trends the conventional GMM moment condi-
tions (4.6) can for estimation of the trend coefficients (v) be augmented with additional moment

conditions based on (4.1), namely

E(Awi —7) = Opx. (4.23)
Stacking (4.1) and (4.3), we have
Si=RA+E;, (4.24)
1=1,2,..., N, where
~ / ~ ) /
Si = ( Awﬂ, S; ) y Ei = |: €1 — (Im — Cb) Z]oio <I>=7€i7,j, E; } y (4.25)
~ ~ 0 ~ /
R, =| Py o, . Pi=(0pa, P, (4.26)
tr—1
and
~ /
A=(2 ~ -av). (4.27)

Pre-multiplying (4.24) by the [m (T' — 1) /2 + 1] T x T block-diagonal instrumental variable matrix
Qi,

i1 0 0
O(m+1)x1 Q2 O(m+1)x1 0
Qi=| Oeminx1 Oem+ix1 i3 : (4.28)
0 qir
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and vectorizing the transpose of the resultant expression one obtains

(Qz ® Im) vec (gi) = (sz{z X Im) X+ (Qz ® Im) vec (E;) , (4.29)
where A = vec (7\’ ) The conventional GMM estimator of X is obtained by minimizing
~1
[i (Qz & Im) vec <§;> — (Q@R ® Im) X]/ [ﬁ: (Qz & Im> by (QZ ® Im)/
=1 =1
N ~
~ [Z_; (Qi 0 1Ln) vee (S)) = (QRs @ 1n) A| (4.30)
where
v —Q
- 20 -Q 0
Y — , (4.31)
0 -Q 20 -Q
—Q 2Q

with ¥ given by (4.5). The moment conditions relevant to the estimation of 2 are again given by
(4.17).

The conventional GMM estimator of ® incorporating the initial conditions will be more efficient
than the conventional GMM estimator of ® not incorporating the initial conditions. Note, though,
that (4.30) introduces nonlinear restrictions between ® and . Both the conventional GMM esti-
mator of ® based on (4.15) and that based on (4.30) break down if some eigenvalues of ® are equal

to unity.

4.3 Extended GMM Estimation Using Homoskedasticity and Stationarity Im-
plied Moment Conditions

The above discussion shows that in the presence of unit roots the consistent estimation of the PVAR
model requires further moment conditions. One possibility would be to augment the standard
orthogonality conditions (4.6) and (4.23) by homoskedasticity and stationarity implied moment
conditions as derived by Ahn and Schmidt (1995) and Arellano and Bover (1995) in the context of
univariate dynamic panel data models. In the context of the PVAR(1) model (2.12), the Ahn and

Schmidt (1995) homoskedasticity implied moment conditions can be written as
E(wi Nejp — Wigy1 D€jyio) = O, t=1,2,...,T -2, (4.32)

and

E

T
(T—l Zdit> A e§7t+1] =0, t=1,2,..., T —1, (4.33)

t=1

16



where
dit = wi — Pwip—1 — (I, — @) vt — P. (4.34)

The Arellano and Bover (1995) stationarity implied moment conditions can in the context of the
PVAR(1) model (2.12) be written as'?

E[(Awi—1 — ) djy] = O, t=2,3,...,T. (4.35)

Following Ahn and Schmidt (1995), the moment conditions (4.32), (4.33), and (4.35) after removing

duplicate information may in combined form be written as
E [dir (Awi —7)'] = O, t=1,2,...,T—1, (4.36)
and

E{dit (Wit — 1) — dig—1 [wig—1 — v (t —1)]'} = O, t=2,3,...,T.
(4.37)

Since the moment conditions (4.36) and (4.37) involve the fixed effects, p;, it is necessary to verify
whether they are also applicable to the PVAR(1) model (2.12) as we have specified it.

Noting that the counterpart of the first-difference representation (3.2) for p = 1 and t =
1,2,...,T is given by

Awip—y=cit— (In— D) > Plejsj, (4.38)
=0

and that d;7 = (L, — ®) pu; + €7, (4.36) can be written as
oo !/

EQ[@m—®)p;+eir] | — Tn— @)Y Peiy ;| p=0m,  t=12,...,T—1,

=0 (4.39)

which is valid under the assumption that (I,, — ®) p; and €5, t < T — 1, are uncorrelated. Note
that this assumption does not rule out correlation between p; and initial disturbances, say €; —;

if p,;, for example, was generated by
;= Cimiei,_M—kui, 1=1,2,... N, (4.40)

where 91; is an m X m matrix of parameters, and u;, ¢ = 1,2,... , N, is an m x 1 vector of random
variables independently distributed across i, and also independent of €, t < T'—1, then (I, — @) p;

and €3, t <T — 1, would still be uncorrelated.

3The Arellano and Bover (1995) moment conditions in the literature are referred to as stationarity implied moment
conditions, as they may be motivated by a stationarity restriction on the cross product of the regressand and the

fixed effects vector.
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Turning to (4.37), noting that under (A5) {wit}le is generated from

- M1
Wi =p;+vt+ > (P —C)ey ;+C| > eirj |+ Co, (4.41)
j=0 J=0

it is readily seen that (4.37) will be valid if p; and e, t = 1,2,...,T, as well as (I,, — ®) p; and

i
git, t <0, are uncorrelated, and (I, — ®) E (p;p}) as well as (I, — @) E (p;v}) C’ exist.

The validity of our proposed ML estimator will be unaffected by whether the assumptions
needed for the homoskedasticity and stationarity implied moment conditions (4.36) and (4.37)
to be valid do hold, as it will be based on the unconditional joint probability distribution of
the transformed observations, Aw;i, Aw;o, ..., Aw;r, which, as seen in Section 3, does not
involve p;. It should also be noted that even when the moment conditions (4.36) and (4.37)
are valid, the variance-covariance matrix associated with these moment conditions does depend
on the individual-specific effects p,. Because of this dependence, without further (homogeneity)
restrictions on the distribution of w,; it is not possible to derive the optimal weighting matrix
associated with the homoskedasticity and stationarity implied moment conditions (4.36) and (4.37),
and the orthogonality conditions (4.6) and (4.23). The extended GMM estimator based on a non-
optimal weighting matrix will in general not be as efficient as our proposed ML estimator.

To overcome the dependence of the variance-covariance matrix associated with the moment
conditions (4.36) and (4.37) on the individual-specific effects p;, an alternative way of making use
of the homoskedasticity restrictions on €;; would be to combine (4.32) with (4.6), and consider the

moment conditions
FE (Awit AN s;,m —Aw; i1 A s§7t+2) = 0y, t=2,3,...,T —2. (4.42)
Note that

E (Awit A 52,t+1 —Awii A €§,t+2)
= F (Wit A EJ;’tJrl — Witr1 A Eé,t+2) —F (Wi,t—l A 5;,t+1) -+ FE (Wit A 5;,t+2) s (4.43)

and thus it is readily seen that (4.32) and (4.6) imply (4.42).'* However, the moment conditions
(4.42) do not lead to a workable extended GMM estimator. To see this, let

Vie(v) = Awi (AW — ) — AW (Awigio — ), (4.44)
and

Zit(v) = Awi (Awie — ) — Awi i1 (Awippr — ) (4.45)

1Tt may be verified that under Assumption (A5) (4.42) is applicable for ¢t = 1 as well.
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Then (4.42) can be rewritten as

E{vec[Awy Nejy — AW Aejy o]} = E{vec[Vig(7)] — [Ln ® Zig(7)]} vee () .
(4.46)

However, it is readily seen that

N N
. 1 . 1
g [ s v | = i |3 v |
=1 =1 (447)

Similarly,

N—oo N—oo

N
. 1
plim [N z; Awip (Awgp — 'y)/

N
. 1
= phm [N z; Awi,t—l-l (Awi,t_ﬂ - ’Y)I] . (448)

Thus, the moment conditions (4.42) are of no use for the estimation of ®.
Another possibility of making use of the homoskedasticity restrictions would be to consider the
second moments directly, taking account of the correlation of Aw; 1 with Aey. Using (4.1) and

(4.3), it is readily seen that

E{[Awiz =y = @ (Awir — )] (Awir =)'} = E [Aeig (Awa — )] = —Q.
(4.49)

Thus, the following moment conditions must hold:

Furthermore, using (4.3) and (4.38) it is readily seen that the following 7" — 2 sets of moment

conditions must also hold:

E {{Awlt -7 o (Awi,t—l - 7)} (Awi,t—l - ’Y)/ + Q} = Oma = 37 47 s 7T'
(4.51)

The T — 1 sets of moment conditions (4.50) and (4.51) hold regardless of the unit root and coin-
tegrating properties of the PVAR(1) model (2.12), and could augment the standard orthogonality
conditions (4.6) and (4.23). The standard orthogonality conditions (4.6) will not be contributing to
the estimation of @ if it happens that ® =1I,,, and will contribute only partially under cointegra-
tion. As some of the roots of ® approach unity the relative contribution of the moment conditions
(4.6) diminishes, and the q;;’s become weak instruments in the terminology of Staiger and Stock
(1997).

The problem with the homoskedasticity implied moment conditions (4.50) and (4.51) is that

they do not imply unique solutions for @, in general. To see this, note that upon substituting (4.17)
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into (4.50) and (4.51) to express (4.50) and (4.51) as a function of ® alone, the resulting moment
conditions become quadratic in ®, and it is not clear how to choose among the multiple solutions
of the extended GMM moment conditions, in general.

To construct an extended GMM estimator, let us stack the standard orthogonality conditions
(4.6) and (4.23), and the homoskedasticity implied moment conditions (4.50) and (4.51) as

Em(Aw;, K)] = 0fpfm(1-1)/2-41)T+m?(T—1)} x 15 (4.52)
where k = (7, qz&')/,
¢ = vec (P), (4.53)
AWi = ’U(:‘C( Awil, AWZ'Q, ceey AWiT ) s (4.54)
and
Awip —y
vec{[(Awiz — ) — © (Awi — )| i}
vec{[(Awiz — ) — © (Awiz — ¥)| qss}
m(Aw;, k) = | vec{[(Awir —7) = ® (Awir—1 — )] dir} | (4.55)
vec [Uip(y, P)]
vec [Uiz (v, @)
vee [Uir (v, )]
with
Uit(7,®) = 2[Awit—v = (Awip 1 — )] (Awiz1—7)
+[Awg =y = @ (Awip1 = V)] [Awy — 7 = D (Awie1 — )], (4.56)
i =1,2,...,N.5% Using familiar results from the literature on GMM estimation developed by

Hansen (1982) and noting that by assumption Aw; are independently and identically distributed
across 1, the extended GMM estimators of k can be computed by solving the following minimization

problem:

min My (k) A (K)A N (K)My(K)] (4.57)

5Tn our Monte Carlo simulations in Section 10 below, we shall also consider the extended GMM estimator con-
structed by stacking the standard orthogonality conditions (4.6) and (4.23), and the homoskedasticity and stationarity
implied moment conditions (4.36) and (4.37).
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where

N
My (k) = % S m(Awi k), Ay(k) = Dy (k)Wy(x), (4.58)
=1
N ] N
Doy (k) = % 3 W, and W (k) = % S m(Aw;, k) (Aw;, k).
=1 =1 (4.59)

Finally, the moment conditions relevant to the estimation of ¥ and 2 are the same as for the
conventional GMM estimator incorporating the initial conditions.

It may also be noted that the solution of (4.57) with W (k) given in (4.59) is not as efficient as
the extended GMM estimator replacing Wy (k) by E [W n(k)], that is, using a weighting matrix
that takes into account all model restrictions.'® However, the derivation of E [W (k)] is not a
trivial exercise, and will not be pursued here. Rather, in light of the various problems with GMM
estimation that we have discussed, we revert our attention to the unconditional joint probability
distribution of the first differences of the observations derived in Section 3, and establish the

properties of the ML estimator based on it.

5 ML Estimation

The unconditional joint probability distribution of Aw;1, Awga, ..., Awp, AW i1, ..., Awr was
derived in Section 3. In this section, we again set p = 1 to simplify the exposition and facilitate
comparison with the GMM estimators derived in Section 4.17 In the case where p = 1 it may be
simpler not to invoke the decomposition (3.1), but to work directly with the unconditional joint
probability distribution of Aw;, Awga, ..., Aw;p. From (4.1) and (4.3) it readily follows that
under the assumption that e, t < T, are normally distributed the unconditional joint probability

distribution function of

ri:vec( Awi — v, Awip—~, ..., Awyp—7 ) (5.1)
is given by
il 1
[T 2r) ™2 51 2exp | =5 (s~ Hig) 571 (1~ Hi)|. (.2
i=1
where k = mT,
H; = G, ® L, (5.3)

63ee also Amemiya (1973).

7Once again, the appendix discusses the more general case where p > 1.
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G; = ( Omxi, Awi —7, Awp—7, ..., Aw;r_1—7 ), (5.4)

¢ is given by (4.53), ¢ = vec(®), and X is given by (4.31),

L)
-0 20 -Q 0
= ;
0 -Q 20 -Q

-0 20
with W given by (4.5),

V=T, — @)Y 0" | (I, - ®) + Q.
§=0

The ML estimator of (5.2) is equivalent to finding «, ®, and 2 to maximizing the unconditional
log-likelihood function [ (6),

1(0):—N7k1n(27r)—gln\2|—

N =

N
Z (ri —Hi¢)' 57" (r; — Hygp) , (5.5)

!
where 6 = ( 5, ¢, o ) , with & = vech (Q2).18
Under the assumption that 7T is finite, the likelihood function associated with Awy, i =
1,2,...,N; t = 1,2,...,T, is well defined irrespective of the location of the eigenvalues of ®,

and depends on a fixed number of parameters.!” We then have the following proposition:

Proposition 5.1 Under Assumptions (A1), (A2), and (A5),*° and assuming that @ € ©, where

m+D/2 and the true parameter vector, 8y, falls in the interior of ©,

© is a compact subset of R3™
the ML estimator associated with the likelihood function for Awy, i =1,2,... , N;t=1,2,...,T,

b\ML, s consistent and asymptotically normally distributed when N tends to infinity.

