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Abstract 
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risk-averse informed traders, competitive rational expectations equilibria provide a good 
approximation to strategic equilibria as long as N is not too small: equilibrium prices in each 
situation converge to each other at a rate of 1/N as the market becomes large. The 
approximation is particularly good when the informationally adjusted risk bearing capacity of 
traders is not very large. This is not the case if informed traders are close to risk neutral. Both 
equilibria converge to the competitive equilibrium of an idealized limit continuum economy 
as the market becomes large at a slower rate of 1/√N and, therefore, the limit equilibrium need 
not be a good approximation of the strategic equilibrium in moderately large markets. 
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1 Introduction

The aim of this paper is to find out when we can safely use competitive rational expectations
equilibria (REE) as an approximation of the “true” strategic equilibria in a standard financial
market context. We would like to bound the error when approximating the equilibrium with a
finite number of traders with a price-taking equilibrium, as is often done in applied work. The
general result is that the competitive approximation basically works, even in a moderately
sized market, when competitive traders have incentives to be restrained in their trading.

The concept of competitive REE has been questioned from different quarters. Hellwig
(1980) pointed out the “schizophrenia” problem of price-taking behavior in a competitive
REE with a finite number of traders. When submitting their demands traders would take
into account the information content of the price but not the price impact of their trade.
The problem disappears in a large market. Indeed, as the market becomes large the strategic
equilibria of finite economies converge to the competitive REE of an idealized limit continuum
economy (as described, e.g., by Admati (1985) or Vives (1995)). Kyle (1989) modeled the
strategic equilibrium directly where traders are aware of the price impact of their trades and
compete in demand schedules (in a REE with imperfect competition) and claimed that the
properties of the imperfect competition model were reasonable.

In this paper we show, in the framework of Kyle’s (1989) model, that the competitive REE
of a large but finite market with risk-averse traders provides a good approximation of the
“true” strategic equilibrium. This is particularly the case when the informationally adjusted
risk-bearing capacity of traders is not very large. Then, if the market has a minimum size,
we can take the shortcut of assuming competitive behavior of the finite number of agents
present as a good enough approximation. That is, we can use competitive REE without
apology. However, the shortcut does not work, for example, if informed traders are close to
risk neutral. In any case the strategic equilibrium is not well approximated by the competitive
REE of the idealized limit continuum economy.

Consider the imperfect competition model of Kyle (1989) with risk-averse speculators,
parameterize the size of the market by the volume of noise trading σz and let there be
free entry of speculators. As in Verrecchia (1982) and Kyle (1989) speculators can become
informed, acquiring a private signal of known precision, by paying a fixed cost, which may
depend on the size of the market. The entry of uninformed speculators is free. We show first
that, if the entry cost in a large market is positive but not too large, the equilibrium number
of informed speculators N is of the order of σz, that is, N grows in proportion to σz, in both
the strategic and competitive cases. We can then identify increases in the size of the market
σz with increases in N . This is our central scenario. The result is that the equilibrium prices
in the strategic and competitive cases, as the market becomes large, converge to each other at
a rate of 1/N , while both converge to the competitive equilibrium of the limit economy at a
rate of 1/

√
N . The same rates of convergence apply for demands, profits and relative utilities
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of traders. The consequence is that in moderately sized and large markets the assumption
of competitive behavior with risk-averse traders turns out to be a good approximation to
the “true” strategic (Bayesian) equilibrium. However, thinking in terms of the idealized
continuum limit economy will not provide a good approximation for the equilibrium of the
finite market. The point is that market power is dissipated quickly, at a rate of 1/N , while
the distance between a finite and the limit economy depends on the rate at which the average
error term in the signals of traders vanishes, and this is 1/

√
N .

The result that market power vanishes quickly at a rate of 1/N as the market grows
is consistent with the result obtained by Vives (2002) in the context of a Cournot model
(which in the financial market would correspond to traders using market orders instead of
demand schedules as in Kyle’s (1989) model) and with Gong and McAfee (1996) for double
auctions allowing correlated values (the discrepancy of the strategic equilibrium, Bayesian
bidding equilibrium at the double auction, and the non-strategic price-taking equilibrium
bid is of the order of 1/N).1 Our results are also related to the literature that tries to
provide a strategic foundation for competitive REE in a continuum economy. This is the
aim, for example, of Reny and Perry (2006). They consider a double auction with a finite
number of buyers and sellers with interdependent values and affiliated private information,
and show that if there are sufficiently many buyers and sellers (and their bids are restricted
to a sufficiently fine discrete set of prices), then generically there exists an equilibrium which
is arbitrarily close to the unique fully revealing REE of the limit market. In particular, the
double auction equilibrium is almost efficient in large economies (but they do not analyze
convergence rates). In our model a large number of traders are needed for the equilibrium
in the continuum economy to be a good approximation of the strategic equilibrium since the
rate of convergence is 1/

√
N .

We also look at a more refined measure of convergence speed for a given rate of con-
vergence: the asymptotic variance of the price difference in the different regimes. We find
that the asymptotic variance of the price difference between the strategic and the competi-
tive regime in a finite economy is small, and the approximation of the strategic equilibrium
by the competitive equilibrium is good, when the prior volatility of the asset is low, noise
trading is large in relation to the risk bearing capacity of the informed traders, or the signals
are very noisy.2 We confirm, therefore, the idea that the competitive approximation works,
even in a moderately sized market, basically when competitive traders have incentives to
be restrained in their trading. As traders become less and less risk averse, the asymptotic

1The latter paper extends the work on independent and identically distributed (i.i.d.) double auction
environments of Rustichini et al. (1994) to general information structures. Other extensions are provided
by Cripps and Swinkels (2006). Yosha (1997) deals with financial intermediation in a large Cournot–Walras
economy with i.i.d. shocks and computes the rates of convergence as the economy becomes large for various
market parameters.

2However, while the asymptotic variance of the price difference between the strategic and the competitive
regime is increasing in the volatility of fundamentals, it can be nonmonotonic in the volume of noise trading
and the degree of risk aversion, and it is always nonmonotonic in the noisiness of the signals.
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variance of the price difference between the strategic and the competitive regime in a finite
economy increases unboundedly, reflecting the fact that when traders are close to risk neutral,
competitive prices are close to being fully revealing while prices at the strategic equilibrium
are far from being so. This points to the fact that the competitive model is appropriate, as
an approximation to the true strategic model, when traders are risk averse but not when they
are close to risk neutral. In fact, when they are close to risk neutral and information is costly
to acquire, no competitive traders would enter into the market and become informed because
they would lose money (this is just a variant of the well-known Grossman and Stiglitz (1980)
paradox). Indeed, the naive idea that with risk-neutral traders Bertrand competition would
push the strategic and competitive regimes closer together does not hold. This is consistent
with the results in Biais et al. (2000) according to which adverse selection softens supply
schedule competition among risk-neutral market makers in a common value environment.

We also test the limits of our results by checking situations where the number of informed
traders increases nonproportionally to the size of the market. If the number of informed
traders increases faster than the size of the market, then a fully revealing equilibrium is
obtained in the limit. If the number of informed traders increases more slowly than the size
of the market, then an informationally trivial equilibrium is obtained in the limit. In all
cases, market power is again dissipated faster than the rate at which the finite and the limit
economy converge to each other as the market becomes large.

Finally, we look at a version of Kyle’s (1989) “monopolistic competition case” where
the competitive market need not be a good approximation of strategic trading even in a
large market. This occurs when the cost of acquiring information tends to zero but the
total precision of information for the informed is bounded. In this context traders retain
some market power even in a large market. In this case convergence to the monopolistically
competitive limit as the information purchase cost tends to zero occurs at most at a rate of
1/N . Therefore, our results on the approximation of strategic by competitive equilibria have
to be qualified as holding in those situations where there is no residual market power in a
large market.

The rest of the paper is organized as follows. In the next section we present the structure
of the model and the equilibria that we are going to consider with a fixed number of informed
speculators. In Section 3 we endogenize the number of informed speculators in a free entry
model and provide a characterization of equilibria. The results on the speed of convergence to
price-taking equilibria in the central scenario are presented in Section 4. Section 5 is devoted
to the analysis of convergence in other large market scenarios. In section 6 we address
traders who are almost risk neutral. In Section 7 we present the monopolistic competition
case. Proofs of all the results are collected in the Appendix.

3



2 A market with N informed speculators

Consider Kyle’s (1989) model (and to facilitate comparison we follow his notation as closely
as possible). A single risky asset with random liquidation value ṽ is traded among noise
traders, N informed speculators, indexed n = 1, . . . , N , and market makers.3 The return to
trade one unit at a market clearing price p̃ is thus ṽ− p̃. Noise traders trade in the aggregate
the random quantity z̃. Each informed speculator n = 1, . . . , N receives a private signal
ı̃n = ṽ + ẽn, where the random variables ṽ, z̃, ẽ1, . . . , ẽN are assumed to be normally and
independently distributed with zero means and variances given by var [ṽ] = τ−1

v , var [z̃] = σ2
z ,

var [ẽn] = τ−1
e .4

Speculators compete in demand schedules and have constant absolute risk-aversion utility
functions with coefficient ρ > 0 and a (normalized) zero initial endowment of the risky asset.
Speculator n chooses a demand schedule Xn(·, in) which depends on his signal in and, given
the market clearing price p, derives utility

Un(πn) = − exp(−ρπn) where πn = (v − p)xn and xn = Xn(p, in).

Market makers are uninformed and make their trade based only on public information
transmitted through the price. We assume that there is a competitive risk-neutral market
making sector that induces semi-strong efficient pricing:

E [ṽ | p̃] = p̃.

This may arise because uninformed traders are risk neutral or because there is costless free
entry of uninformed speculators (as we will see in the next section).

Strategic and competitive equilibria Two equilibria are considered. The first is a com-
petitive REE and the second is Kyle’s REE with imperfect competition. The second is simply
a Bayesian equilibrium in demand schedules of the game among the N informed traders. The
first is also a Bayesian equilibrium, but now each informed trader, when considering what
demand schedule to use, does not take into account the impact of his choice on the market
price.

We concentrate attention on symmetric linear equilibria, that is, an equilibrium in which
the strategies for each trader Xn, n = 1, . . . , N , are identical affine functions. Thus, there
exist constants β, γ, µ such that a strategy Xn can be written

Xn(p, in) = µ+ βin − γp.
3A tilde distinguishes between a random variable and its realization.
4The assumption E [ṽ] = E [ẽn] = 0 is made without loss of generality. The assumption E [z̃] = 0 does not

affect the results in this paper.
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Theorem 5.1 in Kyle (1989) implies that for σ2
z > 0 and τe > 0 there exists a unique

symmetric linear REE with imperfect competition for any N . That is, there is a symmetric
linear equilibrium and this equilibrium is unique in the class of symmetric linear equilibria.
Theorem 6.1 in Kyle (1989) provides a corresponding result on the existence and uniqueness
of a symmetric linear competitive REE.

We use a superscript c to denote the values associated with a competitive equilibrium;
values associated with a strategic equilibrium do not have this superscript. Subscript N
(respectively, subscript ∞) corresponds to the values of the market with N (respectively,
with an infinite number of) informed traders.

3 Free entry in a large market

Consider the following scenario in which we endogenize the number of informed speculators.
There are two stages and a countable infinity of potential traders. In a first stage any trader
(except noise traders) can become informed (that is, can receive a signal about the value of
the asset) by paying a fixed amount F > 0. In a second stage the speculators that have
decided to enter compete as in the previous section to make money out of the noise traders.
Free entry of uninformed speculators, even if they are risk averse, implies that the market at
the second stage is semi-strong efficient (Theorem 7.4 in Kyle (1989)).5

The size of the market is naturally parameterized by the noise trading volume σz. We
also index the cost of acquiring information by σz : F (σz). If F (·) is constant there are
constant returns to information acquisition. If F (·) is increasing (decreasing) in the size
of the market there are decreasing (increasing) returns to scale to information acquisition.
Increasing returns to information production may arise because of fixed costs in information
production and decreasing returns may arise because of increased correlation among signals
when a larger sample is produced. The central case is with constant returns and F (·) ≡ F > 0.
Assume that

F (∞) ≡ lim
σz→∞

F (σz)

is well defined.
The equilibrium number of informed traders is determined as follows. Consider first the

strategic case. Let π̃N be the equilibrium random profits of an informed speculator when
N have entered and denote by Π(N) the certainty equivalent of profits that makes a trader
indifferent between making this payment to be one of the informed speculators or remain
uninformed. We have that, because of exponential utility, Π(N) is independent of initial
wealth and

− exp(−ρΠ(N)) = E[− exp(−ρπ̃N )].
5Alternatively, we may assume that at the second stage there is a competitive risk-neutral market making

sector and then no risk-averse trader will choose to enter if he does not purchase information.
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Let N∗(σz) denote the equilibrium number of informed speculators in the imperfect com-
petition model when noise trading has standard deviation σz. Here N∗(σz) is defined as the
largest N such that

Π(N) ≥ F (σz).

Let us define the competitive equilibrium model Πc(N) and N∗c (σz) similarly. Then the
equilibrium number of speculators N∗c (σz) is defined as the largest N such that

Πc(N) ≥ F (σz).

Then, as is shown in Kyle (1989, Theorems 10.1 and 10.2), there is a unique free-entry
equilibrium of the two-stage game in both the strategic and competitive cases.

We are interested in the rate of change of the equilibrium number of entrants in both the
competitive and the strategic regime as the market becomes large by increasing

√
var [z̃] = σz.

For all of the markets var [ṽ] = τ−1
v and var [ẽn] = τ−1

e are fixed constants.
We say that a market with equilibrium price p̃ is (i) value revealing if p̃ = ṽ (almost

surely); (ii) informationally trivial if var−1 [ṽ | p̃] = var−1 [ṽ] = τv. It is easy to see that in
case (ii), necessarily, p̃ = E [ṽ] = 0 (almost surely).6

Notation for the comparison of rates of convergence We use the following notation
to make comparisons of the rates of convergence. For two functions f, g : Z+ → R we have:

(i) f ∼ O(g) means that there exist an integer N0 and a positive constant k such that
|f(N)| ≤ k|g(N)| for any N ≥ N0; that is, |f | grows “at a rate not larger” than |g| as
N →∞;

(ii) f ∼ o(g) means that limN→∞(f(N)/g(N)) = 0; that is, |f | grows “at a smaller rate”
than |g| as N →∞;

(iii) f ∝ g means that f ∼ O(g) and g ∼ O(f); that is, |f | grows “at the same rate” as |g|
when N →∞.

