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Abstract

The Colonel Blotto game is a two-player constant-sum game in which each player
simultaneously distributes her fixed level of resources across a set of contests. In the
traditional formulation of the Colonel Blotto game, the players resources are “use it or lose
it” in the sense that any resources which are not allocated to one of the contests are forfeited.
This paper examines a non-constant-sum version of the Colonel Blotto game which relaxes
this use it or lose it feature. We find that if the level of asymmetry between the players
budgets is below a threshold, then the unique set of equilibrium univariate marginal
distributions of the non-constant-sum game is equivalent up to an affine transformation to the
unigue set of equilibrium univariate margina distributions of the constant-sum game. Once
the asymmetry of the players budgets exceeds the threshold we construct a new equilibrium.
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1 Introduction

Kvasov (2007) introduces a non-constant-sum version ofcthssic Colonel Blotto
game. Originating with Borel (1921), the Colonel Blotto gaexamines strategic re-
source allocation across multiple simultaneous contBstel formulates this problem
as a constant-sum game involving two players, A and B, wha each allocate a fixed
amount of resourceXa = Xg, over a finite number of contests. Each player must dis-
tribute their resources without knowing their opponeni&ribution of resources. In
each contest, the player who allocates the higher levekolurees wins, and the payoff
for the whole game is the sum of the wins across the individomadests. A novel feature
of the Colonel Blotto game is that a mixed strategy is a maittate distribution function
in which each individual contest is represented as a dimangihe restriction on the
players’ expenditures implicitly places a constraint oa slupport of the players’ joint
distributions. Namely, each point contained in the suppbatplayer’s joint distribution
must satisfy their budget constraint with probability one.

While a focal point in the early game theory literatdrthe Colonel Blotto game
has also experienced a recent resurgence of interest (seeaimple Golman and Page
(2006), Hart (2008), Kovenock and Roberson (2007), Laghe02), Laslier and Picard
(2002), Roberson (2008), or Weinstein (2005)). Most clpselated to this paper are
Roberson (2006) and Kvasov (2007). For all configurationthefasymmetric Colonel
Blotto game with three or more contests, Roberson (200&jigkes the characterization
of the unique equilibrium payoff§ The characterization of the equilibrium univariate
marginal distributions and the existence of joint disttibas which provide the equilib-
rium univariate marginal distributions and expend the ptayrespective budgets with
probability one are also given in Roberson (2006).

In Borel’s original formulation of the Colonel Blotto gameet players’ resources are
“use it or lose it” in the sense that any resources which atealhacated to one of the
contests are forfeited. Kvasov’s (2007) non-constant-gersion of the Colonel Blotto
game relaxes this use it or lose it feature. In the case of stnrbudgets, that paper

1 See Kvasov (2007) or Roberson (2006) for surveys of thisdlitee.

2 The case oh = 2, with symmetric and asymmetric forces, is discussed bys&ro
and Wagner (1950). Moving from= 2 ton > 3 greatly enlarges the space of feasible
n-variate distribution functions, and the equilibrium stgies examined in that paper

differ dramatically from the case of= 2.
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establishes that a suitable affine transformation of thestemt-sum equilibrium is an
equilibrium of the non-constant-sum game.

In this paper we extend the analysis of the non-constantvassion of the Colonel
Blotto game to allow for asymmetric budget constraints. dsgl as the level of asym-
metry between the players’ budgets is below a threshold, meethat there exists an
affine transformation of the equilibrium to the constantisgame which provides an
equilibrium to the non-constant-sum game. Once the asyrgrokthe players’ budgets
exceeds the threshold this correspondence breaks down amdgtruct an entirely
new equilibrium. For all configurations of the players’ agggte levels of force we
characterize the unique equilibrium payoffs, and for m@sameter configurations we
characterize the complete set of equilibrium univariategmal distributions.

Section 2 presents the model. Section 3 characterizes tiléegm payoffs and the
equilibrium set of univariate marginal distributions féretasymmetric non-constant-
sum version of the Colonel Blotto game. Section 4 concludes.

2 The Model

Two playersA andB, simultaneously enter bids in a finite numbek; 3, of independent
all-pay auctions. Each contest has a common valwd@feach player. Each player has
a fixed level of available resources (or budg&t)for i = A, B. Let Xa < Xg, and define
the modified budgets a& = min{Xa, nv/2} andXg = min{Xg, v/nvXa/2} .2 In the case
that the players enter the same bid in a given contest, itsisnasd that player B wins
the auction if the common bid Xa, otherwise each player wins the auction with equal
probability. The specification of the tie-breaking rule ot affect the results as long
as(2/n)Xs < Xa. In the case that2/n)Xg > Xa, this specification of the tie-breaking
rule avoids the need to have playgprovide a bid arbitrarily close to, but above, player
A’'s maximal bid,Xa. A range of tie-breaking rules yield similar results.

3 As shown in Appendix AX; corresponds to the equilibrium expected expenditure
for playeri. This specification oX; allows for a unified treatment of the three possible
cases: (a) neither player using all of her available ressyr®) only the weaker player
(A) using all of her available resources, and (c) both playeasdB using all of their
available resources.
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Each contest is modeled as an all-pay auction. The payotaiep for a bid ofbij
in contestj is given by
i Jv—nl it b >bl
A —b if bl <bl,
where ties are handled as described above. Each playersf @ayoss alln all-pay
auctions is the sum of the payoffs across the individualianst

The bid provided to each all-pay auction must be nonnegdteeplayeri, the set
of feasible bids across threall-pay auctions is denoted by

n .
ZWSN}-
=1

It will also be useful to define the set pftuples which exhaust the modified budg¥ts
andXg. Let B; denote this set, defined as

‘Bi:{bGRg

%i:{bGRi

nb{:)& .
Sui=x)

Strategies

It is well known that there are no pure strategy equilibrintfis class of games. A
mixed strategy, which we termdistribution of resourcesfor playeri is ann-variate
distribution functionP, : R} — [0, 1] with support (denote&upR)) contained in the
set of playel’s set of feasible bid$3; and with one-dimensional marginal distribution
functions{Fij ?:1, one univariate marginal distribution function for eachpay auc-
tion j. Then-tuple of player’s bids across tha all-pay auctions is a random n-tuple
drawn from then-variate distribution functioi®.