Note that normality assumptions on €5, ¢ = 1,2,... ,N; t < T, are not needed for large NV

asymptotics.?!

18 The appendix in (A.16) provides the unconditional log-likelihood function derived using the decomposition (3.1).
It may be verified that the ML estimator of 8 based on (5.5) is equivalent to the ML estimator of 8 based on (A.16)

under p = 1.
19While in our exposition we have for simplicity not allowed for any of the roots of the determinantal equation

(2.3) to fall inside the unit circle, the latter possibility can be readily accommodated by augmenting (A5) with the
assumption that the explosive components in {£;,} have started in a finite period in the past, with an independent
and identical distribution across 4, and that the covariance-stationary and pure unit root components in {£,,} are
generated by the relevant counterpart of (2.22). A note discussing this issue in further detail is available from the
authors upon request.

20Gee also Footnote 19.

21For certain non-normal distributions generating {e;:}, further regularity conditions may need to be verified. See,

for example, van der Vaart (1998) for further discussion.
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To compute the ML estimator, in the case of a (trend-) stationary PVAR it is useful to rewrite
the infinite sum on the right-hand side of (4.5) yielding ¥, and in all three cases it is useful to
invoke an efficient scheme for the computation of the determinant and the inverse of ¥. To express

U in the case of a trend-stationary PVAR in non-recursive form, note from (4.5) that

PUY = OO+ (L, — @) Q(L, — ) T
j=0
= PV +T—Q— (I, — ) Q (L, — ). (5.6)

Vectorizing (5.6) it therefore follows that

vech (V) = D}, (I,2 — ® ® &)~ Dyyvech (202 — dQ — Q') , (5.7)

2 x m(m+ 1) /2 dimensional matrix, known as the duplication matrix, defined

where D,,, is a m
such that vec (M) = Dpvech (M) for any symmetric m x m dimensional matrix M, and D;, is
the generalized inverse of D,,.??2 To compute the determinant of ¥, one may make use of the
block-tridiagonal structure of 3. Applying the block LDL' factorization to X, the latter may be

factorized as?3
Y =ALALA,, (5.8)

where Ap is a block-diagonal matrix with j-th diagonal block given by Ag) = U1 Ag) =
, -1

(29 — QA(DJA)Q) ,j=2,3,...,T,and where Aj, = ABl—AU, with Ay being a block-subdiagonal

matrix with all subdiagonal blocks equal to 2. It then follows that

1
det (Ap)

_ detl(qj) [1 det (a). (5.9)

det (2) = [det(AL)]*det (Ap) =

To compute the inverse of X, one may again make use of the block-tridiagonal structure of . An
efficient scheme is to adapt the recursions based on Bowden’s procedure in Binder and Pesaran

(2000) to 3. The inverse of ¥ can then be computed as

Sl =T H1-D)[( - - (2L, ] [TE—(T-1)Q ", 1>}
(5.10)

221n practice, one will want to avoid computing the generalized inverse, D}, of D,, for large values of m, and
instead determine vech (¥) from vec (V) by selecting the appropriate elements of vec (¥) through a simple element
selection loop. In the case of a cointegrated PVAR, (I,,2 — ® ® ®) is singular; ¥ may then be computed using
numerical recursions invoking an appropriate stopping rule to replace the infinite sum on the right-hand side of (4.5)

by a finite sum.
ZFor further details see, for example, Binder and Pesaran (2000), who in the context of the solution of multivariate

linear rational expectations models discuss the block LDU factorization, of which the block LDL’ factorization is a

special case.
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and

zj;l:(TH—j)[T\If—(T—l)Q]—l ((-DTQt—(1-2)L,], >

(5.11)

where E;ll denotes the ji-th block of ¥71, j,1=1,2,... 7.
A note describing further details of the numerical algorithm we use to compute the ML estimates

is available from the authors upon request.

6 MD Estimation

In this section, we suggest a MD estimator based on the transformed model equations.?* The MD
estimator will be used as an initial estimator for the ML iterations.
Consider again the PVAR(1) model (2.12). Conditional on ¥, the ML estimator of ® and - is

equivalent to the MD estimator that minimizes

7

where r;, H;, ¢, and ¥ are defined in (5.1), (5.3), (4.53), and (4.31), respectively. Therefore,
conditional on v and X, the MD estimator of ® is given by

N -1/ N
b= (Z nglﬂi) (Z H;eri> : (6.2)
i=1 =1

and, conditional on ® and 3, the MD estimator of v is equal to

N
(r; —H;¢)' 27 (r; — Hyo) , (6.1)
=1

N
5= (NI > IS (Aw - L@)] , (6.3)
i=1
where
Jz(Im, I,— &, I,-®, .. ., Im—cp’), (6.4)
L;, = K; ®R Ly, and K;= ( Omx1, AW, Awgp, ..., AWin_l ) (65)

The variance-covariance matrix ¥ may be (block) diagonalized as

Dy 0

Dy
USU' =D = . , (6.6)

0 Dr

24See Chamberlain (1984) for an early discussion of MD estimation of panel data models.
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where Dy = I, Dj = U QU = [jU2Q71 — (j - 1) 012 Q[(j — 1) /2071 — (j — 2) ¥~ 1/2],
j=2,3,...,T, and

Uy
U; U 0
U=| v v, U , (6.7)
Uy Uz Us -+ Ur
with Uy = U712 Uy = 012071 U; = 2U;_1 —Uj_5 = (j - 1) U2Q7 — (j —2) T2 j =
3,4,...,T.?° Therefore, one may consider the following iterative scheme to obtain the MD estima-
tor:

Step 1: Form initial estimates of 7, ®, and ) from the moment conditions E (Aw; — ) = Opx1,
t=1,2,...,T, (4.50), (4.51), and (4.17) as follows:

| I
3O = ﬁzzﬁwit, (6.8)

t=1 =1

t=2 i=1 (6.9)
or
30 — [ii (AW. _ 5 >> (AW _ <o>)’+§<o>
2L it =Y t—1 =7
-1
ii (Awi,t_l — 'y( )) (sz,t—l — ’y(o))/ , (6.10)
=2 i=1
and Z
QO = 2N(;— 0 éé [szt —70 —3© (AW -1 — A ))]
[awi =50 - 8O (Awi s - '7(0))]1 . (6.11)

It is clear from (6.10) and (6.11) that ®© needs to be computed by iterative techniques. To

initialize the iterations, one will need to make an initial guess for 0.2

%5 There are alternative procedures available to achieve such a block diagonalization of ¥. One alternative is to
employ the block LDL’ factorization used in Section 5 to compute the determinant of ¥. Using Ap and Ar as defined

in Section 5, we have that Ap = A7'% (Aj;)_l, where A7' is lower triangular.
26 As was discussed in Section 4, the solution of the homoskedasticity implied moment conditions (4.50) and (4.51)

is in general not unique. But for the purpose of initializing the MD iterations in our Monte Carlo simulations reported
in Section 10 below we found that if all elements of the initial estimate of €} were chosen sufficiently small, then the
eigenvalues of 3 computed by iterating on (6.10) and (6.11) tend to fall inside the unit circle if the eigenvalues of

d fall inside the unit circle.
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Step 2: From the initial estimates of ®, v, and  transform r; into r; = D~Y2Ur;, and vec (Gy)
into vec (G¥) = D~Y/?Uvec (G;), and estimate ® and v by minimizing the Ordinary Least Squares

objective function

(ri —H;¢) (r; — Hj¢), (6.12)

Mz

=1

where Hf = G} ® I,,. Numerically, this may be achieved in fast and accurate manner by solving
two unit triangular equation systems each for ® and . For example, factorizing Zfil H;EilHi

as
N
> H{Y'H; = B,BpB}, (6.13)

where By, is unit lower triangular and Bp diagonal (see, for example, Golub and van Loan, 1996,
for an algorithm to achieve such a factorization), to obtain an estimate of ®, one needs to solve the

unit upper triangular equation system
19 =DBp'z (6.14)

with z being the solution to the unit lower triangular equation system

Brz = i (D_WUHZ)/ (D_l/QUri) . (6.15)

1=

Step 3: Re-estimate ) based on the revised estimates of ¢ and ~, using the moment condition
(4.17).
Step 4: Repeat Steps 2 to 3 until the estimates converge.

The MD estimator is consistent. The consistency of 4 can be easily seen from (6.8). Therefore,

we shall treat v as known and consider the consistency of ®. Note that

N -1 /N
—¢p= (Z H;z—1Hi> (Z ng—lzsy) : (6.16)
=1 =1

where
191' = ’UGC( 115 AEiZ’ AEB, chey AéiT >, (617)

with n;; given by (4.2). The numerator of the second term of (6.16) divided by NN has the form

/
T

N t
% Z Z Ut+1QUt ZU A Wij [Ulnil + ZUj A €ij | - (6.18)

i=1 t=2 j=2
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Substituting Aw—v = &1 (Aw;y — —1—2 q)j Ae€is—j, and noting that Uy —2U; +Uj_; =
0,,,, one can show that
— t !
S U Awiy | | Ui+ U Aeiy | =05, (6.19)
— =
Therefore, by a law of large numbers, (6.16) converges to 0,,2; as N — 0o. The MD estimator
does not require normality assumptions on g, ¢ =1,2,... ,N; t < T, to remain valid.
Furthermore, conditional on v and X, the MD estimator of ¢ is identical to the ML estimator
of ¢ with asymptotic variance-covariance matrix given by
N -1
Y (Gi®Ly) 7 (Giely) | (6.20)
i=1
When 3 is unknown, the asymptotic variance-covariance matrices of the ML and MD estimators
of ® do not converge to (6.20) because when lagged dependent variables appear as regressors,
the estimation of ® and ¥ is not asymptotically independent (Amemiya and Fuller, 1967). The
asymptotic variance-covariance matrix of the feasible MD estimator of ® is equal to the sum of
(6.20) and a positive semi-definite matrix attributable to the estimation error in 5 (Hsiao, Pesaran,
and Tahmiscioglu, 1999).

7 Estimating Long-Run Relations

In this section we consider ML and MD estimation of the PVAR(1) model (2.12) when rank (II) = r,
r=1,2,... ,m—1, and there are thus r cointegrating relations present. Subtracting Aw; ;1 from
both sides of (4.3) yields

NPwip =T (AW 1 — ) + Dea, t=2,3,...,T, (7.1)

with II given by (2.19), II = — (I,, — ®). Combining (7.1) with (4.1),

Awy —y=en+T1Y [T+1,) e
j=0

we have the logarithm of the joint probability distribution function of

S; = vec( Awil -, AQWZ'Q, A2Wi3, ey A2W¢T ) (72)
as
Nk 1Y
1() = ——In(27) — — ln DR > (si—Hymw) 57 (s — Himr) (7.3)
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where 0 = ( 5, =, o )l, 7 = vec (II), and H; and ¥ are defined by (5.3) and (4.31), respec-
tively.

Decomposing the matrix II as II = a3, where a and 3 as before are m x r matrices of full
column rank, since a3’ = aKK '3’ for any r x r nonsingular matrix K, one needs 72 restrictions
to restrict K = I,. (The maximum of the likelihood function under rank (II) = r is invariant to

the choice of K.) A convenient form for the identification of 3 is to let
B =Héd + b, (7.4)

where H and b are, respectively, m x ¢ and m x r matrices, both with known coefficients, and
d is a ¢ X r matrix with unknown coefficients. For example, if one chooses the Phillips (1991)

normalization restriction that
- \!
B=(1. 8 ). (7.5)

~ /
where 3 is an r X (m — r) matrix with unrestricted coefficients, then H = ( O(m—ryxr> Im—r ) )

/ ~
b= ( L, 0r><(m—7") ) ) and § = /8
As for MD estimation, we note that conditional on 3, v, and X, the ML estimator of « is equal

to

vec ( (Z H/® ITIZ> (Z ﬁ;Elsi) , (7.6)
i=1
where
H;, = G/8® Ly, (7.7)

with G; given by (5.4). Substituting vec (8) = (I,,®H) vec (§)+wvec (b) into (7.3), the ML estimator

of & conditional on a, =, and ¥ is equal to

wee (5 =

N
Z (HG;® )" (GH® a)

N
[Z (G, ® /) S7'st] (7.8)
=1
where
s; =s; — (G} ® a) vee (b') . (7.9)

Therefore, one may obtain MD estimates of a and 3 as initial estimates for the ML iterations by
first estimating 3 using r cross-section regressions in the elements of w;; under the normalization
restriction (7.5), and then iterating on (7.6) and (7.8), revising the estimates of v and  in each

iteration step as in Section 6.
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The estimation of the cointegrating relations as derived above is based on the assumption that
the time dimension of the panel, T, exceeds for a general PVAR model the latter’s autoregressive
order, p. Sometimes, however, there may not be sufficiently many time-series observations avail-
able for T' to exceed p. In the event that T is less than p, one cannot consistently estimate the
autoregressive coefficients in ®;, j = 1,2,... ,p. A natural question to pose, however, is whether it
would still be possible to estimate the cointegrating relations. Unfortunately, this is not the case.
It may be verified that when T" < p, then the variance-covariance matrix of the disturbances of
the transformed model equations is unrestricted, which in turn leads to a lack of identification.
This is perhaps most easily seen by examining identification if the true data generating process is
a PVAR(p) with p > 1, but estimation is based on a PVAR(1). The unconditional log-likelihood

function (5.5) then applies, except that the variance-covariance matrix ¥ is unrestricted.