Our first result shows what cases arise depending on the value of F (∞).

Proposition 1. Let ρ > 0 and

F ∗ ≡ 1
2ρ

log
(

1 +
τe
τv

)
.

6Indeed, from E [ṽ | p̃] = p̃ we have that E [p̃] = E [E [ṽ | p̃]] = E [ṽ] = 0. Since var [ṽ] = E [var [ṽ | p̃]] +
var [E [ṽ | p̃]], we have that E [var [ṽ | p̃]] = E [var [ṽ]] = var [ṽ] and var [E [ṽ | p̃]] = var [p̃] and therefore it
should be that var [p̃] = 0.
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In a large market three cases appear (in both the strategic and competitive cases) in a free
entry equilibrium as σz →∞.

1. If F (∞) ≥ F ∗, then if the endogenous number of informed speculators grows, it grows
at a slower rate than σz (N∗c (σz) and N∗(σz) are ∼ o(σz)). The limit market is infor-
mationally trivial and the prices converge to zero.

2. If 0 < F (∞) < F ∗, then the endogenous number of informed speculators grows propor-
tionally to σz (N∗c (σz) ∝ N∗(σz) ∝ σz). The limit market is neither value revealing nor
informationally trivial.

3. If F (∞) = 0, then the endogenous number of informed speculators grows at a faster
rate than σz (σz ∼ o(N∗c (σz)) and σz ∼ o(N∗(σz)). The limit market is value revealing:
the prices converge to ṽ.

The limit market in case (2) corresponds to the continuum of traders competitive model
of Vives (1995) where informed traders co-exist with risk neutral market makers. The com-
petitive models of Hellwig (1980) and Admati (1985) do not have risk neutral market makers.
The result is also consistent with related work by Garćıa and Urosevic (2008) (where they
also find a limit of the Vives (1995) type corresponding to their case of ”diversifiable noise”.)

Remark 1. In the case of constant returns to information acquisition, F (·) ≡ F :

1. if F ≥ F ∗, then N∗c (σz) = N∗(σz) = 0;

2. if 0 < F < F ∗, then N∗c (σz) ∝ N∗(σz) ∝ σz;

3. if F = 0, then N∗c (σz) = N∗(σz) =∞.

The proofs of all results are collected together in the Appendix. Let us present here a
sketch of the argument.

An heuristic explanation of the proof Consider first the strategic case for an exogenous
number of speculators N . It is easy to see that the certainty equivalent of profits Π(N) is
strictly positive and is strictly smaller than

F ∗ ≡ 1
2ρ

log
(

1 +
τe
τv

)
.

Then it is shown that Π(N) converges as σz → ∞ to different limits depending on the rate
of the growth of N :

(i) if N grows at a slower rate than σz, then relatively few informed speculators are in
the market, the limit market is informationally trivial, and the certainty equivalent of
profits Π(N) converges to its upper bound F ∗ (information is the most valuable);
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(ii) if N grows at the same rate as σz, then the limit market is neither value revealing nor
informationally trivial, and the certainty equivalent of profits Π(N) for large N belongs
to some interval strictly between 0 and F ∗ (information is valuable);

(iii) if N grows at a faster rate than σz, then relatively many speculators are in the market,
the limit market is value revealing and the certainty equivalent of profits Π(N) converges
to 0 (information is not valuable).

Allow now for an endogenous number of speculators N . If N does not grow unboundedly
as σz → ∞, then we should be in the case (i) above and F (∞) ≥ F ∗ (with no speculators
becoming informed when F (·) ≡ F ). If N grows unboundedly as σz → ∞ then it should
be that Π(N) → F (∞). (For a given σz speculators will enter until Π(N) is just above
F (∞).) Depending on the value of F (∞) we should be in one of the cases (i)–(iii) above.
If F (∞) ≥ F ∗, then we must be in case (i) since eventually it does not pay to become
informed. If F (∞) = 0, then eventually all speculators enter and we must be in case (iii). If
0 < F (∞) < F ∗, then N must grow unboundedly with σz and Π(N) → F (∞) (otherwise,
Π(N) → F ∗ and there would be more entry since F (∞) < F ∗). It follows that we must be
in case (ii) since if N grows at a faster rate than σz, then Π(N) → 0, and if N grows at a
slower rate than σz, then Π(N) → F ∗. We can show in this case that σz/N∗(σz) → σz0 as
σz →∞ for some constant σz0 inversely related to F (∞).

For the price-taking equilibrium the analysis is similar but based on Πc(N).
Hence, in general, for the whole range of intermediate values of F (∞) we obtain that

the endogenous number of informed speculators is proportional to the standard deviation of
the noise trade and this is the case that has as its limit the usual continuum model. Thus,
it is natural to consider sequences of markets where the numbers of informed speculators
are proportional to σz. In the next section we restrict our attention to such sequences of
markets. After the presentation of our main results, we present some complementary results
for different sequences of markets in the following sections.

4 Convergence to price-taking in the central scenario

Let us consider the following sequence of markets indexed by N . At the Nth market there are
N informed agents. In all of the markets var [ṽ] = τ−1

v and var [ẽn] = τ−1
e are fixed constants.

Let z̃(N) = Nz̃0 and var [z̃0] = σ2
z0 , where σ2

z0 is a constant. That is, the standard deviation
of the noise trade σz grows at a rate of N .

As N grows we know that the strategic and competitive equilibria tend to each other
(from Theorem 9.2 in Kyle (1989)) and that they both tend to the competitive equilibrium
of the limit continuum economy (as in Hellwig (1980), Admati (1985) or Vives (1995)). We
now characterize the rate at which strategic and competitive equilibria tend to each other
and the rate at which they tend to the competitive equilibrium of the limit economy.
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Convergence concepts To compare rates of convergence of random variables we use the
square loss function. We say that two random variables x, y converge to each other at some
rate if

√
E [(x− y)2] converges to zero at this rate. Note that

E
[
(x− y)2

]
= (E [x]− E [y])2 + var [x− y] ,

and that if E [x] = E [y], then E
[
(x− y)2

]
= var [x− y].

A more refined measure of convergence speed for a given convergence rate is provided by
the asymptotic standard deviation. Suppose that

√
E [(xN − yN )2] =

√
var [xN − yN ] con-

verges to zero at a rate of 1/Nα for some α > 0 (that is,
√

var [xN − yN ] ∝ 1/Nα), then the
asymptotic standard deviation of convergence is given by the constant limN→∞N

α
√

var [xN − yN ].
A higher asymptotic standard deviation means that the speed of convergence is slower.

4.1 Prices

In order to compare convergence rates for prices consider the following decomposition:

p̃N − p̃∞ = (p̃N − p̃c
N ) + (p̃c

N − p̃∞).

The first term of the decomposition captures the difference between equilibrium prices for
the price-taking p̃c

N and strategic equilibria p̃N in the same finite market. The second term
captures the change in the competitive price from the finite to the limit market. We have
that

E
[
(p̃N − p̃∞)2

]
= E

[
(p̃N − p̃c

N )2
]

+ E
[
(p̃c
N − p̃∞)2

]
+ 2 Cov [p̃N − p̃c

N , p̃
c
N − p̃∞]

will be of the order of the higher order term. Using Hölder’s inequality (see, e.g., Royden
(1968, p. 113)) we obtain that

Cov [p̃N − p̃c
N , p̃

c
N − p̃∞] ≤

(
E
[
(p̃N − p̃c

N )2
])1/2 (

E
[
(p̃c
N − p̃∞)2

])1/2
,

and therefore the interaction covariance term will be of lower order than the higher-order
term of E

[
(p̃N − p̃c

N )2
]

or E
[
(p̃c
N − p̃∞)2

]
. The term E

[
(p̃N − p̃c

N )2
]

corresponds to the
strategic effect and the term E

[
(p̃c
N − p̃∞)2

]
corresponds to the limit effect.

We show in the next result that E
[
(p̃N − p̃c

N )2
]

converges to zero faster than E
[
(p̃c
N − p̃∞)2

]
and therefore E

[
(p̃N − p̃∞)2

]
inherits the order of E

[
(p̃c
N − p̃∞)2

]
(they both converge to

zero at exactly the same speed).
Given competitive market making, the expectations of the differences in equilibrium prices

vanish and we need to compare only the rates of convergence of variances.

Proposition 2. For a sequence of markets described above:
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1.
√
E
[
(p̃N − p̃c

N )2
]

=
√

var
[
p̃N − p̃c

N

]
∝ 1/N ;

2.
√
E
[
(p̃c
N − p̃∞)2

]
=
√

var
[
p̃c
N − p̃∞

]
∝ 1/

√
N ; and, therefore,

3.
√
E [(p̃N − p̃∞)2] =

√
var [p̃N − p̃∞] ∝ 1/

√
N .

The formal proof is given in the Appendix. Let us present here an informal explanation
of the result.

An heuristic explanation The demand of an informed trader at a strategic equilibrium
is given by

Xn(p̃, ı̃n) =
E[ṽ | p̃, ı̃n]− p̃

ρvar[ṽ | p̃, ı̃n] + λI
,

where λI is the slope of inverse supply facing the individual informed trader. In the compet-
itive case λI = 0. It is easy to check7 that λI is of the order of 1/N and this explains why
market power vanishes at the rate 1/N . (Result 1 in Proposition 2.)

In a symmetric linear equilibrium, prices have the following form:

p̃c
N = Ac

N ṽ +Bc
N

1
N

N∑
n=1

ẽn + Cc
N z̃0,

p̃N = AN ṽ +BN
1
N

N∑
n=1

ẽn + CN z̃0,

p̃∞ = A∞ṽ + C∞z̃0.

We have that Ac
N and AN converge to A∞, Bc

N and BN converge to B∞ 6= 0 and Cc
N and CN

converge to C∞, all at a rate of 1/N or faster. Since we have assumed that E [ṽ] = E [ẽn] =
E [z̃] = 0 expectations of prices are simply zeros (in fact, the expectations of price differences
would be zero even if E [ṽ] > 0 because E [p̃c

N ] = E [p̃N ] = E [ṽ] from p = E [v | p] in both
cases). Therefore, only variances of the price differences are important:

var [p̃N − p̃c
N ] = (AN −Ac

N )2τ−1
v + (BN −Bc

N )2
1
N
τ−1
e + (CN − Cc

N )2σ2
z0 ∼ O(1/N2),

var [p̃c
N − p̃∞] = (Ac

N −A∞)2τ−1
v + (Bc

N )2
1
N
τ−1
e + (Cc

N − C∞)2σ2
z0 ∝ 1/N,

var [p̃N − p̃∞] = (AN −A∞)2τ−1
v + (BN )2

1
N
τ−1
e + (CN − C∞)2σ2

z0 ∝ 1/N.

Thus, p̃c
N and p̃N converge to each other faster than to the limit price p̃∞ (at the rate at which

market power vanishes) because prices in the finite markets depend in a similar way on the
7Conditions (B.8) and (B.9) in Kyle (1989) imply that λI = ξI/((1 − ξI)γ) where the parameter ξI can

be interpreted as the marginal market share of an informed trader. We have then that λI ∝ ξI ∝ 1/N (see
Lemma 3 in the Appendix).
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average noise in private information (1/N)
∑N

n=1 ẽn, while in the continuum limit market the
average noise of information cancels out according to the Strong Law of Large Numbers. The
distance from p̃c

N (or p̃N ) to the limit price p̃∞ depends on (1/N)
∑N

n=1 ẽn and this average
error term converges to zero at a rate of 1/

√
N . (Results 2 and 3 in Proposition 2.) It is

worth to remark that the limit effect would disappear if all informed traders were to receive
the same signal (indeed, then p̃c

N = p̃∞).

Asymptotic variances of convergence Note also that in Proposition 2 we actually show
slightly more than in the above heuristic argument. Namely, we prove that p̃N and p̃c

N

converge to each other precisely at the rate 1/N . We can also characterize the asymptotic
variances of convergence. Those gives us a refined measure of the speed of convergence for a
given convergence rate.

Proposition 3. Let AL denote the asymptotic standard deviation of the limit effect and AS

denote the one of the strategic effect. Then:

1. lim
N→∞

N
√

var[p̃N − p̃c
N ] = AS ≡

τ2
e

σz0ρ(τ2
e + τvσ2

z0ρ
2)

(
1 +

τeσ
2
z0ρ

2

τ2
e + τvσ2

z0ρ
2

)
;

2. lim
N→∞

√
N
√

var[p̃c
N − p̃∞] = lim

N→∞

√
N
√

var[p̃N − p̃∞] = AL ≡
τ

3/2
e

τ2
e + τvσ2

z0ρ
2
.

4.1.1 Comparative statics

Comparative statics for the limit effect We have that

AL =
τ

3/2
e

τ2
e + τvσ2

z0ρ
2
.

The following comparative statics results are immediate.

(1) AL monotonically decreases in the precision of the prior τv. If τv → 0+, then AL →
1/
√
τe. If τv → +∞, then AL → 0. This result is quite intuitive. The lower the variance

of the value of the asset, the faster equilibrium prices converge to the limit.

(2) AL monotonically decreases in “risk-bearing adjusted noise trade” ρσz0 . If ρσz0 → 0+,
then AL → 1/

√
τe. If ρσz0 → +∞, then AL → 0. The fact that AL decreases in ρσz0

may seem surprising. How can it be that more noise trading or a higher degree of
risk aversion improve the convergence to the limit price? However, recall that a term
corresponding to the average information noise in the finite market ((1/N)

∑N
n=1 ẽn)

determines the convergence to the limit price. The more traders are risk averse the
less weight they put on their signals and the less information noise is incorporated into

11



the equilibrium price. Similarly, the larger noise trading is the smaller the information
noise portion incorporated into the equilibrium price. Thus, an increase in ρσz0 causes
a decrease in the amount of information noise incorporated into the price and therefore
decreases the asymptotic variance of the limit effect.

(3) AL is always nonmonotonic in the precision of the signal τe. If τe → 0+ or if τe →
+∞, then AL → 0. Actually, AL is increasing for τe < σz0ρ

√
3τv and decreasing for

τe > σz0ρ
√

3τv. At τe = σz0ρ
√

3τv, AL reaches a maximum. Thus, if signals become
very informative or very noisy, then AL becomes arbitrary small and equilibrium prices
converge to the limit faster. Indeed, in both cases the average noise in the signals does
not matter much in determining the price in a finite market: when signals are very
noisy traders put very little weight on them, and when they are very precise signal
noise is very small.

