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Abstract

This paper addresses the issue of how regulatory constraints af-
fect firm’s investment choices when the firm has the option to delay
investment. The RPI — x rule is compared to a profit sharing rule,
which increases the x factor in case profits go beyond a given level. It
is shown that these rules are identical in their impact on investment
choices, in that the change in the option value exactly compensates
the change in the “direct” profitability of investment. The result is
then analysed in the light of option theory and explained on the basis
of the “bad news principle”.

1 Introduction

The literature on investment incentives in regulated industries indicates how
a price cap such as the by now traditional RPI — x provides the regulated
firm appropriate incentives to invest. The idea is that the regulated price
should increase at a rate equal to the difference between the expected infla-
tion rate (the Retail Price Index, RPI) and an exogenously given component

*We would like to thank Giacomo Calzolari for comments on an earlier draft.



(x) which, roughly speaking, represents the expected increase of productivity
the firm should attain. By making prices insensitive at the margin to firm’s
choices, the RPI — x rule appears to eliminate the downward bias and the
phenomenon known as “underinvestment”. As Beesley and Littlechild (1989)
put it when listing the main arguments in favor of RPI — x, “Because the
company has the right to keep whatever profits it can earn during the speci-
fied period (and must also absorb any losses), this preserves the incentive to
productive efficiency associated with unconstrained profit maximization”.

However, we know from the UK experience that an RPI — x scheme
tends to leave the firm large profits, so that some authors' (among others,
Sappington and Weisman, 1996; Burns, Turvey and Weyman Jones, 1998)
have brought into consideration an alternative called ”sliding scale” (or, less
cryptically, ”profit sharing”). According to this scheme, in case the firm’s
profits go beyond a pre-specified level, the x factor should be automatically
adjusted upwards, making the price-cap more stringent; this re-distributes
rents to the consumers, making the system more “fair” and more sustainable
from a political viewpoint. This system has been criticized by some authors
(see e.g., Mayer and Vickers, 1996) who - among other things - stress that
if higher investment spurs a tighter price cap, then we have a dis-incentive
to invest. The superiority of the RPI — x system relative to profit sharing
rules on the ground of technical efficiency was recognized also by advocates
of profit sharing rules (e.g., Lyon, 1996), who only defend the PS system on
the basis of overall allocative efficiency (profit sharing “typically” increases
consumers surplus).

Weisman (1993) shows that when price cap rules incorporate an element
of profit sharing, price caps may represent a worsening relative to a pure
cost based regulation (a notoriously inefficient set-up). While most papers in
the regulation literature implicitly consider fully reversible investments, we
take a different approach which, following the modern theory of investment,
stresses how these choices are typically irreversible’?. The consequence of
irreversibility is that the decision to invest should consider the option value
of investment. As an irreversible choice entails burning an opportunity, the
value of waiting should be considered.

Our study shows that irreversibility of investment considerably changes
the relative desirability of the aforementioned regulatory policies. With ir-
reversible investments, we can show that the effect of RPI — x and profit

!This proposal, already debated in the UK, has also become popular among several
policy makers, such as the Italian electricity regulator.

2 As stated by Dixit and Pindyck (1994, p.3) “Most investment decisions share three
important characteristics, investment irreversibility, uncertainty and the ability to choose
the optimal timing of investment”.



sharing on the incentives to invest may well be identical. The reason is that
the introduction of the profit ceiling into a RPI — x scheme decreases the
net present value of the investment, but also decreases the value of waiting
(i.e., the option value) by exactly the same amount. This is an application
of the “bad news principle” (Bernanke, 1983), which indicates that, under
investment irreversibility, uncertainty acts asymmetrically since only the un-
favorable events affect the current propensity to invest. If, thus, profit sharing
(i.e., the change in the x factor) occurs only in the good state, investment
decisions are not affected.

This paper is linked to two streams of literature. The first one is the
literature on investment irreversibility. Irreversibility may arise from ‘lemon
effects’ (second-hand capital goods may be impossible to sell), and from cap-
ital specificity (see Dixit and Pindyck, 1994, and Trigeorgis, 1996). Even
when brand-new capital can be employed in different productions, in fact, it
may become specific once installed. Irreversibility may be caused by industry
comovements as well: when a firm can resell its capital, but the potential
buyers operating in the same industry are subject to the same market con-
ditions, this comovement obliges the firm to resort to outsiders. Due to
reconversion costs, however, the firm can sell the capital at a considerably
low price than an insider would be willing to pay if it did not face the same
bad conditions as the seller. The irreversibility of capital expenditures is
even more obvious in markets subject to price regulation, which are typically
natural monopolies; the scarcity (or total absence) of firms operating in the
same sector and the public constraints coming from nature of the service
may represent decisive factors in this respect®. Relative to this literature,
we consider how investment is affected by different regulatory rules, showing
how the option value of irreversible investments matters in determining the
optimal regulatory policy.

The second stream of literature is the one on regulation and investment.
Since Laffont and Tirole (1986), we know that optimal price schemes entail a
distortion in firms’ choices. To tackle this problem, the rule labelled “RPI —
x2” was introduced. In this case, investment does not affect price, so that
this rule is supposed to have “minimum” distortionary effects on investment
choices.

Beesley and Littlechild (1989) stress that the efficiency properties of this
scheme may be undermined by two aspects. The first one is that the x factor

3 An idea of the empirical relevance of irreversible investments in regulated industries
can be obtained looking at the so called “stranded costs”, i.e., at the value of assets that
following liberalisation will hardly find a remuneration, but cannot be shifted to a different
productive use. According to Lyon and Mayo (2000) these costs can be estimated for the
US electricity sector “in the neighborhood of $200 billion”.



is subject to periodic reviews (every 4-5 years), so that a cost decrease may
be exploited by the regulator to decrease prices in the future. The second
factor is the risk of expropriation, which means that, even before the review,
the regulator may be tempted to intervene - following political pressure - in
case firm’s profits appear as “excessively” high.

In our paper we consider the option value of an investment of a given
amount, to see how different regulatory schemes affect the timing of invest-
ment. Notice that here we do not introduce any of these elements indicated
by Beesley and Littlechild (1989) as countervailing factors, so that one would
expect RPI — z to emerge as the more desirable regulatory rule. On the
contrary, our main result is that, even in the extremely favorable case we ex-
amine, profit sharing does not underperform the purest version of RPI — z*.

The paper is organized as follows. The next section provides the simplest
analytical set-up in which the problem of irreversible investments can be
studied, recalling the “bad news principle”. Section 3 provides the market
model, stressing how the traditional view of investment indicates that profit
sharing tends to disfavor investment. Section 4 introduces the option value
of investment, showing how the result can change when we consider this
aspect. Section 5 extends the previous analysis in continuous time, showing
how previous results hold in this less specific set-up. Section 6 extends the
model to the case of cost-reducing investments, showing how the same results
follow. Section 7 analyses the ability of these rules to extract firms’ rents for
a given distortionary effect. Section 8 concludes the paper.

