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1 Introduction

In many economic situations like R&D races, military conflicts, lobbying, or sports,

groups compete for economic rents. In most cases, these groups will differ in many

ways, including size, heterogeneity of the members’ valuations of the rent, or pro-

ductivity. Naturally, all these factors should have an effect on the relative success of

each group to acquire the rent. The influence of these factors on the relative success

of each group however depends on the way in which groups compete. Focussing on

military conflicts, Carl von Clausewitz held the position that“...in modern war one

will search in vain for a battle in which the winning side triumphed over an army

twice its size.” (Clausewitz, 1943, 1834). He acknowledged that there are other fac-

tors like technological superiority (temporarily) influencing the outcome of a conflict,

but if all these variables were stripped away, numbers would determine victory. Fur-

ther research has shown that the advantages from having a larger army have varied

greatly over time (Hirshleifer, 1995). In lobbying contests, there may even be disad-

vantages from larger group sizes, as Olson (1965) argued. His arguments gave rise

to a debate about the so-called group-size paradox, which Esteban and Ray (2001)

define as: “larger groups may be less successful than smaller groups in furthering

their interests” (p.663).

Informal observation shows that individuals pervasively organize in groups in

conflicts. In hunter-gatherer societies, individuals were apparently better equipped

to be successful in predator-prey conflicts (either as predator or as prey) as well

as in conflicts with rivals if they organized in groups (Tainter, 1990).1 Clausewitz’s

observation shows that similar forces exist in modern warfare. But also individuals

engaging in lobbying and rent-seeking activities often organize in groups. Esteban

and Ray (2001) develop one explanation for these facts: larger groups may profit from

cost advantages. If the costs of effort are sufficiently convex, ceteris paribus, members

of larger groups face sufficiently lower marginal costs that reverse the group-size

paradox. This is a very important insight that helps to explain the prevalence of

groups in conflicts.2

1The same is true for animals who organize in flocks, swarms, packs, etc., see the discussion at

the end of this paper.

2See also Marwell and Oliver (1993); Pecorino and Temini (2008); Nitzan and Ueda (2009,

1



The group-size paradox has been extensively discussed in the theoretical and

empirical literature. Agrawal and Goyal (2001) point to the inconclusive evidence:

“[...] scholars writing on the subject have remarked on the ambiguities in Olsons

argument and suggested that the relationship between group size and collective action

is not very straightforward.” However, up to now it is unclear whether the specific

cause for the possible reversal of the group-size paradox on which Esteban and Ray

(2001) focus, namely convexities in costs, is exhaustive. The starting point of our

paper is to ask if there are additional properties of the conflict environment that add

to the explanation of the relative advantage or disadvantage of larger compared to

smaller groups by focussing on the properties of the “production” of group impact.

We believe that those properties are an important factor for the explanation of the

effect of group size in conflicts.

We show that two intuitive properties of the ways in which the groups aggregate

their efforts are responsible for its occurrence. The first property is an inherent

advantage that may be given by the contest structure to larger groups: If there are

two groups with the same total amount of effort but different numbers of individuals,

one cannot in general expect them to have the same lobbying impact. For example,

there may be a difference in impact whether 10 000 people demonstrate for 10 hours

or 100 000 people demonstrate for 1 hour. The different demonstrations may receive

very different media attention which in turn may lead to very different impacts on

policymaking. If the 10 000 people would have a higher impact, we would expect

the group size paradox to appear more likely. This property of the contest structure

will be called group-size biasedness.

The second important property is returns to scale. Suppose group members in-

crease their efforts by some factor and their relative strength increases by less than

this factor (decreasing returns to scale). This may cause the group-size paradox to

occur even if large groups are advantaged by group size biasedness. Larger groups

tend to be disadvantaged by this because they are facing a larger problem of free

riding. If returns to scale are decreasing, the marginal return of investing more effort

is not large enough to make up for the better possibilities for free riding.

It turns out that if group members have homogenous valuations of winning the

2010).
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contest (which may differ between groups), these two properties completely deter-

mine whether the group-size paradox occurs or not.3 Homogenous valuations are,

however, rarely the case in reality. In general, we would expect to encounter groups

where group members differ in many features: Not only the valuations of winning

may be different, but also abilities, qualifications, or affections. Empirical research

emphasizes that the level of heterogeneity in the group is an important mediator for

the impact of group size (Hardin, 1982; Ostrom, 1997). Once we introduce heteroge-

nous group members, other factors may start to play a role, such as complementarity

between group-members’ efforts: Groups where agents are heterogenous will often

have the feature that group members have specialized according to their comparative

advantage. Alchian and Demsetz (1972) see such non-additivity as constitutive for

group or team production (pp. 777): “Resource owners increase productivity through

cooperative specialization. [...] With team production it is difficult, solely by observ-

ing total output, to either define or determine each individual’s contribution to this

output of the cooperating inputs. The output is yielded by a team, by definition, and it

is not a sum of separable outputs of each of its members.” Despite the fact that there

is a growing interest on the influence of heterogeneity within and between groups,4

with only a few exceptions the literature on group contests5 has focused attention on

situations where the effort levels of group members are perfect substitutes, i.e. are

aggregated by summation. In order to analyze the group-size paradox for heteroge-

nous valuations, this paper will introduce different degrees of complementarity for

the case of a CES-type impact function. If we hold the other properties – group-size

biasedness and returns to scale – at a neutral level, the complementarity between

the efforts of group members determines a minimum valuation a new group member

must have in order for the group-size paradox not to occur.

The paper is organized as follows. We introduce the model in Section 2 and

cover the case of homogenous group members in Section 3. In Section 4 we allow

3This claim may appear to be at odds with Esteban and Ray (2001) who focus on convexities

in the cost-of effort functions. We will show that their model is isomorphic to a model with linear

costs and nonlinear impact functions that is a special case of our model.

4See Esteban and Ray (2008, 2010).

5The literature on contests between groups has recently been surveyed by Corchón, 2007, Section

4.2, Garfinkel & Skaperdas, 2007, Section 7, and Konrad, 2009, Chapters 5.5 and 7.
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for heterogeneity of agents and use a CES type impact function to aggregate group

members’ efforts. We characterize the simultaneous Nash equilibrium of the CES

model in Subsection 4.1. In Subsection 4.2 we will show the effect of complementar-

ity on the group-size paradox for heterogenous agents. There will be an extended

discussion of findings from related strands of the literature in Section 5. Section 6

concludes.

2 The model

Assume that n groups compete for a given rent R. mi is the number of individuals

in group i and k is the index of a generic member of this group. The rent is a

group-specific public good that has a value vki > 0 to individual k of group i. pi

represents the probability of group i = 1, ..., n to win the contest. Individuals can

influence the winning probability by contributing effort xk
i . The members’ efforts

of a group are then aggregated by a function qi(x
1
i , ..., x

mi

i ). pi is then a function

of these aggregated efforts. Following the literature, we will call qi impact function

and pi contest-success function. We focus on Tullock-form contest-success functions

where the winning probability of a group i is defined as:6

Assumption 1. pi(q1, ..., qn) =
qi(x

1
i ,...,x

mi
i )

∑n
j=1 qj(x

1
j ,...,x

mj
j )

, i = 1, ...n.

Further, we impose the following assumptions on the individuals:

Assumption 2. Individuals are risk neutral, face linear costs, and maximize their

net rent.