Comparative statics for the strategic effect We have that

AS =
τ2
e

σz0ρ(τ2
e + τvσ2

z0ρ
2)

(
1 +

τeσ
2
z0ρ

2

τ2
e + τvσ2

z0ρ
2

)
= AL

τ
1/2
e

σz0ρ

(
1 +

1
τe/σ2

z0ρ
2 + τv/τe

)
.

The following comparative statics results are immediate.

(1) AS monotonically decreases in τv. If τv → 0+ then AS → (σz0ρ)−1 + τ−1
e (σz0ρ). If

τv → +∞ then AS → 0. Again, the lower the variance of the value of the asset is, the
faster the strategic effect disappears.

(2) AS either monotonically decreases or is nonmonotonic in ρσz0 depending on other pa-
rameters. (For example, if τe = 1 and τv = 1, then AS monotonically decreases in
ρσz0 . However, if τe = 1 and τv = 0.01, then for ρσz0 = 0.5 we obtain AS = 2.49; for
ρσz0 = 1 we obtain AS = 1.97; and for ρσz0 = 2 we obtain AS = 2.33.) Furthermore, if
ρσz0 → 0+, then AS → +∞. If ρσz0 → +∞, then AS → 0. If the noise trading is small
for the risk-bearing capacity of the informed traders, then the strategic effect disappears
more slowly. In fact, with risk neutrality competitive prices become fully revealing and
the strategic and competitive equilibria converge to each other at a slower rate than
in Proposition 2 (since AS → +∞). In fact, {limρ→0

√
var
[
p̃N − p̃c

N

]
} ∝ 1/

√
N as p̃c

N

→ ṽ for ρ→ 0. If the noise trade is large for the risk-bearing capacity of the informed
traders the opposite happens (AS → 0).

(3) AS is always nonmonotonic in τe. In general, the behavior of AS is very complicated.

12



However, AS can be presented as the product of two functions: AS = QR, where

Q =
τ2
e

σz0ρ(τ2
e + τvσ2

z0ρ
2)

=
1

σz0ρ(1 + τvσ2
z0ρ

2/τ2
e )

and

R =
(

1 +
τeσ

2
z0ρ

2

τ2
e + τvσ2

z0ρ
2

)
=
(

1 +
1

τe/σ2
z0ρ

2 + τv/τe

)
.

Then Q is monotonically increasing in τe. However, R is increasing in τe for τe <
σz0ρ
√
τv and R is decreasing for τe > σz0ρ

√
τv. If τe → 0+, then Q → 0 and R → 1,

so AS → 0. Clearly, AS is increasing in τe for τe < σz0ρ
√
τv. If τe → +∞, then Q

increases to the value of (σz0ρ)−1 in the limit (and it reaches the limiting value at the
rate 1/τ2

e ). However, if τe → +∞, then R is decreasing to the value of 1 in the limit.
Function R reaches the limiting value at the rate 1/τe. Therefore if τe → +∞, then
AS → (σz0ρ)−1 and AS is decreasing in τe. (Alternatively, one can check directly that
the sign of the derivative of AS is negative for τe → +∞.)

At τe = σz0ρ
√
τv, R reaches a maximum of (1 + σz0ρ/

√
τv) while Q = 1/(2σz0ρ).

Generally Q < 1/σz0ρ. Therefore, the maximum value of AS is between

1
2σz0ρ

(
1 +

σz0ρ√
τv

)
and

1
σz0ρ

(
1 +

σz0ρ√
τv

)
.

Thus, if signals are very noisy, then AS (as AL) becomes arbitrary small. For signals
that are very informative AS reaches some positive number (while AL becomes arbitrary
small). The difference in the behavior of the two asymptotic variances is again a result
of the fact that it is not only the information noise that is a factor for the strategic
effect.

We have that AS > AL
τ
1/2
e
σz0ρ

. For practical purposes the limit effect will dominate the

strategic one whenever AL/
√
N > AS/N . Therefore for such domination to work we

need to have
√
N >

τ
1/2
e

σz0ρ
or N >

τe
σ2
z0ρ

2
.

In summary, we have that AS is small, and the approximation of the strategic equilib-
rium by the competitive equilibrium good, when the prior volatility of the asset is low,
noise trading is large in relation to the risk-bearing capacity of the informed traders,
or the signals are very noisy. We confirm, therefore, the idea that the competitive
approximation works even in a moderately sized market when the informationally ad-
justed risk-bearing capacity of the informed traders is not very large (i.e. basically when
competitive traders have incentives to be restrained in their trading).
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4.1.2 Values for stock markets

Let us compute the asymptotic variances for some reasonable values of the parameters in a
stock market. Let ρ = 2 and

√
var [z̃0] = σz0 = 0.1. For the volatility of the fundamentals let

us consider two cases: (i)
√

var [ṽ] = τ
−1/2
v = 0.2 (NYSE type) or (ii)

√
var [ṽ] = τ

−1/2
v = 0.6

(Nasdaq type). These parameters are chosen to reflect average market data. (See Table 1 in
Leland (1992).)

Table 1 presents results for
√

var [ẽn] = τ
−1/2
e ranging from 0.05 to 20. It is immediate

from this table that both AS and AL are nonmonotonic in τe. Table 1 is consistent with the
statements that AS and AL are decreasing in τv and that AS and AL converge to zero as τe →
0. For large τe, as predicted, AL converges to zero, while AS converges to 1/(ρσz0) = 5. The
standard deviation of the distance between the strategic and competitive price

√
var[p̃N − p̃c

N ]
is approximated by AS/N . We see that in all scenarios this standard deviation is quite small
even with very few informed traders.

τ
−1/2
e

τ
−1/2
v 0.05 0.1 0.5 1 5 10 20
0.2 AS 5.0005 5.0015 4.7502 2.5500 0.0080 0.0005 0.0000

AL 0.0500 0.1000 0.4706 0.5000 0.0080 0.0009 0.0001
0.6 AS 5.0005 5.0019 5.0148 4.6620 0.0720 0.0045 0.0003

AL 0.0500 0.1000 0.4966 0.9000 0.0710 0.0090 0.0011

Table 1: Values for AS and AL.

Values for S&P 500 Futures market In a recent paper Cho and Krishnan (2000) ad-
dressed the S&P 500 Futures market. They found that a competitive rational expectations
model provides a reasonable description of this market and present estimates of the primitive
parameters of the model (in Table 2 of their paper): the standard deviation of the fundamen-
tals at

√
var [ṽ] = τ

−1/2
v = 5.495; and for other parameters (σz0ρ and

√
var [ẽn] = τ

−1/2
e ) they

presented results, which are summarized in Table 2 together with the corresponding values
of the asymptotic standard deviations AS and AL, that differ in the number of the weeks to
maturity (from 2 to 7).

Time to maturity (weeks)
2 3 4 5 6 7

σz0ρ 0.021 0.007 0.045 0.038 0.030 0.029
τ
−1/2
e 12.541 23.358 10.067 12.925 17.263 20.705
AS 36.76 98.06 14.76 12.44 9.81 5.97
AL 9.21 15.75 5.96 5.54 4.73 3.38

Table 2: Summary of results (Cho and Krishnan (2000)).
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The S&P 500 Futures market has high volatility, very noisy information signals and
relatively small noise trade. In this context the asymptotic variances are larger than with
the stock market parameters. However, since the number of traders in the S&P 500 Futures
market is very large, the competitive REE should be a very close approximation of the
strategic REE in this market. In the analysis of S&P 500 Futures market one can safely take
the shortcut of assuming competitive behavior.

4.2 Demands, profits and utilities

We now study the convergence rates for demands, profits and utilities. For all of these we
confirm the result that the strategic effect is of the order of 1/N while the limit effect is of
the order of 1/

√
N . The first of these results addresses demands.

Proposition 4. We have:

1.
√
E
[
(x̃N − x̃c

N )2
]

=
√

var
[
x̃N − x̃c

N

]
∝ 1/N ;

2.
√
E
[
(x̃c
N − x̃∞)2

]
=
√

var
[
x̃c
N − x̃∞

]
∝ 1/

√
N ;

3.
√
E [(x̃N − x̃∞)2] =

√
var [x̃N − x̃∞] ∝ 1/

√
N .

As for prices, the expectations of all demands are zero, so these square loss functions
simply are the variances of the differences between corresponding demands. Since demands
are linear functions of prices, the same effect holding for prices should hold in terms of
demands.

Our next proposition demonstrates a similar conclusion for the profits of the traders.

Proposition 5. We have:

1.
√
E
[
(π̃N − π̃c

N )2
]
∝ 1/N ;

2.
√
E
[
(π̃c
N − π̃∞)2

]
∝ 1/

√
N ;

3.
√
E [(π̃N − π̃∞)2] ∝ 1/

√
N .

For profits, unlike for prices or demands, expectations of differences do not vanish, so
we cannot restrict attention only to the variances but rather we have to consider the entire
square loss functions.

Finally, we consider relative changes in utilities.

Proposition 6. We have:
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1.
√
E
[
(U(π̃c

N )/U(π̃N )− 1)2
]
∝ 1/N ;

2.
√
E
[
(U(π̃c

N )/U(π̃∞)− 1)2
]
∝ 1/

√
N ;

3.
√
E [(U(π̃N )/U(π̃∞)− 1)2] ∝ 1/

√
N .

Similarly to profits, utilities have non-zero expectations.

5 Convergence in other scenarios

In this section we consider how our results are affected if the number of informed speculators
does not change proportionally to noise trading. As we have seen above, two different limit
cases can emerge. We consider them separately.

5.1 Fully revealing limit

We have seen that if the number of informed speculators grows at a faster rate than noise
trading, a value revealing limit is obtained. Let us study the convergence rates in two cases:
First, when σz grows slower than a rate N but faster than a rate

√
N ; second, when σz grows

at a rate
√
N or slower. The following propositions provide the results.

Proposition 7. For a sequence of markets with σz growing slower than at the rate N but
faster than at the rate

√
N we obtain:

1.
√

var
[
p̃N − p̃c

N

]
∝ 1/σz(N);

2.
√

var
[
p̃c
N − ṽ

]
∝ σz(N)/N ;

3.
√

var [p̃N − ṽ] ∝ σz(N)/N .

Therefore, since 1/σz(N) = (σz(N)/N)(N/σ2
z(N)) ∼ o(σz(N)/N), the strategic effect

vanishes faster than the limit effect as in our central scenario.

The reader may notice that if σz(N) grows almost at a rate
√
N , then in Proposition 7

the strategic effect is almost of the same order as the limit effect. The next proposition shows
that if σz(N) grows at a rate

√
N , then the rate of convergence is 1/

√
N , but the strategic

effect is still dominated by the limit effect if one considers the asymptotic variances.

Proposition 8. For a sequence of markets where σz grows at the rate
√
N , we obtain:

1.
√

var
[
p̃N − p̃c

N

]
∝
√

var
[
p̃c
N − ṽ

]
∝
√

var [p̃N − ṽ] ∝ 1/
√
N ;
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2. limN→∞
√
N
√

var[p̃N − p̃c
N ] < limN→∞

√
N
√

var[p̃N − ṽ];

3. limN→∞
√
N
√

var[p̃c
N − ṽ] < limN→∞

√
N
√

var[p̃N − ṽ].

Part 2 of Proposition 8 shows that, in terms of asymptotic variances, p̃c
N converges to p̃N

faster than p̃N converges to ṽ. So p̃c
N is a better proxy than ṽ for p̃N . Moreover, Part 3 of

Proposition 8 demonstrates that in terms of asymptotic variances p̃c
N converges to ṽ faster

than p̃N converges to ṽ We could say that p̃c
N is “in between” p̃N and ṽ.

Finally, for sequence of markets in which σz grows slower than at the rate
√
N , a similar

result to the previous proposition holds. The main difference is that in this case we have
simple expressions for the asymptotic standard deviations.

Proposition 9. For a sequence of markets where σz grows at the rate slower than
√
N we

obtain:

1.
√

var
[
p̃N − p̃c

N

]
∝ 1/

√
N and limN→∞

√
N
√

var[p̃N − p̃c
N ] =

√
τ−1
e ;

2.
√

var
[
p̃c
N − ṽ

]
∝ 1/

√
N and limN→∞

√
N
√

var[p̃c
N − ṽ] =

√
τ−1
e ;

3.
√

var [p̃N − ṽ] ∝ 1/
√
N and limN→∞

√
N
√

var[p̃N − ṽ] =
√

2τ−1
e .

As in Proposition 8, limN→∞
√
N
√

var[p̃N − ṽ] is the largest among the asymptotic stan-
dard deviations.

5.2 Informationally trivial limit

Recall from Proposition 1 that if the number of informed speculators N grows at a slower
rate than noise trading σz an informationally trivial limit obtains and prices converge to zero.
Let us study the convergence rates in this case.

Proposition 10. For a sequence of markets with σz growing faster than at the rate N we
obtain:

1.
√

var
[
p̃N − p̃c

N

]
∝ N2/σ3

z(N);

2.
√

var
[
p̃c
N

]
∝ N/σz(N);

3.
√

var [p̃N ] ∝ N/σz(N).

Therefore, the strategic effect vanishes faster than the limit effect as in our central sce-
nario.
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5.3 Summary table

Table 3 summarizes the strategic and limit effects for prices in our central scenario and the
cases considered in this section.

Limit price Limit effect Strategic effect
σz ∼ O(

√
N) ṽ, fully revealing 1/

√
N 1/

√
N√

N ∼ o(σz) and σz ∼ o(N) ṽ, fully revealing σz/N 1/σz
σz ∝ N p̃∞ 1/

√
N 1/N

N ∼ o(σz) 0, informationally trivial N/σz N2/σ3
z

Table 3: Summary of the strategic and limit effects for prices.

One can see that whenever
√
N ∼ o(σz) the strategic effect is dominated by the limit

effect in terms of the speed of convergence. In particular, this happens in our central scenario
(the case when σz ∝ N). When σz ∼ O(

√
N) the speed of convergence is the same for both

effects (1/
√
N), but the strategic effect is still dominated by the limit effect in terms of the

asymptotic variances.

6 Traders close to risk neutral

In this section we examine the limiting behavior of equilibria in the set-up of Section 3 when
traders are close to risk neutrality (ρ→ 0). For all of the markets var [ṽ] = τ−1

v , var [ẽn] = τ−1
e

and
√

var [z̃] = σz. Allow traders to become informed by paying a fee F (σz) > 0. Assume
that F (∞) ≥ 0 is well defined.