2 A simple discrete-time model

In this section we introduce a simple discrete-time infinite horizon model
describing the behavior of a competitive risk-neutral firm. The model and
the notation follow Dixit and Pindyck (1994, Ch. 2). In particular, we
assume that risk is fully diversifiable and that the risk-free interest rate r is
fixed.

A market is characterized by the inverse demand function p; = p(q),
where p; and ¢; are price and quantity of the good at time t. Production
takes place at a per-period cost given by C' = ¢;q;. Furthermore, in order to

4This result can be usefully linked to some recent results of the empirical literature.
For instance, Crew and Kleindorfer (1996) and the papers they review stress how the
presumed superiority of optimal price rules does not emerge so clearly from experiences
in different countries and sectors. The claim that RPI — x rules lead to more efficient
investment patterns than profit related regulatory schemes does not find a clear empirical
support.



produce the firm needs to build an infrastructure. This could be the case,
for instance, of an energy distributor that has to decide whether or not to
invest in a new network (either a pipeline or wires) in order to serve a town,
knowing that he will be subject to a certain regulatory regime. Thus we
introduce the following:

e Assumption 1 (investment). Production requires a one-off investment
of a given amount I.

The important aspect of this assumption is that the amount of invest-
ments is given. Although firms often have the possibility to marginally adjust
the value of their expenditures, it is also true that the size of most investment
projects that utilities face is by and large determined by the size of the area
they want to serve. Building a new electric line connecting two nodes of a
transmission system to improve its reliability, or a pipeline to sell gas to a
new city are choices that entail an expenditure that can only partially be
controlled by the firm. This type of major investments is what we focus on.

Obviously, in these cases the firm is left with two major choices: whether
or not to undertake the investment, and when to do so. Therefore, while
the notion of “underinvestment” typically refers to the amount spent by the
firm, in this context we will talk of underinvestment referring to the proba-
bility that a firm invests and to the date of the investment. The apparent
difference between our notion and the usual one is simply due to the fact that
we explicitly model uncertainty and time. A lower probability of investing
decreases the expected value of investment. A delay in the decision decreases
its present value.

To analyze the choice of when to invest we assume that the firm has an
infinite time horizon and maximizes the (discounted) present value of future
expected profit. If the firm operates (i.e., if it undertakes the investment),
its per-period profits are denoted by

I = [p(q) — o] . (1)

Both price and cost follow a deterministic trend. Price grows at a rate «
(we will be more specific in this issue later on), so that we have p; = po(1+a)’.
Operating costs decrease at a rate 7, so that ¢; = ¢o(1—=)". Per period profits
can be rewritten as

I = [po(l + ) —co(l — ’Y)t] qt- (2)

The values of the parameters v and v must respect two conditions:



* > ot 1+a1 +n)(1 ] > 0, so that production is worthwhile;
e O[II,;/ ((1+1m)'q)] /Ot < 0 as t — oo, so that the series converges.

)t —cn(1—~)t
Namely, Zfio [p0(1+(1)+rt;)t(l ] < 00

Initial price py is set at a level, and it is convenient to define m = % >
0, i.e. po = (14 m)cy. Thus, since the moment of investment, we can write

—_ TomP0do for t =0
L [(l—l—a)t—%]poqt fort > 1

The second element we want to introduce is uncertainty on future de-
mand. In this section, when time is discrete, we model uncertainty as follows:

e Assumption 2 (demand). Demand follows a bivariate stochastic process.
At time 0 demand is ¢qg. At time 1, with probability p, demand will rise
to (1+u)qo, and with probability (1 — p) it will drop to (1 — d)qo, with
u, d > 0 and d < 1. From then onwards demand follows a deterministic
trend. More formally:

[ (14+u)'qy  with probability p, 3)
@ = (1 —d)'qy with probability 1 — p
Therefore®, at time 1 profit will be either (1 +u) [(1+ o) — 1+—m] Podo OF
(1-d)[(1+a) - l—l-_m} Pogo- The value at t = 1 of the profit stream in case
j is:

Z(]_ + T)t - jPOQO

t=1
where
1+r 1+r 1
YVis(—— - — - (4)
r—a—jl+a) r+v—j31-7v) 1+m
with j = —d, u.

Introducing a common demand trend with upward or downward movements from the
trend would be possible, but it would introduce little additional substance.



2.1 The Bad News Principle

The typical investment problem considered in the regulation literature takes
up the following form. A firm has the opportunity to make a (sequence of)
investment(s), K, which reduce variable cost and whose level is determined
by profit maximization: the marginal revenue from investment is equal to its
marginal cost (r). If profit is m = R(q) —rK —C(q, K), where R(q) is revenue,
q is output and C' is variable cost, profit maximization entails r = C’(q, K).
Notice that this coincides with welfare maximization. In the presence of
a regulatory constraint, price (and hence R) varies with marginal cost, so
that an increase in K may decrease the firm’s revenues. This introduces a
distortion in the firm’s choice known as “underinvestment”.

The traditional analysis studies the investment decisions of a regulated
firm concentrating on a one-period profit function, which summarizes the net
present value of future cash flows. In particular, it implicitly assumes that
investment is fully reversible®. This assumption is fairly unrealistic. Hence,
in this section we will discuss irreversible choices, under a given investment
time, and, in the next section, we will further extend the model allowing for
delays in investment.

Moreover, here we want to consider a slightly different investment prob-
lem, namely one where the firm needs to invest in order to operate’. At time
0 the firm must decide whether or not to make an investment of given cost I.
In this set-up, it is natural to look at ”underinvestment” as a case in which
investment of a given cost is either less likely to occur (underinvestment in
expected value) or postponed (so that the present value of the investment is
reduced).

6Full investment reversibility implies that the resale price of capital is equal to its
purchase price, namely that the secondary market is efficient. Under reversibility, the firm
installing capital acquires a put option and a call option of equal value; this is why the
two options cancel out and there is no need to explicitly specify their presence.

Reselling the capital later is like exercising the put option. If, conversely, the firm
expands installed capital the call option is exercised (see Abel et al., 1996).

When investment is only partially reversible, i.s. the resale price of capital is less than its
purchase price, the value of the put option is lower and the incentive to invest is reduced.
When, finally, investment is irreversible, no resale is possible and the value of the put
option is nil.

In studying investment decisions with partial reversibility, Abel and Eberly (1996) show
that even when the difference between the purchase and resale prices of capital is small,
the case of full irreversibility provides a better approximation to investment behaviour
than the case with costless reversibility. This induces us to consider the irreversibility case
as an approximation of the more plausible case of partial reversibility.

"We will later show that analogous conditions hold in the case of cost-reducing
investments.



In order to make the problem “non banal” we assume that the following
holds:

e Assumption 3.

I
Y, >—>Y_ 5
DPodo Trr dPoqo ( )

This means that the investment project will be profitable only in case
of “good news”, i.e. if demand increases. Clearly, as the discounted cost
of investment is larger than the present discounted value of future profits in
the bad state, investment is not profitable if demand decreases. This implies
that a downward jump in the firm’s profitability can be interpreted as “bad
news”. If either side of the above double inequality did not hold, the problem
would be trivial.