Assumptions 1 and 2 imply that we can write expected utility as:

πk
i =

qi(x
1
i , ..., x

mi

i )
∑n

j=1 qj(x
1
j , ..., x

mj

j )
vki − xk

i (1)

We are looking for a Nash equilibrium of this game where individuals choose their

effort xk
i simultaneously to maximize their expected utility,

xk∗
i ∈ argmax

xk
i

πk
i (x

k
i , x

∗
−xk

i
) ∀i, k. (2)

6An axiomatic foundation for the Tullock function for group contests can be found in Münster

(2009). An interpretation of the Tullock contest as a perfectly discriminatory noisy ranking contest

can be found in Fu and Lu (2008).

4



where “∗” refers to equilibrium values and x∗
−xk

i

to the vector of efforts by all in-

dividuals except k in group i. In order to facilitate the analysis, we will focus on

situations where a unique Nash equilibrium exists with respect to the total effort

produced of each group. Formally,

Assumption 3. We assume that qi(.) is at least twice continuously differentiable

and (weakly) monotonic in xk
i ∀i, k. Further, qi(.) is weakly quasiconcave.

This still allows for multiple equilibria within groups as they may arise when

effort levels are for example perfect substitutes.

3 Homogenous valuations within groups

The group size paradox was first discussed by Olson (1965), who stated that “the

larger the group, the farther it will fall short of providing an optimal amount of

a collective good” (p. 35). One particular interpretation of the statement has been

given by Esteban and Ray (2001): In a contest environment in which different groups

compete for a rent, larger groups should win with lower probability if the group size

paradox was true. One could however also take a comparative-static perspective on

the group size paradox, which seems to underscore its relevance even better:

Definition 1. (Group-size paradox) Suppose in a contest there are n groups i

competing for a prize and have mi individuals with equal valuations vi. Then, the

group-size paradox holds strictly (weakly) if and only if adding an individual with

valuation vi to group i will decrease (decrease or leaves constant) the probability of

the group to win the prize.

Next we formulate two intuitive criteria that will turn out to be able to explain

the occurrence of the group-size paradox if individuals of a group have identical

valuations of the rent.

Definition 2. (Group-size bias) A class of impact functions qm(x
1, . . . , xm) with

m being the number of group members is said to be group-size unbiased if for all

numbers ξ > 1 such that ξ · m is a natural number, it holds that qm(x, . . . , x) =

qm·ξ(
x
ξ
. . . x

ξ
). The impact function is said to be positively group-size biased or nega-

tively group-size biased if qm(x, . . . , x) < qm·ξ(
x
ξ
. . . x

ξ
) or qm(x, . . . , x) > qm·ξ(

x
ξ
. . . x

ξ
).
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The reason why this property is interesting is that it reflects whether a redistri-

bution of the same total amount of effort to more (heterogenous) group members will

lead to an increase, a decrease, or no effect on the impact of the group. For example,

the simple sum of efforts of all group members,
∑m

k=0 x
k, is group-size unbiased: If

all group members exert the same effort x, then
∑m

k=0 x
k = m ·x. Multiplying m by

ξ and dividing x by ξ will then naturally lead to the same result.

Another property of an impact function is whether it has increasing or decreasing

returns to scale:

Definition 3. (Returns to scale) A class of impact functions qm(~x) is said to have

constant returns to scale if ∀m : qm(ξ~x) = ξ · qm(~x), decreasing returns to scale if

∀m : qm(ξ~x) < ξ · qm(~x), increasing returns to scale if ∀m : qm(ξ · ~x) > ξ · qm(~x).

Assume that the impact functions have the generalized CES-form

qmi
(~x) = mδ

i (
∑

(xk
i )

γ/mi)
β/γ . (3)

In this case, qξmi
(x
ξ
, . . . , x

ξ
) = ξδ−βqmi

(x, . . . , x) and qmi
(λx, . . . , λx) =

λβqmi
(x, . . . , x), which shows that returns to scale and group-size bias can be in-

dependently chosen.

To show the relationship between our approach and the one employed by Esteban

and Ray (2001)7, note that their model would translate into

πk
i = vki

∑

l y
l
i

∑

j

∑

l y
l
j

− c(yki ),

with c(. . . ) being an increasing, strictly convex function. The central result is that

if the elasticity of the marginal rate of substitution between effort yki and vki

∑
l y

l
i∑

j

∑
l y

l
j

is sufficiently high, the winning probability will strictly increase with group size.

Note that we can write yki = c−1(xk
i ) where c−1 is the inverse of c. Since by their

assumptions the cost function is a bijection, the maximization problem

πk
i = vki

∑

l c
−1(xl

i)
∑

j

∑

l c
−1(xl

j)
− xk

i

7Their model allows for rival as well as nonrival elements of the rent.
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yields the same solutions as the original problem. We can now focus again on the

case with c(y) = yα, from which we obtain q(xi) =
∑

l(x
l
i)

1/α as the input to the

Tullock impact function.

In the special case that the costs of effort function is equal to (xl
i)
α, the group-

size paradox does (not) occur for α < (>)2. Since qmi
(xi) =

∑

l(x
l
i)
1/α yields an

isomorphic optimization problem, we can look for group-size bias and returns to

scale of qmi
(xi). It is easy to check that positive group-size bias as well as decreasing

returns to scale exist if and only if α > 1. In addition, a decrease in the returns

to scale (as measured by an increase in α) reduces any positive group-size bias:

changing the convexity of costs is equivalent to a simultaneous change in returns to

scale and groups size bias in the isomorphic problem. The result by Esteban and

Ray (2001) imply that if α > 2 the group-size-bias/returns to scale combinations

work in favor of large groups, whereas the opposite is true for α < 2. Given that

this result has been derived in a situation where group-size bias and returns to scale

cannot be disentangled, the question arises as to whether further insights can be

gained if both effects are treated separately.

The following propositions hold (all proofs can be found in the appendix).

Proposition 1. Suppose a contest fulfills Assumptions 1, 2, and 3, and the impact

functions are group-size unbiased. Then for constant or decreasing returns to scale

the group-size paradox holds weakly if all groups’ members have equal valuations.

Proposition 2. Suppose a contest fulfills Assumptions 1, 2, and 3, and the im-

pact functions have constant returns to scale. Then for negative (positive) group-

size biased impact functions the group-size paradox holds (does not hold) weakly if

all groups’ members have equal valuations.

These results provide a very intuitive explanation when the group-size paradox

arises if group members have the same valuation of the rent. Returns to scale and

group-size biasedness are indeed the main driving forces behind the different results

on the group-size paradox by Olson (1965) and Esteban and Ray (2001). If one is

willing to accept the assumption that the impact functions are homogenous, the

above results can be generalized in the following way.
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Proposition 3. Suppose a contest fulfills Assumptions 1, 2, and 3, and the impact

functions are homogenous as well as either negatively group-size biased or group-

size unbiased, and have constant or decreasing returns to scale. Then, the group-size

paradox holds weakly if all groups’ members have equal valuations.

The following corollary of the above propositions establishes an interesting spe-

cial case.

Corollary 1. Suppose a contest fulfills Assumptions 1, 2, and 3, and the impact

functions have constant returns to scale and are group-size unbiased. Then, the

group-size paradox holds weakly but not strictly if all groups’ members have equal

valuations.