Proposition 11. With a cost of acquiring information F (σz) > 0, the asymptotic behavior
of the endogenous number of informed speculators as ρ→ 0 is as follows:

1. (limρ→0N
∗(σz)) ∝ (σz/F (σz))2/3 in the strategic model; and

2. (limρ→0N
∗
c (σz)) = 0 in the competitive model.

For example, in the central case of constant returns to information acquisition, F (·) ≡
F > 0 we obtain limρ→0N

∗(σz) ∝ (σz)2/3 for σz large, while limρ→0N
∗
c (σz) = 0. No traders

choose to become informed in the price-taking case because of their closeness to risk neutrality.
If they chose to become informed they would trade so aggressively that they would (almost)
reveal their private information and would make (close to) zero profits. This is an example of
the well-known informational efficiency paradox described by Grossman and Stiglitz (1980).
In the strategic case the informed traders take into account the effect of their actions on
the price and therefore can restrict their trade. So the incentives to acquire information do
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not disappear as more traders decide to become informed. It is worth noting that in the
limit as ρ → 0, unlike the risk-averse case, the number of informed traders grows less than
proportionally with the size of the market σz. The reason is that risk neutrality implies
fiercer competition among informed traders.

7 Monopolistic competition

We present here the “monopolistic competition” example of Kyle (1989), where the compet-
itive and the strategic equilibrium are far apart even in a large market.

Consider a sequence of markets with the “monopolistic competition” limit in Kyle (1989,
Section 9). At the Nth market there are N informed agents and for all of the markets
var [ṽ] = τ−1

v is a fixed constant. However, now var [ẽn] = τ−1
e and Nτe = τE , where τE

is a given constant. This means that, unlike in the previous sections, the total precision is
bounded and does not change with N . A given stock of private information τE is divided
equally among N speculators. Thus, for large N each speculator’s signal contains only a small
amount of information. It is convenient to define an average error term ẽ ≡ (1/N)

∑N
n=1 ẽn.

Obviously, ẽ is normally distributed with zero mean and var [ẽ] = (Nτe)−1 = τ−1
E .

It is easy to see that if var [z̃] = σ2
z grows with N and τE is fixed, then both the competitive

and the strategic equilibrium reach the informationally trivial limit and equilibrium prices
converge to zero.

Another interesting case appears when var [z̃] = σ2
z is a fixed constant. First, let us

demonstrate that if we endogenize the number of informed agents, by allowing any trader
to be informed by paying a fixed amount F > 0, then the number of informed in both
the competitive and the strategic regime will be finite. (Note that we keep the noise trade
constant in this model, so F does not depend on σz.)

Proposition 12. In the monopolistic competition model with a cost of F > 0 for becoming an
informed trader, the endogenous number of informed speculators is finite in both the strategic
and competitive cases. As F → 0, both numbers tend to infinity.

The result follows because the certainty equivalent of profits in both the strategic and
competitive cases tend to zero as N grows. Now we confirm that the limits of the competitive
and monopolistically competitive equilibria as F → 0 are different, and that the convergence
to the respective limit equilibria is fast, at a rate of at least 1/N , in both cases. The difference
in the limits is due to the residual market power traders enjoy in the monopolistic competition
case even in a large market. For the competitive model we show that the convergence is always
at a rate of 1/N , while for the monopolistically competitive model we can show that 1/N is
the exact rate of convergence for the subcase τE > τv. Convergence is fast now because all
along the sequence of markets, noise trade is constant and the average noise in the signal ẽ
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has constant variance. In contrast, in the central scenario we have that in the Nth market
var [ẽ] is of the order of 1/N and this determines the convergence speed to the limit of 1/

√
N .

Proposition 13. For the sequence of markets with the monopolistic competition limit as
F → 0, different prices are obtained in the price-taking (p̃c

∞) and in the strategic case (p̃∞)
p̃∞ 6= p̃c

∞. Furthermore:

1.
√

var
[
p̃c
N − p̃c

∞
]
∝ 1/N ; and

2.
√

var [p̃N − p̃∞] ∼ O(1/N) and if τE > τv, then
√

var [p̃N − p̃∞] ∝ 1/N .

8 Concluding remarks

The basic insight of the paper is that provided there is no residual market power in a large
market, competitive and strategic equilibria should be close whenever price-taking traders
have incentives to be restrained in their trading. This insight should be robust to dynamic
considerations. Think, for example, of the extreme case of risk neutral traders. Then the
same logic as in the static model would lead us to conclude that competitive traders in a
multiperiod market will have no incentives to acquire information, since profits would be
dissipated, while strategic traders would. In any case, an interesing extension of the model
would be to consider multiperiod trading.

9 Appendix

9.1 Characterization of the equilibria

For the convenience of the reader we summarize here some characterization results from
Kyle (1989). Note that our restriction of the competitive risk-neutral market making sector
corresponds to the free entry of uninformed speculators (M =∞) in Kyle (1989).

For any symmetric linear equilibrium with the strategies Xn = µ+βin−γp, n = 1, . . . , N ,
we can solve the market clearing condition for the equilibrium price p̃. Then we obtain
the result that p̃ is informationally equivalent to (

∑N
n=1Xn(p̃, ı̃n) + z̃) and therefore to

(β
∑N

n=1 ı̃n + z̃). Thus we can express the price in terms of the parameter β:

p̃ = E [ṽ | p̃] = E

[
ṽ

∣∣∣∣β N∑
n=1

ı̃n + z̃

]
= E

[
ṽ

∣∣∣∣βṽN + β

N∑
n=1

ẽn + z̃

]

=
βτ−1

v N

β2τ−1
v N2 + β2τ−1

e N + σ2
z

(
βṽN + β

N∑
n=1

ẽn + z̃

)
. (1)
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Regardless of the particular equilibrium concept, the linearity and symmetry assumptions
allow useful measures of the informativeness of prices to be obtained. Define τF as the
precision of the forecast of the liquidation value ṽ based on all the information, that is
τF = var−1 [ṽ | ı̃1, . . . , ı̃N ]. The assumptions made on the distributions of ṽ, ẽ1, . . . , ẽN imply
that τF = τv +Nτe. Now let us define the precision τU that speculators have basing only on
the price and the precision τI that speculators have basing on the price and their own private
signal:

τU = var−1 [ṽ | p̃] and τI = var−1 [ṽ | p̃, ı̃n] .

Normality makes τU and τI constants, while symmetry means that τI does not depend on
n. Since these precisions are bounded below by the prior precision τv, and above by the
full-information precision τF, there exist constants ϕU and ϕI both in the interval [0,1], such
that

τU = τv + ϕUNτe and τI = τv + τe + ϕI(N − 1)τe.

The parameters ϕU and ϕI are convenient indices measuring the “informational efficiency”
with which price aggregate private information of informed traders. Theorem 4.1 in Kyle
(1989) presents expressions for these indices in terms of the parameter β:

ϕI =
(N − 1)β2

(N − 1)β2 + σ2
zτe

and ϕU =
Nβ2

Nβ2 + σ2
zτe

. (2)

These formulas imply

ϕU − ϕI =
1
N
ϕU(1− ϕI). (3)

Let us turn back now to the two specific equilibria that we are studying. From (1) we
obtain expressions for the prices in competitive and strategic equilibria:

p̃c =
βcτ−1

v N

(βc)2τ−1
v N2 + (βc)2τ−1

e N + σ2
z

(
βcṽN + βc

N∑
n=1

ẽn + z̃

)
,

p̃ =
βτ−1

v N

β2τ−1
v N2 + β2τ−1

e N + σ2
z

(
βṽN + β

N∑
n=1

ẽn + z̃

)
.

(4)

The only difference in the expressions for prices is the difference between the parameters β
and βc. Theorem 5.2 and expression (C.5) in Kyle (1989) provide a useful characterization
of these parameters:

βc =
τe
ρ

(1− ϕc
I) and β =

τe
ρ

(1− ϕI)
(1− 2ζ)
(1− ζ)

, (5)
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where ζ = τIβλ/τe ≤ 1/2, and

(1− ζ) = (1− ξI)(1− ϕI) and 0 ≤ ξI ≤ 1/N, (6)

where ξI = γλ can be interpreted as the marginal market share of an informed speculator.
Condition (64) in Kyle (1989) will be true for ζ in our case:

ζτU − ϕUτI = 0. (7)

Finally, the following characterization (Lemma 7.1 of Kyle (1989)) of ϕI and ϕc
I in the corre-

sponding equilibria is very useful:

σ2
zρ

2

(N − 1)τe
=

(1− ϕc
I)

3

ϕc
I

,

σ2
zρ

2

(N − 1)τe
=

(1− ϕI)3

ϕI

(1− 2ζ)2

(1− ζ)2
=

(1− ϕI)
ϕI

(1− 2ζ)2

(1− ξI)2
. (8)

9.2 Limit marginal market shares

One conclusion in Theorem 9.2 in Kyle (1989) requires some qualification for the case of free
entry of uninformed speculators. Theorem 9.2 in Kyle (1989) covers the case where the limit
is of the Hellwig–Admati type (as in Proposition 2) and concludes that ξUM → 0, which
is equivalent to ξIN → 1. However, if we restrict attention to the case of a competitive
risk-neutral market making sector or free entry of uninformed speculators (M = ∞), then
Lemma 3 below proves that for the case where the limit is of the Hellwig–Admati type,

lim
N→∞

ξIN =
τ2
e

τvσ2
z0ρ

2 + τ2
e

< 1.

Note that parameters ξU and ξI can be interpreted respectively as marginal market shares of
an uninformed speculator and of an informed speculator. Thus, the total marginal market
share of all informed speculators (ξIN) even in the limit is strictly less than one, and it is
close to one only if the precision of their signals (τe) is large relative to the other parameters
of the model.

Similarly, Theorem 9.1 in Kyle (1989) predicts for the case of monopolistic competition
that ξIN → 1. Again, for M =∞ this does not hold. Lemma 5 below proves that in our case
with a competitive risk-neutral market making sector, or free entry of uninformed speculators
(M =∞), and monopolistic competition

ξIN =
τv + τE

(τv/ϕU) + τE
.

Since limN→∞ ϕU < 1, we can conclude that the total marginal market share of all
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informed speculators (ξIN) even in the limit is strictly less than one.

9.3 Proofs

Proof of Proposition 1 The proof proceeds in three steps. We deal in some detail with the
case of the competitive equilibrium. The case of the strategic equilibrium follows similarly.

Step 1. Let us start with an exogenously given number of informed speculators N > 0 and
let us compare Πc(N) and F ∗. Kyle (1989, Theorem 10.1) provides the following expression
for the certainty equivalents of profits in the competitive case:

Πc(N) =
1
2ρ

log
(

1 +
(1− ϕc

I)(1− ϕc
U)τe

τ c
U

)
.

To simplify notation, let us define

φc(σz, N) ≡
(1− ϕc

I)(1− ϕc
U)τe

τ c
U

=
(1− ϕc

I)(1− ϕc
U)τe

τv + ϕc
UNτe

=
(1− ϕc

I)(1− ϕc
U)

1 + ϕc
UNτeτ

−1
v

τe
τv
.

Since (1− ϕc
I)(1− ϕc

U) 6 1 and 1 + ϕc
UNτeτ

−1
v > 1 we have that 0 6 φc(σz, N) 6 τe/τv and,

therefore,

0 6 Πc(N) 6
1
2ρ

log
(

1 +
τe
τv

)
= F ∗.

Step 2. Now let us consider various cases of possible growth of σz and N and their effect on
Πc(N):

Case 1. If N grows slower than at the rate σ2
z , then the left-hand side of characterization

(8) increases at a rate of σ2
z/N . Therefore, the right-hand side of characterization (8) also

increases at a rate of σ2
z/N . However, this is only possible if ϕc

I converges to zero at a rate
of N/σ2

z . Then it follows from (3) that ϕc
U also converges to zero. Moreover, then the same

condition (3) implies that ϕc
U converges to zero also at a rate of N/σ2

z . The following subcases
of this case should be separated.

Subcase (a) of case 1). If N grows slower than at the rate σz, then we have that τ c
U =

τv+ϕc
UNτe converges to τv. So, the limit model is informationally trivial. Moreover φc(σz, N)

converges to τe/τv and Πc(N) converges to F ∗.

Subcase (b) of case 1). If N grows at the same rate as σz, that is σz ∝ N , then it follows
from (8) that ϕc

I ∝ N−1. This implies from (3) that ϕc
U ∝ N−1. Hence, there exist positive

constants k1 and k2 such that k1 6 ϕc
UN 6 k2 for all large N . Therefore, there exist con-

stants c1 and c2 such that 0 < c1 6 φc(σz, N) 6 c2 < τe/τv for all large N . Thus, there exist
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constants F1 and F2 such that 0 < F1 6 Πc(N) 6 F2 < F ∗ for all large N . In this case it is
not possible that Πc(N) converges to zero or F ∗. Note that Πc(N) would converge to some
constant F ′, 0 < F ′ < F ∗ and the limit model will be well defined if σz/N converges to some
positive number. (If σz/N converges to some positive number, then by (8) ϕc

IN converges
to some positive number. So, by (3), ϕc

UN converges to the same positive number as ϕc
IN .

Then φc(σz, N) converges to some constant c′, 0 < c′ < τe/τv. Hence, Πc(N) would also
converge to some constant F ′, 0 < F ′ < F ∗.) If the limit model is well defined, the limit will
be neither value revealing nor informationally trivial.

Subcase (c) of case 1). Now let us consider the case that N grows faster than at the rate
σz, but slower than at the rate σ2

z . Then τ c
U = τv + ϕc

UNτe increases to infinity at the rate
N2/σ2

z . Therefore, φc(σz, N) and Πc(N) converge to zero. The limit will be value revealing.
(Recall that E[ṽ | p̃c

N ] = p̃c
N . This implies that var[ṽ − p̃c

N ] = var[ṽ | p̃c
N ] = (τ c

U)−1 and, thus,
converges to zero.)

Case 2. If N grows at a rate σ2
z or faster, then the left-hand side of characterization (8)

is bounded by some number. Therefore, the right-hand side of characterization (8) is also
bounded by this number. Therefore, ϕc

I does not converge to zero. Then it follows from (3)
that ϕc

U also does not converge to zero. Since ϕc
U 6 1 we get that (τ c

U)N = τv + ϕc
UNτe in-

creases to infinity at the rate N . Therefore φc(σz, N) and Πc(N) converge to zero. The
limit will be value revealing. (Recall again that E[ṽ | p̃c

N ] = p̃c
N . This implies that

var[ṽ − p̃c
N ] = var[ṽ | p̃c

N ] = (τ c
U)−1 and thus converges to zero.)