Let us now study the firm’s investment policy. The expected present
value at time 0 of its future payoffs, net of the investment cost (N PV}), is®

m
NPVy=|— Y., 1—p)Y_ —1
0 1+m+ﬂ + (1= p)Y_q| Poqo (6)

In the absence of any opportunity to delay investment, the firm’s decision
is the one that maximizes the net present value of the whole investment
opportunity, namely the firm chooses

max { NPV}, 0} . (7)
In other words, the firm will invest if NPV} is positive, i.e. if

1 I

L 8
I R G G (®)

Po > —0
1+m

Notice that when investment is reversible, given (5) if at £ = 1 demand
goes down (j = —d) the firm will divest.

8More formally the expected present value at time 0 of its future payoffs, net of the
investment should be written as

m
NPV, :max{|:— +PYu+(1—P)Y—d} Poqo —I,O}-
14+m

However, given assumption (5), the above equation reduces to (6).



When, instead, investment is irreversible and the firm is able to postpone
investment, rule (7) is incorrect, since a positive value of NPV} is not suffi-
cient to invest. If the firm can postpone investment, in fact, it has the possi-
bility of waiting for new information. This implies that the firm is endowed
with an option?. To decide when to invest, therefore, the firm compares
N PVj with the expected net present value of the investment opportunity at
time 1, NPV}

I
NPVy =p (Yupo% - m) 9)

which is positive given (5). Note that this implies that the firm invests at
time 1 only if it receives good news (i.e. it faces an upward shift in profits)!°.

While the firm’s decision to invest at time 1 is “banal” because of complete
information (the firm invests only in the good state), at time 0 the firm
has to decide whether to invest immediately, or whether to wait until full
information is obtained. If it invests now, it will enjoy the profit stream
between time 0 and time 1. However, investing implies the exercise of the
option to delay and entails paying an opportunity cost, equal to option value.
The optimal decision is the one that maximizes the net present value of the
whole investment opportunity, namely entails choosing:

max {NPVy, NPV;} . (10)
A comparison of problem (7) with problem (10) allows us to compute the
value of the option to postpone. Subtracting (7) from (10) yields
max { NPVy, NPV;} — max {NPV;,0} = max {NPV;,0} (11)
which is the value of the option to postpone investment.

Of course, given assumption (5), the solution to (11) is (9). Therefore,
the optimal stopping time is given by the comparison between N PV, and

9 As shown by McDonald and Siegel (1985, 1986), the opportunity to invest is analogous
to a perpetual call option.

10More formally the expected present value at time 1, net of the investment, should be
written as

I I
NPV; = pmax <YuP0¢I0 1 0> + (1 — p) max <Y—dPOQO - 1_—|—r’0> .

However, given assumption (5), the above equation boils down to (9).



NPV;. If, therefore, NPV, > NPV;, immediate investment is undertaken.
If instead N PV; > N PV,, then waiting one period is better.

The investment rule can be rewritten by comparing the alternative poli-
cies. Setting (6) equal to (9), and solving for p, we thus obtain

1 1+r—p [

=t (1=-p)Y.y 1+7 g

Py = (12)
Equation (12) defines pf as the trigger price in this reference case: namely
when py > p§, immediate investment is preferred. As shown by (12), the
investment decision depends on the extent of the downward demand shift,
d, and its probability (1 — p), but is independent of the upward move’s
parameter.

This point is an immediate consequence of Bernanke’s (1983) Bad News
Principle (BNP): under investment irreversibility, uncertainty acts asym-
metrically since only the unfavorable events affect the current propensity to
invest'!. The BNP implies that the higher the investment cost I, the higher
the return required to compensate for irreversibility and, consequently, the
higher the trigger point.

3 Regulation and irreversibility

In the previous section we have restated a well known result in the theory
of investment. Let us now turn to an explicit consideration of the price
regulation, in order to establish how it affects a firm’s decision.

3.1 Pure price cap

We will first assume that regulation follows the traditional price-cap rule
known as RPI — x (Beesley and Littlechild, 1989).

Definition 1 (Price Cap) Under the Price Cap RPI — x rule, if the firm
starts producing at time t, the initial price p; s given, and its dynamics over
an infinite period of time is defined by the difference between the inflation
rate (changes in the retail price index, RPI) and an exogenous factor x:

pt+1 = (1 + RP.[ — Cﬂ')pt (PC)

fortzg

11 As stated by Bernanke (1983), ” The investor who declines to invest in project i today
(but retains the right to do so tomorrow) gives up short-run returns. In exchange for this
sacrifice, he enters period t+1 with an ”option” (...). In deciding whether to ”buy” this
option (...), the investor therefore considers only "bad news” states in t+1 (...)” [p. 92-3].

10



The factor x is linked to the productivity gain (cost reduction) that the
regulator expects the firm to be capable of achieving every year, but is de-
termined at the beginning and is thus exogenous to the firm. As already
stressed, the logic of the RPI —x rule is that, by making prices insensitive at
the margin to firm’s choices, it appears to eliminate underinvestment. Also
notice that here we assume that price dynamics is given over an infinite hori-
zon, so that current investments have no impact on prices either in the short-
or in the long-run.

If the firm does not undertake the investment, it cannot produce and its
profit is zero. Let us assume for the moment that investment can only take
place at time 0, so that the firm has no option to delay it; we will relax this
assumption in the next section.

If the firm invests, per-period profits are thus'?

II, = [po(l + RPI —z)" — co(1 — y)f] ¢

When investment is irreversible but the firm cannot postpone it, the firm
will invest if the expected net present value at time 0 of its future payoffs is
positive:

NPVE = —T+4 (po—co) qo + Z [0 (¢hpo — Vico) + (1= p) (¢po — vhco)] @0 > 0

t=1

(13)
%ﬁ_ﬂ. If the initial price pq is set at a level above initial cost ¢y, so that

po = (1 +m)cy, we solve (13) for py obtaining

1 I
Py = — (1)

m 1 1 1 1 1 1
l-l—_m +p <1—<pu - 1—vy 1+m) + (1 - p) (1—<pd - 1—vg 1+m) 0

This leads to the rule: invest if py > pg . Otherwise, investment is never
undertaken. The term poc thus denotes the trigger price in case of pure price
cap regulation.

It is easy to check the following

C
Remark 1 An increase in x increases pg (i.e., %L;) > 0). This implies that
having a RPI — x reduces the incentive to invest.

12 As we look at the consequences of different regulatory schemes on a firm’s decisions,
costs are considered known. The choice of the optimal price should instead consider
asymmetric information, but this is beyond the scope of the current work.