The Non-Constant-Sum Colonel Blotto game

The N-C-S Colonel Blotto gamehich we label
NCB{XA7 XB7 n, V}7

is the one-shot game in which players compete by simultastg@nnouncing distri-
butions of resources subject to their budget constraiatd all-pay auction is won by
the player that provides the higher bid in that auction (whierthe case of a tie the
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tie-breaking rule described above applies), and playec®ive the sum of their payoffs
across all of the all-pay auctions.

Note that in the non-constant-sum Colonel Blotto game tvaygis simultaneously
compete in a set of independent all-pay auctions subjechdr tespective budget
constraints. The presence of the budget constraints gisesa strategic considera-
tions which are reminiscent of those arising in the singlgpal auction with budget-
constrained bidders (see Che and Gale (1998)). Howevehembn-constant-sum
Colonel Blotto game the budget constraints hold not withie auction but across the
entire set of auctions. As will be seen, the equilibria okthavo games differ in funda-
mental ways.

Before proceeding with the analysis, it is also instructoveompare this formulation
with that of the constant-sum Colonel Blotto game. The amssum Colonel Blotto
game differs from the non-constant-sum game in that in eadltestj the payoff to
each player for a bid ofbij is given by

1 if bl >bl,

-j: . .
"o it <bl,

where ties are handled as described above. Note that, inothe&ant-sum game re-
sources which are not allocated to one of the contests havalue; that is, resources
are use it or lose it. Each player’s payoff acrossnationtests is the sum of the wins
across the contests to which the player provides a higher bid

3 Optimal Distributions of Resources

The following four theorems examine the equilibrium disttions of resources for all
symmetric and asymmetric configurations of resource leliésorems 1, 2 and 4 char-
acterize the unique sets of equilibrium univariate maigimstributions and the unique
equilibrium payoffs. Theorem 3 provides the unique equiililm payoffs and a pair of
equilibrium distributions of resourcés.

The first two theorems address the portion of the parametaresim which there
exists an affine transformation (with respect to the modifiedgets) of the equilibrium
of the constant-sum game which constitutes an equilibrifith® non-constant-sum
game. OnceéXa/Xg) < (2/n) andXg > (n— 1)Xa the correspondence between these

4 In this parameter range there exist a continuum of equilibrunivariate marginal
distributions.
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two games breaks down. Theorem 3 is based on the equilibrfutreaconstant-sum
game. However, in this case the transformation entails & nmwolved modification to
the support of the distribution. We conclude with Theoremhol constructs entirely
new equilibrium distributions of resources in the remagnparameter range.

For the game&CB{ X, Xg, n, v}, Theorem 1 examines all configurations of resource
levelsXa andXg which satisfy(2/n) < (Xa/Xg) < 1.

Theorem 1 Let X5, Xg, v, and n> 3 satisfy (2/n) < (Xa/Xg) < 1. The pair of n-
variate distribution functions Pand B constitute a Nash equilibrium of the game
NCB{Xa, Xg,n,V} if and only if they satisfy the two conditions: (1) SYBpP C B;
and (2) P provides the corresponding set of univariate marginalrasttion functions
{F'}"_; outlined below.

For player A the unique set of equilibrium univariate matayidistributions{FAJ ?:1
are described as follows

: i) = (1% Xa 2.
Vie{lo.nt FL0=(1-32)+ 5% () for xe |0.2%],
Similarly for player B
Vie{l...n} Fi) =g for xe [0,2%].

The unique equilibrium expected payoff for player AnigXa/2Xg) — Xa, and the unique

equilibrium expected payoff for player B is(iv— (Xa/2Xg)) — Xg.

The existence of a pair ofvariate distribution functions which satisfy conditiqii
and (2) of Theorem 1 is provided in Roberson (2006). In paldic Roberson (2006)
establishes the existence m/ariate distribution functions for whicBupgP*) C %B;
and that provide the necessary sets of univariate margistitaition functions given
in Theorem 1. The proof of uniqueness of the univariate mafglistribution functions
and equilibrium payoffs is given in Appendix A.

An important distinction between the constant-sum and thregonstant-sum ver-
sions of the game is that in the constant-sum version eagtep&xpends all of her
resources with probability one as long@sn— 1) < (Xa/Xg) < 1. This need not be
the case in the non-constant-sum game. In particular thiertheee possible cases: (a)
neither player uses all of her available resources, (b) ¢thly weaker) playeA uses
all of her available resources, and (c) both play&rand B use all of their available
resources.

While it is straightforward to show that any pair ofvariate distribution functions
which satisfy conditions (1) and (2) of Theorem 1 form an &uum, it is useful to
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provide the intuition for this result. We begin with the dduium expected payoffs for
each player and an¥a andXg contained in the portion of the parameter space for which
Theorem 1 applies, and then examine these payoffs in eatte diitee possible cases.
Let P; denote a feasibla-variate distribution function for playds with the univariate
marginal distributions{FEg}E‘:1 given in Theroem 1. If playeB is usingPg3, then player
A’s expected payoffa, when playerA chooses anyl tuple of bidsba € 54 (one bid

for each of then all-pay auctions) such thth € 2/n)XB] for each auction, is

n

7 (ba, PS) = Z[VFB<b‘) b

Recall that for allj, FJ (x) =

i forxe [0, (2/n)Xg]. Simplifying yields

o)~ (5 2) 2% ®

The expected payoffz to playerB from anyn-tuple of bids across the all-pay
auctionsbg € %Bp such thabé3 e (0,(2/n)Xg] for each auctiorj — when playe uses
a feasiblen-variate distributiorP; with the univariate marginal distributior{?Aj 1
given in Theroem 1 — follows directly,

n .
1 (bp, Px) = nv(l— i—’;) + (%%ﬁ — 1) j;b‘B. (2)
Observe that neither player can bid below 0 and that biddimye(2/n)Xg is subopti-
mal. Thus, (1) and (2) provide the maximal payoffs (for plafeand playeB respec-
tively) for any feasiblen-tuple of bids across theall-pay auctions.