Summarizing all of the cases: Πc(N) converges to F ∗ if N grows slower than at the
rate σz (note that this covers the case when N does not grow at all), case 1(a) above;
0 < F1 6 Πc(N) 6 F2 < F ∗ for all large N if N grows at the same rate as σz, case 1(b)
above; and Πc(N) converges to zero if N grows faster than at the rate σz, cases 1(c) and 2
above. Moreover, note that N and N + 1 always grow at the same rate with respect to
σz →∞ and none of the limits above change with a substitution of N + 1 in place of N . We
can thus conclude that Πc(N + 1) always converges to the same limit as Πc(N).

Step 3. Now let us turn to the endogenously determined number of informed speculators
N∗c (σz). Recall that it is defined so that

Πc(N∗c (σz)) ≥ F (σz) > Πc(N∗c (σz) + 1).

Thus, as in Step 2, Πc(N∗c (σz)) and Πc(N∗c (σz) + 1) should converge to the same limit. For
F (∞) ≤ F ∗ we can conclude that Πc(N∗c (σz)) → F (∞). For F (∞) > F ∗ we must have
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N∗c (σz) = 0 for all large σz. Three cases are now possible.

(I) If F (∞) ≥ F ∗, then either F (∞) > F ∗ and N∗c (σz) = 0 for all large σz or F (∞) = F ∗

and by the exclusion of cases 1(b), 1(c) and 2 we must be in the case 1(a) above. In
either variant N∗c (σz) ∼ o(σz) and the limit market is informationally trivial. (Note that
if F (·) ≡ F > 0, N > 0 speculators can chose to become informed only if Πc(N) > F .
For F > F ∗ this is not possible since Πc(N) never exceeds F ∗ for any N . For F = F ∗

this would require ϕc
I = ϕc

U = 0. Then by (5) it will imply that βc = τe/ρ. However,
then our assumption that N > 0 makes the second formula of (2) impossible to hold.
A contradiction. Hence, N∗c (σz) = 0.)

(II) If 0 < F (∞) < F ∗, then by the exclusion of cases 1(a), 1(c) and 2 only the case 1(b)
above is possible. Therefore, N∗c (σz) ∝ σz and both ϕc

I and ϕc
U converge to zero.

Moreover, since Πc(N∗c (σz))→ F (∞) and

Πc(N) =
1
2ρ

log
(

1 +
(1− ϕc

I)(1− ϕc
U)τe

τ c
U

)
,

we have that τ c
U → τe/(exp(2ρF (∞)) − 1). Therefore, since τ c

U = τv + ϕc
UNτe, we

obtain that ϕc
UN
∗
c (σz) → 1/(exp(2ρF (∞)) − 1) − τv/τe. Then by (3) ϕc

IN
∗
c (σz) →

1/(exp(2ρF (∞))− 1)− τv/τe and, by (8),

σz
N∗c (σz)

→ 1
ρ

√
τe

1/(exp(2ρF (∞))− 1)− τv/τe
.

So, the limit market is well defined and is neither value revealing nor informationally
trivial.

(III) If F (∞) = 0, then by the exclusion of cases 1(a) and 1(b) only cases 1(c) or 2 above
are possible. Therefore, σz ∼ o(N∗c (σz)) and the limit market is value revealing. (Note
that if F (·) ≡ F = 0, then obviously N∗c (σz) =∞.)

Now let us briefly consider the case of the strategic equilibrium. The proof in this case goes
along the same lines as in the competitive case. Kyle (1989, Theorem 10.1) provides the
following expression for the certainty equivalents of profits in strategic case:

Π(N) =
1
2ρ

log
(

1 +
(1− ϕI)(1− ϕU)τe

τU

(1− 2ζ)
(1− ζ)2

)
.

We can similarly define

φ(σz, N) ≡ (1− ϕI)(1− ϕU)τe
τU

(1− 2ζ)
(1− ζ)2

=
(1− ϕI)(1− ϕU)
1 + ϕUNτeτ

−1
v

(1− 2ζ)
(1− ζ)2

τe
τv
.

Since (1−ϕI)(1−ϕU) 6 1, (1−2ζ) 6 (1−ζ)2 and 1+ϕUNτeτ
−1
v > 1, we have 0 6 Π(N) 6 F ∗
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for any N . Then an analysis analogous to steps 1–3 above completes the proof.

Proof of Proposition 2 From the formulas (4) we obtain the following expressions for
prices in both equilibria in the N -replica market:

p̃c
N =

βc
Nτ
−1
v

(βc
N )2τ−1

v + 1
N (βc

N )2τ−1
e + σ2

z0

(
βc
N ṽ + βc

N

1
N

N∑
n=1

ẽn + z̃0

)
,

p̃N =
βNτ

−1
v

β2
Nτ
−1
v + 1

N β
2
Nτ
−1
e + σ2

z0

(
βN ṽ + βN

1
N

N∑
n=1

ẽn + z̃0

)
.

(9)

The expression for the limiting price in this model is also well known (e.g. Vives (1995);
alternatively it is a consequence of our proof below):

p̃∞ =
β∞τ

−1
v

β2
∞τ
−1
v + σ2

z0

(β∞ṽ + z̃0) where β∞ =
τe
ρ
. (10)

Let us prove first two lemmas.

Lemma 1. We have ζN ∝ (ϕc
I)N ∝ (ϕI)N ∝ 1/N and (ϕI)N − (ϕc

I)N ∝ 1/N2.

Proof. The (equal) left-hand sides of (8) grow at the rate N . Thus, the right-hand sides of
both expressions should grow at the rate N . Since (ξI)N ≤ 1/N (see (6)), this implies that
(ϕc

I)N ∝ 1/N, and (ϕI)N ∝ 1/N . Since (1− ζ) = (1− ξI)(1−ϕI) (see (6)), we have ζ ∝ 1/N .
Now from (8) it follows that

(1− ϕc
I)

3

ϕc
I

=
(1− ϕI)3

ϕI

(1− 2ζ)2

(1− ζ)2
.

Therefore,
(1− ϕc

I)
3

(1− ϕI)3
ϕI

ϕc
I

− 1 =
(1− 2ζ)2

(1− ζ)2
− 1.

Then
(1− 2ζ)2

(1− ζ)2
− 1 =

ζ(2− 3ζ)
(1− ζ)2

∝ 1/N

and

(1− ϕc
I)

3

(1− ϕI)3
ϕI

ϕc
I

− 1 =
(1− ϕc

I)
3

(1− ϕI)3

(
ϕI

ϕc
I

− 1
)

+
(

(1− ϕc
I)

3

(1− ϕI)3
− 1
)

∝ N(ϕI − ϕc
I) +O(ϕI − ϕc

I) ∝ N(ϕI − ϕc
I).

Hence, (ϕI)N − (ϕc
I)N ∝ 1/N2.

Lemma 2. We have (βc
N − β∞) ∝ (βN − β∞) ∝ (βN − βc

N ) ∝ 1/N .
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Proof. Recall from (5) that

βc =
τe
ρ

(1− ϕc
I) and β =

τe
ρ

(1− ϕI)
(1− 2ζ)
(1− ζ)

.

Thus,

βc
N − β∞ =

τe
ρ
ϕc

I ∝
1
N
.

Also

1− (1− ϕI)
(1− 2ζ)
(1− ζ)

= 1− (1− ϕI) + (1− ϕI)
ζ

(1− ζ)
= ϕI + (1− ϕI)

ζ

(1− ζ)
∝ 1/N.

Hence, βN − β∞ ∝ 1/N . From (2) we have

ϕI − ϕc
I =

(N − 1)σ2
zτe(β

2
N − (βc

N )2)
((N − 1)β2

N + σ2
zτe)((N − 1)(βc

N )2 + σ2
zτe)

∝
N3(βN − βc

N )
N4

.

Thus βN − βc
N ∝ 1/N .

Now let us continue with the proof of Proposition 2. We use the notation M∞ :=
β2
∞τ
−1
v +σ2

z0 , M
c := (βc

N )2τ−1
v +(1/N)(βc

N )2τ−1
e +σ2

z0 , and M := β2
Nτ
−1
v +(1/N)β2

Nτ
−1
e +σ2

z0 .
Then from (9) we obtain

p̃N − p̃c
N = aṽ + a

1
N

N∑
n=1

ẽn + bz̃0,

where

a :=
β2
Nτ
−1
v

M
−

(βc
N )2τ−1

v

M c
and b :=

βNτ
−1
v

M
−
βc
Nτ
−1
v

M c
.

Then a = (MM c)−1((β2
N−(βc

N )2)τ−1
v σ2

z0) ∝ (βN−βc
N ) ∝ 1/N and b = (MM c)−1(βNβc

N (βc
N−

βN )(τ−1
v + (1/N)τ−1

e )τ−1
v + (βN − βc

N )τ−1
v σ2

z0) = O(1/N). So

var[p̃N − p̃c
N ] = a2τ−1

v + a2 1
N
τ−1
e + b2σ2

z0 ∝ 1/N2.

Then from (9) and (10) we obtain

p̃c
N − p̃∞ = fṽ + g

1
N

N∑
n=1

ẽn + hz̃0,

where

f :=
(βc
N )2τ−1

v

M c
− β2

∞τ
−1
v

M∞
, g :=

(βc
N )2τ−1

v

M c
and h :=

βc
Nτ
−1
v

M c
− β∞τ

−1
v

M∞
.

Then f = (M cM∞)−1(((βc
N )2 − β2

∞)τ−1
v σ2

z0 − β
2
∞τ
−1
v (1/N)(βc

N )2τ−1
e ) = O(1/N) and h =

(M cM∞)−1(βc
Nβ∞(β∞−βc

N )(τ−1
v )2 + (βc

N −βN )τ−1
v σ2

z0−β
2
∞τ
−1
v (1/N)(βc

N )2τ−1
e ) = O(1/N).
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Finally, g converges to the constant. Thus,

var[p̃c
N − p̃∞] = f2τ−1

v + g2 1
N
τ−1
e + h2σ2

z0 ∝ 1/N.

Proof of Proposition 3 We follow the notation from the proof of Proposition 2.

1. It appears from the proof of Proposition 2 that

lim
N→∞

N var[p̃c
N − p̃∞] = lim

N→∞
g2τ−1

e = lim
N→∞

(
(βc
N )2τ−1

v

M c

)2

τ−1
e .

Then limN→∞M
c = M∞ = β2

∞τ
−1
v + σ2

z0 and limN→∞ β
c
N = β∞ = τe/ρ. Thus,

lim
N→∞

N var[p̃c
N − p̃∞] =

(
(τe/ρ)2τ−1

v

(τe/ρ)2τ−1
v + σ2

z0

)2

τ−1
e =

τ3
e

(τ2
e + σ2

z0ρ
2τv)2

.

2. It follows from the proof of Proposition 2 that

lim
N→∞

N2 var[p̃N − p̃c
N ] = lim

N→∞
(N2(a2τ−1

v + b2σ2
z0)).

Since a = (MM c)−1((β2
N − (βc

N )2)τ−1
v σ2

z0) = σ2
z0(τvMM c)−1(βN + βc

N )(βN − βc
N ), we

have

lim
N→∞

Na =
2β∞σ2

z0

τv(M∞)2
lim
N→∞

(N(βN − βc
N )).

Since b = (τvMM c)−1(βNβc
N (βc

N − βN )(τ−1
v + (1/N)τ−1

e ) + (βN − βc
N )σ2

z0), we have

lim
N→∞

Nb =
β2
∞τ
−1
v − σ2

z0

τv(M∞)2
lim
N→∞

(N(βc
N − βN )).

Therefore,

lim
N→∞

N2 var[(p̃N − p̃c
N )]

= lim
N→∞

(N2(a2τ−1
v + b2σ2

z0))

= (τv(M∞)2)−2((2β∞σ2
z0)2τ−1

v + (β2
∞τ
−1
v − σ2

z0)2σ2
z0)( lim

N→∞
(N(βc

N − βN )))2

= (τv(M∞)2)−2((β2
∞τ
−1
v + σ2

z0)2σ2
z0)( lim

N→∞
(N(βc

N − βN )))2

= (τvM∞)−2σ2
z0( lim

N→∞
(N(βc

N − βN )))2 =
σ2
z0ρ

4

(τ2
e + σ2

z0ρ
2τv)2

( lim
N→∞

(N(βc
N − βN )))2.
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Now we have from (5) that

lim
N→∞

(N(βc
N − βN )) =

τe
ρ

lim
N→∞

(
N(1− ϕc

I)−N(1− ϕI)
(1− 2ζ)
(1− ζ)

)
=
τe
ρ

lim
N→∞

(
(1− ϕI)

ζN

(1− ζ)

)
,

since by Lemma 1 (ϕI − ϕc
I) ∝ 1/N2. Then by (6)

1− ϕI

1− ζ
=

1
1− ξI

and lim
N→∞

1
1− ξI

= 1.

Hence,
lim
N→∞

(N(βc
N − βN )) =

τe
ρ

lim
N→∞

ζN.

However, from (6) we have that ζ = ξI + ϕI − ξIϕI. Since ξI ≤ 1
N and ϕI ∝ 1/N we get

limN→∞ ξIϕIN = 0. Thus, limN→∞ ζN = limN→∞ ξIN + limN→∞ ϕIN . By Lemma 1
ϕI − ϕc

I ∝ 1/N2 and, therefore, limN→∞ ϕIN = limN→∞ ϕ
c
IN . Then from (8) we have

N2σ2
z0ρ

2

(N − 1)τe
=

(1− ϕc
I)

3

ϕc
I

and, thus,
lim
N→∞

ϕc
IN =

τe
σ2
z0ρ

2
.

Hence,
lim
N→∞

ζN = lim
N→∞

ξIN +
τe

σ2
z0ρ

2
.

As we mentioned above, one conclusion in Theorem 9.2 in Kyle (1989) actually requires a
correction. Theorem 9.2 in Kyle (1989) states that limN→∞ ξUM = 0 which is equivalent to
limN→∞ ξIN = 1. The following lemma corrects that statement.

Lemma 3. We have

lim
N→∞

ξIN =
τ2
e

τvσ2
z0ρ

2 + τ2
e

and

lim
N→∞

ζN =
τe

σ2
z0ρ

2

(
1 +

τe
τv + τ2

e /σ
2
z0ρ

2

)
=

τe
σ2
z0ρ

2

(τv + τe)σ2
z0ρ

2 + τ2
e

τvσ2
z0ρ

2 + τ2
e

.