11



3.2 Profit sharing

To tackle the fairness concern previously mentioned, an alternative to RPI —
x has been proposed, called sliding scale (or - less cryptically - profit shar-
ing)!?. This scheme is defined as follows:

Definition 2 (Profit sharing) Under the Profit Sharing requlatory mecha-
nism, the RPI — x_rule remains in place as long as profit remains below
an exogenous level I1. If I1; > H in period t + 1 the price decrease factor
increases to ' > x:

(14 RPI —x)p, if I, <TI
Pty1 = _ (PS)
(1+ RPI — a')p; if Iy > 11, with 2’ > x

Thus, the price decrease factor remains constant as long as profits are
considered “reasonable”. When the become “excessive”, this mechanism re-
distributes part of the surplus to the consumers. In this section we analyze
this issue. B

This switch point II will be reached depending on whether the state at
time 1 will be good or bad. Define the switch time for the good state as

ty=t]| {[po(l + RPI—2)" " — (1 =) (14 u) g = ﬁ}

The definition of #; implicitly assumes that the starting price guarantees a
profit level below II. We also assume that if the bad state occurs, the switch
point II will never be reached, namely

ity =t | {[po(1+ RPT =2/} = o1 =) (1= d) "o =TT} (15)

Assumption (15) - which defines a “bad news” as one associated to a profit
level bounded away from II - deserves a brief comments. The fact of reaching
a switch point II is implicitly a good news.

Remark 2 If we assumed that t5 exists, we would implicitly assume that
the “bad mews” simply consists of a delay in achieving high profits, namely
a delay in good news. This is a contradiction in terms. Given the existence
of t, in fact, the firm would face two alternative states, one better than the

13Notice that one could also have an intervention rule based on the level of revenues
instead of profits; see Sappington and Weisman (1996).

12



other. In both cases, however, the firm would gain from investing. It is quite
obvious, given the established results on investment theory, that the behavior
of the firm would not change because of the increase in the x factor. Our
result would thus follow in quite a trivial way, since the firm would invest at
time 0, irrespective of the toughness of the requlatory policy. Note that this
assumption does not entail particular restrictions or a loss of generality. In
any case, the following section presents the same result in a more general
set-up.

Let us now write the NPV,

m > vt
NPV = -] 4+ (—— +(1 - , A — 16
0 +(1+m)p0% ( £)Poqo [; (80(1 1tm + (16)
o, vt = * vl
+ pPogo - Zl@ou—1+m]+ > %—Hm}
t=1 t=t1+1
with ¢, = %ﬁpx) > @l = %ﬁm_m/) . Solving NPV = 0 for py,
one finds
n= 1 -
T 1-pit! fatt 11 1 11
Thm T p( 1f<pu + ﬁ—w; - 1w 1+m) +(1 =) (1*% 1 Hm) o

Considering (14), easy computations show that pj > p§. Therefore:

Proposition 3 (Underinvestment) Consider a requlated monopoly which has
to decide on an investment of given amount. When demand is uncertain as
modelled in (3) and in the absence of any option to delay investment, cor-
recting the RPI —x rule with a Profit Sharing element makes investment less
likely for any given value of py.

Therefore, in the absence of any option to delay, a profit-sharing formula
might discourage irreversible investment. More precisely, if the initial price
is between the two thresholds (i.e., if py € [pg; P )) a project that would
be carried out with a price cap regulation would not be initiated with a
profit sharing system. This is because the extraction of a larger amount of
monopoly rent reduces N PV}, thereby increasing the trigger point and, thus,
discouraging investment.

13



Remark 3 We label the above result “underinvestment” in that, given ini-
tial price and a distribution of cost parameters, the expected value of invest-
ment 1s higher under Price Cap than under Profit Sharing. Notice that while
the initial price po is determined by the regulator (and thus is not a ran-
dom element from the decision-maker’s point of view) cost parameters are
not necessarily known to the requlator. Indeed, the RPI — x rule finds its
rationale in the existence of asymmetric information on the firm’s cost para-
meters, which from the viewpoint of the decision-maker are typically modelled
as random variables (see, among others, Armstrong et al. (1995)).

This first result replicates the standard one, confirming that, under cer-
tain circumstances, Profit Sharing reduces the incentives to invest of a regu-
lated monopoly. As will be shown in the next section, however, Proposition
3 fails to hold when the firm can choose when investing.

4 The value of the option to defer investment

When the firm has the opportunity to postpone investment, a positive value
of NPV, is no longer a sufficient condition for investing. When the firm
may postpone investment, in fact, delaying the decision to invest allows the
firms to acquire further information. This implies that the option to delay
is valuable. To decide when investing, therefore, N PV, must be larger than
the sum of the effective cost (I) and the opportunity cost (i.e. the value of
the option to wait). For simplicity, in this section we stick to the previous
demand structure and we assume that the firm can choose whether investing
at time 0 or at time 1 (or never), but is not allowed to further postpone
investment (later on this assumption will be dropped, showing that the same
result follows).
Under regulation, condition (5) must be modified as follows

o0 t o0 t
' Uy I ¢ Uy,
Poqo tE—1 |:90d 1 m] 1+7 Poqo ;_1 [S% 1 m] ( )

Condition (18) implies that, in the good state, the present discounted value
of future profits is larger than the present discounted value of the explicit
investment cost, and vice versa. Obviously, if regulation is too heavy the
second part of (18) does not hold and - trivially - no investment will be
undertaken; we do not consider this case, where the market never opens.
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4.1 Pure price cap

When the regulated firm is endowed with an option to delay, its problem is
similar to (10), namely

max { NPV, NPVC} (19)

As investment is irreversible, the IV PV} is the same as in the problem without
the option to delay (see (13)), i.e. NPVFY = NPV,C. The option to defer
investment matters instead in the calculation of the option value, which can
be obtained considering that

o0

(e
l+r & P T ) P00

I 1 1 1
_ _ + — . . 20
p{ 1+7r (l—gou 1—wv, 1+m>p0%] ( )
Notice that the possibility to defer investment creates an option value relative
to the case where investment can be undertaken either at time 0 or never.

The option expires at time 1: it can be exercised either at time 0 or at time
1.

NP‘/IPC = p

Using equations (13) and (20), and solving for py one thus obtains

pFC = 1 l+r—p I
o= 1 11 1
Hlm+(1_p) (1—<pd - 1—vq 1+m) T %

which is the trigger point above which the present discounted value of cur-
rent and future profits is greater than the summation of the explicit cost
of investment I plus the opportunity cost (the call option). If py > p©,
therefore, investment is undertaken immediately. Otherwise, the firm finds
it more profitable to postpone it.

It is easy to show that pf’® > p§. This inequality is a straightforward im-
plication of the introduction of the call option. This option is an opportunity
cost which must be added to the explicit cost of investment I.

As can be seen, if the firm has the option to postpone investment, the
investment decision depends on the size of the downward move, d, and its
probability (1 — p), but is independent of the upward move’s parameter u.
The BNP implies that the higher the investment cost I, the higher is the risk
premium of investment (and, consequently, the higher is the trigger point

pee).

: (21)
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4.2 Profit sharing

Under profit sharing the firm’s problem is to choose
max { NPV, NPV"5}

where the NPV, is the same as in the previous section (see (16)), while

NPVPS is
I L—ppt o 1 1
vaPS — _ U U o X
! P 1+r+<1—<pu +1—<p; l—v, 14+m Potto
(22)
Setting (16) equal to (22) and solving for py yields
1 1+7r— I
P = L= @

1 11 T
Hlm + (]' B p> (1f<pd = 1+m) tr g

The firm invests at time 0 whenever py > p’®. Comparing this expression
with (21), one can easily see that

po° =ppC
We can thus summarize this result in the following Proposition.