Suppose that we are in case (a) in which neither player uses her available
resources. Case (a) corresponds to the situation in wheslotal value of then auc-
tionsnvis low enough relative to the players’ budgets that neitti@yqr has incentive
to commit all of her resources. If playé does not use all of her budget, then from
Xp = min{Xa,nv/2} it must be thaiXy > (nv/2) and soXa = (nv/2). Similarly from
Xg = min{Xg, v/ NvXa/2}, it follows that if playerA (the weaker player) is not using
all of her budget theXg = (nv/2). Given thatXa = Xg = (nv/2), the expected payoffs
givenin (1) and (2) aren (ba, P5) = 0 andris (bg, P;) = 0 respectively. Observe that in
case (a) neither player has incentive to change the aggriayai of resources that they
commit to then all-pay auctions. That is, given that the opponent is udiegetquilib-
rium strategy, the expected payoff to each player is indégenof the aggregate level
of resources that they commit across thedl-pay auctions.
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Now suppose that we are in case (b) in which only playeises all of her budget.
Case (b) corresponds to the situation in which the totalevafithen all-pay auctions
nvis high enough that the weaker player optimally commits fliey resources but not
so high that the stronger player must also commit all of heouweces to tha all-pay
auctions. From the proceeding discussion it follows ¥ (nv/2) and thusXa = Xa.

If player B is not using all of her budget then fro = - min{Xe, V/NVvXa/2}, it must

be thatXg > \/nvXa/2 and szB = /NVXa/2. InsertlngXA andXB into (1) and (2) and

simplifying yields
mion )= (3, 1) 3,0 @

1z (bg,Py) =nv (1— %> ) 4)

and

nv

Recall that in case (b¥a < (nv/2) and so(1/nv/2Xa — 1) > 0. From (3) we see that
playerA is indifferent with regards to which all-pay auctions to aaitresources to, but
has incentive to increase her aggregate level of resournedment across theall-pay
auctions. However in case (b), playgis at her budget constraint and her equilibrium
distribution of resourceB, expends her budget with probability on&rom (4) we see
that the expected payoff to playBris independent of the aggregate level of resources
that she commits across thall-pay auctions (so long as she commits a strictly positive
level of resources to each auction), and so pld&/eiobes not have incentive to change
the aggregate level of resources that she commits to étlepay auctions.

Finally, suppose that we are in case (c) in which both playsesall of their budgets.
Case (c) corresponds to the situation in which the totalevafiihen all-pay auctionsiv
is high enough that both players optimally commit all of tiresources to the all-pay
auctions. ThusXa = Xa andXg = Xg. From (1) and (2) it follows that

T (b, ) — <2—><B - 1) 3 o (5)

and .
o _& nva_ i
(oo PR =mv(1- 3 )+ (52 -1) 3 bk 0

5 Recall that Roberson (2006) establishes the existennevafiate distribution func-
tions for whichSupgP*) C i, and that in this cas¥a = Xa. It follows directly that
player A expends her budget with probability one.
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In case (C)Xa < (Nv/2) andXg < 1/NvXa/2 < (nv/2). Observe in (5) that(nv/2Xg) —
1) > 0 and, thus, playeA has incentive to increase her aggregate level of resource
commitment across the all-pay auctions, but in her equilibrium distribution of-re
sourced; she is already at her budget constraint with probability. @milarly, in (6)
((nvX%a/2X2) — 1) > 0 and, thus, playeB has incentive to increase her aggregate level of
resource commitment across thall-pay auctions, but in her equilibrium distribution
of resource$;; she is already at her budget constraint with probability. one

Given that Roberson (2006) demonstrates the existence aif @fn-variate distri-
butions that satisfy conditions (1) and (2) of Theorem 1gliioivs from the arguments
given above that such a pair variate distribution functions constitute an equililomu
in all three cases (a), (b), and (c). The proof of the unigesmd the sets of univariate
marginal distributions is given in Appendix A.

The following Theorem addresses the remaining portion efg@wameter space for
which there exists an affine transformation of the equilibriof the constant-sum game
which constitutes an equilibrium of the non-constant-same.

Theorem 2 Let X, Xg, v, and n> 3 satisfy(Xa/Xg) < (2/n) and X < (n—1)Xa. The
pair of n-variate distribution functions Pand B constitute a Nash equilibrium of the
game NCBXa, Xg, n, v} if and only if they satisfy the two conditions: (1) SUBp) C Bi
and (2) P provides the corresponding set of univariate marginalrdisition functions
{Fij I, outlined below.

For player A the unique set of equilibrium univariate mawgidistribution functions
{FAj I, are described as follows

Vie{l...n} Fi(X)=(1-2)+%(2) for xe[0,Xa.

Similarly for player B

- (%) f 0,X
Viell...n} FA =4 0w’ or x€[0,Xa).
1 for x> Xa

The unique equilibrium expected payoff for player A i§(2yn) — ((2Xg)/(n?Xa))) —
Xa, and the unique equilibrium expected payoff for player B ¥1nr- (2/n))+
nV((2Xg)/(N*Xa)) — Xg.