Corollary 1 establishes a link to the case of additively linear impact functions,

which is a special case of an group-size unbiased impact function with constant re-

turns to scale and that have been standard in the literature so far (see, for example,

Baik (2008) and Konrad, 2009, Chapters 5.5 and 7). In this case, equilibrium group

impact and therefore winning probability is independent of group size as the maxi-

mum valuation remains unchanged. Corollary 1 shows that this finding carries over

to a larger class of impact functions.

The next result covers the case of positive group-size bias combined with de-

creasing returns to scale. Propositions 1 and 2 which cover the boundary cases as

well as Esteban and Ray (2001) suggest that we cannot expect clear-cut results for

this area which in fact turns out to be true. Nevertheless, we get a nice monotonicity

property for the case of homogenous impact functions and equilibria where members

of the same group behave identically.

Definition 4. For a class of homogenous impact functions, qm(~x), the returns to

scale are measured by the degree of homogeneity r, such that for all m: qm(λ~x) =

λrqm(~x)

Note that this immediately implies that if we speak of a class of impact functions

having certain returns to scale, this means that each of the impact functions of this

class has the same returns to scale. Definition 5 can be used to define a measure of

group-size bias:

8



Definition 5. For a class of impact functions, qm(~x), the group size bias is measured

by b(ξ, x,m) = qmξ(x/ξ, . . . , x/ξ)/qm(x, . . . , x).

Note that group size bias may change for different values of x,m, and ξ. However,

it is immediately clear that for homogenous classes of impact functions, the measure

is independent of x.

Proposition 4. Suppose a contest fulfills Assumptions 1, 2, and 3, and the impact

functions are homogenous, positively group-size biased and have decreasing returns

to scale. Consider a change in group i from mi to ξmi group members. If a class of

impact functions qmi
has returns to scale r and group size bias b(ξ, x,mi), then:

a) If the group size paradox holds for qmi
, it also holds for all q̂mi

for which r̂ ≤ r

and b̂(ξ, x,mi) ≤ b(ξ, x,mi).

b) If the group size paradox does not hold for qmi
, it also does not hold for all q̂mi

for which r̂ ≥ r and b̂(ξ, x,mi) ≥ b(ξ, x,mi).

In other words, if for some class of impact functions the group size paradox holds,

then decreasing the returns to scale further or decreasing the group size bias further,

will imply that the group size paradox still holds. The reverse holds for classes of

impact functions for which the group size paradox does not hold: Increasing the

returns to scale or the group size bias will imply that for the new class of impact

functions, the group size paradox also does not hold.

Returning to the special case of a CES-impact function given in (3) and re-

stricting attention to the special case of two groups 1 and 2 with equal valuations

of the rent, vki = v, Propositions 1 - 4 can be illustrated as follows. The impact

functions have decreasing, constant, and increasing returns to scale if β <,=, > 1.

Group-size bias is positive (negative) if δ > (<)β. It s straightforward to calcu-

late the Nash equilibrium xk
i = (βm−β+δ

j m
−1+β+δ)v
i )/(m−β+δ

j mβ
i + mδ

i )
2 as well as

the winning probabilities p∗i for this example. The partial derivative of group i’s

equilibrium winning probability with respect to mi, evaluated at m1 = m2 is then

∂p∗i /∂mi = (δ − β)/(4mi), which is positive (negative) if and only if the impact

function has positive (negative) group-size bias.
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4 Heterogenous valuations within groups

We now turn to the analysis of heterogenous groups and how the complementarity

of the impact functions affect the group-size paradox. Notice first that Definition 1

cannot be used in a framework where group members have different valuations of

the rent. For groups that consist of members with different valuations, it is not at all

clear what valuation a new member should have. In this case, it is more interesting

to see what the minimum valuation of a new group member has to be in order

to increase the winning probability of the group. Second, we may want to remove

the effects of changing returns to scale and group-size biasedness and introduce

a parameter (γ) to account for different degrees of complementarity of the group

members’ efforts. These properties are fulfilled by the following CES-type impact

function:

Assumption 4. qi(x
1
i , ..., x

mi

i ) = mi

(

∑mi

l=1
1
mi
(xl

i)
γ
)1/γ

, γ ∈ (−∞, 1], i = 1, ...n.

It is easy to check that this function has constant returns to scale and is group-

size unbiased. Note that we obtain a closed-form solution only if γ 6= 0. The Cobb-

Douglas case γ → 0 will be covered by a limit result. It follows from Assumptions

1, 2, and 4 that the individual expected utility functions are as follows:

πk
i (x

1
1, ..., x

mn

n ) := πk
i (x

k
i , x/xk

i
) = vki

mi(
∑

l
1
mi
(xl

i)
γ)1/γ

∑

j mj(
1
mj

∑

l(x
l
j)

γ)1/γ
− xk

i , (4)

where x/xk
i
refers to the vector x1

1, ..., x
mn
n without xk

i . In order to have a lean notation,

let yki = (xk
i )

γ and Yi = (
∑

l y
l
i). Further, Q =

∑

j Qj =
∑

j Y
1
γ

j = Y
1
γ

i +
∑

j 6=i Y
1
γ

j =

Qi+Q/i in the following. While deriving the equilibrium strategies, we will omit the

parameters of these functions for better readability (e.g yki instead of yki (γ, x
k
i )).

4.1 Nash equilibrium

We will now determine the Nash equilibrium of the given model. Hillman and Riley

(1987) and Stein (2002) have shown that groups/individuals may prefer to stay

inactive if the size of all groups is equal to 1. Baik (2008) has shown that only group

members with maximum valuation participate in a contest for the special case γ = 1.
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Hence, it is possible that some individuals and/or groups will stay inactive in our

setup. We therefore start with an analysis of active individuals and groups and

restrict attention to γ < 1.

Definition 6. An individual k of group i is said to participate if xk
i > 0. A group i

is said to participate if there exists some k such that xk
i > 0. A group is said to fully

participate if ∀k : xk
i > 0.

Lemma 1. In a Nash equilibrium of a contest fulfilling Assumptions 1, 2, and 4 if

a group participates, it fully participates.

Lemma 1 implies that in order to determine whether an individual participates, it

is sufficient to determine whether its group participates and vice versa. Let Vi(γ) ≡
(

1/mi

∑

l v
l
i

γ

1−γ

)
1−γ

γ

. Without loss of generality, suppose the groups are ordered

such that Vi(γ) ≥ Vi+1(γ) for a given γ. Q∗
i (γ) and Q∗(γ) shall denote Qi and

Q in equilibrium. The following Lemma determines the groups that participate in

equilibrium.

Lemma 2. a) There exist best-response strategies of the members of a group, if and

only if the following group best-response function is fulfilled:

Q̂i(γ,Q/i) = max
(

0,
√

Q/iVi(γ)−Q/i

)

. (5)

b) Groups 1 . . . n∗(γ) participate, where n∗(γ) ≡ argmaxi i such that Vi(γ) > Q∗(γ).

c) If the Nash equilibrium is unique, Q∗
i (γ) and Q∗(γ) are continuous functions for

γ 6= 0.

Lemma 2.c is useful for the comparative-static analysis. Given that the number

and identity of active groups depends on γ, it is a priori not clear that aggregate

effort and indirect utilities are continuous in γ. The Lemma reveals that continuity

is in fact guaranteed except at γ = 0. The economic intuition is as follows: Assume

that γ̂ is a point where a formerly active group becomes inactive or a formerly

inactive group becomes active. The aggregate group effort of the active group is

continuously reduced to zero as γ approaches γ̂, and the formerly inactive group

continuously increases its effort from 0 as γ increases from γ̂. Hence, there is a

“smooth” fade out or fade in of groups at those points.
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The following proposition characterizes the unique Nash equilibrium of the game.