Proposition 7.1 The PVAR(1) model (2.12) with unrestricted variance-covariance matriz ¥ is
not identified.

Proof of Proposition 7.1: The unconditional log-likelihood function of the PVAR(1) model (2.12)

with unrestricted variance-covariance matrix ¥ is given by

N
I*(0) = —N—k In (27) — — ln 2| — E (r; — H;¢p) =71 (r; — Hiop), (7.10)

=1

!/
where r; and H; are given by (5.1) and (5.3), respectively, and 6 = ( 5, @, o¥ ) , with * =

vech (X). Concentrating this log-likelihood function in terms of v and ¢, one obtains

Nk N N
I (1,9) =~ In(2m) — S [S (7, 0) - 5 (7.11)
where
1 N
_ =< Z _ ri — Hi¢),- (7.12)

The concentrated log-likelihood function, I* (v, ¢), does not depend on ¢, and hence it will not
be possible to identify ¢ from the sample observations. To see this, first note that the variance-

covariance matrix X can be written as

oy Oy O3 °* Olp
Sv.e)=| T i i (7.13)
orT
where
ol = ™11, (7.14)
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o =wy - wa®,  1=23,....T, (7.15)

ol = (= —WjJ_l(I), — <I>wj_17; —|—<I>wj_1,l_1<1>’, 7=23,.... T 1l=355j+1,....T,

gl
(7.16)
and
N
wi =N (Awy—7) (Awa—v)',  j=12,...,T;1=12,... T
=1 (7.17)
3. may now be factorized as
S(v,6)=L(#) T (v)L(e), (7.18)
where
w1l w12 w13 . WIT
w21 W2 W23 - TWIT
T(vy) = N : (7.19)
wr1y wWre2 wr3 - WrT
and
L
—-o I, 0
L (¢) = A ) (7.20)
0 - I,
Note that |L (¢)| = 1, and |Y ()] is a function of « only. Therefore,
= (v, )| = LT ()| [L()] =TI, (7.21)
and
. Nk N N
P (7.6) =~ I (2m) = [ ()| - 5 (7.2

which does not depend on ¢. R

8 Hypothesis Testing

In this section we consider the issue of hypothesis testing for the PVAR(1) model (2.12). The
time-series properties of w;; that are of interest, for instance, whether w;; is (trend) stationary

or I(1), and whether w;; — p;, — t, if I(1), contains cointegrating relations, can be formulated in
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terms of restrictions on ®. Since the ML estimator of ® is asymptotically normally distributed
irrespective of whether the elements of w;; are I(1) or I(0), standard testing procedures such as the
likelihood ratio, the Wald and the Lagrange multiplier methods can be applied.

In order to carry out cointegration analysis and be able to interpret the rank of the matrix
II = —(I,, — ®) as the number of linearly independent cointegrating relations, it is necessary to
know whether each of the variables in w;; follows an I(1) process. Our framework can be easily
adapted to test for unit roots in short panel univariate autoregressive models, namely m = 1. In

this case, for p =1 we have that (see (2.12))

jid
wit = (1 — @) pi + ¢y + (1 — @) vt + pwi 11 + €4, eir ~ (0,0%), (8.1)
where w;; is now a scalar variable, i = 1,2,... , N.27 For testing the unit root hypothesis
Hy:9p=1 VS. Hi o<1, (8.2)

the log-likelihood function is given by (see (5.5))

N
(61) = 5 (2m) — |3 - %Z £ gi0) T (- m0). (83)
=1

/
Wher601:(77 o, 02>,

f; = vec( Awip — 7y, DAwp —v, Awiz—7, ..., Awg—7v ) ) (8.4)
g = UBC( 0, Awyg—v, Awip—7v, ..., Awi,Tfl -7 ) ) (8-5)
and
J(1+¢) —1
-1 2 -1 0

¥ =o? (8.6)

0 -1 2 -1

-1 2

Under Hy we have

N
1(60) = —Eln (2m) — —111 1Zjgz1 | — Z (f — &) (Z\¢:1)_1 (£ — i), (8.7)
24

27 As for unit root testing in the time-series context, the appropriate order of augmentation of ws: is important for
the validity of the test. In practice one may therefore need to consider higher-order cases as well. Here we confine

ourselves to p = 1 for simplicity.
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/
where 0y = ( v, o2 ) . Denoting by LL* the maximum of the log-likelihood under Hi, and
by LL" the maximum of the log-likelihood under Hy, 2 (LL* — LL") is asymptotically chi-square
distributed with one degree of freedom.?® A Wald type statistic of testing Hy versus H; will be

ty= —, (8.8)

where se(a) denotes the standard error of (Z; ty is asymptotically distributed as a standard normal
variate, and it can thus be taken into account that the alternative hypothesis, Hi, is one-sided.

In contrast to the Least Squares Dummy Variables based unit root test for dynamic panel
data models with finite time dimension proposed by Harris and Tzavalis (1999), note that the unit
root test statistics we propose here are not based on an inconsistent estimator, and thus standard
chi-square and normal distribution theory are applicable. It may also be noted that the tests we
propose here are readily extended to the case where p > 1, whereas such an extension for the
unit root test proposed by Harris and Tzavalis (1999) would require computing the necessary bias
adjustments for the test statistics for each value of p separately.?”

The natural next step is to test for cointegration. Consider again the PVAR(1) model (2.12)
in the m variables w;;, now assumed to be I(1). The hypothesis that w;; — pu; — vt is cointegrated

with rank r versus rank r + 1, » =0,1,... ,m — 1, can be formulated as
H,:®=1,+a.8. VS. Hoy:2=1,+ ar+1ﬁ;+1, (8.9)

where o, and 3, are m X r matrices of full column rank r. As discussed in Section 7, to achieve

identification of 3, one may employ the Phillips (1991) normalization restriction (7.5),
~/
B, = ( L, B, ) J

~/
where 3, is an r X (m — r) matrix with unrestricted coefficients. The likelihood ratio test statistic of

H, versus H,, 1 is asymptotically chi-square distributed with (m — r)*—(m—r—1)2 =2 (m —r)—1

2

degrees of freedom. (Imposing II to be of rank r leaves m2 — (m — r)? unrestricted coefficients in

H.)SO

28 A drawback of the likelihood ratio test is that it does not allow one to readily take into account that the alternative

hypothesis, Hi, is one-sided.
29For panel unit root tests under p = 1 where the deterministic trend coefficients are allowed to differ across cross-

sectional units, see, for example, Im, Pesaran, and Shin (1997) and Harris and Tzavalis (1999). As noted in Footnote
4, differential deterministic trend coefficients could be accommodated in our setting also. For panel unit roots tests
when the time dimension is large and possible slope heterogeneity can be allowed for, see, for example, Levin and

Lin (1993) and Im, Pesaran, and Shin (1997).
30Note that in the special case where m = 1 and r = 0, (8.9) reduces to the likelihood ratio based unit root test

discussed above.

32



Additional parameter restrictions or overidentifying restrictions can be formulated in terms of

vec (®) = G +f, (8.10)

2 x ¢ matrix and f an m? x 1 vector, both with known elements, and s is a

where G is an m
g X 1 vector of free parameters. A likelihood ratio test of (8.10) will be asymptotically chi-square

distributed with m? — ¢ degrees of freedom.

9 Conditional Inference

In applied economic problems the focus of the analysis is often on conditional models where a
subset of the variables in w;; are modelled in terms of the remaining variables. In this section we
consider the conditions under which such an analysis is valid for the PVAR(1) model (2.12), and
show how the methodology developed in the previous sections can be adapted to the analysis of
conditional PVAR models.

In the time-series context, where the sample sizes typically are large, the conditions under which
the marginal distribution of x; can be ignored when estimating parameters of interest that enter the
conditional distribution of y; given x; are discussed in detail, for example, by Engle, Hendry, and
Richard (1983). These conditions are, however, obtained for given initial values, wy = ( Yo, X )/.
As should be clear from our earlier discussion, in the context of dynamic panel data models with
small T" the effect of the initial values, w;g, cannot be ignored and unless appropriately accounted
for will make the exogeneity analysis subject to an incidental parameters problem. To formulate
an appropriate notion of conditioning (exogeneity) for the PVAR(1) model (2.12), we consider the
transformed version of this model which is free of the incidental parameters problem. For this
purpose we work with the following system of equations: for the initial observations we have (see

(4.1))
Awil_’)’:sil_(lm_q))gio, ’L'=1,2,...,]\/v7

and for the subsequent periods, t = 2,3,...,T, we have (see (4.3))
AWit—"y:(I)(AWi’t_l—’)’)—I—Aéit, 1=1,2,...,N.

Partitioning Aw;; into Aw; = ( ANyl Ax, ),, where y;: is my X 1 and x;; is mg X 1, and my, +
mg = m, it is of interest to determine under what conditions knowledge of the marginal probability
distribution function of Axg, f[Ax;lk2(0)], t = 1,2,...,T; i = 1,2,...,N, is redundant for
purposes of inference regarding the parameters of interest of the conditional probability distribution
function of Ay given Axi, f[Ay;|Axy,k1(0)],t=1,2,...,T;1=1,2,...,N. In other words,

for purposes of maximizing

N T
H {f (Ayq, £x4(0) [Hf (AYit,AXitIi,t—lva)] } (9.1)
i=1 t=2
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with respect to k1 (6), under what conditions is it sufficient to consider

N T
H (f [AyalAxi, k1 ()] {Hf [AY it Axip i1, k1 (@]}) ) (9.2)
i=1 t=2

Where Ii’t_]_ = (Awi’til, Awi’t72, ey AW“) .
Partitioning the disturbance vector €;; and its variance-covariance matrix ) conformably with

the partition of Aw;; into Ay and Axy as

Eit = Eyit , and Q= Dy Ly ,
Exit Qxy me

one may write g,;; conditionally in terms of €, as

€yit = By€git + Vit, (9.3)
where
By = QyzQ;a}a (9-4)
and vy, 59 (O, ), with
Qy = Qyy — ByQyy. (9.5)

Note that v is independent of ,;; across ¢ and over t, i = 1,2,... ,N; t <T. Substituting (9.3)

into the error correction representation (2.10) under p = 1 yields

Ay —ByAxy _ [ 2 i Iy — By I, &, 1+ it (9.6)
Axyy Yo 11, m €ait |

1=1,2,... ,N;t=1,2,...,T, where
ay =, + By, (9.7)

!/ /
and where we have partitioned II = ( I, II; ) and v = ( Yy Ve ) conformably with the
partition of w;; into y;+ and x;. To examine under what conditions the last m, equations in
(9.6) are redundant for purposes of inference regarding the parameters of interest in the first m,,
equations in (9.6), let us write these equations separately for t =1 and t = 2,3,... ,7. Fort =1

we have the conditional model for Ay;; given Ax;; and the marginal model for Ax;q,
Ay — By Axy = ay + (IIy — ByIly) &0 + vit, (9.8)
and
Axi =, + €0 + €xit- (9.9)

34



For t = 2,3,...,T we take first differences of (9.6) to obtain the conditional model for A2%y;; given

A2%x;; and Aw; 1, and the marginal model for A%x;; given AW 1,

Ay — B, A?xy = — (I, — ByIL,) v + (I, — B,IL,) A wi 1 + Avy, (9.10)

Ay = Ty + T A w1 + Degy, (9.11)

t=23,...,7T,i=1,2,... ,N.

From (9.10) it is clear that for t = 2,3,... T, A?x; in (9.10) is long-run forcing if I, =
01, xm->F Under this restriction, the information in (9.11) is redundant for purposes of inference
regarding the parameters of interest in (9.10), namely the long-run coefficients in II, and the
short-run coefficients in B,. As for ¢ = 1, note from (9.8) and (9.9) that under II; = Opy, xm,
Ayi1 — By A x;1 — ay is independent of Ax;; — 7, and we have that

where
Wy = ay Zyay, + O, (9.12)
with
z,=0|)_ s | B, (9.13)
=0

and I, = a,, @', ay being of dimension m,, x r, and 3 as before being an m x r matrix of full column
rank, 7 = 1,2,... ,m — 1. Note that the r (r 4+ 1) /2 distinct parameters in Z, are unconstrained.
In the special case of a PVAR(1) with unit roots but no cointegrating relations where ®,,= I,
and @yz= Oy, xm,, Zy = Om,, and W, becomes equal to 2,,. The marginal distribution of Ax;1 18
redundant for inference on the coefficients in II, and B,.3? We have thus established that under
I, = Oy, xm efficient inference on the coefficients in II, and B, may be carried out by maximizing
the conditional likelihood function associated with (9.8) and (9.10). Note that the panel long-run
forcing restriction II; = Oy, xm does not preclude feedbacks from y;; onto x; in the short run.

While in the set-up of (9.6) the panel long-run forcing restriction imposes the constraint that there

31See, for example, Granger and Lin (1995) and Pesaran, Shin, and Smith (2000) for a further discussion of the

long-run forcing restriction in a time-series context.
32If the intercept term v, Was also of interest, it could be consistently (though in general not efficiently) estimated

even if it was not identified from (9.8) and (9.10) by first obtaining an estimate of v, from (9.9) and/or (9.11), and

then retrieving an estimate of v, from

ﬂ/y =ay — B’Q’Ym
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are no cointegrating relations among the I(1) forcing variables x;; — u,; —,t, it is clear that similar
arguments as given above could be advanced regarding conditional inference in the case where Ax;;
is a trend-stationary process with homogeneous slope coefficients.??