The existence of a pair of-variate distribution functions which satisfy conditions
(1) and (2) of Theorem 2 is provided in Roberson (2006). Tlmpof uniqueness of
the univariate marginal distributions and equilibrium pfiy is given in Appendix A.
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Before proceeding with a sketch of the proof that a pair-gériate distributions that
satisfy conditions (1) and (2) of Theorem 2 form an equilibrj it is helpful to trace out
the Theorem 2 parameter range. SiXge= min{Xg, \/NvXa/2} and(Xa/Xg) < (2/n)

it follows that
- 22— [ 2vXa
X —Xg <y —Z
A < n B = n

and soXa < (2v/n). Therefore it must be the case that = Xa. It also follows that
Xg < (n—1)Xa combined with(n — 1)Xa < \/nvXa/2 implies thatXg = Xg. Thus, the
Theorem 2 parameter range is given by & < (2v/n) and(n/2)Xa < Xg < (N—1)Xa
Returning to the sketch of the proof that a paimefariate distributions that satisfy

conditions (1) and (2) of Theorem 2 form an equilibrium, R§tdenote a feasible-
variate distribution for playds with the univariate marginal distributior{EBj}E‘:1 given
in Theorem 2. If playeB is usingPg, then playeA's expected payoffi,, when player
A chooses ang-tuple of bidsbp € 984 such thabjA € [0,Xa) for each auctiorj, is

R UL .
=

Note that(2v/X2)(Xa— (Xg/n)) —1 > 0 is equivalent tg < (n— (nXa/2v))Xa. Since
Xa < (2v/n), it follows from (7) that playeA has incentive to expend all of her available
resources in tha all-pay auctions not only in expectation but with certainty

Similarly, the expected payoffg to playerB from anyn-tuple of bids across the
all-pay auctiondpg € B such thabé3 € (0, Xa] for each auctiorj, when playerA uses
a feasiblen-variate distributiorP; with the univariate marginal distributior{sFAj}?:1
given in Theroem 2, is

o123 (2 1) s p
r@(bB,PA)_nv<l n)+<nXA l>,;b8' (8)

SinceXa < (2v/n) it follows that(2v/nXa) — 1 > 0, and, thus, playeB has incentive to
expend all of her available resources in thall-pay auctions with certainty.

Given that Roberson (2006) demonstrates the existence aif afmn-variate distri-
butions that result in the sets of univariate marginal tistrons given in Theorem 2
and that satisfy the budget restriction with probabilitytIpllows from the arguments
given above that such a pairvariate distribution functions constitute an equilibniu
The proof of uniqueness of the univariate marginal distidms is given in Appendix
A.
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While the first two theorems involve affine transformationgli respect to the mod-
ified budgets) of the equilibrium of the constant-sum gameedXa/Xg) < (2/n)
andXg > (n— 1)Xa the correspondence between the constant-sum and noractnst
sum games breaks down. For the remaining parameter rangerérhs 3 and 4 con-
struct new equilibrium joint distributions. Theorem 3, wihiaddresses the case that
(Xa/Xg) > (2/n) and min{nXa, (N —2)Xa -+ (2v/n)} > Xg > (n—1)Xa, is also based
on the equilibrium of the constant-sum game but includes genmyolved modification
of the support. Theorem 4, which addresses the remainirgtbas(Xa/Xg) < (2/n)
andXg > min{nXa, (N—2)Xa+ (2v/n)} (note that ifXa < (2v/n) then minXa, (n—
2)Xa+ (2v/n)} > (n—1)Xa), constructs entirely new equilibrium distributions of re
sources.

Before turning to the statements of Theorems 3 and 4, obskeatavhile the rela-
tionship between the constant-sum and and non-constamt/etsions of the game is
linear with respect to the modified budgets — as long as thet thasymmetry between
the players’ budgets is below the threshold given in Thea2em the relationship be-
tween these games with respect to the aggregate resousds ig\highly non-linear.
Panel (i) of Figure 1 illustrates the regions of the paramstace corresponding to each
of the four theorems in the non-constant-sum game, and FgradlFigure 1 illustrates
the regions which correspond, for the constant-sum gamehéorems 2, 3, and 5 of
Roberson (2006).

X T.1(a
T.1(b) K= Xg
nv
2
T. 4
v(2-2) + ,»@
&.
v
T.2
T.3
t + + XA
vo2v nv
n n 2
(i) Non-constant-sum (i) Constant-Sum

Fig. 1 Resource Level Configurations
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In the constant-sum game, four rays emanating from theropagrtition the param-
eter space into four disjoint regions. As shown in PaneldfiiFrigure 1, these regions
are delineated by (Xa = (Xg/(n—1)), (2) Xa = (2Xg/n), and (3)Xa = Xg. While
Theorems 1, 2 and 3 of this paper (the non-constant-sum gaméjansformations of
Theorems 2, 3 and 5 of Roberson (2006) (the constant-sum)gaspectively, the cor-
responding parameter regions differ in nontrivial wayse Tlmplicating factor in the
relationship between the two versions of the game is th&egfiaconsiderations arising
from the use it or lose it feature of the constant-sum fortmteand the corresponding
relaxation of this feature in the non-constant-sum forraita In particular, recall that
in the non-constant-sum game with resource levels whidsfgd®2/n) < (Xa/Xg) < 1
(as in Theorem 1) there were three possible cases: (a) npinger uses all of their
available resources, (b) only (the weaker) plagearses all of her available resources,
and (c) both player#& andB use all of their available resources. (The regions corre-
sponding to each of these cases is labeled in panel (i) of &y

Furthermore, in the region in whicka < (Xg/n) the constant-sum game is trivial
since resources are use it or lose it and the stronger plBydras a sufficient level of
resources to win each of tlmecontests with certainty. In this is region there is no rela-
tionship between the two games. Due to the relaxation of sketwr lose it feature, the
non-constant-sum game never becomes trivial, and for thecnostant-sum game The-
orem 4 constructs entirely new equilibrium distributiorisesources in the remaining
parameter range.