For readability, the strategies xk
i are defined as functions of Q∗(γ) and Vi(γ).

Proposition 5. The unique Nash equilibrium of the game characterized by Assump-

tions 1, 2, and 4 is given by strategies xk
i
∗
(γ) that fulfill

xk
i

∗
(γ) =











Q∗(γ)
(

1− Q∗(γ)
Vi(γ)

)

1
mi

(vki )
1

1−γ

Vi(γ)
1

1−γ
, Vi(γ) > Q∗(γ)

0, Vi(γ) ≤ Q∗(γ)

, (6)

where Q∗(γ) = n∗(γ)−1
∑n∗(γ)

i=1 Vi(γ)−1
and n∗(γ) is defined in Lemma 2.a and groups are

ordered such that Vi(γ) ≥ Vi+1(γ).

Proof. To obtain Q∗(γ) we sum (5) over all i ≤ n∗(γ):

Q∗(γ) =
n∗(γ)− 1

∑n∗(γ)
i=1 Vi(γ)−1

. (7)

With an explicit solution for Q∗(γ), we can now determine individual expenditures

xk
i
∗
(γ) by solving equation (5) using (7). The participation condition of a group is

given by Lemma 2, while Lemma 1 ensures that there does not exist an incentive for

any group member to deviate to xk
i = 0. It was further shown that the first-order

conditions return local maxima. Since the system of equations given by the first-

order conditions of the participating groups has a unique solution this is indeed the

unique Nash equilibrium.

It is of course interesting to see whether different degrees of complementarity

have an effect on the equilibrium if all individuals have the same valuations, i.e.

vki = vi∀k∀i. The following corollary of Proposition 5 can then be established.

Corollary 2. If vki = vi ∀k∀i the equilibrium efforts of all groups are independent

of γ.

Proof. The corollary directly follows from inserting vki = vi into the above defini-

tions, since then Vi = vi.

This finding implies that an increase in complementarity between group mem-

bers’ effort per se has no effect on the within-group free-rider problem, as could

12



have been conjectured from Hirshleifer (1983). A further implication of the result is

that the results on group contests that have been derived in the literature for the

case of perfect substitutes or perfect complements carry over to arbitrary elasticities

of substitution if groups differ only in their valuations of the rent. In particular,

different elasticities of substitution will not affect the occurrence of the group size

paradox for homogenous groups.

4.2 Group-size paradox for heterogenous valuations within

groups

It is already clear that the group-size paradox will hold weakly but not strictly

in this model if agents within groups have identical valuations. For heterogenous

agents we can however no longer rely on Definition 1, since agents with different

valuations can be added to the group. It therefore makes more sense to look at how

high the valuation of a new member of the group needs to be to increase the winning

probability of the group.

Proposition 6. For groups with heterogenous valuations, there exists a minimum

valuation a new group member must have in order to raise the winning probability

of its group. This minimum valuation is increasing in the elasticity of substitution

among the efforts of the group members.

This result shows that for heterogenous valuations, a third property of a contest

plays an important role with respect to the effect of the group size on the winning

probabilities: The more complementary the efforts of the group members are, the

lower the necessary valuation of a new member has to be in order to raise the winning

probability. Since heterogeneity in valuations is a rather common feature of interest

groups, the returns to scale, the group size biasedness and the effort complementarity

of the impact function should play a role when analyzing the relative strength of

interest groups.
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5 Relationship of our results with other fields of

the literature

The studies mentioned in the introduction – like Olson’s original argument and

contrary to the specific interpretation given to it by Esteban and Ray (2001) – do

not specifically focus attention to situations of conflict between groups, and there

are only few strands of the literature that deal with contest-like situations.

The first one studies the effect of group size for non-human species8, especially

bird groups and predation. The empirical evidence points in the direction that – for

several reasons and up to a certain limit – larger bird groups are more successful

than smaller ones, for example because larger groups may detect predators sooner

than solitary individuals. Bertram (1980) found that the percentage of time a single

ostrich has its head up is decreasing in group size, but the percentage of time one

or more heads are up is increasing. For the case of wood-pigeons, Kenward (1978)

found that the percentage of successful hawk attacks is decreasing in group size.

An explanation for this positive effect of a larger group-size is the so-called ‘many

eyes hypothesis:’ All members of a group are alerted if at least one member detects

a potential predator9 or the fact that it is harder for the predator to focus on a

specific prey if the group is large. Cresswell and Quinn (2004) and Kenward (1978)

analyzed Sparrowhawk attack success when hunting Redshanks and found that the

probability of capture of Sparrowhawks increased when the group size of their prey

decreased. This finding suggests that there are positive effects of group size for the

prey in predator-prey contests. Translated into the formal language of our model and

with the necessary prudence, the group advantage can be interpreted as a specific

property of the contest that cannot be reduced to some form of strictly convex

8Which of course implies that one has to be sufficiently cautious with respect to the implications

for models based on the utility maximization paradigm. The seminal contribution to game theoretic

application to animal behavior is Smith and Price (1972). For a critical comparison of models of

utility maximization and Nash equilibrium as solution concept with models of fitness maximization

and evolutionary stable strategies as solution concept in contests see Leininger (2003).

9Pulliam, Pyke, and Caraco (1982) found that individuals in groups use a ‘conditional vigilance

strategy’ where individuals are cooperatively vigilant as long as all other group members remain

so too (tit-for-tat); this implies that individuals monitor the behavior of others.

14



costs-of effort function but can better be explained by impact functions leading to

some form of group-size bias and/or economies of scale. The main driving force for

these positive effects, however, does not necessarily stem from the contest situation;

the decrease in successful attacks may be a useful byproduct of some other positive

effects. In order to test this, Beauchamp (2004) examined flock sizes of species living

on islands where predation risk is either absent or negligible with flock sizes of the

same species on the mainland (with higher predation risk). Controlled for other

potential explanatory factors like population density, habitat type, food type, etc.,

mean and maximum flock size were smaller on islands than on the mainland. The

results suggest that predation is a significant factor in the evolution of flocking in

birds. The ‘many eyes hypothesis’ and the increasing difficulty of the predator to

focus on prey in larger groups closely resemble a type of non-additive impact function

with positive group-size bias.

There is also a lively discussion about the prevalence of a group-size paradox

in contest environments in the sociological as well as the strategic-management

literature with (as can be expected from Esteban and Ray (2001) as well as this

paper) mixed empirical evidence. Siegel (2009) argues that in large groups, the

large number of ties between group members can hamper collective action. Larger

groups require more specialization to effectively manage the increasing complexity

(McCarthy & Zald, 1977) and to allow for effective decision-making procedures

(Benbasat and Lim (1993). The in general smaller diversity of members of smaller

groups makes it easier to coordinate on shared goals and collective action (e.g.

Gamson, 1995, Klandermans & deWeerd, 2000, Monge et al., 1998). It is also easier

to speak with one voice if the group is smaller, avoiding inconsistent messages which

are counterproductive for the success in any lobbying process (Dominelli, 1996),

which implies that there must be a certain degree of complementarity between the

group members’ efforts. Using data from Swedish firms, Wincent, Örtqvist, Eriksson,

and Autio (2010) found evidence for the predicted adverse effect of group size on

the amount of fundraising. Economies of scale and group-size bias therefore tend to

favor smaller groups in these situations. However, there are also opposite findings.