To derive the likelihood function associated with (9.8) and (9.10), note that
Cov [(Ily — ByIly) £ + vit, Avg] = —,
and that
Cov [(IIy — ByIl;) &;p + vi1, Avy] = Oy,
for t = 3,4,...,T. The conditional likelihood function associated with (9.8) and (9.10) is given by
il 1
[T @m) %2 |5 exp <§w;f'z;1w;<> , (9.14)
i=1
where

Ay — ByAxy —ay
AQy’LQ — ByA2XZ'2 — Iy Aw,;; — ¢y

w; = , (9.15)
Ay — ByA*xir — HyAw,; 1 — ¢y
cy = —II,7, and
Uy —Qy
—Q, 20, -, 0
Xy = . (9.16)
0 —Q, 29, —Q,

—Q, 20,
The ML estimator of (9.14) is equivalent to finding a,, c,, II,, By, Z,, and 2, to maximize

N
Nk N 1
1(0) =~ In(2m) — S In (S — 5 > wy's, tw), (9.17)

=1

!/
where 6 :( ay, ¢y, Ty, by, 3, O ) , with m, = vec(IL,), by = vec(By), 3, = vech (Z,),

and o, = vech (Q,).3* The likelihood function (9.17) is well defined and depends on a fixed number

of parameters.

33See Hsiao, Pesaran, and Tahmiscioglu (1999) for a discussion of this in the case where m, = m, = 1.
34In the case where m, > ma, v, and -, may be identified from (9.17), and 0 becomes

!

0=~ =, by & oL ).
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Tests of cointegration rank or other hypotheses of interest on elements of ®,, and ®,, can be
carried out in rather similar fashion as described for unconditional PVARs in Section 8. Presuming
that there are no cointegrating relations among x;: — p,; — v, t, the hypothesis that w; — p, — vt

is cointegrated with rank r versus rank r + 1, r =0,1,... ;m — 1, can be formulated as
HT : Hy: ayT,B;q VS. H’I’+1 : Hy: ay,r+1ﬂ;+1. (918)

The likelihood ratio test statistic of H, versus H,;1 is asymptotically chi-square distributed with

2 unrestricted

my +m—r degrees of freedom. (Imposing II, to be of rank r, there are (my +m)r—r
coefficients in II,, and r (r + 1) /2 unrestricted coefficients in Z,.) Identification of 3, may be
achieved as discussed in Sections 7 and 8.

To test the long-run forcing restriction, one will, of course, need to consider the marginal

likelihood function associated with (9.9) and (9.11).

10 Finite Sample Evidence

In this section we provide evidence on the finite sample properties of the GMM, the MD, and the
ML estimators. This analysis is necessarily limited in scope and is intended as an illustration of the
type of finite sample results that can be obtained rather than a comprehensive study. Nevertheless,

we conjecture that our conclusions are likely to be of more general validity.

10.1 Monte Carlo Design

We consider four designs (experiments) in our Monte Carlo study. Common to all designs we set
m=2,p=1v= ( 0.02, 0.02 )/, N = (50,250), T = (3,10), and use 1,000 replications. As
a partial analysis of the robustness of the ML estimator to the normality assumption, we consider
two schemes for generating the error terms:

it " N(Opx1,Q), (10.1)

and
2 2
Slitq T 21 — 2

1 §3ita S50 — 2
€it = §Pl 1:t,2 2it,2 ’ (102)

g%it,m + C%’L’t,m —2
where P is the (upper triangular) Cholesky factor of €, ¢ ; N 0,1),1=1,2,j=1,2,... ,m,

with 6yt ; being independent for all [ and j. For all experiments the fixed effects are generated as:

n; = Cejo + &, 1=1,2,..., N, (103)
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where

62U N (v, S,), 0= L2055,
Ei%iN(v%aEie)a = ?+17?+27"'7N7 (10‘4)

with vy = ( 0.25, 0.25 )l, Vop = ( 0.5, 0.5 )l, the two diagonal elements of the Cholesky
factor Py of ¥, being generated as chi-square variates with one degree of freedom, and the upper
triangular element of P; being generated as minus one plus a chi-square variate with one degree of
freedom, all chi-square variates being independent for each given i, as well as independent across
i,1=1,2,... ,N.

The four designs distinguish between trend-stationary, pure unit root, and cointegrated PVAR
models. For all designs the w;;-process is generated using (2.26), assuming that ¢; and the g;’s
follow the same distribution function.

To give an indication of the degree of fit of the various designs, below we also report (where

appropriate) the population R? values associated with each design.

Design 1: Trend-stationary first-order PVAR with mazximum eigenvalue of ® equal to 0.6

0.4 0.2 0.1 0.0l
P = , Q= .
02 0.4 0.0l 0.1

The other eigenvalue of ® is 0.2, and the population R? values are given by R
0.2471, where

2 _ P2 _
Awiiy ANwasy

. Var (Awy| Awit—1)

2
=1
o Var (Awy)
= 1- [m” —, 1=1,2, (10.5)
{EFO 070 (%) ]ll

with [S];; denoting the element in the {-th row and /-th column of S.

Design 2: Trend-stationary first-order PVAR with mazximum eigenvalue of © equal to 0.8

0.6 0.2 0.1  —0.08
o= : 0= .
0.2 0.6 —0.08 0.1

The other eigenvalue of ® is 0.4, and the population R? values are given by szm = Riwm =
0.2588, where R% 1 =1,2, are computed as in (10.5).
lit

Design 3: First-order PVAR with unit roots (but non-cointegrated)

10 0.1 0.01
o= : Q= .
0 1 0.0l 0.1
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Design 4: Cointegrated first-order PVAR

04 0.6 0.06 0.02
o= , Q= .
-0.2 1.2 0.02 0.01
The eigenvalues of ® in this case are given by 1 and 0.6, and the implied vectors/matrices o, 3,

and II are given by

-0.6 1 —0.6 0.6
a = ) /8 = ) = .
-0.2 -1 —-0.2 0.2
The population R? values are given by Riym = 0.2195 and Riy% = 0.1579, where
_Var (Ayit|wi—1)

2 _
Howe = T T (Ag)
Q
= 1- oo{ Ju —, 1=1,2, (10.6)
[Zj:o CiQC; Il

with Cy =1, C; = — (I, — ®), and C; = C;_1®, j =2,3,....%

In what follows we compare the conventional GMM, the MD, and the ML estimators of the
various parameters in terms of their biases and root mean square errors (RMSEs). The finite sample
performance of a number of tests based on the conventional GMM and the ML estimators is also
investigated,30 as is the possibility of employing extended GMM estimation. For Designs 1-3 the
various estimators are computed with IT unrestricted, and for Design 4 the MD and ML estimators
are computed both with and without imposing rank restrictions on II.

The various estimators and their variance-covariance matrices are computed as follows: The
conventional GMM estimator not incorporating the initial conditions (in the tables denoted by
‘GMDM,’) is obtained by minimizing (4.15) via feasible Generalized Least Squares iterations em-

ploying factorizations similar to the ones discussed in Section 6.1, with €2 in (4.16) replaced by

T N
ZZ [Awit —F D (Awip g — ’AY)} [Awit —F - B (Awis1 —7) ,
t=2 i=1 (10.7)

The variance-covariance matrix of the resulting conventional GMM estimator of ® is computed

~ 1
2= 2N (T — 1)

using
-1 -1

N
(Z@Gg ® Im) :
=1

N

(ﬁ; GQ ® Im) [Z Q 0L, S (Q; ® Im)

=1

(10.8)

35See Pesaran, Shin, and Smith (2000) for a discussion of the computation of R? values for cointegrated VARs.
36 As we had discussed in Section 6, derivation of the asymptotic variance-covariance matrix of the MD estimator

is not a trivial task, and is not pursued in this paper. We thus confine ourselves to reporting bias and RMSE for the

MD estimator.
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where Q; = ( O(mr/2+1)(T-1)x1 Qi ), Q; is given by (4.12), and replacing v by 7, and ¥ by
3. The conventional GMM estimator incorporating the initial conditions (in the tables denoted
by ‘GMMy’) is computed by minimizing (4.30). The extended GMM estimator is obtained by
solving (4.57). Initial estimates of 7, ®, and 2 needed to initialize the computation of the various
GMM estimators are obtained using (6.8), (6.10), and (6.11), respectively.3” The MD estimator is
computed using Steps 1-4 as described in Section 6.1. (Under rank restrictions on II, we use (7.6)
and (7.8) to estimate ®.) The ML estimator is computed by maximizing the log-likelihood function
(5.5). As initial estimates for the ML algorithm we use the MD estimates. The variance-covariance
matrix of the ML estimator of ® is computed using the Hessian matrix evaluated at the estimates
in the final iteration. The numerical optimization routine used for computation of the conventional
GMM estimator incorporating the initial conditions, of the extended GMM estimator, and of the
ML estimator employs a trust region method based algorithm, and is described in some detail in a

note available from the authors upon request.

10.2 Monte Carlo Evidence

We begin by discussing the Monte Carlo evidence under normality of the error terms, as summarized
in Tables 1-8. Tables 1 and 2 present the biases and RMSEs of the conventional GMM estimator
(not incorporating the initial conditions), and the MD and ML estimators of 4 and ® for different
values of T and N under Designs 1-3.3% Table 2 demonstrates that in the trend-stationary case with
maximum eigenvalue of ® equal to 0.6 (Design 1), the biases and RMSEs of the conventional GMM,
MD, and ML estimators all behave reasonably well for relatively large N and moderately sized T’
(namely, N = 250 and 7" = 10). But even in this case the MD and ML estimators dominate the
conventional GMM estimator, both in terms of bias and RMSE. As to be expected, the differences
between the conventional GMM estimator and the ML, and MD estimators in the trend-stationary
cases are most pronounced for smaller values of N and/or T'. For N = 50 and T" = 3, for example,
even when the maximum eigenvalue of ® is as small as 0.6, the conventional GMM estimator does
poorly, with its performance deteriorating further as the magnitude of the maximum eigenvalue of

® increases (0.8 for Design 2). For Design 1 the performance of the conventional GMM estimator

3TFor the extended GMM estimator, different initial estimates were also explored. See the discussion below.
38In constructing Tables 1-6 we have removed across all the estimation procedures for the various cases considered

those (very few) replications where the ML estimation routine, due to poor initial conditions (the MD estimates)
did not converge globally, that is, where the likelihood value at the final iteration ML estimates was lower in value
than for a set of coefficients in the neighborhood of the true parameter values. In other words, the total number
of replications for each case was such that after eliminating those replications where the ML estimation routine did
not converge globally, there were 1,000 replications left. The following experiments for this reason involved more
than 1,000 total replications: Design 2, N = 50, T' = 3: 1,004 replications; and Design 2, N = 250, T' = 3: 1,001

replications.
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improves relatively quickly with N and/or T, while the magnitudes of the biases and RMSEs
continue to be relatively large for Design 2 when N = 250 and T" = 3, and when N = 50 and
T = 10. Table 2 also demonstrates that the conventional GMM estimator breaks down in the
presence of a unit root; for the coefficients ¢11 and @92, both equal to unity under Design 3, the
biases and RMSEs continue to be large even when N = 250 and 7" = 10. The ML and MD
estimators, in contrast, perform quite well in the trend-stationary as well as in the unit root case,
with a slightly superior performance of the ML estimator.

Tables 3-6 report rejection frequencies for tests involving the parameter values ¢;;, where ¢
denotes the element in the j-th row and k-th column of ®. All tests have the nominal size of 5%.
Table 3 demonstrates that the power and size properties of tests of ¢11 based on the conventional
GMM estimator (not incorporating the initial conditions) are very poor, except for the case where
the maximum eigenvalue of ® is equal to 0.6, N = 250, and T' = 10. When the maximum eigenvalue
of @ is equal to 0.8, tests based on the conventional GMM estimator are highly over-sized. For
example, even for N = 250 and T" = 10, the size of the test based on the conventional GMM
estimator is equal to 45.2%. Also, as expected, tests based on conventional GMM estimators break
down altogether in the presence of unit roots. (See the third panel of Table 3.) In contrast the
ML estimator based tests perform remarkably well even for small N and T and irrespective of how
close the eigenvalues of ¢ are to unity.

Tables 4-6 present test results applied to the remaining three coefficients of ®, namely ¢12, ¢o1,
and ¢22. The conventional GMM based tests do relatively better for these coefficients (with further
variations across these coefficients) as compared to the tests involving ¢1;. However, the overall
performance of the GMM based tests is still rather poor and the tests cannot be recommended for
N and/or T relatively small and when the maximum eigenvalue of ® is relatively large. Overall,
the tests based on the conventional GMM estimator are all dominated by the ML estimator based
tests both in terms of size and power.?® The ML estimator based tests display (very) good size
properties for all designs and coefficients, even when N is as small as 50, and 7' is as small as 3. It
should also be noted, though, that specifically for the trend-stationary designs the power properties
of the ML estimator based tests may not be very strong when N = 50 and T' = 3. However, these
power properties improve quickly when N and/or T is increased: when N = 50 and T' = 10 and
when N = 250 and T' = 3, the power properties are very good outside the immediate neighborhood
of the true parameter values. (There is one exception to this, namely tests involving ¢12 under

Design 2.)

39Power comparisons of tests are only meaningful when the tests under consideration have empirical sizes that
are close to their nominal size. Therefore, the power of the conventional GMM and ML estimator based tests can
be meaningfully compared in the case of experiments where N is relatively large, T is moderately sized, and the
maximum eigenvalue of ® is relatively small. See, for example, the results in the first panels of Tables 4 and 5 under
N =250 and T = 10.

41



Table 7 reports evidence on bias, RMSEs, and power and size of hypothesis tests under Design
4, which involves one cointegrating relation.*® The results reported in Tables 7a-7d are based on
ML (and MD) estimates computed under the rank restriction rank (II) = 1. The results in these
tables suggest that as under Designs 1-3, the differences between the ML and MD estimators are
small with a slightly superior performance of the ML estimator. When N is relatively large (say,
N = 250) and when there are a fair number of time-series observations available (say, T' = 10),
both the ML and the MD estimator perform well in terms of bias and RMSE, and the size and
power properties of the ML estimator based parameter tests are very good. Table 7e reports the
likelihood ratio tests (8.9) for cointegration rank.*! The results are uniformly very good; possibly
with the exception of the test in the case of N = 50 and T = 3 which is slightly undersized.