In the case thatXa/Xg) < (2/n) and minXa, (N —2)Xa+ (2v/n)} > Xg > (n—
1)Xa Theorem 2 would provide the unique set of equilibrium maaghistributions if
a sufficientn-variate distribution function were to exist for each playss in the corre-
sponding constant-sum parameter range, such a jointalistrn fails to exist for player
B. One equilibrium is given by an extension of the case ef2 with asymmetric forces
discussed by Gross and Wagner (1950). The set of equilibuiimariate marginal dis-
tributions is not unique, but the equilibrium payoffs arequre.

Theorem 3 Define k= [(Xa)/(Xg—Xa(n—1))]. Let X, Xg, v, and n> 3 satisfy
(Xa/Xg) < (2/n) and min{nXa, (N —2)Xa+ (2v/n)} > Xg > (n— 1)Xa. A Nash equi-
librium of the game NCBXa, Xg, v, n} is for each player to allocate her resources ac-
cording to the following n-variate distributions:

Player A randomly allocate@resources to i 2 of the all-pay auctions, each all-pay
auction chosen with equal probabilityn — 2) /n. On the remainin@ all-pay auctions
player A utilizes a bivariate distribution function with kass points, each mass point
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receiving the same weighfl — (nXa)/(2v))/k. Player A’s mass points on these two
remaining all-pay auctions are located at the points

o Xa . Xa .
((k—l—l)m,lm),I—O,...,k—l.

Player A uniformly distributes the remainirigXa)/(2v) of the mass along her budget
line {(xq,X2)| X1+ X2 = Xa}.

Player B randomly allocatespforces to n— 2 all-pay auctions, each all-pay auction
chosen with equal probabilityn — 2) /n. On the remainin@ all-pay auctions player B
utilizes a bivariate distribution function with k mass ptsineach mass point receiving
the same weight,1 — n(Xg — Xa(n—2))/(2v))/ (k). Player B’s mass points on ttH&
remaining battlefields are located at

'7,XA—(k—1—i)%> i=0,... k-1
Player B uniformly distributes the remainirigg — Xa(n—2))/(2v) of the mass along
her budget line{(x1,%2)| X1 + X2 = Xg — Xa(n—2)} and the two line segments
{(X1,%2)| X1 = Xa and 0< xo < Xg— Xa(nN—1)}, and{(X1,X2)| X2 = Xa and 0< x1 <
XB—XA(I’]— 1)}

The unique equilibrium expected payoff for player A (kv 1)((2/n) — ((Xg —
(Xa(n—2))/v))/k, and the unique equilibrium expected payoff for player Bvis-
Xa)(n—2) + ((v2(n—2)) /M) +v(k—1)((2/n) - (Xa/¥)) /K.

The proof of Theorem 3 is given in Appendix B.

The following Theorem constructs entirely new equilibridistributions of resources
for the portion of the parameter space in which the corredpooe between the constant-
sum and non-constant-sum versions of the game breaks down.

Theorem 4 Let Xy, Xg, v, and n> 3 satisfy(Xa/Xg) < (2/n) and % > min{nXa, (n—
2)Xa+ (2v/n)}. The pair of n-variate distribution functiong Rnd R constitute a Nash
equilibrium of the game NCBXa, Xg, n,Vv} if and only if they satisfy the two conditions:
(1) SupgP*) C B; and (2) R provides the corresponding set of univariate marginal
distribution functions{Fij}?:l outlined below.

For player A the unique set of equilibrium univariate mawgidistribution functions
{FA"}?:1 are described as follows

\Y

Vie{l,..n} Fl(x= (1—&)+§ for x & [0,Xa].
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Similarly for player B

; X for xe|[O,
Vie{l...,n} FA(x) =" [ XA).
1 for x> Xa
The unique equilibrium expected payoff for player M,snd the unique equilibrium
expected payoff for player B is (iv— (Xa/V)).

The existence ohf-variate distributions which satisfy conditions (1) and ¢2 Theo-
rem 4 is provided in Appendix C. The proof of uniqueness ofuhiariate marginal
distributions and equilibrium payoffs is given in Appendix

To see that these two sets of univariate marginal distobgtform an equilibrium in
the Theorem 4 parameter region,§tdenote a feasible-variate distribution for player
B with the univariate marginal diStI’ibutiOl‘{§E.J;}?:1 given in Theorem 4. If playeB is
usingPg, then playeA's expected payoffia, when playeA chooses ang-tuple of bids
ba € Bais

T (b, Pg) = 0. 9)

From (9), playelA does not have incentive to increase or decrease her levesofirce
commitment in then all-pay auctions.

Similarly, the expected payoff to playerB from anyn-tuple of bids across the
all-pay auctiondg € %p such thab,j3 € (0, Xa] for each auctiorj, when playelA uses
a feasiblen-variate distributiorP; with the univariate marginal distributior{sFAj}E‘:1
given in Theroem 4, is

1 (b, Pa) = nv<1— %) . (10)

Thus, playeB also has no incentive to increase or decrease her level @fines com-
mitment in then all-pay auctions.

Given that Appendix C provides the constructiomefariate distribution functions
which satisfy conditions (1) and (2) of Theorem 4, it follofmsm the arguments given
above that such a pair afvariate distribution functions constitute an equilibnuThe
proof of uniqueness of the univariate marginal distribagics given in Appendix A.