For example, the mere number of group members may give the group more media

coverage and/or political power (McAdam, 1882), pointing to a positive group-size

bias. Larger groups may also be able to provide more funds (Oliver, 1993, Zald
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& Ash, 1966). A study by McCarthy and Wolfson (1996) showed that in fact the

size of task committees had a positive effect on the amount of funding obtained

in campaigns for local governments. Finally, Dejean, Penard, and Suire (2009) find

a positive relation between the size of a community and the amount of collective

good provided (with decreasing individual propensity to cooperate) in an empirical

analysis of P2P file-sharing communities, a result that is strikingly similar to the

findings about individual and group vigilance of birds mentioned above.

6 Concluding remarks

According to our model one can expect that four crucial “technological” factors

determine the role of group size on the outcome of a group contest, group-size

biasedness, returns to scale, and complementarity between group members’ efforts

as well as the composition of their valuations in case of heterogenous valuations

within groups. These findings complement and extend the results by Esteban and

Ray (2008, 2010) who have shown that the convexity of individual cost functions

may explain the reversal of the group-size paradox, and it turns out that convexity

in costs is a special case of positive group-size bias.

Empirical findings support the existence of a group-size paradox, but as noted

by Marwell and Oliver (1993), it also stands in contrast to a significant body of

empirical findings pointing to a positive relationship between group size and group

performance in conflicts. Our analysis reveals that this diverse empirical pattern may

not be reduced to only one explanatory variable, namely the degree of convexity

in costs. To continue the example from the introduction, the success of political

demonstrations may depend on media coverage which in turn may depend on the

number of demonstrators. This is an example of group-size biasedness that cannot

be reduced to convexities in costs.

Our analysis of within-group heterogeneity, a constellation that should empir-

ically rather be the rule than the exception, shows first that the composition of

individual valuations is in fact important for contest success. Second, the degree of

complementarity in reaching impact becomes important. The higher the degree of

complementarity, the lower the threshold an individual valuation has to reach in
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order to have a positive impact on group success. This finding sheds light on the

empirical findings stressing that heterogeneity is likely to have adverse effects on the

contribution to the group-specific public good (Bandiera, Barankay, & Rasul, 2005).

Appendix A: Proof of Proposition 1

Proof. Suppose we have for all groups a group-size unbiased impact function q.

Denote by Q∗ and Q∗
/i the total impact of all groups and of all groups except group

i in equilibrium. By Assumption 3 there exists a Nash equilibrium that is unique

up to redistributions among the group members and that is characterized by the

solution to the first-order conditions (FOCs):

∂q(x∗
i )

∂xk
i

Q∗
/i

Q∗2
vi − 1 = 0 ∀i, k (A.1)

It is evident from the FOC that the equilibrium is symmetric among members of a

group and we thus only need to focus on fulfilling the FOC of the first member of

each group. By assumption, the impact function is group-size unbiased. For equal

inputs we can then write q(xi) = g(x1
i ·mi), since otherwise the functional equation

induced by group-size unbiasedness cannot be fulfilled Aczél and Dhombres (1989).

Note that ∂q(xi)

∂xk
i

= g′(x1
i ·mi) ·mi is not the correct partial derivative. However, we

can employ the total differential:

∆q(xi) =
∑

k

∆xk
i

∂q(xi)

∂xk
i

(A.2)

which becomes for symmetric agents:

∆g(x1
imi) = mi∆x1

i

∂q(xi)

∂xk
i

, (A.3)

and thus
∂q(xi)

∂xk
i

=
∆g(x1

i ·mi)

mi ·∆x1
i

= g′(x1
i ·mi) (A.4)

for ∆ → 0. We can reinsert this expression into the FOC and replace Q∗
/i/Q

∗ by

(1− p∗i ) as this is the probability with which the other groups win,

g′(x1
i
∗
·mi) =

Q∗

vi(1−
Q∗

i

Q∗
)
=

Q∗

vi(1− p∗i )
∀k. (A.5)
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We can now prove by contradiction that mi and p∗i cannot rise at the same time.

Suppose this would be the case. For the behavior of Q∗, we can now distinguish

three cases, Q∗ increases, remains constant, or decreases.

Suppose Q∗ increases. This implies by the definition of p∗i = Q∗
i /Q

∗ that Q∗
i

increases, as otherwise p∗i would not increase. Since Q∗
i increases if and only if xk

i
∗
·mi

increases, the left-hand side (LHS) of (A.5) must decrease, as g′(. . . ) is a decreasing

function. But the fact that Q∗ and p∗i increase, implies that the right-hand side

(RHS) increases, which means the FOCs cannot be fulfilled.

Second, suppose Q∗ remains unchanged. This implies that the RHS of (A.5)

increases, which in turn implies that xk
i
∗
· mi falls. But if Q∗

i decreases, Q∗ must

decrease as well, since p∗i increases. Q∗ can thus not remain constant.

Third, consider Q∗ decreasing. Since p∗i is increasing, there must exist a group j

where p∗j is decreasing. Take the FOC of this group j: Since Q∗ is decreasing and p∗j

is decreasing, the RHS is decreasing. This implies that xk
j
∗
·mj is increasing which

means Q∗
j is increasing and thus p∗j as well. This contradicts the assumption that

there exists a group where p∗j is decreasing for decreasing Q∗. If there is no group

with decreasing probability, p∗i cannot be increasing.

Since for all possible cases of behavior for Q∗, there arises a contradiction from

the assumption that p∗i increases when mi increases, it is established that p∗i weakly

decreases in mi under the given assumptions.

Appendix B: Proof of Proposition 2

Proof. It is convenient to summarize the following properties in a Lemma.

Lemma B.1. If qmi
(.), qmi+1(.) have constant returns to scale and negative (positive)

group-size bias for all mi, it follows for a symmetric equilibrium xk
i = xl

i ∀k, l ∀i

that
∂qmi

(x̂i)

∂xk
i

> (<)
∂qmi+1(x̂i)

∂xk
i

.

and that
∂qmi

(x̂i)

∂xk
i

is invariant in the level of effort of a group.

Proof of Lemma. Due to constant returns to scale, we have q(a · xi) = a · q(xi),

and it follows that ∂q(xi)

∂xk
i

is homogenous of degree zero in xi. Using the symmetry
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of an equilibrium, q() can be expressed by some function h(.) such that qmi
(xi) =

h(x1
i , mi), and

∂q(xi)

∂xk
i

can only be a function of mi. By Euler’s homogenous function

theorem,
∑

k

∂q(xi)

∂xk
i

xk
i = q(xi),

we have in a symmetric equilibrium

∂q(xi)

∂xk
i

=
q(xi)

x1
i ·mi

≡
h(x1

i , mi)

x1
i ·mi

.