Proposition 4 (Neutrality of profit sharing) Consider a regulated monopoly
which has to decide on an investment of a given amount. When demand is
uncertain as modelled in (3) and the timing of investment is endogenous,
correcting the RPI — x rule with a profit sharing element does not make
tnvestments less likely relative to the pure price-cap device.

Since the tightening of the price cap takes place only in case of “good
news”, the BNP implies that, while profit sharing actually reduces the firm’s
rents, it does not interfere with its decision to invest relative to the pure
price-cap rule. There are no investment projects that will be undertaken
under one regime, but not under the other.

As will be shown in section 5, the result of Proposition 4 depends neither
on the assumption that demand follows a bivariate stochastic process nor
on the hypothesis that uncertainty vanishes after one period. Even when
the firm’s payoff is described by a continuous stochastic process, lasting to
infinity, the same result holds.
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The intuition for this result can be obtained considering how the option
value of investment changes the firm’s problem. Relative to the case of pure
price cap, profit sharing reduces the net value of the project at time 0 (N PV})
and its option value (NPV}) by the same amount. Therefore the difference
(NPVy — NPV;) is unaffected by profit sharing, and so is the investment
decision.

5 The model in continuous-time

So far we have used a very simple model, where investment could be un-
dertaken only at time 0 or at time 1. Here we want to extend the previous
framework to a continuous time set-up, which allows us to show how the pre-
vious result still holds in a more plausible model, where the firm can invest
either at time 0 or at in any future date. Furthermore, using the findings
of the ICAPM we can describe the behavior of a risk-neutral firm owned
by risk-averse shareholders, thereby taking into account their risk premium
[McDonald and Siegel (1985, 1986)].

Once investment is undertaken, current profits are

1(t) = [p(t) — c(®)] () (24)

The firm has an infinite time horizon and maximizes the (discounted) present
value of future expected profit. Price is subject to public regulation, and we
will stick to the assumption that regulation follows the traditional price-cap
rule known as RPI — .

17



For simplicity we assume that [p(t) — c(¢)] has the following dynamics!*

dp(t) = c(t)]

S~ [p(t) — )] (RPT — 3+ ) (25)

where the parameter v captures possible cost reductions over time.
To model demand uncertainty, a natural extension of the bivariate struc-
ture (3) is the following

e Assumption 2’ (demand). Demand follows a geometric Brownian
motion

dq(t) = ogq(t)dt + oqq(t)dzg (26)

where o, and o, are the growth rate and variance parameter, respec-
tively.

Using equations (24), (25), and (26), and applying 1t6’s lemma we can
obtain the profits’ dynamics

14 The assumed dynamics of [p(t) — c(t)] is necessary for obtaining a closed-form solution.
Equation (25) is a special case of a more general formulation obtained by assuming that
output price and operating costs evolve according to the following equations:

p(t) = poe P01

and

c(t) = coe™ "t

To show this, let us use the above equations and differentiate [p(t) — c(¢)] . We thus obtain

= {(RPI+~y—2x)[p(t) —c(t)] +
(RPI+~ —x)c(t) — v [p(t) — c(®)]}
Setting term
{(RPI +~v—x)c(t) —v[p(t) —c(t)]} =0
we obtain (25). Note that the above equality implies that the mark-up is constant, i.e.

p(t) —c(t) RPI+~vy—x
c(t) vy
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dII(t) = all(t)dt + ol1(t)dz (27)

where a = RPI —x+ v+« is the expected growth rate of per-period profits
and o = o, is the standard deviation'”. Given the dividend rate § (which
must be positive in order for the net value of the firm to be bounded), if
the shareholders are risk-neutral, we must have r — 6 = «. If, conversely,
shareholders are risk-averse, the difference r — ¢ takes account of a the risk
premium!®. Thus, with no loss of generality we assume r — § = RPI — x +
7 + 0. Solving for the dividend rate we thus obtain

8(x)=r—RPI+z—a,—"v (28)

Let us now use these results in the two cases we consider.

5.1 Pure price cap

The firm must solve a standard optimal stopping time problem, namely it
must choose the timing of investment to maximize the expected present value
of its payoff. The problem can be represented as follows

m?XE [(Vpe(I(t)) — I)e™™] (29)

15The model could be easily extended by assuming that [p(t) — c(t)] follows a stochastic
process, i.e.

d[p(t) — ()] = [p(t) — (O] [(RPI +~ — x)di + 0pedzpc]

This may be the case, for instance, if the RPI is a random variable and if technology
shocks may take place. Thus, given the correlation coefficient E[dz,, dzpe| = Kgpedt and
using Itd’s lemma, current profits are

1
dIi(t) = TI(t) { {a + §I€qpc0'q0pc:| dt + (o4dzq + apcdzpc)}

which is another standard geometric Brownian motion that can be studied in a similar
way.

16 According to the Intertemporal Capital Asset Pricing Model, in fact, the total expected
rate of return p = 6+« must satisfy the relationship p = r4+Aop,, where A = (up,—7)/om
is the market price of risk, with parameters p,;, 0%, and p,,; representing the expected
return, the variance of the market portfolio and the correlation coefficient between the
rate of return on the asset and that on the portfolio, respectively. Under risk aversion,
therefore, the equality » — § = a — Aop,, holds. As shown in Merton (1990, Ch. 15), the
risk-adjusted drift & — Aop,, allows the valuation of the firm as if it were risk neutral.
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where F [.] denotes the expectation operator, Vpc(IL(t)) is the project value
under the price-cap regulation, i.e. the NPV of the project at time ¢t. The
solution of the problem, i.e. the optimal time of investments, will be defined
as T*. Problem (29) is therefore analogous to the discrete-time problem (19).

Using dynamic programming, the firm’s value Vpc(I1(t)) can be written
as

Vee(IL(t)) = II(t)dt 4+ e " E [Vpc(I1(t) + dIL(t))]
Expanding the right-hand side and using [t6’s lemma one obtains

o2
2

where Vpg, = OVpc/OIL(t) and Vpey,, = 0*°Vpo/OU(t), respectively. For
simplicity, hereafter, we will omit the time variable .

To compute the value function, it is assumed that Vpe (0, 2) = 0, namely
when II is very small, the project is almost worthless, and that no speculative
bubbles exist!”. Thus, equation (30) has the following solution

rVeo(IL(1)) = T1(t) + (r — 8(2)) IVpcy (T1(t)) + - TP Ve, (TI(t)) - (30)

Veo(IL z) = T1/5(x) (31)

As shown by Dixit and Pindyck (1994), the option function has the following
form

Opc(Il, z) = AT @ (32)

where A is a parameter to be determined, and 3, (z) is the positive root of
the following characteristic equation'®

2

FHB 1)+ (r = b)) —r =0

It is easy to ascertain that %ﬁx) > 0. The optimal investment timing can

be computed using the Value Matching Condition (VMC) and the Smooth

1"When II is very small, in fact, the probability of it rising to the trigger point is close
to zero. Therefore, the value function is almost worthless. For further details on the
boundary conditions see Dixit and Pindyck (1994, Ch. 5 and 6).