4 Conclusion

Kvasov (2007) introduces a non-constant-sum version aCtiienel Blotto game which
relaxes the “use it or lose it” feature of the traditional stamt-sum formulation of the
game. In the case of symmetric budgets, that paper establiblat a suitable affine
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transformation of the constant-sum equilibrium is an erdm of the non-constant-
sum game. In this paper we characterize all asymmetric peterroonfigurations of the
non-constant-sum version of the Colonel Blotto game. Ag las the player’s budgets
are not too asymmetric, a suitable affine transformatiomh(waspect to the modified
budgets) of the constant-sum asymmetric equilibrium (Redoe 2006) is an equilib-
rium of the non-constant-sum asymmetric game. However dne players’ budgets
are sufficiently asymmetric this correspondence breaksxdowthis parameter range,
we construct entirely new equilibrium joint distributions

Appendix A

This appendix characterizes the sets of equilibrium uratamarginal distributions in
Theorems 1, 2, and 4. Given that the non-constant-sum CdBloko game is a set of
independent and simultaneous all-pay auctions with (sytmerend asymmetric) bud-
get constraints, the characterization of the equilibriunivariate marginal distributions
follows along the line of argument for the characterizatadrthe all-pay auction by
Hillman and Riley (1989) and Baye, Kovenock and de Vries @)98oberson (2006)
establishes the existence of feasibleariate distribution functions for Theorems 1 and
2. The existence of suatvariate distribution functions for Theorem 4 is given in-Ap
pendix C.

In the discussion that follows we will focus on Theorem 1. Ppheofs for Theorems
2 and 4 follow directly. Let~:1j_and§1j denote the upper and lower bounds of player
distribution of resources for all-pay auctign

Recall that in Theorem 1 the corresponding parameter spé2gr) < (Xa/Xg) < 1.
It will also be convenient to note that, for a given;, with the set of univariate marginal
distribution functioniFﬁi}Tzl, the Lagrangian of each playiés optimization problerf
can be written as

{Lirjj?i(l(lJr)\i)él [/Ow [(14\:)\i)F‘ji (x) —x} dFi‘} +AiX (11)

where the set of univariate marginal distribution funci;ic{riFij I, satisfy the con-
straint that there exists a mapping of the set of univariadegmal distributions into

6 This formulation assumes that for all battlefields the piayeanivariate marginal
distributions do not place an atom on the same value. Howévier straightforward
to incorporate the tie-breaking rule into the Lagrangiareath player’s optimization
problem.
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a joint distribution (am-copula),C, such that the support of threvariate distribution
C(F(x}),...,F"(x") is contained irB;.

The first two lemmas follow along the lines of the proofs foe symmetric case
given in Kvasov (2007J.

Lemmal In any equilibrium{Fij,F_ji}je{17,.,’n}, no Fij can place an atom in the half
open interva0, s1].

Lemma 2 For each je {1,...,n} and for each i€ {A, B}, 1" Fl(x i(X) —x is constant/
x € (0,9].

The next two lemmas follow along the lines of the proofs in 8agovenock, and de
Vries (1996).
Lemma 3 For each je {1,...,n}, s =3l
Lemma4V je{1,...,n}, Fi(0) = 0and, thus,lH Fl(x) —x =0V x € [0,5].

The following lemma characterizes the relationship betwaeandAg. LetZ denote
playeri's expected expenditure, that is

S

C— S dF! (x). 12
X ,.;/o xdF! (x (12)

Lemma 5 In equilibrium(1+Aa) = (1+)\B);—<(_E.

Proof From Lemma 2, it follows thatiF] (x) = &8l dx anddFJ (x) = 22l g for
all x € [0,9]. Substltutlng these expressions into equation (12), we I(ﬂa\# Ap) =

XBZ( 37 > and(1+Ag) = Z (S) . The result follows directly. O

The following lemma establishes the valueshf ~

7 While the characterization of the equilibrium univariatanginal distributions for
the constant-sum and non-constant-sum versions of the fydlme along similar lines,
there are important distinctions. In both cases, LemmasfeZstablished using fea-
sible points in the support. In the non-constant-sum games&y (2007) uses a sepa-
rating hyperplane argument to prove that each of the umiteararginal distributions
is strictly increasing and continuous on its support. Cos®ly, in the constant-sum
game Roberson (2006) relies on properties of two-playesteot-sum games (namely,
interchangeability of equilibrium strategies and unigesnof equilibrium payoffs) to
establish these properties of the univariate marginalibigtons.
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Lemma 6 § = Y.

Proof From Lemma 2, we know that for each playand any battlefield, 1" FJ (X) —

X is constant/ x € (O ] It then follows that player would never use a strategy that
provides offers ir(ljr’/\ ,0) since an offer of zero strlctly dominates such a strategy. It

follows from Lemma4tha§_— < H)\ . Thuss' < H)\ andV x € (0,9]

V .
>_— g
1+)\ () X_l-l-)\l >

By way of contradiction, assume thgit< jE )\ . By allocating a level of force to battle-
field j that is greater thasl By an arbitrarily small amount, playércan earn arbitrarily

close t°1+/\ — sl > 0 on battlefieldj, which contradicts Lemma 4.0

The following lemma establishes that there exists a uni@iieAa, Ag that satisfies
the budget constraint.

Lemma 7 There exists a unique value fai, and thus forAg. Ax = %‘Xl’é —1 and thus

_ anA
Ag = X2 -1

Proof The expected expenditure determines the uniqueXpaiks. Thus,Aa solves
7n(l+)\A> /H)\A XAAdX: )?B.
\ 0
Solving forAa we have that

nv
Aa=——1 1
A 2% (13)
It follows directly from Lemma 5 that
nVXa
Ap=——1 14
e (14)

To complete the proof of Lemma 7, recall the three possildesa(a) neither player
uses all of her available resources, (b) only (the weakeag)gwA uses all of her available
resources, and (c) both playe&x&ndB use all of their available resources.

In case (@P\a = Ag = 0. From (13) and (14) we have thés = ¥ andXg = 1/ @
Thus,Xg > 5/ andXa > 5. In case (bAa > 0 andAg = 0. From (13) and (14) we have
thatXg < andXB = ”"XA . Thus,Xg > 1/ 222 andXa < . In case (cha > 0 and
Ag > 0. From (13) and (14) we have th < ”7" andXg < % Thus,Xg < \/%
andXa < %.