By homogeneity of degree one of h in its first argument, we know that
∂qmi

(x̂i)

∂xk
i

is

indeed invariant in the level of effort as expected for constant returns to scale in a

symmetric equilibrium. We further want to know whether

h(x̂1
i , mi)

x̂1∗
i ·mi

≷
h(x̂1

i , mi + 1)

x̂1
i · (mi + 1)

holds. Suppose that β = mi+1
mi

. Then, the RHS of the above inequality can be written

as:
g(x̂1

i , mi + 1)

x̂1
i · (mi + 1)

=
h(x̂1

i , β ·mi)

x̂1
i · β ·mi

. (B.1)

By constant returns to scale, (B.1) can be written as:

h(x̂1
i , β ·mi)

x̂1
i · β ·mi

=
h(

x̂1
i

β
, β ·mi)

x̂1
i ·mi

,

which by q(.) being negatively (positively) group size biased is strictly smaller

(larger) than
h(x̂1

i ,mi)

x̂1
i ·mi

. This implies that ∂q(x̂i)/∂x
k
i is indeed decreasing (increas-

ing) in mi for a symmetric equilibrium. �

We now turn to the proof for negative group-size bias. The FOCs are given by:

∂q(x∗
i )

∂xk
i

Q∗
/i

Q∗2
vi − 1 = 0 ∀i, k. (B.2)

We want to establish that a joint increase in mi and p∗i in equilibrium leads to a

contradiction. Examining the FOC of group member 1 of group i:

∂q(x∗
i )

∂x1
i

=
Q∗

(1− p∗i )vi
∀i, k, (B.3)

we know that Q∗ must decrease if mi and p∗i increase, since by Lemma B.1. the LHS

is decreasing in mi and invariant in x1
i
∗
for every given symmetric equilibrium. The

19



RHS is increasing in p∗i . For the FOC to hold, Q∗ must then decrease. Note that an

increase in p∗i implies a decrease in p∗j for at least one group j. Looking at the FOC

of group member 1 of this group j, we can derive the contradiction:

∂q(x∗
j )

∂x1
j

=
Q∗

(1− p∗j )vj
. (B.4)

As we know, the LHS is constant for given group size mj . The RHS however is

both increasing in p∗j and Q∗. Since both are decreasing, the FOC can no longer be

fulfilled, which yields the contradiction.

The proof for positive group-size bias is similar. We again start with FOCs of an

arbitrary member of an arbitrary group:

∂q(x∗
i )

∂xk
i

Q∗
/i

Q∗2
vi − 1 = 0 ∀i, k. (B.5)

We want to establish that an increase in mi and a decrease in p∗i in equilibrium leads

to a contradiction. Examining the FOC of group member 1 of group i:

∂q(x∗
i )

∂x1
i

=
Q∗

(1− p∗i )vi
∀i, k, (B.6)

we know that Q∗ must increase if mi increases and p∗i decreases, since by Lemma

B.1. the LHS is decreasing in mi and invariant in x1
i
∗
for every given symmetric

equilibrium. The RHS is increasing in p∗i . For the FOC to hold, Q∗ must then

increase. Note that a decrease in p∗i implies an increase in p∗j for at least one group

j. Looking at the FOC of group member 1 of this group j, we can, as before, derive

the contradiction:
∂q(x∗

j )

∂x1
j

=
Q∗

(1− p∗j )vj
. (B.7)

As we know, the LHS is constant for given group size mj . The RHS however is

both increasing in p∗j and Q∗. Since both are increasing, the FOC can no longer be

fulfilled, which yields the contradiction.
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Appendix C: Proof of Proposition 3

Proof. Let ρ be the degree of homogeneity. Euler’s Theorem for homogenous func-

tions implies that qmi
(xi) =

1
ρ
·
∑

k x
k
i ·

∂qmi
(xi)

∂xk
i

, which boils down to

qmi
(xi) =

mi · x
k
1

ρ
·
∂qmi

(xi)

∂xk
i

(C.1)

for a symmetric equilibrium, which can (again for a symmetric equilibrium) alter-

natively be expressed as
∂qmi

(xi)

∂xk
i

=
ρ · qmi

(xi)

mi · xk
1

. (C.2)

(Weakly) negative group-size biasedness implies qmi
(xi) ≥ qξ·mi

(xi/ξ). Using (C.2)

this inequality can be expressed as

qmi
(xi) =

mi · x
k
1

ρ
·
∂qmi

(xi)

∂xk
i

≥
mi · x

k
1

ρ
·
∂qξ·mi

(xi/ξ)

∂xk
i

=
ξ ·mi

ρ
·
xk
1

ξ
·
∂qξ·mi

(xi/ξ)

∂xk
i

= qξ·mi
(xi/ξ).

This inequality reduces to

∂qmi
(xi)

∂xk
i

≥
∂qξ·mi

(xi/ξ)

∂xk
i

. (C.3)

Assume that ξ = (mi +1)/mi. The first-order condition of a representative member

of group i is equal to

∂q(x∗
i )

∂xk
i

=
Q∗

vi(1−
Q∗

i

Q∗
)
=

Q∗

vi(1− p∗i )
∀k (C.4)

in equilibrium. We can now prove by contradiction that mi and p∗i cannot rise at

the same time. Suppose this would be the case. For the behavior of Q∗, we can now

distinguish three cases, Q∗ increases, remains constant, or decreases.

Suppose Q∗ increases. The increase in p∗i also implies that Q∗
i has to increase.

For fixed Xi =
∑

xk
i , the definition of group-size biasedness implies that q(xi) goes

down. In order to be consistent with the increase in Q∗
i it follows that Xi =

∑

xk
i

has to go up.

The above assumptions imply that the RHS of (C.4) increases. For this to be an

equilibrium, the LHS of (C.4) has to increase as well. For fixed Xi =
∑

xk
i , however,
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(C.3) implies that ∂q(xi)/∂x
k
i goes down. (Weakly) decreasing returns to scale imply

that ∂q(xi)/∂x
k
i is (weakly) decreasing along the symmetric array through the origin.

Hence, Xi =
∑

xk
i has to go down to reestablish the equality, a contradiction.

Second, suppose Q∗ remains unchanged. The contradiction follows along the

same lines as before: An increase from mi to mi + 1, (C.3) implies that ∂q(xi)/∂x
k
i

is reduced for constant Xi =
∑

xk
i . If p

∗
i goes up, the LHS of (C.4) goes up. To

reestablish the equality it follows that Xi =
∑

xk
i has to go down, which c.p. reduces

Q∗
i , and for Q∗ being constant, has to increase Q∗

j for some j. This is, however,

inconsistent with the conjecture that p∗i increases.

Third, consider Q∗ decreasing. Since p∗i is increasing, there must exist a group j

where p∗j is decreasing. Take the FOC of this group j: Since Q∗ is decreasing and p∗j

is decreasing, the RHS is decreasing, which implies that the LHS has to decrease.

In addition, Q∗
j has to go down as well. For given mj , the LHS can only decrease if

Xj =
∑

xk
j increases, which is inconsistent with the requirement that Q∗

j has to go

down.