18The positive root is
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Pasting Condition (SPC). The former condition requires the net present value
of the project to be equal to the option value to defer investment, Opc (11, x),
namely

Vpe(IL, z) — I = Ope(1, z) (VMC)

The second condition requires the slopes of the functions [Vpe(I1, ) — I] and
Opc (I, ) to match

0 [Vpc(H, $) - U _ aOpc(H, x)
o1l o1l

Conditions VM and S PC characterize optimal time T™. Notice that, given
(27), this value can be associated to a profit level IT*: whenever current profit
reaches IT*, the firm invests.

To solve the optimal stopping time problem, let us substitute (31) and
(32) into the VMC and the SPC. We thus obtain a two-equation system
with two unknowns: the trigger point of II, above which investment is prof-
itable, and the coefficient A. It is easy to show that the trigger point is'?

(SPC)

Bi(z)
po(r) = ————6(x)] 33
bele) = A0 (33)
The option value multiple in equation (33), ﬂlﬁ éSEZl > 1, shows that the
gross present discounted value Vj.(IIho(z),z) = H*%w()x) must exceed the

investment cost I to compensate for investment irreversibility. It is easy to
ascertain that

B (z)
0 <ﬂ1(1af)—1) . 1 9B, ()
= — 5 <0 (34)
Ox (3,(x) 1P Oa
namely a tightening of the price cap (increase in ) reduces the wedge ﬂ?(lT()wzl

and, therefore, decreases the option value. However, this tightening also in-
creases 6(z) and thus reduces the value of the project, V5. (I1, ). This means

19The computation of A is not necessary for our purposes. However, substituting IT(z)
into the two-equation system one easily obtains

__ 1 © N A@
A= Bl(l’)—l(HPC( )) .
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that an increase in x decreases both the expected profit and the opportunity
cost of investing. If we define the elasticity of the wedge to x as

8, (x)
0 (m(lac)—l) z

n(x) = 5 T < 0
B1(z)—1
we can see that
Mlpe(x) 6(x)
—PC\ 1 7
5 <1t n(z) "

As shown by Dixit and Pindyck (1994), who provide some numerical sim-
ulations, for reasonable values of the parameters, the sign of the derivative
Mpole) o . | . 1 the o £ . h .
o positive, namely an increase in the z factor increases the option
function more than the value function, thereby tending to postpone invest-
ment. Again, we see that the RPI — z rule is not neutral to investment

decisions, as claimed by Beesley and Littlechild (1989).

5.2 Profit sharing

Let us now turn to the problem when regulation follows a Profit Sharing rule.
If II < II the Brownian motion is the same as in the previous section. If,
instead, IT > II, the Brownian motion describing the regulated payoff is*

dll = o'Ildt + olldz (35)

with o/ = RPI — o'+ v+ o, < . If II > ﬁ, therefore, the dividend rate
is given by equality r — 6(z') = o/ — Aop,,;, which implies the inequalities
§(z') > 6(z) > 6. When a switch point II is introduced, both the option
function and the value function must be solved separately for II < II and
II > II. Then, the values and derivatives of the functions are equated at the
switch point IT =1II (see Dixit and Pindyck, 1994, pp. 186-189).

In order to check whether an investment project is profitable, both ex-
plicit and opportunity costs must be taken into account. Thus, investment
is profitable if (and when) the present discounted value of future profits, net
of both costs, is positive. Similarly to the price-cap case, the firm’s problem
can be represented as follows

max B [(Vps(IL,z) — I)e™™] (36)

20N~otice that it may well happen that profit first goes beyond ﬁ, while at a later stage
IT < II. In this case - in line with the spirit of the mechanism at stake - this formulation
guarantees that the price cap goes back to its original level.
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Let us start with the analysis of the option value, which is a function of
current profits, i.e. Opg(II,x). In the (0,1I) region, condition Opg(0,z) =0
holds, and, therefore, the value function has the standard form CI1P1(=)
In the (IT,00) region, instead, the option function has the general form,
namely it is given by the sum of BI17: (") and B,I1P2(=") (with B; and By to
be determined), where (3,(z') and 3,(2') are the roots of the characteristic
equation

2

FHB=1)+(r—6)s—r =0

with 8;(z’) > 1 and 3,(2") < 0*'. To sum up, the option function is

CII% @ if <1l
OPS(I_L SL‘) = _ (37)
BITA @) 4 B11P2()  if I > 11

By equating the values and the derivatives of the two components of the
option function at point II = II, we can compute B; and B, as functions of
C1. As shown in Appendix A, B; o« C; and By o (.

Let us now turn to the value function. The general solution of the value
function is given by the sum of a perpetual rent, with discount rate §(z), and
a homogeneous (exponential) part. Again, it is assumed that Vpg(0,2) =0
(namely when II is very small, the project is almost worthless) and that no
speculative bubbles exist. Thus the solution of the value function boils down
to

3+ AW i T < II
VPS(H, x) = _ (38)
% + VBI1P() if T > 11

As shown in Appendix A, stitching together the two components of the value
function (38) at the switch point II = II, one obtains parameters V; and
Va, where V; < 0 and V5, > 0, respectively. Both V; and V; depend on
the regulatory coefficients « and 2. In particular, V;11%1(*) is negative and

21The roots are

W1 =68 1 r—68)\> 2
51)2(x):§_r072(x)i\/<§_7“ 02($)> _1_0_72"’

and it is easy to ascertain that, given derivative 8/381_759:) > 0, inequality §;(x) > §;(x)
holds.
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represents the present discounted value of future profit reduction due to the
profit sharing (when II goes beyond II). V,I1%2(*) is positive and measures
the present discounted value of the future increase in the profit participation
when II goes below II (in fact OI1%2(*) /911 < 0).

As shown in the previous section, the firm’s optimal investment timing is
obtained by applying the VMC and SPC. Namely, substituting equations
(37) and (38) into the VMC and SPC one obtains the trigger point and
the unknown parameter of the option function. In the (0, ﬁ) region, these
conditions lead to the following system

s+ I — 1= o
(39)

Tlx) + ‘/vlﬁl(x)nﬁl(ﬂ?)*l _ Clﬁl(m)nﬁl(ﬂ?)*l

which yields the same trigger point as the one obtained under the pure price-
cap system in equation (33)%?

Mpg(z) = %5(@1, (40)
and
_ L Thpg(x) "
C, = ‘/1_'—61(33) 50 —
— ﬁZ(x/) —1 ( ,) ( )Nl—ﬂl(m) 1 H*PS(.I.)F%(I)
B - B@) o@w@  H@ s@

The equality between IT5¢(x) and ITp(x) establishes the following:

22The computation of C; is not necessary for our purposes. However, it is easy to show
that it is equal to

_ 1 Mpgl) ™7
C1 = V1+61($) PS(SQ’;) =
— /62(1'/)_1 6($/)_5(m)~17ﬁ1(m) H*PS('T>1 31 ()
T BW AW e@pE - m@ ew
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Proposition 5 (Neutrality of profit sharing in continuous time) Consider a
requlated monopolist which has to decide on an investment of a given amount.
When demand is uncertain as modelled in (26) and the timing of investment
s endogenous, correcting the RPI —x rule with a profit sharing element does
not affect the timing of investment.