Table 8 provides evidence on the relative performance of the conventional GMM estimator incor-
porating the initial conditions compared with its counterpart not incorporating initial conditions.4?
Using Design 1, Table 8 reveals that while the conventional GMM estimator incorporating the
initial conditions has, as to be expected, lower biases and RMSEs for the coefficients in + than
its counterpart not incorporating the initial conditions, the biases and RMSEs of the two estima-
tors are rather similar for the coefficients in ®. Also, comparing Table 8a to Tables 1 and 2, the
biases and RMSEs of the coefficients in ® of the conventional GMM estimator not incorporating
the initial conditions are little affected by whether ‘outlier’ replications need to be eliminated from
the sample. This underlines the robustness of the conventional GMM estimator results reported
in Tables 1 and 2. Tables 8b shows that the size properties of tests involving ¢1; based on the
conventional GMM estimator incorporating the initial conditions are (quite) a bit worse than those
based on the conventional GMM estimator not incorporating the initial conditions when N = 250

and T = 10.%3 Overall, Table 8 suggests that little is to be gained from incorporating the initial

“0In constructing Table 7 we have removed those replications where at least one of the ML estimation routines
(under rank (IT) being constrained to be equal to zero or one, or left unconstrained) did not converge globally. The
primary reason for such non-convergence was that one of the eigenvalues of the implied ® under rank (I1) = 1 during
the iterations started to fall outside the unit circle. Our simulations therefore involved the following number of
replications: N = 50, T = 3: 1,274 replications; N = 50, T" = 10: 1,013 replications; N = 250, T' = 3: 1,035
replications; and N = 250, 7' = 10: 1,011 replications. A potential remedy to the convergence problems would be to
employ constrained versions of the numerical algorithm we use to compute the estimates that enforce the restriction
that none of the eigenvalues of ® fall outside the unit circle. However, this would likely be at the cost of decreased

speed of computations when there is convergence even without imposing constraints on the eigenvalues of ®.
41We are not aware of any GMM based tests for cointegration rank in dynamic panel data models where the time

dimension of the panel is finite, and thus confine ourselves to the likelihood ratio tests (8.9).
42Tn constructing Table 8, we have removed across all the estimation procedures those replications where the opti-

mization routine for the conventional GMM estimator incorporating the initial conditions did not converge globally,
that is, where the objective function value at the final iteration estimates was higher in value than for a set of co-
efficients in the neighborhood of the true parameter values. The following cases for this reason involved more than
1,000 total replications: N = 50, T' = 3: 1,050 replications; and N = 250, T' = 3: 1,013 replications.

43Since the results for tests involving ¢12, ¢21, and ¢22 are qualitatively similar to those involving ¢11 in Table
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conditions in conventional GMM estimation, unless estimation of the trend coefficients is critical. In
fact, taking into account the size properties of tests, and taking into account that the conventional
GMM estimator incorporating the initial conditions is computationally significantly more involved
than its counterpart not incorporating the initial conditions, the latter estimator seems preferable,
if conventional GMM estimation is to be carried out at all. The Monte Carlo simulations we have
carried out also suggest that the conclusions we have drawn from Table 8 carry over to Designs 2
and 3 as well.

Table 9 provides some evidence on the properties of the conventional GMM estimator (not
incorporating the initial conditions), and the MD and ML estimators when the error terms are
drawn from (10.2) instead of the normal distribution, (10.1). Table 9 indicates that for Design 1
both estimators continue to perform well in small sample when the error terms are not normally
distributed, specifically when they are drawn from (10.2). The ML estimator continues to slightly
outperform the MD estimator in terms of bias and RMSE. Tables 9b-9e reveal that the power and
size properties of tests based on the ML estimator remain largely unaffected by the change in the
scheme generating the error terms, except for a couple of cases where the tests become slightly
oversized. The Monte Carlo simulations we have carried out also suggest that the conclusions we
have drawn from Table 9 carry over to Designs 2-4 as well.

We have also used Monte Carlo simulations to further investigate the possibility of employ-
ing extended GMM estimation. As discussed in Section 4, the extended GMM estimator (4.57)
involving the homoskedasticity implied moment conditions (4.50) and (4.51) is not unique. The
Monte Carlo simulations that we carried out illustrated the difficulties involved in choosing among
the multiple solutions to the moment conditions (4.52) that exist in general. The final iteration
extended GMM estimates that we obtained under the different designs were sensitive to the initial
estimates employed. Specifically, we obtained different extended GMM estimates when the initial
estimates were obtained using (6.8), (6.10), and (6.11), than when the MD estimates were employed
as initial estimates. The Monte Carlo simulations also revealed a further difficulty with extended
GMM estimation using the homoskedasticity implied moment conditions (4.50) and (4.51): The
variance-covariance matrix Wy (&), given in (4.59), tends to have a small reciprocal condition num-
ber even for m and T as small as m = 2 and T' = 3, under both N = 50 and N = 250. The values
of An (k) computed in the course of the iterations are thus subject to potentially large numerical
approximation errors. In fact, for designs with m = 4 and T' = 10, attempts to compute A (k)
broke down altogether, even when methods for the inversion of ill-conditioned matrices were em-
ployed. These difficulties were yet more accentuated for the extended GMM estimator augmenting

the standard orthogonality conditions with the homoskedasticity and stationarity implied moment

8b, we have omitted the tables for size and power properties of tests involving ¢12, ¢21, and ¢22. These tables are

available from the authors upon request.
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conditions (4.36) and (4.37) rather than the homoskedasticity implied moment conditions (4.50)
and (4.51). For all designs and for all combinations of N and T considered the reciprocal condition
number of Wy (k) was too small to be able to compute A (k) with any reliable degree of numer-
ical accuracy. This was true irrespective of whether the X, matrices were heteroskedastic across ¢
(as implied by (10.4)), or were restricted to be homoskedastic across i. The various difficulties just
described with implementing extended GMM estimation appear to further strengthen the appeal
of the ML estimator.

11 Conclusion

Using panel data to estimate time-series models has the virtue that one can often invoke con-
ventional central limit theorems across individuals irrespective of the time-series properties of the
variables under consideration, in particular irrespective of whether they are (trend) stationary, pure
I(1), or I(1) and cointegrated. However, the virtue of having a large number of cross-sectional ob-
servations available often appears to be offset by the need to introduce individual-specific effects to
capture the unobserved heterogeneity among the cross-sectional units. Fixed effects and, when the
time dimension of the panel is short, initial observations introduce the classical incidental parame-
ters problem into conventional likelihood based estimation and inference, which lead to a violation
of the regularity conditions for the consistency of the conventional ML estimator.

To overcome these problems, GMM estimation has been suggested in the literature. However,
conventional GMM estimators based on instruments that are orthogonal to the disturbances of the
first-differenced form of the model are not efficient (for example, Ahn and Schmidt, 1995, Arellano
and Bover, 1995, and Hahn, 1999) and suffer from the defect of weak instruments if one or more
roots of the underlying PVAR model approach unity (for example, Blundell and Bond, 1998, and
Hsiao, Pesaran and Tahmiscioglu, 1999). As we have shown in this paper, conventional GMM
estimators of fixed effects PVARs break down completely if the underlying model contains unit
roots, and thus also cannot be used to construct cointegration rank tests. To obtain a consistent
GMM estimator when the data series contain unit roots the standard orthogonality conditions have
to be augmented by further moment conditions. In this paper, we have argued that the approach
of augmenting the standard orthogonality conditions by homoskedasticity and stationarity implied
moment conditions for fixed effects PVARs is subject to difficulties. In particular, it may not be
possible to derive the optimal weighting matrix for the resultant extended GMM estimators, or the
resultant extended GMM estimators are not unique, in general.

Given the problems with GMM estimation, we have suggested a latent variable framework for
the analysis of fixed effects PVARs. This framework provides a model-consistent way of formulating

the initial observations and leads to a transformed likelihood function that no longer involves
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incidental parameters. We have shown that the resulting ML estimator exists, is consistent, and
is asymptotically normally distributed when the cross-sectional dimension of the panel approaches
infinity, irrespective of whether the underlying time series are (trend) stationary, pure I(1), or I(1)
and cointegrated. We have also shown how this ML estimator can be used in conditional models
where a subset of the variables in the PVAR is modelled in terms of the remaining variables.
Furthermore, we have proposed procedures for conducting tests for unit roots and cointegration
rank in panels with short time dimension. We have shown that the limiting distributions of the
test statistics follow standard chi-square and normal distributions.

Finally, Monte Carlo studies have been carried out to compare the small sample performance
of the ML and conventional and extended GMM estimators. We have found that the conventional
GMM estimator performs poorly even when the largest root is moderately sized only. Furthermore,
implementation of extended GMM estimation faces difficult computational problems. The ML
estimator and parameter hypothesis as well as cointegration tests based on it, on the other hand,
perform remarkably well even when the sample size is small and the data are generated by (some

type of) non-normal disturbances.
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Appendix: Conventional GMM, ML, and MD Estimation of a p-th Order PVAR
(p>1)

In this appendix we extend the formulae provided in Sections 4 to 6 for the conventional GMM,
ML, and MD estimation of a first-order PVAR to a p-th order PVAR, p > 1. We continue to invoke
the assumptions for the PVAR(p) model (2.1) put forward in Section 2.

The transformed model (3.2), (3.3), and (3.9) can be written as

Awiyy —y=C (L) ey, t=1,2,...,p—1, (A.1)

p—1
Awip =y =Y T (Aw;, ;=) +TIC* (L) 10 + €4y, (A.2)

j=1
Awip —y =P [Azi1 — (Lp @ )] + Degy, t=p+1,p+2,....,T, (A.3)

where

Zit = ( Wi, W;,t—1> S W;,t—p-i-l ) J (A.4)
(I):(él, @2, ey q>p), (A5)

I';,j=1,2,...,p—1,1is given by (2.11), II by (2.5), ¢, denotes a p x 1 vector of ones, and, as
defined in Section 2, C (L) = Z;’io Cij, CU = Im, C1 = — (Im — (I>1), Cj = Zle Cj—l(I)l7 j > 2
(with C; = 0,, for j < 0), C*(L) = Z;‘io C;Lj, C=L,-CC; =GC;+C;_;,j > 1, and
C= Z(;io C;.

Conventional GMM Estimation

The first-differenced PVAR(p) model (A.3) can in stacked form be written as

Si =R/A+ E;, (A.6)
1=1,2,..., N, where
— !/ _ /
S’i = < Aw’i,p+la AVV’L',;D+27 cee AVViT ) ) E’L = < Asi’p+1, AEi’erQ, e, AE,L'T ) s
(A.7)
—_— — — !/
R; = ( Pi, tra ) ; P; = ( Dzip, Dzipr1, .., Dzir-y ) ; (A.8)
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and

Az((I), v =D (p®7) )/, (A.9)

with @ given by (A.5).
Premultiplying (A.6) by the [m (T'+p — 1) /2 + 1] (T — p) x(T — p) block-diagonal instrumental

variable matrix Q;,

Ui pi1 O(mp+1)x1 O(mp+1)x1 0
Opm(p+1)+1)x1 Qi pr2 Opm(p+1)+1)x1
Q; = | Opmpi2)+1x1 Opmpr2)+1x1 Qip+3 ; (A.10)
0 [eT
/ /
where az',erl = < L Z;,pfl ) , and qy = ( L, W;,t727 w;,tf?)? cto w7/;p7 Z;,pfl ) yt=p+

2,p+3,...,T, one obtains
Q:Si = QRiA + QE;, (A.11)
the transpose of which in vectorized form becomes
(Q; ® I,) vec <§;> = (QRi®In) A+ (Q; ® I,) vec (E;) : (A.12)

where X = vec <K/>. The conventional GMM estimator of A (not incorporating initial conditions)

is obtained by minimizing

[zN: (Q; ® L) vec <§;) - (QR:® 1) X] [% Z Qo) Qe Im)'

=1 i=1
N J—
' [Z (Qi @ Iy) vec (52) - (QRi®In) Al, (A.13)
i=1
where ¥ is of the same form as (4.16),
20 -Q
-Q 20 -Q 0
Y= (A.14)
0 -Q 20 -Q

—-Q 2Q

As for the case where p = 1, the conventional GMM moment conditions underlying (A.13) may be
augmented with additional moment conditions based on (A.1) and (A.2) to construct a conventional

GMM estimator incorporating initial conditions. We do not go into the details here.
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ML Estimation

The unconditional log-likelihood function associated with (A.1), (A.2), and (A.3) is given by**

N

Nk N 1 _
10) = —— - Im(2m)— 5 I[%] -5 ; (re; — Hei@) S71 (1o — Hei)
N 1
-1
Y In || — 5 Zl (ry — Hfi¢)/2ﬂe (ri; — Hy) , (A.16)
where k = mpT,
e = vec [ Awi =7, Awp —7, ..., Awip 1—7, ?QI) (AWip—j =) |
(A.17)
H,; = G; ® L, (A.18)
Gei = < Ompx(p71)7 Tei ) ) (Alg)
Tei = VeC [ Zg;i (Awi,p*j - ’7) ; 5;% (Awim*]' - 7) PRI Awiy — Y 0m><1 ] )
(A.20)
ry; = UeC( Tii, AWipra —7, AWipyz—7, ..., Awir —7 ) ; (A.21)
Hyj; = Gy ; ® Iy + Giy; ® QS, (A.23)
Gii= | Dzip— (Lp®7), Azipr1 —(4pR7), ooy Dzir—1—(4p®7) ] )
(A.24)
Gy, = < Teir Ompx(T—p-1) ) ) (A.25)
“4To derive (A.16), we have rewritten (A.2) using (2.11) as

p—1 p—1 p—1
D (AWipoj =) =D &Y (Awip—j —7) +TC" (L) €io + €ip- (A.15)

7=0 =1 J=l
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¢ = vec (D), (A.26)

® is given by (A.5), X, by (3.6), X, by (3.11), R denotes the m x mp matrix formed by the last

m rows of X1, S denotes the m x m matrix formed by the last m columns of R, and
, /
0 = ( '7/7 ¢ ) OJ ) ’

with o = vech (2). The matrices G;, [ = 0,1,... ,p—2, H;, Il = 1,2,... ,p — 1, and ¥ may be
computed using numerical recursions invoking an appropriate stopping rule to replace the infinite
sums in their definitions by finite sums. As Xy, has a block-tridiagonal structure, its determinant
and inverse may be computed using similar formulae as given in (5.9), (5.10), and (5.11), respec-
tively. A computationally attractive alternative to the formulation (A.16) of the unconditional

log-likelihood function might in some cases be to factorize Pr (Aw;i, Aw;g, ..., Aw;y,) as
PI‘ (AWH, AWZ'Q, ceey Awlp) = PI‘ (AWH) . PI‘ (AWZQ| A Wil)

Pr (Awi,p,ﬂ A W1, Awig, ey AWi7p72) - Pr (AW1p| A W1, AWZ'Q, ey Awi’pfl) .