To summarizekg = min{Xg, 1/ 52} andXa = min{Xa, 3'}. Thus, for any paiia,
Xg there exists a unique paXa, Xg, and a unique paika, Ag. O
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This completes the characterization of the sets of equilbrunivariate marginal
distributions in Theorem 1. The proofs for Theorems 2 andldvoalong similar lines.

Appendix B

The proof of Theorem 3, stated below, establishes the existef an equilibrium in the
gameNCB({Xa, Xg, n} for Xa, Xg, andn > 3 such thaég < % and mifnXa, (Nn—2)Xa+
z—r‘,’} > Xg > (n—1)Xa. The proof of uniqueness of the equilibrium payoffs follogis
rectly. In the discussion that follows, recall that [#‘En_lﬂ ,and thus, X k < «.
First, the strategies in the statement of Theorem 5 arelfieasince for playeA

L XA . Xa B
kLD e =
and for playeB
.NXa — X . NXa—X
Xa (N —2) 4+ Xa i +Xa = (k= 1—1) =5 = X

foralli=0,...,k—1.

Second, each player is indifferent between each point irstipport of their strat-
egy. For this equilibrium the univariate marginal disttibas for playerA andV j €
{1,...,n} are

1
X : [ Xa  2Xa
K +\—/ if xe _Tl,—]_)
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Similarly for playerB andV j € {1,...,n} we have

if X € [0,Xg—Xa(n—1))

>_(

\'

(gi An2
n \

2,

<IX

it xe [Xa—Xa(n—1),Xp— K200l

: 1)(2_%8= XA(n 2 - ) .
Fl(x) = <'+>( ) o i xe X — BSI) (2

T4 xe [Xa— PR, Xa)
1 if x> Xa

We begin with playeA’'s expected payoff for each of hemass points, and then exam-
ine the remaining uniform randomization. Note thatifer 1,...,k—12
nXa — XB XA NXa — Xg
k—1 k 1 k—1
Thus given that playeB is following the equilibrium strategy, playé¥s allocation of
|k 7 to an all-pay auction yields the expected payoff
Vi (% _ XB—XA(n_2)>

\"
k
for eachi = 0,...,k— 1. Similarly, playerA’s remaining resourcek — 1 —1i) % have
expected payoff of

Xa— (k=)

< Xa— (k 1—)

V(k—1-i) (2 - XeXuln-2))
. .
Thus, for eachi = 0,...,k— 1 playerA’s allocation of (k—1—i)22,i 24 ) has an
expected payoff of

v(k—1) (% - W)
k
Lastly, we consider player A's expected payoff from the amif randomization be-
tween the mass points. Given that players following the equilibrium strategy, the
payoff to playerA for any allocation in which no all-pay auction is allocatedne
than Xg — Xa(n— 1) is zero. Similarly, if, for any 0< € < % and for somea =

8 For the remaining case thiat 0, 0< Xg — Xa (n—1).
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., k—279 playerA allocatesXp — (k—1—1i) ”XQ’XB + € to an all-pay auction the
expected payoff for that all-pay auctionvé + 1)(2 M)
maining resources af& — 1 — i)M —¢&and
nXa — Xg nXa — Xg

k—1 k—1
since, from the definition df, nXa — Xg < Xa X1 k . If playerA allocates all of her remain-
ing resources to a single all-pay auction the maximum explgayoff for that all-pay
auction isv(k—i—2) (% M)/k Thus, for playeA any feasible allocation of
force in which only 1 or 2 all-pay auctions receive a strigitysitive level of force has
a maximum expected payoff otk — 1) (2 — M)/k In addition, since the step
size between each mass point in plagr equilibrium strategy iS%2-"®, playerB's
minimal mass point is aXg — Xa(n—1) > ”XQ__le, and each mass point has the same
weight, playelA cannot achieve a higher expected payoff from dividing tmes®ining
resources among more than one all-pay auction. Thus, dgnagrptayerB is following
the equilibrium strategy, the maximum expected payoff &yptA for an arbitrary strat-
egyx € ‘Bpis

/k. PlayerA’s re-

(K—1—i) =228 e <Xa—(i+1)

n v(k—1) (2 Xe2an2)
> VR (%) —xj] < -
j=1
The argument for playdB is symmetric.
This completes the proof of Theorem 3.

Appendix C

Subject to the constraint that there exist sufficiewariate distribution functions, The-
orems 1, 2, and 4 characterize the unique sets of equilibniirariate marginal distri-
bution functions for their respective parameter ranges.

For Theorems 1 and 2 Roberson (2006) demonstrates theredstésuchn-variate
distribution functions. This Appendix establishes thesexice of sufficienh-variate
distributions for the Theorem 4 parameter range.

9 For the remaining case that k— 1, playerA’s payoff from allocating allXa to a
given all-pay auction is the same as if playeallocatesXa — ”XA XB + £ to the all-pay
auction. This follows from the tie-breaking rule and thetfmat |n this case playeX's
remaining resources aP§2—® — g, and™2=-"e ¢ < Xg—Xa(n— 1), for all admissible
k ande > 0, so that the payoff from playéYs remaining resources is O.
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Theorem 5 For each unique set of equilibrium univariate marginal distition func-
tions, {F/ I_1, characterized in Theorer there exists an n-copula, C, such that the
support of the n-variate distribution functionB*(x!),...,F"(x")) is contained ir5;.

We begin with the proof for playek. The construction of a sufficientvariate distribu-
tion function for player A ana > £ is outlined as follows (recall that in the Theorem
4 parameter regioKa < %"). The remaining case th < ¢ is addressed directly fol-
lowing this case.