Appendix D: Proof of Corollary 1

Proof. From group size unbiasedness we know that (A.4) holds. Due to constant

returns to scale, g′(x1
imi) is a constant. The LHS of the first order condition (A.5)

is thus constant. Suppose now pi rises (falls) with a change in mi. Then for the first

order condition to still hold, Q∗ needs to fall (rise). Also, the winning probability

of at least one other group pj needs to fall (rise). A fall (rise) in both Q∗ and pj is

however incompatible with the first order condition of group j. Therefore, both pi

and Q∗ need to remain constant.
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Appendix E: Proof of Proposition 4

Proof. We assume throughout that we are in a symmetric, interior equilibrium. By

homogeneity of degree ri, we have from Euler’s theorem

ri · qmi
(xi) = mi · xi ·

∂qmi
(xi)

∂xi
, (E.1)

and further
∂qmi

(xi)

∂xi
=

ri · qmi
(xi)

mi · xi
=

ri · qmi
(1)

mi · (xi)1−ri
. (E.2)

By the definition of group size biasedness we have that a function is positively group

size biased, if qmi
(xi) < qmiξ(xi/ξ). In the homogenous case, this is equivalent to

qmi
(1) < qmiξ(1)ξ

−ri. Using the above equation, we can reformulate this as:

∂qmi
(xi)

∂xi
<

∂qmiξ(xi)

∂xi
ξ−ri. (E.3)

By these conditions, a natural measure for group size bias emerges that does not

depend on xi:

bi(ξ) =
qmiξ(1)

qmi
(1)ξri

=

∂qmiξ
(1)

∂xi

∂qmi
(1)

∂xi
ξri

. (E.4)

Clearly, if bi(ξ) > 1, q is positively group size biased.10 For homogenous functions,

qmiξ can be uniquely determined by bi(ξ), qmi
, and ri. We can derive two helpful

expressions for the derivatives of q with respect to xi:

∂qmi
(xi)

∂xi
=

riqmi
(1)

mix
1−ri
i

=
∂qmiξ(xi)

∂xi
·
ξ1−ri

bi(ξ)
(E.5)

=
∂qmi

(1)

∂xi
·

1

x1−ri
i

. (E.6)

We now compare two classes of impact functions, q and q̂ for which bi(ξ) > b̂i(ξ)

for some11 ξ and ri = r̂i.

10Note that this measure is a local measure which depends on ξ. A function that is positively

group size biased for some increase in members may be negatively group size biased for others.

11Alternatively we could assume that this condition holds for all ξ, from which we could derive

the result that if the group size paradox holds for all ξ under q, then it must hold for all ξ under

q̂ as well.

23



Suppose that the first-order condition holds for the impact function qmi
at x∗

i .

After adding miξ −mi group members and employing the impact function qmiξ, let

the equilibrium contribution be x∗
i,ξ. Similarly, denote by x̂∗

i , x̂
∗
i,ξ the equilibrium

efforts when using impact functions q̂mi
and q̂miξ, respectively.

We can now employ the first-order condition to obtain that if the group size

paradox holds, then
∂qmi

(x∗

i )

∂xi
>

∂qmiξ
(x∗

i,ξ
)

∂xi
. The first-order condition of an interior

solution becomes after rearranging terms:

∂qmi
(x∗

i )

∂xi
=

Q∗

vki (1− p∗i )
. (E.7)

By (E.6) we can reformulate the LHS:

∂qmi
(1)

∂xi
· (x∗

i )
ri−1 =

Q∗

vki (1− p∗i )
. (E.8)

Suppose the group-size paradox holds. Then we can see that for an increase in mi,

the LHS of the equation has to decrease. This follows since an increase in the LHS

would imply that on the RHS Q∗ must rise, because by assumption p∗i decreases.

Since p∗i decreases and probabilities must sum to one, there must exist another group

j, for which pj increases. But then the RHS of the first order condition of group j

must increase and since Q∗ increases, q∗j and thus x∗
j must increase as well. However,

the LHS is decreasing in xj , implying that there does not exist xj such that the first-

order condition is satisfied anymore. Concluding, if the group size paradox holds and

mi increases, then
∂qmi

(x∗
i )

∂xi
>

∂qmiξ(x
∗
i,ξ)

∂xi
, (E.9)

i.e. the LHS of the first-order condition of group i has to be lower in the new

equilibrium. Similarly, it can be derived that if the winning probability does not

change for a change in mi, then
∂qmi

(x∗

i )

∂xi
=

∂qmiξ
(x∗

i,ξ
)

∂xi
, and lastly, if the winning

probability increases,
∂qmi

(x∗

i )

∂xi
<

∂qmiξ
(x∗

i,ξ
)

∂xi
.

We will now assume that the group-size paradox holds for q, but not for q̂ and

show that this yields a contradiction. Combining the above properties of the partial

derivatives of qmi
, qmiξ with equation (E.9) and remembering that the derivative of

a function that is homogenous of degree r is homogenous of degree r−1, we obtain:

∂qmi
(x∗

i )

∂x∗
i

=
∂qmiξ(1)

∂xi

·
ξ1−ri

bi(ξ)(x
∗
i )

1−ri
>

∂qmiξ(1)

∂xi

·
1

(x∗
i,ξ)

1−ri
=

∂qmiξ(x
∗
i,mi

)

∂xi

(E.10)
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which implies:

bi(ξ) <

(

ξx∗
i,ξ

x∗
i

)1−ri

(E.11)

Similarly, with the inequality reversed (since we assume that the group size paradox

does not hold for q̂):

b̂i(ξ) >

(

ξx̂∗
i,ξ

x̂∗
i

)1−ri

(E.12)

Combining these two inequalities via the assumption that q has a greater group size

bias than q̂:
(

ξx̂∗
i,ξ

x̂∗
i

)1−ri

< b̂i(ξ) < bi(ξ) <

(

ξx∗
i,ξ

x∗
i

)1−ri

. (E.13)

Exponentiating by ri/(1−ri) and using homogeneity of degree ri and (E.4), we have:

q̂miξ(x̂
∗
i,ξ)

q̂mi
(x̂∗

i )b̂i(ξ)
<

qmiξ(x
∗
i,ξ)

qmi
(x∗

i )bi(ξ)
. (E.14)

Finally, we know that if the group-size paradox holds, qmi
(x∗

i ) > qmiξ(x
∗
i,ξ) must hold

since otherwise x∗
i,ξ could not be a best response12. Together with bi(ξ) > b̂i(ξ), we

conclude that q̂miξ(x̂
∗
i,ξ) < q̂mi

(x̂∗
i ). This contradicts the assumption that the group-

size paradox does not hold for q̂, since then a lower q̂ would have to yield a higher

winning probability, in which case x̂∗
i could not be a best response.

The reverse argument, stating that if we increase group size bias, the group size

paradox cannot hold if it did not held before can be derived by reversing inequalities

in E.13 above. The proof for a change in ri > r̂i for bi(ξ) = b̂i(ξ) now follows the

same lines. Assuming the group size paradox holds under q but not under q̂, we

have:
(

ξx̂∗
i,ξ

x̂∗
i

)1−r̂i

< b̂i(ξ) = bi(ξ) <

(

ξx∗
i,ξ

x∗
i

)1−ri

(E.15)

This inequality, similarly to (E.13), implies (note that the term ri
1−ri

/ r̂i
1−r̂i

is strictly

greater than 1 and since the RHS is strictly greater than 1 we can exponentiate it

with the term):
q̂miξ(x̂

∗
i,ξ)

q̂mi
(x̂∗

i )
<

qmiξ(x
∗
i,ξ)

qmi
(x∗

i )
. (E.16)

12To see this, note that the winning probability is higher for a group impact qmi
(x∗

i ). Since group

impact is increasing in xi, it would be profitable for some group member to choose xk
i < x∗

i,ξ

25



From here, the same argument as above applies and therefore if the group size

paradox holds for q with returns to scale ri, then it must hold as well for q̂ with

returns to scale r̂i < ri. The reverse argument again follows from reversing the

inequalities in (E.15) and assuming r̂i > ri.