We do not go into the details here. A note describing further details of the numerical algorithm
used to compute the ML estimates is available from the authors upon request.

MD Estimation

Conditional on 3, and Xy, (given by (3.6) and (3.11), respectively), the ML estimator of ® (defined
by (A.5)) and of ~ is equivalent to the MD estimator that minimizes

Z [ re; — Heid) 571 (rei — Heid) + (v — Hpgp)' S fle 'y — Hfi¢)] ) (A.27)

=1

where r;, He;, r;, and Hy; are defined in (A.17), (A.18), (A.21), and (A.23), respectively, and ¢ is
given by (A.26). Therefore, conditional on v, X, and Xy, the MD estimator of ® is given by

<ZHM JH + HiY lef2> (ZHe o T + HLY Y m), (A.28)

and, conditional on ®, ¥, and Xy, the MD estimator of « is equal to

1 _
N = (NJ 513, + NIS 1 ) (ZJ 5 122+Jf2ﬂ211>, (A.29)
=1
where
!
Je:[Im, L o) I F'—(p—l)ﬂ’], (A.30)



y=(-w -mw .. - )', (A.31)

li=vee ( Awa, Awis, .. Awipr, S8 Awip g — YU BIYP Awiy s )
(A.32)
and
lfz' = vec ( Awi,erl VAN Zip, sz',p+2 —® A Zip+1l, .-, AWiT —® A Z; 71 ) .
(A.33)

Using (A.28) and (A.29), an iterative scheme similar to that discussed in Section 6 can be employed

for the computation of the MD estimates.
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Table1!

Biasand RM SE of Alternative Estimators of Panel VAR

N =50
Estimator " Sz & Y
Trend-Sationary
PVAR (Arm=0.6) True Value 0.02 0.02 0.2
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
=3 GMM, 0.0074 0.1962 0.0024 0.1507 0.3340 0.4948 0.1179 0.4011 0.1280 0.3997 0.3135 0.4751
MD 0.0002 0.0232 -0.0004 0.0223 0.0246 0.1551 0.0037 0.1355 0.0081 0.1367 0.0130 0.1607
ML 0.0001 0.0234 -0.0005 0.0226 0.0202 0.1441 0.0017 0.1275 0.0055 0.1276 0.0082 0.1507
T=10 GMM, 0.0005 0.0088 0.0002 0.0088 0.1168 0.1356 0.0359 0.0802 0.0383 0.0819 0.1168 0.1349
MD 0.0002 0.0066 0.0000 0.0063 0.0068 0.0552 -0.0004 0.0496 0.0032 0.0493 0.0071 0.0555
ML 0.0003 0.0066 0.0001 0.0064 0.0073 0.0521 -0.0010 0.0470 0.0027 0.0475 0.0078 0.0517
Trend-Sationary
PVAR (r=0.8) True Value 0.02 0.02 0.2
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
T=3 GMM, -0.0071 0.2411 -0.0052 0.2710 0.7955 1.0269 -0.0365 0.3459 0.7201 1.2742 0.1851 0.5612
MD 0.0011 0.0281 -0.0001 0.0142 0.0442 0.2052 -0.0074 0.0819 0.0417 0.3343 -0.0017 0.1530
ML 0.0010 0.0287 -0.0001 0.0144 0.0367 0.1985 -0.0056 0.0781 0.0364 0.3310 -0.0003 0.1475
T=10 GMM, 0.0003 0.0110 0.0003 0.0060 0.2786 0.3011 -0.0237 0.0562 0.2924 0.3436 0.0437 0.0934
MD -0.0001 0.0086 0.0000 0.0042 0.0133 0.0640 -0.0029 0.0261 0.0159 0.1077 0.0017 0.0458
ML 0.0000 0.0087 0.0000 0.0043 0.0127 0.0607 -0.0030 0.0247 0.0121 0.1046 0.0029 0.0446
Pure Unit Root
PVAR (1) True Value 0.02 0.02 0
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
T=3 GMM, 0.0025 0.1565 -0.0135 0.3779 0.9301 1.0613 -0.0353 0.5339 -0.0088 0.5424 0.9298 1.0529
MD 0.0003 0.0274 -0.0003 0.0253 0.0140 0.0858 -0.0014 0.0842 -0.0007 0.0865 0.0105 0.0837
ML 0.0004 0.0286 -0.0005 0.0267 0.0132 0.0855 -0.0013 0.0840 -0.0007 0.0861 0.0097 0.0835
T=10 GMM, 0.0001 0.0191 0.0002 0.0193 0.3954 0.4085 -0.0019 0.1019 -0.0004 0.1054 0.4055 0.4187
MD -0.0007 0.0142 0.0003 0.0139 0.0057 0.0229 -0.0015 0.0222 0.0012 0.0214 0.0068 0.0237
ML -0.0005 0.0152 0.0002 0.0150 0.0054 0.0228 -0.0015 0.0221 0.0012 0.0213 0.0065 0.0236

! For details of the Monte Carlo design, see Section 10.1. The data generating process is given by (I, - L) (Wi - # - 1) = &, where # is generated from (10.3), and & is generated
from (10.1). Ama denotes the maximum eigenvalue of @, 3 the j-th element of », j = 1, 2, and 4 the element in the j-th row and k-th column of @, j, k= 1, 2. ‘RMSE’ denotes the
root mean square error, ‘GMMhe conventional GMM estimator not incorporating initial conditions, ‘MD’ the Minimum Distance estimator, and ‘ML’ the Naxiielihood

estimator.
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Table 2
Biasand RM SE of Alternative Estimators of Panel VAR

N =250
Estimator " su Sz & Y
Trend-Sationary
PVAR (Arm=0.6) True Value 0.02 0.02 04
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
=3 GMM, 0.0269 0.8021 0.0300 0.9139 0.1170 0.2528 0.0646 0.2351 0.0695 0.2277 0.1081 0.2299
MD -0.0005 0.0100 0.0004 0.0100 0.0056 0.0750 0.0014 0.0577 0.0005 0.0595 0.0057 0.0740
ML -0.0004 0.0101 0.0004 0.0102 0.0027 0.0698 0.0010 0.0539 0.0005 0.0560 0.0044 0.0688
T=10 GMM, -0.0001 0.0044 0.0000 0.0042 0.0322 0.0490 0.0127 0.0381 0.0126 0.0391 0.0336 0.0492
MD 0.0000 0.0028 0.0001 0.0029 0.0014 0.0242 0.0000 0.0212 -0.0010 0.0216 0.0019 0.0244
ML -0.0000 0.0029 0.0001 0.0029 0.0014 0.0227 -0.0004 0.0205 -0.0013 0.0205 0.0022 0.0229
Trend-Sationary
PVAR (r=0.8) True Value 0.02 0.02 0.6
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
T=3 GMM, 0.0744 2.3086 0.0227 0.5933 0.4989 0.7402 -0.0003 0.2906 0.5751 0.9576 0.0543 0.4145
MD -0.0007 0.0123 0.0003 0.0066 0.0108 0.0939 -0.0014 0.0362 0.0074 0.1425 0.0025 0.0696
ML -0.0008 0.0125 0.0003 0.0067 0.0089 0.0893 -0.0007 0.0340 0.0056 0.1413 0.0030 0.0675
T=10 GMM, -0.0002 0.0062 -0.0001 0.0032 0.1184 0.1371 -0.0075 0.0340 0.1389 0.1753 0.0088 0.0510
MD -0.0000 0.0040 0.0001 0.0019 0.0024 0.0270 -0.0002 0.0109 -0.0002 0.0462 0.0012 0.0212
ML -0.0000 0.0041 0.0000 0.0019 0.0024 0.0255 -0.0004 0.0106 -0.0012 0.0442 0.0014 0.0206
Pure Unit Root
PVAR (1) True Value 0.02 0.02 1.0
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
T=3 GMM, -0.0039 0.0785 0.0002 0.0605 0.9454 1.0747 0.0230 0.5455 -0.0100 0.5626 0.9795 1.0941
MD 0.0000 0.0119 0.0003 0.0118 0.0046 0.0381 0.0012 0.0373 -0.0010 0.0374 0.0032 0.0370
ML 0.0000 0.0125 0.0004 0.0126 0.0043 0.0381 0.0012 0.0372 -0.0010 0.0374 0.0030 0.0369
T=10 GMM, 0.0002 0.0092 0.0000 0.0091 0.3951 0.4087 0.0020 0.1017 -0.0041 0.1049 0.3939 0.4068
MD 0.0003 0.0066 -0.0001 0.0064 0.0008 0.0095 0.0003 0.0095 -0.0003 0.0098 0.0007 0.0097
ML 0.0002 0.0070 -0.0001 0.0069 0.0008 0.0095 0.0003 0.0095 -0.0003 0.0098 0.0006 0.0096

2 See the footnote to Table 1 for a description of the data generating process and the notation used in this table.
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Table3®
Size and Power Propertiesof Testsfor #i;

Trend-Stationary Panel VAR with Apa = 0.6*

Estimator #,=0.1 £,=0.2 £,=0.3 $,=0.4 #.=05 #,=0.6 #$u=0.7
N=50, T=3 GMM, 0.0960 0.1290 0.1860 0.2590 0.3470 0.4470 0.5610
ML 0.4220 0.1830 0.0670 0.0470 0.1200 0.3260 0.5800
N=50, T=10 GMM, 0.7960 0.2630 0.0750 0.4310 0.9060 0.9980 1.0000
ML 1.0000 0.9640 0.4540 0.0460 0.5480 0.9830 1.0000
N=250, T=3 GMM, 0.1570 0.1010 0.0980 0.1620 0.2840 0.4570 0.6030
ML 0.9920 0.8270 0.2920 0.0640 0.3410 0.8240 0.9870
N=250, T=10 GMM, 1.0000 0.9930 0.4820 0.1600 0.9560 1.0000 1.0000
ML 1.0000 1.0000 0.9950 0.0460 0.9960 1.0000 1.0000

Trend-Stationary Panel VAR with Ay, = 0.8°

Estimator S= 0.3 ¢11=0.4 #1=0.5 ¢11=0.6 A= 0.7 ¢11=0.8 ¢11=0.9
N=50, T=3 GMM, 0.2330 0.2790 0.3290 0.3910 0.4610 0.5140 0.5710
ML 0.2500 0.1130 0.0630 0.0570 0.1020 0.2110 0.3770
N=50, T=10 GMM, 0.1310 0.1640 0.4630 0.8110 0.9720 0.9970 1.0000
ML 0.9950 0.8950 0.3330 0.0600 0.4840 0.9610 1.0000
N=250, T=3 GMM, 0.1960 0.2190 0.2610 0.3060 0.3680 0.4390 0.5060
ML 0.7720 0.4730 0.1500 0.0580 0.2000 0.5390 0.8040
N=250, T=10 GMM, 0.7740 0.2690 0.0650 0.4520 0.9030 0.9950 1.0000
ML 1.0000 1.0000 0.9630 0.0460 0.9770 1.0000 1.0000

Pure Unit Root Panel VAR with Ay, = 1°

Estimator %J.l: 0.7 %1120.8 %11: 0.9 ¢11:1 ¢11: 1.1 Su= 1.2 ¢11: 1.3
N=50, T=3 GMM, 0.3410 0.4350 0.5160 0.6060 0.6880 0.7520 0.8120
ML 0.9050 0.6320 0.2140 0.0550 0.2580 0.7250 0.9800
N=50, T=10 GMM, 0.2950 0.6810 0.9550 1.0000 1.0000 1.0000 1.0000
ML 1.0000 1.0000 0.9720 0.0640 1.0000 1.0000 1.0000
N=250, T=3 GMM, 0.3410 0.4290 0.5260 0.6060 0.6880 0.7640 0.8200
ML 1.0000 0.9990 0.7280 0.0480 0.7960 1.0000 1.0000
N=250, T=10 GMM, 0.3140 0.6690 0.9470 0.9970 1.0000 1.0000 1.0000
ML 1.0000 1.0000 1.0000 0.0510 1.0000 1.0000 1.0000