Remark 4 Inequality IT}¢(x) < II is necessary for the above solution to ex-
ist. This is a totally natural assumption in our setting. To see why, remember
that IT5g(x) is associated to an investment time T}g. Having Ipg(x) > 11
would mean that investment is undertaken (i.e. production begins) when the
profit level is already above II. This implies that profit sharing intervenes
since the moment of investment itself. But then the RPI — x scheme would
start from a value of x already equal to x'. This obviously contradicts the
definition of profit sharing, i.e. the idea that requlation starts with a given
value of x, which is made more stringent at a later stage, in case profit goes
beyond a certain level?.

The neutrality (indifference) result is an extension of Proposition 4, and
can be explained as follows. Profit sharing is equivalent to equity participa-
tion by the consumers. Recall, in fact, that when II > II, a given part of the
surplus is redistributed to the consumers. When instead II < II, consumers
do not share the bad result. Using the real option approach we can thus say
that the profit sharing device is equivalent to a case where consumers are en-
dowed with a put option with strike price IT, written on the firm’s profits. If,
therefore, the firm’s return drops below II (bad result), consumers sell their
equity participation at zero price. Then, they will re-buy (at zero price) their
participation when the firm faces a good result, namely when IT > L.

To clarify this point, let us concentrate on the (0, IT) region (with ITh¢(z) <
I1), and recall equations (37), (38) and the solution of C;. The negative term
ViI171(*) measures the value of the consumers’ put option, which must be
added to both the project value and the option function. This addition is
necessary because, irrespective of whether the firm is waiting or producing,
a worthy put option is owned by the consumers. Since V;I1%1(®) enters both
functions, the difference [Vps(Il, z) — Opg (11, z)| is independent of the switch
level ﬁ, thereby making the profit-sharing device neutral.

23Otherwise, the trigger point would have to be computed in the region (II, 50). A non-
linear system of equations would then be obtained. In this case, II}fg(z) and C; would be
the unknowns, but the solution for C; would have a different from the one obtained in the
(0,1I) region. Moreover, given the non-linearity of the above equations, the system should
be solved numerically.
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Easy computations show that, for a given payoff, the higher the switch
point the greater the value of Vi. This implies that % = % > 0 (with
V1 < 0). Therefore, an increase in II raises both the value and the option
function by the same amount, and vice versa. Finally, note that the higher
the switch point II the lower the put option value (-ViII%1(®). Of course, for

IT — oo, profit sharing vanishes, and the put option turns to be nil.

6 Incremental investment and cost reduction

So far, we have considered investments which are necessary to produce. A
second category of investment is at least as relevant (and analyzed in the
literature), i.e. cost-reducing investments. In this section we want to extend
the previous framework to accommodate for the latter category, showing how
the same results follow. To this end, we modify Assumption 1 in the following
way:

e Assumption 1’ (investment). Production requires a one-off invest-
ment of a given amount /7, that is undertaken at time 0. At any time
t > 0, the firm has the possibility to invest a further amount I, which
reduces its variable cost.

Notice that the firm is not obliged to undertake the total amount I + I
of investment immediately. Rather, it can wait until the current payoff is
sufficiently high. By investing Iy, the firm receives a per-period payoff II
and acquires an (American call) option to invest again. When it undertakes
investment [, variable profits increase.

The cost reduction can be modelled as a downward jump in operating
costs with a contemporaneous upward jump in profits. For simplicity we
assume that the after-investment profit margin [p(t) — ¢(t)] follows the same
dynamics as [p(t) — ¢(t)], namely

1(t) = [p(t) = ()] q(t) = ¥(t) [p(t) — c(t)] a(t) (41)

where W(t) is

lfort<T
‘I’(t)_{\lleforw:r’ (42)

and T is the optimal time of investment I, to be determined?*. Notice that
(42) captures the idea that the second investment reduces costs, but a similar

24The assumption on the profits’ upward jump implies that, after investing I, they
evolve according the following

U[dII(t)] = WIL(t)[adt + odz).
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story could be told if investment contributes to expand revenues even further.

6.1 Price cap

Let us now compute the firm’s value function. Recall equation (30). When
investment /; is undertaken, given the boundary condition V3. (0,z) = 0,
the value function has a standard solution

H T
Vpo(Il,z) = 5(@) + By 117 ) (43)

Namely, the firm’s project is given by the perpetual rent I1/6(z) plus the
term E;I171(*) which measures the value of the option to invest. Thus, the
firm may find it profitable to invest if the net present value of investment
I, is positive, i.e. V3o (II,z) > I;. Therefore, the firm may decide to enter
this market even if the present value of its current profits, are negative, i.e.

1
== < I.
6(x)
When the firm invests I, per-period profits jump upward and the firm’s
project becomes VA (II, x). Since, by assumption, there are no bubbles and

condition V34(0,z) = 0 holds, the firm’s value is simply a perpetual rent

Vil x) = 52 5 (44)

Given equations (43) and (44), one can compute the trigger point above which
incremental investment is profitable. It is worth noting that the project’s
function V2,(IT, z) includes the opportunity cost of undertaking investment
I5. On the one hand, in fact, investment I increases profits. On the other
hand, it entails the loss of the perpetual rent earned with investment I; and
the exercise of the call option. Thus, investment is profitable if the firm’s
project is at least equal to the sum of the explicit cost I5 and the opportunity
cost VAo (IL, z). In this case, therefore, the VMC and SPC define a two-
equation system

VI—'I’C<H7$) = VlgC<H7$) — I

Vpo(La) _ OV (L)

oIl o1l

where the trigger point H}'C and parameter F; are the unknowns. Solving
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the system in the same way already employed yields?

Bi(z)  b(x)

| g
e By(z) — 10 —1

I (45)

6.2 Profit sharing

Let us now turn to the Profit Sharing rule. If II < II the Brownian motion is
the same as in the previous section. In the (0, II) region, the firm’s project is
given by the perpetual rent I1/6(z) plus a term F11%(*) which measures the
value of the option to reduce costs. In the (ﬁ, o0) region, the value function
has the general form, namely it is given by the sum of G;11%1(*) and G,I1%2(*)
(with G and G2 to be determined). To sum up, the value function is

s+ AA@ i T <TI
Vps(IL,z) = B (46)
5+ GiIT% @) 4 GoIIP() if T1 > 11

By equating the values and the derivatives of the two components of the
option function at point II = II, we can compute G; and G5 as functions of
F. Tt is possible to show?® that G; oc F} and Gy oc F.