Proof. From the formula (7),

ζ = ϕU
τI
τU

= ϕU
τv + τe + ϕI(N − 1)τe

τv + ϕUNτe
.
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Thus,

lim
N→∞

ζN = lim
N→∞

(
NϕU

τv + τe + ϕI(N − 1)τe
τv + ϕUNτe

)
and since

lim
N→∞

NϕU = lim
N→∞

NϕI =
τe

σ2
z0ρ

2

(see (3)), we obtain

lim
N→∞

ζN =
τe

σ2
z0ρ

2

τv + τe + (τe/σ2
z0ρ

2)τe
τv + (τe/σ2

z0ρ
2)τe

=
τe

σ2
z0ρ

2

(
1 +

τe
τv + τ2

e /σ
2
z0ρ

2

)
.

However, from (6) we have that ζ = ξI + ϕI − ξIϕI. Hence,

lim
N→∞

ξIN = lim
N→∞

ζN − lim
N→∞

ϕIN =
τ2
e /σ

2
z0ρ

2

τv + τ2
e /σ

2
z0ρ

2
=

τ2
e

τvσ2
z0ρ

2 + τ2
e

.

Using Lemma 3, we obtain

lim
N→∞

(N(βc
N − βN )) =

τe
ρ

lim
N→∞

ζN =
τ2
e

σ2
z0ρ

3

(τv + τe)σ2
z0ρ

2 + τ2
e

τvσ2
z0ρ

2 + τ2
e

.

Therefore,

lim
N→∞

N2 var[p̃N − p̃c
N ] =

σ2
z0ρ

4

(τ2
e + σ2

z0ρ
2τv)2

τ4
e

σ4
z0ρ

6

(τ2
e + (τv + τe)σ2

z0ρ
2)2

(τ2
e + σ2

z0ρ
2τv)2

=
τ4
e

σ2
z0ρ

2

(τ2
e + (τv + τe)σ2

z0ρ
2)2

(τ2
e + τvσ2

z0ρ
2)4

.

Proof of Proposition 4 In a symmetric linear equilibrium the demands have the form:
x̃N (p̃, ı̃n) = µN +βN ı̃n−γN p̃N , x̃c

N (p̃, ı̃n) = µc
N +βc

N ı̃n−γc
N p̃

c
N and x̃∞(p̃, ı̃n) = µ∞+β∞ı̃n−

γ∞p̃∞. Kyle (1989, proofs of Theorems 5.1 and 6.1) shows that µc
N = µN = 0. Hence, µ∞ = 0

as well. Recall that we showed in Lemma 2 that (βc
N−β∞) ∝ (βN−β∞) ∝ (βN−βc

N ) ∝ 1/N .
Now let us prove an analogous result for γN , γc

N and γ∞.

Lemma 4. We have γ∞ 6= 0, γc
N−γ∞ = O(1/N), γN−γ∞ = O(1/N) and γN−γc

N = O(1/N).

Proof. Kyle (1989, expressions (B.4) and (C.5)) provides the following formulas for γc
N and

γN :

γc
N =

τI
ρ
− ϕIτe
λβNρ

and γN =
λβNτI − ϕIτe
λβN (λIτI + ρ)

where
λ

λI
= 1− ξI.

Corollary 4.1 in Kyle (1989) implies that in our case with the competitive market makers
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sector we have ϕUτe = λβNτU. Thus, using (3) we obtain that

γc
N =

τI
ρ
− ϕIτU
ϕUρ

=
τI
ρ
− τU

ρ
(1− 1

N
(1− ϕI)) and that

γN =
τI

λIτI + ρ
− ϕIτU
ϕU(λIτI + ρ)

=
τI

λIτI + ρ
− τU

(λIτI + ρ)

(
1− 1

N
(1− ϕI)

)
.

Then since (τI)N = (τI)∞ + O(1/N), (τU)N = (τU)∞ + O(1/N), ϕI = O(1/N), and λI =
λ/(1 − ξI) = O(λ) + O(1/N) = O(ϕU) + O(1/N) = O(1/N), we obtain that γ∞ 6= 0,
γc
N − γ∞ = O(1/N) and γN − γ∞ = O(1/N). Then, also, γN − γc

N = O(1/N).

Now for simplicity of notation let us rewrite the prices expressions (9) and (10) in the
following way:

p̃c
N = Ac

N ṽ +Bc
N

1
N

N∑
n=1

ẽn + Cc
N z̃0,

p̃N = AN ṽ +BN
1
N

N∑
n=1

ẽn + CN z̃0,

p̃∞ = A∞ṽ + C∞z̃0.

It follows from the proof of Proposition 1 that Ac
N and AN converge to A∞, B

c
N and BN

converge to B∞ 6= 0 and Cc
N and CN converge to C∞. All of these convergencies also happen

at a rate of 1/N or faster. Then

x̃c
N (p̃, ı̃n) = βc

N ı̃n−γc
N p̃

c
N = (βc

N−γc
NA

c
N )ṽ+

(
βc
N − γc

NB
c
N

1
N

)
ẽn−γc

NB
c
N

1
N

∑
k 6=n

ẽk−γc
NC

c
N z̃0.

A similar expression can be written for x̃N (p̃, ı̃n). Now let us define Da = (βc
N − γc

NA
c
N ) −

(βN − γNAN ), Db = (βc
N − γc

NB
c
N (1/N)) − (βN − γNBN (1/N)), Dc = γc

NB
c
N − γNBN and

Dd = γc
NC

c
N − γNCN . Then we obtain

E[(x̃c
N (p̃, ı̃n)− x̃N (p̃, ı̃n))2] = D2

aτ
−1
v +D2

bτ
−1
e +D2

c

N − 1
N2

τ−1
v +D2

dσ
2
z0 .

It is immediate that Da = O(1/N), Dc = O(1/N), Dd = O(1/N), while

Db = (βc
N − βN )− 1

N
(γc
NB

c
N − γNBN ) ∝ 1

N
− 1
N
O(1/N) ∝ 1/N.

Therefore,
E[(x̃c

N (p̃, ı̃n)− x̃N (p̃, ı̃n))2] ∝ 1/N2.
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Now let us note that

x̃∞(p̃, ı̃n) = β∞ı̃n − γ∞p̃∞ = (β∞ − γ∞A∞)ṽ + β∞ẽn − γ∞C∞z̃0.

So if we define Ka = (βc
N − γc

NA
c
N ) − (β∞ − γ∞A∞), Kb = (βc

N − γc
NB

c
N (1/N)) − β∞,

Kc = γc
NB

c
N and Kd = γc

NC
c
N − γ∞C∞, then we obtain

E[(x̃c
N (p̃, ı̃n)− x̃∞(p̃, ı̃n))2] = K2

aτ
−1
v +K2

b τ
−1
e +K2

c

N − 1
N2

τ−1
v +K2

dσ
2
z0 .

It is immediate that Ka = O(1/N), Kb = O(1/N), Kd = O(1/N), while Kc = γc
NB

c
N

converges to γ∞B∞ 6= 0. Hence,

E[(x̃c
N (p̃, ı̃n)− x̃∞(p̃, ı̃n))2] ∝ 1/N.

Proof of Proposition 5 First for simplicity of notation let us again rewrite the expression
for prices (9) as in the proof of Proposition 4:

p̃c
N = Ac

N ṽ +Bc
N

1
N

N∑
k=1

ẽk + Cc
N z̃0,

p̃N = AN ṽ +BN
1
N

N∑
k=1

ẽk + CN z̃0.

Then, also as in the proof of Proposition 4, let us obtain an expression for x̃c
N (p̃, ı̃n):

x̃c
N (p̃, ı̃n) = (βc

N − γc
NA

c
N )ṽ +

(
βc
N − γc

NB
c
N

1
N

)
ẽn − γc

NB
c
N

1
N

∑
k 6=n

ẽk − γc
NC

c
N z̃0.

Note that the expression for x̃N (p̃, ı̃n) is just similar (with no superscripts of c). That
allows us to obtain an explicit expression for π̃c

n(p̃, ı̃n) = (ṽ − p̃c
N )x̃c

N (p̃, ı̃n) as a function
of ṽ, ẽ1, . . . , ẽN , z̃0. Note that the expression for π̃n is again different only in the absence
of the superscript c. Actually the difference between any corresponding coefficients in π̃n

and π̃c
n will be of the order O(1/N). So all of the coefficients in (π̃n − π̃c

n) will be of the
order of O(1/N). Moreover (π̃n− π̃c

n) will be a homogenous polynomial of the second degree.
Hence, we obtain that (π̃N − π̃c

N )2 is a homogenous polynomial of the forth degree. Since
ṽ, ẽ1, . . . , ẽN , z̃0 are all independent with zero expectations, in E[(π̃N − π̃c

N )2] only all of the
fourths moments and all products of the second moments of ṽ, ẽ1, . . . , ẽN , z̃0 will be nonzero.
It is easy to notice that all of the coefficients in this expression will be of the order of
O(1/N)O(1/N) = O(1/N2). Therefore,

E[(π̃N − π̃c
N )2] = O(1/N2).
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To show that the rate of convergence is exactly 1/N2 we need to be much more specific
when describing E[(π̃N − π̃c

N )2]. For some coefficients Lv, Lz, Lvz, Lvn, Lkn, Lnz, where
1 ≤ k,m ≤ N , we can write

π̃N (p̃, ı̃n)− π̃c
N (p̃, ı̃n) = (Lvṽ2 +

N∑
k=1

Lkkẽ
2
k + Lz z̃

2
0)

+
( N∑
k=1

Lvkṽẽk + Lvz ṽz̃0 +
∑
k 6=m

Lkmẽkẽm +
N∑
k=1

Lkz ẽkz̃0

)
.

Note that all of the coefficients Lv, Lz, Lvz, Lvn, Lkm, Lkz, where 1 ≤ k,m ≤ N are of the
order O(1/N). Since only the fourths moments and all products of the second moments of
ṽ, ẽ1, . . . , ẽN , z̃0 will be nonzero in E[(π̃N − π̃c

N )2], we obtain that

E[(π̃N (p̃, ı̃n)− π̃c
N (p̃, ı̃n))2] = E

[(
Lvṽ

2 +
N∑
k=1

Lkkẽ
2
n + Lz z̃

2
0

)2]

+
N∑
k=1

L2
vkτ
−1
v τ−1

e + L2
vzτ
−1
v σ2

z0 +
∑
k 6=m

L2
kmτ

−1
e τ−1

e +
N∑
k=1

L2
kzτ
−1
e σ2

z0 .

Since all parts of this expression are positive and of the order of O(1/N2), it is enough
to demonstrate that one part is actually of the order of 1/N2 to conclude that the entire
expression is of the order of 1/N2. Let us examine Lkz for k = n more closely. One obtains
that

Lnz =
(
−CN

(
βN − γNBN 1

N

)
+BN

1
N (−γNCN )

)
−
(
−Cc

N

(
βc
N − γc

NB
c
N

1
N

)
+Bc

N
1
N (−γc

NC
c
N )
)

= −(CNβN − Cc
Nβ

c
N ) + 1

N ((γNBN − γc
NB

c
N ))− 1

N (BNγNCN −Bc
Nγ

c
NC

c
N )

= −(CNβN − Cc
Nβ

c
N ) + 1

NO(1/N) + 1
NO(1/N)

= −(CNβN − Cc
Nβ

c
N ) +O(1/N2).

Inspection of (9) shows that CNβN = AN and Cc
Nβ

c
N = Ac

N , while in the proof of Proposi-
tion 1 we demonstrated that (AN−Ac

N ) = a = (MM c)−1((β2
N−(βc

N )2)τ−1
v σ2

z0) ∝ (βN−βc
N ) ∝

1/N . Therefore, Lnz ∝ 1/N . Hence L2
nz ∝ 1/N2 and

E[(π̃N (p̃, ı̃n)− π̃c
N (p̃, ı̃n))2] ∝ L2

nz ∝ 1/N2.

This finishes the proof for the strategic effect. Now let us examine the limit effect. The proof
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is more straightforward. Recall from the proof of Proposition 2 that

x̃∞(p̃, ı̃n) = (β∞ − γ∞A∞)ṽ + β∞ẽn − γ∞C∞z̃0 and

(ṽ − p̃∞) = (1−A∞)ṽ − C∞z̃0,

while

x̃c
N (p̃, ı̃n) = (βc

N − γc
NA

c
N )ṽ + (βc

N − γc
NB

c
N

1
N

)ẽn − γc
NB

c
N

1
N

∑
k 6=n

ẽk − γc
NC

c
N z̃0 and

(ṽ − p̃c
N ) = (1−Ac

N )ṽ −Bc
N

1
N
ẽn −Bc

N

1
N

∑
k 6=n

ẽk − Cc
N z̃0.

By the same argument as the above for the strategic effect, in E[(π̃c
n − π̃∞)2] only all of the

fourth moments and all products of the second moments of ṽ, ẽ1, . . . , ẽN , z̃0 will be nonzero.
Similarly to the case of strategic effect, all coefficients will converge to zero at a rate of
O(1/N2) except for the parts where some moments of ẽk, k 6= n are included. (Note that
for the rates of convergence we can ignore parts associated with ẽn and not some other ẽk,
k 6= n.) Hence the only parts of E[(π̃c

n − π̃∞)2] that have to be examined closely involve
moments of ẽk, k 6= n. So we have to concentrate on the following remaining difference
between π̃c

n and π̃∞:(
Bc
N

1
N

∑
k 6=n

ẽk

)
x̃c
N (p̃, ı̃n) +

(
γc
NB

c
N

1
N

∑
k 6=n

ẽk

)
(ṽ − p̃c

N ).

Rewriting this expression, we obtain

Bc
N

(
1
N

∑
k 6=n

ẽk

)
(x̃c
N (p̃, ı̃n) + γc

N (ṽ − p̃c
N )).

Substituting expressions for x̃c
N (p̃, ı̃n) and (ṽ− p̃c

N ) let us exclude parts that will be O(1/N2)
once E[(π̃c

n− π̃∞)2] is computed. Then we obtain the following remaining difference between
π̃c
n and π̃∞:

Bc
N

1
N

∑
k 6=n

ẽk

(
(βc
N − γc

NA
c
N )ṽ +

(
βc
N − γc

NB
c
N

1
N

)
ẽn − γc

NC
c
N z̃0 + γc

N (1−Ac
N )ṽ − γc

NC
c
N z̃0

)

= Bc
N

1
N

∑
k 6=n

ẽk

(
(βc
N + γc

N − 2γc
NA

c
N )ṽ +

(
βc
N − γc

NB
c
N

1
N

)
ẽn − 2γc

NC
c
N z̃0

)
.
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Therefore,

E[(π̃c
n(p̃, ı̃n)− π̃∞(p̃, ı̃n))2] = O(1/N2)

+ (Bc
N )2

N − 1
N2

τ−1
v

(
(βc
N + γc

N − 2γc
NA

c
N )2τ−1

v +
(
βc
N − γc

NB
c
N

1
N

)2

τ−1
v + (2γc

NC
c
N )2σ2

z0

)
.