3 See the footnote to Table 1 for a description of the data generating process and the notation used in this table.

4 Thetable reports the fraction of rejections for tests of Hy: 413 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, versus two-sided alternatives. The true value of ¢, isequal to 0.4.
® The table reports the fraction of rejections for tests of Ho: 1, = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, versus two-sided alternatives. The true value of 4, is equal to 0.6.
5 Thetable reports the fraction of rejections for tests of Hy: 413 = {0.7,0.8,0.9, 1, 1.1, 1.2, 1.3}, versus two-sided aternatives. The true value of 4, isequd to 1.
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Table 4’
Size and Power Properties of Testsfor #i»

Trend-Stationary Panel VAR with Az = 0.6°

Estimator ﬁzz -0.1 ¢12:0 @2: 0.1 %12:0.2 ¢12: 0.3 %12:0.4 ¢12:0.5
N=50, T=3 GMM, 0.1220 0.0750 0.0690 0.1000 0.1580 0.2470 0.3770
ML 0.6370 0.3390 0.1270 0.0580 0.1320 0.3600 0.6670
N=50, T=10 GMM, 0.9670 0.6760 0.1810 0.1220 0.5640 0.9350 0.9950
ML 1.0000 0.9870 0.5510 0.0500 0.5950 0.9920 1.0000
N=250, T=3 GMM, 0.2570 0.1420 0.0880 0.1090 0.1970 0.3550 0.5370
ML 0.9990 0.9430 0.3950 0.0440 0.4160 0.9390 0.9990
N=250, T=10 GMM, 1.0000 0.9980 0.6790 0.0710 0.8690 1.0000 1.0000
ML 1.0000 1.0000 0.9980 0.0450 0.9970 1.0000 1.0000

Trend-Stationary Panel VAR with Ay, = 0.8°

Estimator D= -0.1 ¢12=0 #=0.1 ¢12=0.2 D= 0.3 ¢12=0.4 %12=0.5
N=50, T=3 GMM, 0.1650 0.1720 0.1940 0.2190 0.2450 0.2760 0.3150
ML 0.1350 0.0930 0.0800 0.0610 0.0900 0.1420 0.2140
N=50, T=10 GMM, 0.0840 0.1280 0.2510 0.4600 0.6910 0.8570 0.9540
ML 0.7870 0.4630 0.1320 0.0530 0.2090 0.5360 0.8540
N=250, T=3 GMM, 0.1720 0.1940 0.2190 0.2580 0.2890 0.3250 0.3710
ML 0.4410 0.2480 0.0940 0.0510 0.1100 0.2600 0.4830
N=250, T=10 GMM, 0.3660 0.1090 0.0810 0.2870 0.6630 0.9010 0.9860
ML 1.0000 0.9930 0.5870 0.0450 0.5930 0.9870 1.0000

Pure Unit Root Panel VAR with Ay, = 1%°

Estimator %lgz -0.3 @2:-0.2 %12: -0.1 ¢12:0 ¢12: 0.1 @2:0.2 @2:0.3
N=50, T=3 GMM, 0.1450 0.0960 0.0720 0.0530 0.0570 0.0910 0.1430
ML 0.9490 0.6430 0.2280 0.0560 0.2240 0.6640 0.9270
N=50, T=10 GMM, 0.9160 0.7000 0.3530 0.1520 0.3400 0.6900 0.9290
ML 1.0000 1.0000 0.9920 0.0450 0.9930 1.0000 1.0000
N=250, T=3 GMM, 0.1200 0.0820 0.0510 0.0550 0.0710 0.0960 0.1350
ML 1.0000 0.9990 0.7860 0.0570 0.7680 1.0000 1.0000
N=250, T=10 GMM, 0.9300 0.7160 0.3670 0.1610 0.3420 0.6770 0.9120
ML 1.0000 1.0000 1.0000 0.0460 1.0000 1.0000 1.0000

7 See the footnote to Table 1 for a description of the data generating process and the notation used for thistable.

8 Thetable reports the fraction of rejections for tests of Hy: 41, = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versustwo-sided alternatives. The true value of #, isegual to 0.2.
% The table reports the fraction of rejections for tests of Ho: #, = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versus two-sided alternatives. The true value of 4, isequal to 0.2.
0 Thetable reports the fraction of rejections for tests of Hy: 41, = {-0.3,-0.2,-0.1, 0, 0.1, 0.2, 0.3}, versus two-sided alternatives. The true value of 4, isequal to 0.

T4



Table5™
Size and Power Propertiesof Testsfor &

Trend-Stationary Panel VAR with Apa = 0.6

Estimator @12 -0.1 %21:0 @1: 0.1 @1:0.2 @1: 0.3 %21:0.4 @1:0.5
N=50, T=3 GMM, 0.1230 0.0860 0.0700 0.0790 0.1350 0.2260 0.3370
ML 0.6560 0.3880 0.1400 0.0650 0.1340 0.3790 0.6730
N=50, T=10 GMM, 0.9700 0.6860 0.1890 0.1090 0.5620 0.9290 0.9950
ML 1.0000 0.9900 0.5700 0.0600 0.5830 0.9890 1.0000
N=250, T=3 GMM, 0.2530 0.1350 0.0890 0.1170 0.2140 0.3600 0.5070
ML 1.0000 0.9460 0.4120 0.0490 0.1330 0.9530 1.0000
N=250, T=10 GMM, 1.0000 1.0000 0.6950 0.0770 0.8820 1.0000 1.0000
ML 1.0000 1.0000 0.9970 0.0500 1.0000 1.0000 1.0000

Trend-Stationary Panel VAR with Aps = 0.8

Estimator 1= -0.1 ¢21=0 #$1=0.1 ¢zj_=0.2 = 0.3 ¢2]F0.4 ¢21=0.5
N=50, T=3 GMM, 0.2990 0.2110 0.1580 0.1220 0.1400 0.1720 0.2580
ML 0.9610 0.7260 0.2600 0.0540 0.2340 0.6810 0.9450
N=50, T=10 GMM, 1.0000 0.9930 0.7350 0.1110 0.3880 0.9420 0.9980
ML 1.0000 1.0000 0.9890 0.0620 0.9740 1.0000 1.0000
N=250, T=3 GMM, 0.3490 0.2410 0.1900 0.1580 0.1830 0.2570 0.3570
ML 0.9840 0.9820 0.7980 0.0530 0.7830 0.9830 0.9850
N=250, T=10 GMM, 1.0000 1.0000 0.9130 0.0700 0.8190 1.0000 1.0000
ML 1.0000 1.0000 1.0000 0.0480 1.0000 1.0000 1.0000

Pure Unit Root Panel VAR with Ay, = 1%

Estimator @1: -0.3 @1:-0.2 @1: -0.1 @1:0 @1: 0.1 @1:0.2 @1:0.3
N=50, T=3 GMM, 0.1680 0.1160 0.0710 0.0520 0.0570 0.0910 0.1330
ML 0.9460 0.6870 0.2610 0.0560 0.2270 0.6700 0.9470
N=50, T=10 GMM, 0.9360 0.7250 0.3550 0.1460 0.3440 0.7030 0.9350
ML 1.0000 1.0000 0.9990 0.0540 0.9960 1.0000 1.0000
N=250, T=3 GMM, 0.1380 0.0980 0.0720 0.0570 0.0700 0.0990 0.1490
ML 1.0000 1.0000 0.7740 0.0560 0.7770 1.0000 1.0000
N=250, T=10 GMM, 0.9270 0.6940 0.3560 0.1640 0.3640 0.7120 0.9350
ML 1.0000 1.0000 1.0000 0.0500 1.0000 1.0000 1.0000

1 See the footnote to Table 1 for a description of the data generating process and the notation used for this table.

2 Thetable reports the fraction of rejections for tests of Hy: &, = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versus two-sided alternatives. The true value of &, isequal to 0.2.
13 The table reports the fraction of rejections for tests of Ho: &, = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versus two-sided alternatives. The true value of &, is equal to 0.2.
¥ Thetable reports the fraction of rejections for tests of Hy: &, = {-0.3,-0.2,-0.1, 0, 0.1, 0.2, 0.3}, versus two-sided aternatives. The true value of #; isequal to 0.
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Table6™
Size and Power Propertiesof Testsfor &

Trend-Stationary Panel VAR with Apa = 0.6

Estimator £=0.1 £,=0.2 4,=0.3 4,=0.4 4,=05 $,=0.6 #=0.7
N=50, T=3 GMM, 0.0940 0.1120 0.1530 0.2490 0.3430 0.4730 0.5780
ML 0.4810 0.2140 0.0820 0.0620 0.1240 0.3020 0.5420
N=50, T=10 GMM, 0.8030 0.2600 0.0630 0.4380 0.9080 1.0000 1.0000
ML 1.0000 0.9660 0.4470 0.0540 0.5510 0.9850 1.0000
N=250, T=3 GMM, 0.1630 0.0850 0.0800 0.1440 0.2660 0.4310 0.6030
ML 0.9960 0.8230 0.2730 0.0540 0.3380 0.8250 0.9900
N=250, T=10 GMM, 1.0000 0.9980 0.4570 0.1700 0.9650 1.0000 1.0000
ML 1.0000 1.0000 0.9910 0.0520 0.9920 1.0000 1.0000

Trend-Stationary Panel VAR with Apa = 0.8

Estimator Bo= 0.3 ¢22=0.4 #»,=0.5 ¢zz=0.6 Bo= 0.7 @2=0.8 ¢22=0.9
N=50, T=3 GMM, 0.1320 0.1160 0.1250 0.1480 0.1870 0.2370 0.2820
ML 0.4900 0.2670 0.0980 0.0590 0.0950 0.2520 0.4960
N=50, T=10 GMM, 0.8950 0.5470 0.1480 0.0970 0.4800 0.8790 0.9840
ML 1.0000 0.9860 0.5850 0.0510 0.6170 0.9940 1.0000
N=250, T=3 GMM, 0.2140 0.1670 0.1470 0.1450 0.1770 0.2250 0.2860
ML 0.9560 0.7720 0.2860 0.0510 0.3110 0.8110 0.9540
N=250, T=10 GMM, 1.0000 0.9660 0.4840 0.0640 0.9920 0.9850 1.0000
ML 1.0000 1.0000 0.9970 0.0550 1.0000 1.0000 1.0000

Pure Unit Root Panel VAR with A, = 138

Estimator @2: 0.7 @2: 0.8 @2: 0.9 b= 1 @2: 1.1 b= 1.2 @2: 1.3
N=50, T=3 GMM, 0.3370 0.4370 0.5300 0.6260 0.7080 0.7740 0.8250
ML 0.9250 0.6280 0.1990 0.0520 0.2480 0.7280 0.9660
N=50, T=10 GMM, 0.3480 0.7140 0.9640 0.9980 1.0000 1.0000 1.0000
ML 1.0000 1.0000 0.9670 0.0510 1.0000 1.0000 1.0000
N=250, T=3 GMM, 0.3580 0.4500 0.5480 0.6380 0.7080 0.7640 0.8060
ML 1.0000 1.0000 0.7470 0.0540 0.8010 1.0000 1.0000
N=250, T=10 GMM, 0.2970 0.6860 0.9480 0.9990 1.0000 1.0000 1.0000
ML 1.0000 1.0000 1.0000 0.0460 1.0000 1.0000 1.0000

15 See the footnote to Table 1 for a description of the data generating process and the notation used for this table.

16 Thetable reports the fraction of rejections for tests of Hy: &, = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, versus two-sided alternatives. The true value of #,, is equal to 0.4.
7 The table reports the fraction of rejections for tests of Ho: &, = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, versus two-sided alternatives. The true value of ¢ is equal to 0.6.
18 Thetable reports the fraction of rejections for tests of Hy: &, = {0.7,0.8,0.9, 1, 1.1, 1.2, 1.3}, versus two-sided alternatives. The true value of &, isequal to 1.
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Table 7a™
Biasand RM SE of Alternative Estimators of Cointegrated Panel VAR

Estimator 2=0.02 2:=0.02 »=-0.6 @=-02 B=-1
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=50, T=3 MD 0.0003 0.0190 0.0002 0.0082 0.0362 0.1957 0.0019 0.0317 -0.0561 0.4625
ML 0.0003 0.0190 0.0002 0.0082 0.0423 0.1423 0.0046 0.0281 -0.0209 0.3447
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=50, T=10 MD 0.0003 0.0086 0.0002 0.0039 0.0005 0.1013 -0.0008 0.0154 -0.0220 0.2252
ML 0.0003 0.0086 0.0002 0.0039 0.0070 0.0682 0.0005 0.0129 -0.0025 0.1509
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=250,T=3 MD -0.0002 0.0086 -0.0001 0.0037 0.0029 0.1006 -0.0003 0.0155 -0.0166 0.2236
ML -0.0002 0.0086 -0.0000 0.0037 0.0073 0.0693 0.0007 0.0131 -0.0004 0.1599
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=250,T=10 MD -0.0001 0.0030 -0.0001 0.0024 0.0016 0.0263 0.0003 0.0050 0.0035 0.0433
ML -0.0001 0.0030 -0.0001 0.0024 0.0020 0.0211 0.0002 0.0045 0.0030 0.0401
20
Table 7b
Size and Power Propertiesof Testsfor @, under Cointegrated Panel VAR
Estimator @»=-0.9 »=-0.8 n=-0.7 @=-0.6 *=-0.5 »n=-04 »=-0.3
N=50, T=3 ML 0.3620 0.1680 0.0600 0.0410 0.1260 0.3290 0.5690
N=50, T=10 ML 1.0000 0.9530 0.4830 0.0630 0.5810 0.9920 1.0000
N=250, T=3 ML 0.8620 0.6880 0.2590 0.0600 0.3200 0.7590 0.8850
N=250, T=10 ML 1.0000 1.0000 0.9920 0.0460 0.9970 1.0000 1.0000