1. PlayerA select:n— 2 of the all-pay auctions, each all-pay auction chosen wjtiaé
probability, and provides zero resources to those all-payians.

2. On the remaining 2 all-pay auctions, playerandomizes uniformly on three line
segments: (i)Y (x1,%2)| X1 + X2 = 2Xa — 2}, (i) {(x1,%)| X1 =0 and K — 2 <
X < Xa}, and (iii) { (x1,%2)| Xo = 0 and s — %" < x1 < Xa}. This support is shown
in Panel (ii) of Figure 2, and this randomization is discassegreater detail directly
following this outline.

3. There argC, ways of dividing then all-pay auctions into disjoint subsets such that
n— 2 all-pay auctions receive zero resources with probaliland 2 all-pay auctions
involve randomizations of resources as in point 2. hariate distribution function
formed by placing probability,C,] ~* on each of these-variate distribution func-
tions has univariate marginal distribution functions whe&ach have a mass point of
(1- %) at 0 and randomize uniformly ai®, Xa] with the remaining mass.

The pivotal step in this construction is point 2. etlenote the allocation of resources
to all-pay auction € {1,2}. Consider the support of a bivariate distribution function
F, for x; andx, which uniformly places mass&% on each of the two following line
segments

{(X]_,X2>| X1 =0 and X — ZFV <X < XA}

and uniformly places the remaining magé% —1, on the line segment
{(x1,%2)| X1+ X = 2Xa — &'}

This support is shown in Panel (ii) of Figure 2.
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X2 X2

nXa
mass - 52

mass% -1

+ 1 X1
Zﬁv —Xa Xa 2Xa — ZFV
(i) Player B (i) Player A

X1

Fig. 2 Support of players’ bivariate distribution&Xa/Xg) < (2/n), Xa > (v/n) andXg > (n—2)Xa + (2v/n))

In the expression for this bivariate distribution functisme will use the following
notation.

R1: { (x4, %) € [0, 2XA— 7}
R2: {(xl,xz) € [2XA— Xa] % [0, 2XA_ N }
R3: {(Xl,Xz) € [0,2Xa— _] [2Xa — n ’XA }

R4: {(x1,%2) € (2Xa— &, Xa]?}

The bivariate distribution function fog, X, is given by

F (X]_,Xz) = (ﬂ) maX{X1+X2 N ZXA+ V%'l’o} if (X17X2) €R1

(1 XA) 4 e if (x1,%) € R2UR3UR4
The univariate marginal distributions are given Byx;, Xa) = (1 — —) + 3¢ and

F(Xa,X2) = (1— ”XA) + %2. To see thaf provides the necessary univariate marginal
distributions, observe that given the randomization aetli above player A allocates
zero resources to each all-pay auctiowith probability 1=2  2(1 — W) — (1 )
and randomizes uniformly over the inter@l Xa] with the remaining mass.

If Xa < %, then playe allocates zero resourcesnie- 1 of the all-pay auctions and
provides a random level of resources in the one remainingagllauction. In this one
remaining all-pay auction player A has a mass poinflof %) at 0 and randomizes
uniformly over the interval0, Xa] with the remaining mass.

The proof for player B is similar. The construction of a suéfitt n-variate distribu-
tion function for player B an&a > ¥ is outlined as follows. In the Theorem 4 parameter
regionXg > min{nXa, (N —2)Xa+ (2v/n)}. If Xa > ¥ thenXg > (n—2)Xa+ (2v/n).
The remaining case thax < ¥ andXg > nX, is addressed directly following this case.
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1. Player B selects— 2 of the all-pay auctions, each all-pay auction chosen wjtiaé
probability, and allocateX to each of those all-pay auctions.

2. On the remaining 2 all-pay auctions, player B randomizgfoumly on three line
segments: (i (X1, X2)| X1+ %2 = 2}, (ii) {(X1,%2)| X1 = Xa and 0< xp < 2/ — X, },
and (iii) {(x1,X%2)| X2 = Xa and 0< x1 < z—rY —Xa}. This support is shown in Panel (i)
of Figure 2, and this randomization is discussed in greatailddirectly following
this outline.

3. There argC, ways of dividing then all-pay auctions into disjoint subsets such that
n— 2 all-pay auctions receiv¥a with probability 1 and 2 all-pay auctions involve
randomizations of force as in point 2. Timevariate distribution function formed
by placing probability,C;]~* on each of these-variate distribution functions has
univariate marginal distribution functions which each @éamass point ofl — %)
atXa and randomize uniformly of®, Xa) with the remaining mass.

The pivotal step in this construction is again point 2. kiedenote the allocation to all-
pay auctiori € {1,2}. Consider the support of a bivariate distribution functienfor x;
andxz which uniformly places mass—l% on each of the two following line segments

{(X1,%2)| X1 = Xa and 0< xp < & — Xu}
{(X1,%2)| X2 = Xa and 0< xg < & — Xu}

and uniformly places the remaining magéi, —1, on the line segment

{(x1,%)| X1 +X% = &}

This support is shown in Panel (i) of Figure 2.
The bivariate distribution function fog, x, is given by

() Max{xy +xp — V%],O} it (x1,%) € [0,Xa)?
if X2 =Xa, X1 € [0,Xa)

F (X1, %) =
if X1 =Xa, X2 € [0, XA)

RS

if X1,%2 > Xa

\

Following from the arguments given above for player A, ildals thatF provides the
necessary univariate marginal distributions for all-pagteons 1 and 2.

If Xa < % andXg > nXa, then player B allocatess ton— 1 of the all-pay auctions and
provides a random level of resources in the one remainingagllauction. In this one
remaining all-pay auction player A has a mass pointlof %) at Xa and randomizes
uniformly over the interval0, Xa) with the remaining mass.
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This completes the proof of the existence of sufficiewariate distributions for the
Theorem 4 parameter range.
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