Appendix F: Proof of Lemma 1

Proof. We first check that the interior solution is a local maximum. The FOC of the

maximization problem (2) can be written as

Q/iQi

YiQ2
=

(yki )
1
γ

yki v
k
i

. (F.1)

The second-order condition is satisfied if

vki Q/iQi

γQ2Y 2
i

(

1− 2Qi

Q

γ
− 1

)

−

1
γ
− 1

γ
(yki )

1
γ
−2

< 0. (F.2)

Solving the FOC for vki and inserting the expression into the second-order condition

we obtain, upon rearranging:

1− 1
γ

γ

(

1−
yki
Yi

)

− 2
1

γ2

Qiy
k
i

QYi
< 0, (F.3)

which holds for all γ ∈ (−∞, 1). Therefore, all solutions of the FOCare local maxima

taking the other players’ strategies as given. The best responses are either given by

the solution to the FOC, or by a corner solution. From equation (4) it is clear that

the only possible corner solutions are non-participation with xk
i = 0. We thus need

to verify that whenever the best response of one member of the group is given by

the solution to the FOC, it is not possible for any member of the group to have the

best response xk
i = 0. First, we will show that whenever there exists a solution of

the FOC for one individual of a group, it exists for all individuals: From the FOCs

of two representative group members l, k we obtain the within-group equilibrium

condition:

∀l, k < mi :
(yki )

1
γ
−1

vki
=

(yli)
1
γ
−1

vli
(F.4)
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for all members k, l of group i. Both, the LHS and RHS of (F.4) are strictly increasing

in yki , y
l
i if γ ∈ (0, 1). For γ ∈ (−∞, 0) both LHS and RHS of (F.4) are strictly

decreasing in yki , y
l
i. Thus, for each yki there exists a yli such that the within-group

equilibrium condition holds. Since for all group members the LHS of (F.1) is equal,

there exists a positive solution to the FOC for either all group members or none.

Second, we need to show that xk
i = 0 is not a best response if it is a best response

for another individual l in the group to play xl
i > 0. We do so by contradiction:

Obviously, for a corner solution with xk
i = 0 and xl

i > 0 the following condition

needs to hold:

∂πk
i

∂xk
i

=
Q/iQi

Q2Yi
(xk

i )
γ−1

vki − 1
∣

∣

∣

xk
i = 0, xl

i > 0
≤ 0. (F.5)

(xk
i )

γ−1 converges to ∞ if xk
i → 0, which contradicts the above inequality if

Q/iQi/Q
2Yi > 0. Given that xl

i > 0 and the structure of the CES-impact func-

tion, Qi > 0, Yi > 0, and it cannot be an equilibrium that no group participates.

To complete the proof, note that from the fact that there is an individual l in the

group which participates with strictly positive effort, we know that

∂πl
i

∂xl
i

=
Q/iQi

Q2Yi

(xl
i)
γ−1

vli − 1
∣

∣

∣

xk
i = 0, xl

i > 0
= 0. (F.6)

Inserting (F.6) into (F.5) yields:

(xl
i)

1−γ

vli
−

(xk
i )

1−γ

vki

∣

∣

∣

xk
i = 0, xl

i > 0
≤ 0 (F.7)

from which we obtain by inserting xk
i = 0:

(xl
i)
1−γ
∣

∣

∣

xl
i > 0

≤ 0, (F.8)

which is a contradiction for all γ < 1. Thus there does not exist an equilibrium

in which for one player in the group a corner solution at zero effort investments is

obtained while for another an interior solution holds.
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Appendix G: Proof of Lemma 2

Proof. If there exists a solution to the FOC, it is characterized by the following

equation, obtained by solving (F.4) for yli and summing over all l,

Yi = yki
∑

l

(
vli
vki

)
γ

1−γ . (G.1)

We can now solve equation (F.1) for Yi explicitly:

Yi =

(

√

Q/iVi(γ)−Q/im
1−γ

γ

i

)γ

. (G.2)

Thus, the condition for a strictly interior solution is (1/mi

∑

l v
l
i

γ

1−γ )
1−γ

γ > Q/i. Note

that this condition is the same for all members of a group. In all other cases, we get

yki = 0 for γ ∈ (0, 1) and yki = ∞ for γ ∈ (−∞, 0) as was to be expected since both

cases correspond to xk
i = 0. In these cases we have ∀l : yki = yli by equation (F.4)

and by the definition of Qi, we have: Qi = Y
1
γ

i /m
(1−γ)/γ
i = 0. We can write a group

best-response function as

Q̂i(γ,Q/i) = max
(

0,
√

Q/iVi(γ)−Q/i

)

. (G.3)

establishing part a), since by Lemma 1 either for all group members we obtain an

interior solution or for none. Since the best-response function is continuous in γ 6= 0

and in the strategies of the other groups Q/i, if a unique Nash equilibrium exists,

the equilibrium strategies must also be continuous in γ. This establishes part c) of

Lemma 2. What remains to be shown is which groups participate in equilibrium.

Suppose a group ζ participates in equilibrium with strictly positive effort, while a

group ζ + 1 does not participate. Let Q∗
i (γ) be Qi in equilibrium (we ignore here

that these are best responses and should thus be functions of Q∗
/i) and let the other

variables introduced above be defined correspondingly in equilibrium. Then by the

above condition in equilibrium we have for any given γ:

Vζ(γ) > Q∗
/ζ(γ)

Vζ+1(γ) ≤ Q∗
/ζ+1(γ) (G.4)

Since by assumption Q∗
ζ+1(γ) = 0, we have Q∗

/ζ+1(γ) = Q∗(γ). Solving (5) for Q/i

tells us that in an equilibrium where group ζ participates, the following needs to be
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true:

Q∗
/ζ(γ) =

Q∗(γ)2

Vζ(γ)
. (G.5)

We now insert (G.5) into the first equation of (G.4) and the condition Q̂/ζ+1 = Q̂

into the second equation. Thus the condition (G.4) becomes

Vp(γ) > Q∗(γ)

Vζ+1(γ) ≤ Q∗(γ) (G.6)

in equilibrium. It follows that Vζ(γ) > Vζ+1(γ). We can thus order the groups such

that Vi(γ) ≥ Vi+1(γ) and define n∗(γ) as the group with the highest index number

that still participates with strictly positive effort. By (G.6), all groups i ≤ n∗(γ)

participate. This establishes part b) of Lemma 2.

Appendix H: Proof of Proposition 6

Proof. The winning probability of each group is given by:

Qi
∗(γ)

Q∗(γ)
=

(

1−
n∗(γ)− 1

∑n∗(γ)
j=1 Vj(γ)−1

1

Vi(γ)

)

, (H.1)

where Vi(γ) =
(

1
mi

·
∑

l(v
l
i)

γ

1−γ

)
1−γ
γ

. Since the winning probability increases in Vi,

the winning probability is increased by an additional member x of the group if the

following holds:

(

∑

(vli)
γ

1−γ

mi

)
1−γ

γ

≤

(

∑

(vli)
γ

1−γ + (vxi )
γ

1−γ

mi + 1

)
1−γ

γ

. (H.2)

This condition yields after solving:

vxi ≥ Vi. (H.3)

Notice, if we substitute θ = γ
1−γ

, Vi(θ) is a power mean with the exponent ranging

over θ ∈ (−1,∞) where the greatest lower bound is given by γ → −∞ and the

least upper bound given by γ → 1. It follows from the power-mean inequality that

the power mean is weakly increasing in its exponent θ and strictly increasing in θ
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if there are two distinct vki 6= vli (Bullen (2003), chapter 3). Since θ is an increasing

function of γ, Vi is strictly increasing in γ. This in turn implies that the minimum

valuation a new group member must have in order to raise the winning probability

of this group is also increasing in γ.
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