19 See the footnote to Table 1 for a description of the data generating process, where now @ = |, + @#”, with @ = (a1, )" and #= (6, 4)”; @ and gare commonly referred to as
the error correction coefficients and the cointegrating vectors, respectively. The remaining notation is as described in the footnote to Table 1.
2 Thetable reports the fraction of rejections for tests of Hy: 21 = {-0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3}, versus two-sided aternatives. The true value of «; is equa to -0.6.
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Size and Power Propertiesof Testsfor @» under Cointegrated Panel VAR

Table 7¢*

Estimator a»=-0.5 a»=-0.4 a»=-0.3 a»=-0.2 @,=-0.1 =0 @=0.1
N=50, T=3 ML 0.9770 0.9760 0.8800 0.0410 0.9220 0.9740 0.9770
N=50, T=10 ML 1.0000 1.0000 1.0000 0.0480 1.0000 1.0000 1.0000
N=250, T=3 ML 0.9740 0.9740 0.9740 0.0570 0.9740 0.9740 0.9740
N=250, T=10 ML 1.0000 1.0000 1.0000 0.0490 1.0000 1.0000 1.0000

22
Table 7d
Size and Power Propertiesof Testsfor 4 under Cointegrated Panel VAR

Estimator 5=-1.3 5=-1.2 B=-11 B=-1 5=-0.9 5=-0.8 5=-0.7
N=50, T=3 ML 0.1170 0.0720 0.0610 0.0670 0.0730 0.1090 0.1630
N=50, T=10 ML 0.9180 0.6140 0.1940 0.0370 0.1840 0.5750 0.8840
N=250, T=3 ML 0.3930 0.2180 0.1110 0.0650 0.1270 0.2460 0.4280
N=250, T=10 ML 1.0000 1.0000 0.6510 0.0530 0.7060 0.9990 1.0000

23
Table7e

Size and Power Propertiesof Cointegration Test

Estimator Ho vs. Hy Hivs. H,
N=50, T=3 ML 1.0000 0.0300
N=50, T=10 ML 1.0000 0.0570
N=250, T=3 ML 1.0000 0.0500
N=250, T=10 ML 1.0000 0.0470

2l Thetable reports the fraction of rejections for tests of Hy: @, = {-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1}, versus two-sided aternatives. The true value of 2 isequal to -0.2.
22 The table reports the fraction of rejections for tests of Ho: 4 = {-1.3,-1.2, -1.1, -1, -0.9, -0.8, -0.7}, versus two-sided alternatives. The true value of 4 is equal to -1.
2 The table reports the fraction of rejections for tests of H,: rank(/7) = r versus H,,1: rank(/7) = r+1, r = 0, 1, where the true rank of /7Tisequal to 1.
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Table 8a%

Biasand RM SE of Alternative Conventional GMM Estimatorsunder Trend-Stationary Panel VAR with Amax = 0.6
Estimator 71=0.02 2=0.02 #1=04 $,=0.2 #1=0.2 4,=04
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=50, T=3 GMM, -0.0028 0.0572 -0.0008 0.0540 0.3562 0.4941 0.1270 0.3908 0.1483 0.3940 0.3262 0.4764
GMM, -0.0010 0.0458 -0.0001 0.0236 0.3652 0.5043 0.1339 0.4133 0.1493 0.4025 0.3370 0.4848
MD 0.0003 0.0233 -0.0003 0.0223 0.0257 0.1569 0.0043 0.1362 0.0087 0.1375 0.0163 0.1600
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=50, T=10 | GMM, 0.0005 0.0088 0.0002 0.0088 0.1168 0.1356 0.0359 0.0802 0.0383 0.0819 0.1168 0.1349
GMM, 0.0002 0.0066 0.0000 0.0064 0.1002 0.1290 0.0278 0.0792 0.0299 0.0833 0.0997 0.1288
MD 0.0002 0.0066 0.0000 0.0063 0.0068 0.0552 -0.0004 0.0496 0.0032 0.0493 0.0071 0.0555
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=250,T=3 GMM, 0.0015 0.0398 0.0007 0.0397 0.1203 0.2537 0.0708 0.2339 0.0732 0.2274 0.1131 0.2288
GMM, -0.0003 0.0105 0.0001 0.0141 0.1286 0.2536 0.0779 0.2360 0.0787 0.2310 0.1212 0.2291
MD -0.0004 0.0100 0.0004 0.0100 0.0057 0.0752 0.0017 0.0575 0.0008 0.0595 0.0056 0.0734
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=250,T=10 | GMM, -0.0001 0.0044 0.0000 0.0042 0.0322 0.0490 0.0127 0.0381 0.0126 0.0391 0.0336 0.0492
GMM, 0.0000 0.0029 0.0001 0.0029 0.0310 0.0483 0.0123 0.0380 0.0123 0.0390 0.0324 0.0484
MD 0.0000 0.0028 0.0001 0.0029 0.0014 0.0242 0.0000 0.0212 -0.0010 0.0216 0.0019 0.0244
Table 8b%
Size and Power Propertiesof Testsfor 41 under Trend-Stationary Panel VAR with Aynax = 0.6
Estimator A= 0.1 ¢11= 0.2 ¢11=0.3 A= 0.4 ¢11=0.5 ¢11= 0.6 %]_]F 0.7
N=50, T=3 GMM, 0.1070 0.1350 0.1930 0.2610 0.3450 0.4400 0.5540
GMM, 0.1770 0.2260 0.2870 0.3690 0.4610 0.5820 0.6730
N=50, T=10 GMM, 0.7960 0.2630 0.0750 0.4310 0.9060 0.9980 1.0000
GMM, 0.8390 0.4780 0.1700 0.5100 0.8580 0.9110 0.9250
N=250, T=3 GMM, 0.2050 0.1320 0.1200 0.1520 0.2780 0.4210 0.5870
GMM, 0.2850 0.2010 0.1820 0.2660 0.3970 0.5800 0.7100
N=250, T=10 GMM, 1.0000 0.9930 0.4820 0.1600 0.9560 1.0000 1.0000
GMM, 1.0000 0.9990 0.7100 0.3090 0.9820 1.0000 1.0000

2 See the footnote to Table 1 for a description of the data generating process, ‘@Mbtes the conventional GMM estimator incorporating initial conditions. The remaining
notation is as described in the footnote to Table 1.
% The table reports the fraction of rejections for testdofs; = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, versus two-sided alternatives. The true valug ofs equal td.4.
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Table 9%
Biasand RM SE of Alternative Estimators under Trend-Stationary Panel VAR with Anax = 0.6 and Non-Normal Distur bances

Estimator 1=0.02 7=0.02 #1=0.4 $=0.2 #1=0.2 4=04
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=50, T=3 GMM, -0.0087 0.5155 -0.0002 0.2590 0.3716 0.5353 0.1344 0.4174 0.1405 0.4052 0.3088 0.4901
MD 0.0000 0.0219 -0.0000 0.0229 0.0169 0.1966 0.0004 0.1386 0.0112 0.1386 0.0256 0.1969
ML -0.0008 0.0222 -0.0008 0.0230 0.0138 0.1809 0.0013 0.1321 0.0112 0.1322 0.0169 0.1811
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=50, T=10 | GMM, 0.0002 0.0089 0.0003 0.0088 0.1216 0.1401 0.0350 0.0784 0.0353 0.0798 0.1146 0.1336
MD -0.0002 0.0065 -0.0001 0.0062 0.0101 0.0679 0.0016 0.0488 0.0017 0.0506 0.0096 0.0664
ML -0.0002 0.0066 -0.0001 0.0063 0.0089 0.0543 0.0006 0.0459 0.0009 0.0477 0.0090 0.0540
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=250,T=3 GMM, 0.0068 0.2104 0.0111 0.3238 0.0976 0.2412 0.0655 0.2346 0.0452 0.2245 0.1118 0.2431
MD 0.0003 0.0101 0.0001 0.0097 0.0044 0.0898 -0.0025 0.0603 0.0012 0.0600 0.0033 0.0928
ML 0.0001 0.0102 -0.0000 0.0098 0.0024 0.0808 -0.0026 0.0562 0.0006 0.0562 -0.0002 0.0839
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
N=250,T=10 | GMM, -0.0000 0.0042 -0.0000 0.0042 0.0334 0.0485 0.0138 0.0393 0.0140 0.0382 0.0327 0.0486
MD -0.0001 0.0029 -0.0001 0.0028 0.0018 0.0287 0.0008 0.0221 -0.0004 0.0223 -0.0001 0.0308
ML -0.0001 0.0030 -0.0001 0.0029 0.0015 0.0229 0.0003 0.0209 -0.0003 0.0204 0.0007 0.0240
27
Table %
Size and Power Propertiesof Testsfor #; under Trend-Stationary Panel VAR with Amax = 0.6 and Non-Normal Disturbances
Estimator S= 0.1 ¢11=0.2 #1=0.3 ¢11=0.4 P1= 0.5 ¢11=0.6 ¢11=0.7
N=50, T=3 GMM, 0.0910 0.1340 0.1940 0.2710 0.3730 0.4730 0.5800
ML 0.4430 0.2360 0.1260 0.0960 0.2000 0.3540 0.5640
N=50, T=10 GMM, 0.7740 0.2360 0.0780 0.4630 0.9080 0.9990 1.0000
ML 1.0000 0.9600 0.4300 0.0570 0.5620 0.9810 1.0000
N=250, T=3 GMM, 0.1790 0.1060 0.0850 0.1390 0.2510 0.4070 0.5650
ML 0.9900 0.7800 0.3030 0.0990 0.3690 0.7800 0.9690
N=250, T=10 GMM, 1.0000 0.9980 0.4550 0.1500 0.9620 1.0000 1.0000
ML 1.0000 1.0000 0.9930 0.0450 0.9910 1.0000 1.0000

% For details of the Monte Carlo design, see Section 10.1. The data generating process is given by (I, - @L) (Wi - # - 2t) = &, Where 4 is generated from (10.3), and &; is
generated from (10.2). See the footnote to Table 1 for a description of the notation used in this table.
2" Thetable reports the fraction of rejections for tests of Hy: 43 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, versus two-sided alternatives. The true value of #; isequal to 0.4.
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Table9c®
Size and Power Propertiesof Testsfor #, under Trend-Stationary Panel VAR with Ana = 0.6 and Non-Normal Distur bances

Estimator Pio= -0.1 @2:0 #,=0.1 ¢12:0.2 A= 0.3 ¢12:0.4 ¢12:0.5
N=50, T=3 GMM, 0.1400 0.0860 0.0670 0.1060 0.1760 0.2670 0.3800
ML 0.6210 0.3410 0.1220 0.0620 0.1490 0.3910 0.6810
N=50, T=10 GMM, 0.9650 0.6890 0.2090 0.1030 0.5510 0.9330 0.9970
ML 1.0000 0.9920 0.5400 0.0430 0.6000 0.9860 1.0000
N=250, T=3 GMM, 0.2970 0.1580 0.0950 0.1070 0.1820 0.3190 0.4910
ML 0.9980 0.9300 0.4080 0.0460 0.4150 0.9330 1.0000
N=250, T=10 GMM, 1.0000 1.0000 0.6680 0.0580 0.8850 1.0000 1.0000
ML 1.0000 1.0000 0.9970 0.0350 0.9980 1.0000 1.0000
2
Table 9d%
Size and Power Propertiesof Testsfor 41 under Trend-Stationary Panel VAR with Aynax = 0.6 and Non-Normal Distur bances
Estimator @12 -0.1 %21:0 @1: 0.1 @1:0.2 @1: 0.3 %21:0.4 @1:0.5
N=50, T=3 GMM, 0.1240 0.0880 0.0700 0.0960 0.1470 0.2240 0.3310
ML 0.6640 0.3700 0.1660 0.0670 0.1380 0.3800 0.6730
N=50, T=10 GMM, 0.9730 0.7030 0.2070 0.1060 0.5620 0.9320 0.9990
ML 1.0000 0.9900 0.5860 0.0430 0.5830 0.9940 1.0000
N=250, T=3 GMM, 0.2840 0.1400 0.0880 0.1020 0.2000 0.3550 0.5600
ML 0.9990 0.9400 0.4510 0.0500 0.4070 0.9260 0.9990
N=250, T=10 GMM, 1.0000 0.9990 0.6850 0.0850 0.8970 1.0000 1.0000
ML 1.0000 1.0000 0.9980 0.0550 0.9980 1.0000 1.0000
30
Table9e
Size and Power Propertiesof Testsfor &, under Trend-Stationary Panel VAR with Ana = 0.6 and Non-Normal Distur bances
Estimator @2: 0.1 @2:0.2 @2: 0.3 @2:0.4 @2: 0.5 @2:0.6 @2:0.7
N=50, T=3 GMM, 0.0950 0.1230 0.1920 0.2600 0.3510 0.4460 0.5720
ML 0.4270 0.2160 0.1060 0.1100 0.1980 0.3830 0.5710
N=50, T=10 GMM, 0.8160 0.2720 0.0800 0.4380 0.8880 0.9970 1.0000
ML 1.0000 0.9680 0.4200 0.0600 0.5840 0.9750 1.0000
N=250, T=3 GMM, 0.1770 0.1050 0.1050 0.1660 0.2940 0.4410 0.6170
ML 0.9850 0.7950 0.3290 0.1100 0.3700 0.7760 0.9570
N=250, T=10 GMM, 1.0000 0.9970 0.4980 0.1690 0.9640 1.0000 1.0000
ML 1.0000 1.0000 0.9860 0.0630 0.9850 1.0000 1.0000

2 Thetable reports the fraction of rejections for tests of Hy: 41, = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versus two-sided alternatives. The true value of #, isequal to 0.2.
2 The table reports the fraction of rejections for tests of Ho: ¢, = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versus two-sided alternatives. The true value of &, is equal to 0.2.
0 The table reports the fraction of rejections for tests of Hy: &, = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, versus two-sided alternatives. The true value of #,, is equal to 0.4.
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