Since B∞ 6= 0, C∞ 6= 0, β∞ 6= 0 and γ∞ 6= 0, it is immediate that both of the last two parts
are nonzero, hence

E[(π̃c
n(p̃, ı̃n)− π̃∞(p̃, ı̃n))2] ∝ 1/N.

Proof of Proposition 6 First, note that using the full Taylor expansion for the exponential
function we obtain, for two profit levels πa and πb, that

U(πa)/U(πb)− 1 = exp(ρ(πb − πa))− 1 =
∞∑
k=1

1
k!
ρk(πb − πa)k

and, therefore,

(U(πa)/U(πb)− 1)2 =
∞∑
k=2

Λkρk(πb − πa)k

with coefficients

Λk =
k−1∑
l=1

1
l!

1
(k − l)!

.

Hence, we obtain

E[(U(πa)/U(πb)− 1)2] =
∞∑
k=2

ΛkρkE[(πb − πa)k]

Now for the strategic effect the argument is straightforward. Recall from the proof of Propo-
sition 5 that all of the coefficients in (π̃n − π̃c

n) will be of the order of O(1/N). Therefore, all
of the coefficients in E[(π̃N − π̃c

N )k] will be of the order of O(1/Nk), while we have proved in
Proposition 5 that E[(π̃N − π̃c

N )2] ∝ 1/N2. Thus,

E[(U(π̃N )/U(π̃c
N )− 1)2] ∝ E[(U(π̃c

N )/U(π̃N )− 1)2] ∝ 1/N2.

For the limit effect the argument is similar. Recall that in the proof of Proposition 5 we
have showed that all of the coefficients in (π̃c

n − π̃∞) are similar to those in (π̃n − π̃c
n) with

the exception of those related to ẽk, k 6= n. The straightforward inspection of this difference
reveals that nevertheless

∑∞
k=3 ΛkρkE[(πb−πa)k] will be of the order O(1/N2), while we have

proved in Proposition 5 that E[(π̃c
n − π̃∞)2] ∝ 1/N . Thus,

E[(U(π̃c
N )/U(π̃∞)− 1)2] ∝ E[(U(π̃∞)/U(π̃c

N )− 1)2] ∝ 1/N.
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Finally, for E[(U(π̃N )/U(π̃∞)−1)2] the argument is exactly the same as it is for E[(U(π̃c
N )/U(π̃∞)−

1)2].

Proof of Proposition 7 Note first, that the parts 2 and 3 of Proposition 7 and the fact
that ϕc

I , ϕI, ϕ
c
U, and ϕU converge to zero at the rate N/σ2

z(N) were proved in the proof of
Proposition 1. Thus, we only need to prove part 1. The proof proceeds in the similar way to
the proof of Proposition 2. Since (1 − ζ) = (1 − ξI)(1 − ϕI) and 0 ≤ ξI ≤ 1/N (see (6)), we
have ζN ∝ N/σ2

z(N). Then as in the proof of Lemma 1:

(1− ϕI)3

(1− ϕc
I)3

ϕc
I

ϕI
− 1 =

ζ(2− 3ζ)
(1− ζ)2

∝ N

σ2
z(N)

and

(1− ϕI)3

(1− ϕc
I)3

ϕc
I

ϕI
− 1 =

(1− ϕI)3

(1− ϕc
I)3

(
ϕc

I

ϕI
− 1
)

+
(

(1− ϕI)3

(1− ϕc
I)3
− 1
)

∝ ϕ−1
I (ϕI − ϕc

I) +O(ϕI − ϕc
I) ∝

σ2
z(N)
N

(ϕI − ϕc
I).

Hence, (ϕI)N − (ϕc
I)N ∝ N2/σ4

z(N). Then βN and βc
N converge to β∞ = τe/ρ and from (2)

we obtain

ϕI − ϕc
I =

(N − 1)σ2
zτe(β

2
N − (βc

N )2)
((N − 1)β2

N + σ2
zτe)((N − 1)(βc

N )2 + σ2
zτe)

∝
Nσ2

z(N)(βN − βc
N )

σ4
z(N)

.

Thus, βN − βc
N ∝ N/σ2

z(N). Now let z̃0 := z̃(N)/N . Then σ2
z0 := var[z̃0] = σ2

z(N)/N2. Now
let us denote by M c := (βc

N )2τ−1
v +(1/N)(βc

N )2τ−1
e +σ2

z0 and by M := β2
Nτ
−1
v +(1/N)β2

Nτ
−1
e +

σ2
z0 . Then as in the proof of Proposition 2 we obtain

p̃N − p̃c
N = aṽ + a

1
N

N∑
n=1

ẽn + bz̃0,

where

a := (MM c)−1
(

(β2
N − (βc

N )2)τ−1
v σ2

z0

)
∝ (βN − βc

N )σ2
z0 ∝

N

σ2
z(N)

σ2
z(N)
N2

∝ 1
N

and
b := (MM c)−1

(
βNβ

c
N (βc

N − βN )(τ−1
v +

1
N
τ−1
e )τ−1

v + (βN − βc
N )τ−1

v σ2
z0

)
.

So b ∝ (βN − βc
N ) ∝ N/σ2

z(N). Thus,

var[p̃N − p̃c
N ] = a2τ−1

v + a2 1
N
τ−1
e + b2σ2

z0 ∝
(

N2

σ4
z(N)

)(
σ2
z(N)
N2

)
∝
(

1
σ2
z(N)

)
.
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Proof of Proposition 8 Let z̃0 := z̃(N)/N . Then σ2
z0 := var[z̃0] ∝ 1/N . From (9) we

obtain

p̃c
N =

τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/(β

c
N )2

(
ṽ +

1
N

N∑
n=1

ẽn +
z̃0
βc
N

)
,

p̃N =
τ−1
v

τ−1
v + (1/N)τ−1

e + (σ2
z0/β

2
N )

(
ṽ +

1
N

N∑
n=1

ẽn +
z̃0
βN

)
.

Then the (equal) left-hand sides of (8) converge to a non-zero constant as N grows. Thus, the
right-hand sides also should converge to a non-zero constant. Hence, ϕc

I and ϕI converge to
two different constants, say (ϕc

I)∞ and (ϕI)∞. Then (8) implies that (ϕc
I)∞ > (ϕI)∞. (This

is also a conclusion of Theorem 7.1 in Kyle (1989).) Moreover, (1−ϕc
I), (1−ϕI) and (1−2ζ)

do not converge to zero. Therefore, it follows from (5) that βc
N and βN also converge to some

non-zero constants. Then from (2) we obtain

ϕI − ϕc
I =

(N − 1)σ2
zτe(β

2
N − (βc

N )2)
((N − 1)β2

N + σ2
zτe)((N − 1)(βc

N )2 + σ2
zτe)

∝
N2(βN − βc

N )
N2

∝ (βN − βc
N ).

Thus, (βN − βc
N ) also converge to a non-zero constant. Direct computation shows that

var[p̃c
N − ṽ] =

(
τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/(β

c
N )2

)2(
τ−1
e

1
N

+
σ2
z0

(βc
N )2

)
+ o

(
1
N

)
,

var[p̃N − ṽ] =

(
τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/β

2
N

)2(
τ−1
e

1
N

+
σ2
z0

(βN )2

)
+ o

(
1
N

)
,

var[p̃N − p̃c
N ] =

(
τ−1
v /βN

τ−1
v + (1/N)τ−1

e + σ2
z0/β

2
N

−
τ−1
v /βc

N

τ−1
v + (1/N)τ−1

e + σ2
z0/β

2
N

)2

σ2
z0 + o

(
1
N

)
.

However, (
τ−1
v /βN

τ−1
v + (1/N)τ−1

e + σ2
z0/β

2
N

−
τ−1
v /βc

N

τ−1
v + (1/N)τ−1

e + σ2
z0/β

2
N

)
converges to (1/βN − 1/βc

N ), while(
τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/(β

c
N )2

)
and

(
τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/β

2
N

)
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converge to one. Hence,

var[p̃c
N − ṽ] = τ−1

e

1
N

+
σ2
z0

(βc
N )2

+ o

(
1
N

)
,

var[p̃N − ṽ] = τ−1
e

1
N

+
σ2
z0

(βN )2
+ o

(
1
N

)
,

var[p̃N − p̃c
N ] =

(
σz0
βN
− σz0
βc
N

)2

+ o

(
1
N

)
.

Expressions (5) and (8) imply that N(σ2
z0/(β

c
N )2) converges to τ−1

e ((1−(ϕc
I)∞)/(ϕc

I)∞), while
N(σ2

z0/(βN )2) converges to τ−1
e ((1− (ϕI)∞)/(ϕI)∞). Let us define

x :=

√
1− (ϕI)∞

(ϕI)∞
and xc :=

√
1− (ϕc

I)∞
(ϕc

I)∞
.

Recall that (ϕc
I)∞ > (ϕI)∞. Hence, x > xc. Then

var[p̃c
N − ṽ] = τ−1

e (1 + x2
c)

1
N

+ o

(
1
N

)
,

var[p̃N − ṽ] = τ−1
e (1 + x2)

1
N

+ o

(
1
N

)
,

var[p̃N − p̃c
N ] = τ−1

e (x− xc)2
1
N

+ o

(
1
N

)
.

Since 1 + x2 > 1 + x2
c and 1 + x2 > x2 > (x− xc)2, the proposition is proved.

Proof of Proposition 9 Let z̃0 := z̃(N)/N . Then σ2
z0 := var[z̃0] = σ2

z(N)/N2. From (9)
we obtain

p̃c
N =

τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/(β

c
N )2

(
ṽ +

1
N

N∑
n=1

ẽn +
z̃0
βc
N

)
,

p̃N =
τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/β

2
N

(
ṽ +

1
N

N∑
n=1

ẽn +
z̃0
βN

)
.

Then an analysis of (8) very similar to that in the proof of Proposition 8 shows that ϕc
I

converge to one at a rate of (σ2
z(N)/N)1/3, and that ϕI and ζ converge to 1/2 at a rate of

(σ2
z(N)/N)1/2. (Since ζ ≤ 1/2, by (6) we obtain that ϕI and ζ converge to 1/2.) Then

from (5) we obtain that βc
N ∝ (σ2

z(N)/N)1/3 and βN ∝ (σ2
z(N)/N)1/2. Thus (β − βc) ∝

(σ2
z(N)/N)1/3. Moreover, σ2

z0/(β
c
N )2 ∝ (σ2

z(N)/N)1/3(1/N) = o(1/N) and σ2
z0/β

2
N ∝ 1/N .
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Direct computation shows that

var[p̃c
N − ṽ] =

(
τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/(β

c
N )2

)2

τ−1
e

1
N

+ o

(
1
N

)
,

var[p̃N − ṽ] =

(
τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/β

2
N

)2(
τ−1
e

1
N

+
σ2
z0

(βN )2

)
+ o

(
1
N

)
,

var[p̃N − p̃c
N ] =

(
τ−1
v

τ−1
v + (1/N)τ−1

e + σ2
z0/β

2
N

)2
σ2
z0

(βN )2
+ o

(
1
N

)
.

However, (τ−1
v /(τ−1

v + (1/N)τ−1
e + σ2

z0/(β
c
N )2))) converges to one, while (5) and (8) imply

that N(σ2
z0/(βN )2) converges to τ−1

e . This proves the conclusions of the proposition.

Proof of Proposition 10 IfN grows at a slower rate than σz, then from the characterization
(8) we obtain that ϕc

I and ϕI converge to zero at a rate of N/σ2
z Then it follows from (3)

that ϕc
U and ϕU also converge to zero at a rate of N/σ2

z . Hence, τ c
U = τv + ϕc

UNτe and
τU = τv+ϕUNτe converge to τv, while τ c

I and τI converge to τv+τe. Then from (7) we obtain
that ζ converges to zero at a rate of N/σ2

z . Then, as in the proof of Lemma 1,

(1− ϕI)3

(1− ϕc
I)3

ϕc
I

ϕI
− 1 =

ζ(2− 3ζ)
(1− ζ)2

∝ N

σ2
z(N)

and

(1− ϕI)3

(1− ϕc
I)3

ϕc
I

ϕI
− 1 =

(1− ϕI)3

(1− ϕc
I)3

(
ϕc

I

ϕI
− 1
)

+
(

(1− ϕI)3

(1− ϕc
I)3
− 1
)

∝ ϕ−1
I (ϕI − ϕc

I) +O(ϕI − ϕc
I) ∝

σ2
z(N)
N

(ϕI − ϕc
I).

Hence, (ϕI)N − (ϕc
I)N ∝ N2/σ4

z(N). Then βN and βc
N converge to β∞ = τe/ρ and, from (2),

we obtain

ϕI − ϕc
I =

(N − 1)σ2
zτe(β

2
N − (βc

N )2)
((N − 1)β2

N + σ2
zτe)((N − 1)(βc

N )2 + σ2
zτe)

∝
Nσ2

z(N)(βN − βc
N )

σ4
z(N)

.

Thus, βN − βc
N ∝ N/σ2

z(N). Let us define z̃0 := z̃(N)/N . Then σ2
z0 := var[z̃0] = σ2

z(N)/N2

is growing with N . Now let us denote by M c := (βc
N )2τ−1

v + (1/N)(βc
N )2τ−1

e + σ2
z0 and by

M := β2
Nτ
−1
v + (1/N)β2

Nτ
−1
e + σ2

z0 . Note that M c ∝ M ∝ σ2
z0 . Then, as in the proof of

Proposition 2, we obtain

p̃N − p̃c
N = aṽ + a

1
N

N∑
n=1

ẽn + bz̃0,
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where

a := (MM c)−1((β2
N − (βc

N )2)τ−1
v σ2

z0) ∝ (βN − βc
N )/σ2

z0 ∝
N

σ2
z(N)

N2

σ2
z(N)

∝ N3

σ4
z(N)

and
b := (MM c)−1

(
βNβ

c
N (βc

N − βN )(τ−1
v +

1
N
τ−1
e )τ−1

v + (βN − βc
N )τ−1

v σ2
z0

)
.