Let us now turn to the value function after investing I5. The general so-
lution of the value function is given by the sum of a perpetual rent, with
discount rate §(x), and a homogeneous (exponential) part. Again, to com-
pute the value function, it is assumed that V3¢(0,2) = 0 (namely when IT is
very small, the project is almost worthless) and that no speculative bubbles

25The unknown parameter is equal to

1-81(=)

B = e > 0.

;1
B (z)o(x)

Notice that % > 0, namely the greater the increase in profitability, the more valuable
the option to reduce costs is.
26The two-equation system obtained is:

6(x) 6(x)

sy + Py (@)TI 01 = s Gy () TGO,

{ I i) = I G T8 ) 4 GullP(),
— %)

Solving for GG; and G2, one obtains G; o F; and Go o Fj.
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exist. The function thus reduces to

o+ L@ if T <11
Vis(ILz) = (47)

ik + LI if T > T

As shown in Appendix B, parameters L; and L, are equal to L; = ¥V} < 0
and Ly = WV, > 0, respectively. Recalling equation (38), we can thus show
that V3g(II, x) = WVps(II, z). Like the one-off case, both L; and Ly depend
on the regulatory coefficients  and z’. In particular, L;I1%1(®) is negative and
represents the present discounted value of future profit reduction due to the
profit sharing (when II goes beyond II). L,IT1%2(*) is positive and measures
the present discounted value of the future increase in the profit participation
when IT goes below II (in fact OI1%(=) /911 < 0).

As shown in the previous section, the firm’s optimal investment timing is
obtained by applying the VMC and SPC. Substituting equations (46) and
(47) into the VMC and SPC one obtains the trigger point and the unknown
parameter of the option function. In the (0, IT) region, these conditions lead
to the following system

UII T _ I T
53} + Llﬂﬁl( ) I, = 3@ _|_F1Hﬂ1( )

% + Llﬁl(x)ﬂm(w)—l — ﬁ + Flﬁl(x)nﬂl(a:)—l

which yields (45)%7

() ) 6(x) .
Bi(z) -1 V-1

Mp = I (48)

Comparing conditions (45) and (48), it appears that

R &
HPC - HPS

This can be summarized in the following way:

2TEasy computations show that

/ 1—-81(x)

Tpg(x)

1
B=lit3@™ @
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Proposition 6 (Neutrality of profit sharing on cost-reducing investment )
Consider a requlated monopolist which has to decide on a cost-reducing in-
vestment of a given amount. When demand is uncertain as modelled in
(26) and the timing of cost-reducing investment is endogenous, correcting
the RPI — x rule with a profit sharing element does not affect the timing of
1nvestment.

This result simply reflects the parallel between loosening the price-cap
and reducing costs. Both events represent “good news” and the endogeneity
of the decision to reduce costs does not affect the neutrality result developed
in the previous section.

7 Conclusions

Relative to the existing literature, which implicitly assumed reversible in-
vestment by regulated firms, our results appear significantly different. While
current literature indicates that profit-sharing has a negative effect on in-
vestment decisions, our paper shows that this is not true. What makes a
difference is the introduction of two fairly realistic assumptions: investment
irreversibility and the firm’s ability to decide when undertaking it. This im-
plies that the firm is endowed with a call option to delay, which expires when
investment is undertaken. We have thus shown that a profit-sharing device
reduces both the value of the project and the value of the option to wait
by the same amount. According to the Bad News Principle, therefore, no
additional distortion is introduced, with respect to price cap.

Moreover, it is worth noting that one of the regulators’ main targets is the
rent extraction per se. After all, the very notion of profit-sharing comes from
the idea that a scheme which yields an excessively imbalanced distribution of
rents is undesirable, and the rate of return regulation scheme still prevailing
in a large part of the US is based on the idea that restraining monopoly rents
is a goal by itself.

What we show here, therefore, has an important policy implication. Since
profit sharing has a greater ability to raise rents than price cap, but does not
cause any additional distortion, it is possible to extract the same amount
of rents with a lower value of x. Given the amount of rents extracted from
the monopolist, under profit sharing the trigger point above which invest-
ment is profitable is thus lower than under a pure price cap; in other words,
investment is undertaken earlier than under the pure price cap regime.

A question that still remains open, is the role that political uncertainty
plays. One of the reasons why profit sharing has been proposed is that reg-
ulatory authorities are unable to commit not to intervene if the regulated
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firm’s profits turn out to be very high. By automatically curbing profits, a
”sliding scale” device might decrease the regulator’s incentive to intervene,
thereby increasing the firm’s incentive to invest. To what extent this argu-
ment really applies in the set-up we have developed, is a question mark that
we leave for future investigation.

8 Appendices

8.1 Appendix A

In this Appendix we first compute parameters B; and B, as functions of C;.
Then, parameters Vyand V5 are obtained.

Let us start with parameters B; and B,. Recall equation (38). Using
the VMC and SPC at point II = Il (namely, equating the values and the
derivatives of the two components of the option function at point II = ﬁ) we
obtain

Olﬁﬁl(ff) — Blﬁﬁ1($') + B2ﬁ52(:r’)
Clﬂl(x)ﬁﬁl(’”)—l - Blgl(xf)ﬁﬂl(ar’)—l + B2ﬁ2(x’)ﬁﬂ2(a:’)—l

Fasy computations show that

Bi(a') = B1(®) =8, @)y’

By = 1P @) =B2(=)] . o
’ Bi(a") — By(a') :

Since 34(z') > B1(x), we have: By oc C} and By o C.

Let us now turn to the value function. Using the VMC and SPC at II = Il
we obtain a system with two equations and two unknowns (Viand V5):

I 8, (x) _ _II 185 ('
m+‘/1ﬂﬁ1()_m+‘/2nﬁ2( )’

oy VIBL@)IAE) = i+ Vol (@I,
Solving for Viand V; yields

_ _Bo(a")-1  6(z")=8(x)  TT[1-B1(x)]
N ﬁlfa;%_le(ml) S . [ ﬁl( >}<O
_ @)1 8@)=b(x)  Tyl1-By(a’
V2= 305w ey L 2 >0
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Note that, in the region (0, ﬁ), C' must be positive in order to have a positive
option function. Otherwise, it would not have any economic meaning. Recall
that

*1_31(@
HPS

1 .
Oilz)  b8(x)

Substituting the value of V;, one thus obtains

01:‘/1+

1 . H}S(l“)l_ﬁl(z) )
By (z) d
{1 4 A@) 8,(@) — 1] (") — 8(z) ( }ss(”“")) W_H}

Bi(z) — Ba(a') 6(z') 11

C =

8.2 Appendix B

In this Appendix we compute L; and L. Stitching together the two com-
ponents of the value function (47) at the switch point II = II, one obtains
parameters

Iy 7 1A@) — L T]Aa()

6(x) 6(x") 5 ,
s + L1 By (o)A @71 = s 4 1,8, (o) TV 0) 1

Solving for Liand L, yields

_ _ Ba(x)—1  8(a)—b6(x)  TT[1-B1(z)]

b~ Wi i S Il <0
_ _ 1(x)— L olz')—o(z) | — '

Ly =%V = 5075w  s@ew) 1 20 >0
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