So b ∝ (βN − βc
N )/σ2

z0 ∝ N
3/σ4

z(N). Thus,

var[p̃N − p̃c
N ] = a2τ−1

v + a2 1
N
τ−1
e + b2σ2

z0 ∝
(

N3

σ4
z(N)

)2(
σ2
z(N)
N2

)
∝ N4

σ6
z(N)

.

This proves part 1 of the proposition. Inspection of expressions (9) shows that in the case
described in Proposition 10

var[p̃c
N ] ∝ var[p̃N ] ∝ var

[
z̃0
σ2
z0

]
∝ 1
σ2
z(N)

∝ N2

σ2
z(N)

.

This proves parts 2 and 3 of the proposition.

Proof of Proposition 11 Let us start with an exogenously given number of informed
speculators N . Expressions (8) and (6) imply, for ρ converging zero, that ϕc

I → 1, ϕI → 1/2
and ζ → 1/2. Then, by (3), ϕc

U → 1 and ϕU → 1/2. Moreover, both ϕc
I → 1 and ϕc

U → 1
at a rate of ρ2/3. Applying L’Hôpital’s rule to the expression for the certainty equivalents of
profits given by Kyle (1989, Theorem 10.1), we obtain

Πc(N) =
1
2ρ

log
(

1 +
(1− ϕc

I)(1− ϕc
U)τe

τ c
U

)
∝ ρ1/3 → 0 as ρ→ 0.

Therefore, N∗c (σz) = 0 for ρ → 0. Expression (2) implies that N(βN )2/(N(βN )2 + σ2
zτe) =

ϕU → 1/2 for ρ → 0. Since σz is fixed for a given N , it follows that N(βN )2 → σ2
zτe for

ρ→ 0. Therefore,

βN → σz

√
τe
N

for ρ→ 0.

Applying L’Hôpital’s rule to the expression for the certainty equivalents of profits given by
Kyle (1989, Theorem 10.1), we obtain

Π(N) =
1
2ρ

log
(

1 +
ρβN (1− ϕU)

τU

)
→

σz
√
τe

(4τv + 2Nτv)
√
N
≡ Π0(N) as ρ→ 0.

We have that Π0(N)→ 0 as N →∞. We know that Π0(N∗(σz)) will be approximately equal
to F (σz) (and the approximation will be good for σz large). Therefore, limρ→0N

∗(σz) ∝
(σz/F (σz))2/3. The strategic equilibrium allows a direct analysis of the risk-neutral case.
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Moreover, by continuity the same results have to be obtained for ρ→ 0 and ρ = 0.

Proof of Proposition 12 As in the proof of Proposition 1, let us start with the exogenously
given number of informed speculators N . Kyle (1989, Theorem 10.1) provides the following
expressions for the certainty equivalents of profits:

Πc(N) =
1
2ρ

log
(

1 +
(1− ϕc

I)(1− ϕc
U)τe

τ c
U

)
,

Π(N) =
1
2ρ

log
(

1 +
(1− ϕI)(1− ϕU)τe

τU

(1− 2ζ)
(1− ζ)2

)
.

Since Nτe = τE , the (equal) left-hand sides of (8) converge to a non-zero constant as N grows.
Thus, the right-hand sides also should converge to a non-zero constant. Thus, there exist two
different non-zero constants (ϕc

I)∞ and (ϕI)∞, such that (ϕc
I)N → (ϕc

I)∞ and (ϕI)N → (ϕI)∞
as N →∞. Similarly, there exist (ϕc

U)∞, (ϕU)∞ and ζ∞. Moreover, (1−(ϕc
I)∞), (1−(ϕI)∞),

(1− (ϕc
U)∞), (1− (ϕU)∞) and (1− 2ζ∞) are all non-zero constants. Therefore, since τ c

U and
τU are bounded, both Πc(N) and Π(N) converge to zero. This implies the conclusions of the
proposition.

Let us state a lemma before proving Proposition 13.

Lemma 5. For the monopolistic competition case

ξIN =
τv + τE

(τv/ϕU) + τE
.

Proof. Condition (B.22) in Kyle (1989) states that

ζτU − ϕUτI = (1− ϕI)
(

(ξI −
ϕU

N
)τv − ϕU(1−NξI)τe

)
.

Since the left-hand side of this expression is zero by (7) and ϕI < 1, we should obtain
(ξI−ϕU/N)τv−ϕU(1−NξI)τe = 0. Therefore, (NξI−ϕU)τv−ϕU(1−NξI)τE = 0. However,
this is equivalent to NξI(τv+ϕUτE) = ϕU(τv+τE). Thus NξI = (ϕU(τv+τE))/(τv+ϕUτE) =
(τv + τE)/((τv/ϕU) + τE).

Proof of Proposition 13 From formulas (4) we obtain the following expressions for prices
in two equilibria in the Nth market:

p̃c
N =

τ−1
v

τ−1
v + τ−1

E + (1/βc
NN)2σ2

z

(
ṽ + ẽ+

1
βc
NN

z̃

)
,

p̃N =
τ−1
v

τ−1
v + τ−1

E + (1/βNN)2σ2
z

(
ṽ + ẽ+

1
βNN

z̃

)
.

The proof proceeds in four steps. (1) Let us prove that there exist different non-zero constants
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d and dc such that

p̃c
∞ =

τ−1
v

τ−1
v + τ−1

E + (dc)2σ2
z

(ṽ + ẽ+ dcz̃) and

p̃∞ =
τ−1
v

τ−1
v + τ−1

E + d2σ2
z

(ṽ + ẽ+ dz̃).

This will imply that p̃c
∞ 6= p̃∞. As in the proof of Proposition 12, there exist two different

non-zero constants (ϕc
I)∞ and (ϕI)∞, such that (ϕc

I)N → (ϕc
I)∞ and (ϕI)N → (ϕI)∞ as

N →∞. Moreover (1− (ϕc
I)∞), (1− (ϕI)∞) and (1− 2ζ∞) are all non-zero constants. Thus,

it follows from (5) that there exist non-zero constants d and dc such that 1/βc
NN → dc and

1/βNN → d. So we proved formulas for the limit prices. Now from (2) we obtain

ϕI − ϕc
I =

(N − 1)σ2
zτe(β

2
N − (βc

N )2)
((N − 1)β2

N + σ2
zτe)((N − 1)(βc

N )2 + σ2
zτe)

∝
(βN − βc

N )(1/N)
(1/N)(1/N)

∝ (βNN − βc
NN).

Since (ϕc
I)∞ 6= (ϕI)∞, we have that d 6= dc. (2) Now let us prove the statement of the

proposition for competitive equilibrium. Let us first introduce some notation. Let

kc
N :=

τ−1
v

τ−1
v + τ−1

E + (1/βc
NN)2σ2

z

and kc
∞ :=

τ−1
v

τ−1
v + τ−1

E + (dc)2σ2
z

.

Then kc
N − kc

∞ ∝ (1/βc
NN)2 − (dc)2 ∝ 1/βc

NN − dc. Since p̃c
N = kc

N (ṽ + ẽ+ (1/βc
NN)z̃) and

p̃c
∞ = kc

∞(ṽ+ ẽ+dcz̃), we obtain p̃c
N− p̃c

∞ = (kc
N−kc

∞)(ṽ+ ẽ+(1/βc
NN)z̃)+kc

∞(1/βc
NN−dc)z̃

and, thus,

var[p̃c
N − p̃c

∞] ∝
(

1
βc
NN
− dc

)2

∝
(
βc
NN −

1
dc

)2

.

Then by (5) we have

βc
NN −

1
dc
∝
(
τE
ρ

(1− (ϕc
I)N )− τE

ρ
(1− (ϕc

I)∞)
)
∝ (ϕc

I)N − (ϕc
I)∞.

And now we have from (8) that

σ2
zρ

2

τE

N

N − 1
=

(1− (ϕc
I)N )3

(ϕc
I)N

and
σ2
zρ

2

τE
=

(1− (ϕc
I)∞)3

(ϕc
I)∞

.

Therefore,
(1− (ϕc

I)∞)3

(1− (ϕc
I)N )3

(ϕc
I)N

(ϕc
I)∞
− 1 ∝ 1/N.
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However, on the other side,

(1− (ϕc
I)∞)3

(1− (ϕc
I)N )3

(ϕc
I)N

(ϕc
I)∞
− 1 = (1−(ϕc

I )∞)3

(1−(ϕc
I )N )3

(
(ϕc

I )N

(ϕc
I )∞
− 1
)

+
(

(1−(ϕc
I )∞)3

(1−(ϕc
I )N )3

− 1
)

∝ (ϕc
I)N − (ϕc

I)∞.

Thus, (ϕc
I)N − (ϕc

I)∞ ∝ 1/N and therefore var(p̃c
N − p̃c

∞) ∝ 1/N2. (3) Now let us look at the
equilibrium with imperfect competition. In the same way as above

var[p̃N − p̃∞] ∝
(

1
βNN

− d
)2

∝
(
βNN −

1
d

)2

.

Then, by (5),

βNN =
τE
ρ

(1− (ϕI)N )
(1− 2ζN )
(1− ζN )

and
1
d

=
τE
ρ

(1− (ϕI)∞)
(1− 2ζ∞)
(1− ζ∞)

.

Then by (6) (1− ζN ) = (1− (ϕI)N )(1− ξI) and ζ∞ = (ϕI)∞. Thus,

βNN −
1
d

=
τE
ρ

(
(1− 2ζN )
(1− ξI)

− (1− 2ζ∞)
)

∝ ξI
(1− ξI)

(1− 2ζN ) + 2(ζ∞ − ζN ).

Then 2(ζ∞−ζN ) = 2((ϕI)∞−(ϕI)N )−2ξI(1−(ϕI)N ). By Lemma 5, since 0 < limN→∞ ϕU =
(ϕI)∞ < 1, we can conclude ξI ∝ 1/N, and (ξI/(1− ξI))(1− 2ζN ) = ξI(1− 2(ϕI)N ) + o(1/N).
Therefore, we obtain

βNN −
1
d
∝ 2((ϕI)∞ − (ϕI)N )− ξI + o

(
1
N

)
.

Now let us show that it is impossible to have the case where 1/N = o((ϕI)∞ − (ϕI)N ). Let
us first prove that if 1/N = o((ϕI)∞ − (ϕI)N ), then

(1− (ϕI)N )3

(ϕI)N
(1− 2ζN )2

(1− ζN )2
− (1− (ϕI)∞)3

(ϕI)∞
(1− 2ζ∞)2

(1− ζ∞)2
∝ (ϕI)∞ − (ϕI)N . (11)

Since ζN = (ϕI)N +O(1/N), we obtain

(1− (ϕI)N )3

(ϕI)N
(1− 2ζN )2

(1− ζN )2
=

(1− (ϕI)N )(1− 2(ϕI)N )2

(ϕI)N
+O(1/N),

and since ζ∞ = (ϕI)∞, we have

(1− (ϕI)∞)3

(ϕI)∞
(1− 2ζ∞)2

(1− ζ∞)2
=

(1− (ϕI)∞)(1− 2(ϕI)∞)2

(ϕI)∞
.
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Then

(1− (ϕI)N )(1− 2(ϕI)N )2

(ϕI)N
− (1− (ϕI)∞)(1− 2(ϕI)∞)2

(ϕI)∞

=
((ϕI)∞ − (ϕI)N )

(ϕI)N (ϕI)∞
(1− 8(ϕI)N (ϕI)∞ + 4(ϕI)N (ϕI)∞((ϕI)N + (ϕI)∞))

However, limN→∞(1 − 8(ϕI)N (ϕI)∞ + 4(ϕI)N (ϕI)∞((ϕI)N + (ϕI)∞)) = 1 − 8((ϕI)∞)2 +
8((ϕI)∞)3 6= 0, since 0 < (ϕI)∞ < 1

2 . Therefore, (11) is proved. However, by (8), the left-hand
side of (11) must be of the order of 1/N . This proves that the case 1/N = o((ϕI)∞ − (ϕI)N )
is impossible. Therefore, (ϕI)∞ − (ϕI)N = O(1/N) and we obtain

√
var[p̃N − p̃∞] ∝ βNN −

1
d

= O

(
1
N

)
.

(4) By (8)
σ2
zρ

2

τE

N

N − 1
=

(1− (ϕI)N )3

(ϕI)N
(1− 2ζN )2

(1− ζN )2

and, thus, by (5),

(βNN)2 =
τ2
E

ρ2
(1− (ϕI)N )2

(1− 2ζN )2

(1− ζN )2
=
τ2
E

ρ2

σ2
zρ

2

τE

(ϕI)N
1− (ϕI)N

N

N − 1
.

Similarly
1
d2

=
τ2
E

ρ2

σ2
zρ

2

τE

(ϕI)∞
1− (ϕI)∞

.

So

(βNN)− 1
d
∝ (βNN)2 − 1

d2
∝ (ϕI)N

1− (ϕI)N
1

N − 1
+ (

(ϕI)N
1− (ϕI)N

− (ϕI)∞
1− (ϕI)∞

)

∝ (1− (ϕI)∞)(ϕI)N
N − 1

+ (ϕI)N − (ϕI)∞.

Also recall that, as we have shown in part (3) above, we should have

βNN −
1
d
∝ 2((ϕI)∞ − (ϕI)N )− ξI + o

(
1
N

)
.

Let us assume that βNN−1/d = o(1/N). Then we should have limN→∞N((ϕI)∞−(ϕI)N ) =
(1 − (ϕI)∞)(ϕI)∞ and limN→∞ 2N((ϕI)∞ − (ϕI)N ) = limN→∞NξI. By Lemma 5, NξI =
(τv + τE)/((τv/ϕU) + τE), therefore βNN − 1/d = o(1/N) implies an equality

2(1− (ϕI)∞)(ϕI)∞ =
τv + τE

τv/(ϕU)∞ + τE
.
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This equality holds only if

(1− (ϕI)∞) =
(τv + τE)/2
τv + τE(ϕU)∞

.

This condition can be rewritten as

τE(ϕU)2∞ + (τv − τE)(ϕU)∞ + (τE − τv)/2 = 0.

This equation on (ϕU)∞ has a determinant of (τv−τE)2−2(τE−τv)τE = τ2
v −τE2. Therefore,

for the case of τE > τv, this equation does not have a solution and βNN − 1/d = o(1/N) is
impossible. Thus, we must have βNN − 1/d ∝ 1/N for the case when τE > τv. Therefore,

√
var[p̃N − p̃∞] ∝ βNN −

1
d
∝ 1
N
.
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