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1 Introduction

With few exceptions, macroeconomic forecasts are presented in the form of point forecasts
and their uncertainty is characterized (if at all) by forecast confidence intervals. Focusing
on point forecasts is justified when the underlying decision problems faced by agents and
the government are linear in constraints and quadratic in the loss function; the so-called LQ
problem. But for most decision problems, reliance on point forecasts will not be sufficient
and event probability forecasts will be needed (see, for example, Granger and Pesaran, 1999,
2000). It is also important that statements about economic policy are made in probabilistic
terms, since the public’s perception of the credibility of the policy has important implications
for its success or failure, irrespective of whether the underlying decision problem is of the LQ
type or not. A prominent example, discussed in Peel and Nobay (1998) is the choice of an
optimal monetary policy in an economy where the government loss function is asymmetric
around the inflation target. In this context, a stochastic approach to the credibility of the
monetary policy will be required, and policy announcements should be made with reference
to probabilistic statements, such as “the probability that inflation will fall in the range
(7, 7y) is at least « per cent”. Policy targets expressed in terms of a fixed range only
partially account for the uncertainty that surrounds policy making.!

One of the main advantages of the use of probability forecasts as a means of conveying the
uncertainties surrounding forecasts is their straightforward use in decision theoretic contexts.
In general, where the loss function underlying the decision problem is non-quadratic and/or
one or more of the constraints facing the decision maker are non-linear, the solution to the
decision problem invariably involves a comparison of the probability of an event (for example
the occurrence of an adverse future event) to the cost-benefit ratio of taking a decision.? In a
macroeconomic context, the motivation for the current monetary policy arrangements in the
UK is that it provides for transparency in policy-making and an economic environment in
which firms and individuals are better able to make investment and consumption decisions.
The range of possible decisions that a firm can make regarding an investment plan, for
example, represents the firm’s action space. The ‘states of nature’ in this case are defined
by all of the possible future out-turns for the macro-economy. For example, the investment
decision might rely on output growth over the next period, or the average output growth
over some longer period, remaining positive; or interest might focus on the future path of
inflation and output growth considered together. In making a decision, the firm should define
a loss function which evaluates the profits or losses associated with each point in the action
space and given any ‘state of nature’. Except for LQ decision problems, decisions rules by
individual households and firms will generally require probability forecasts with respect to
different threshold values reflecting their specific cost-benefit ratios. For this purpose, we
need to provide estimates of the totality of the probability distribution function of the events
of interest, rather than particular forecast intervals which are likely to be relevant only to
the decision problem of a few.

The need for probability forecasts is acknowledged by a variety of researchers and in-

!For example, see the discussion on the design of inflation targets in Yates (1995).

2A simple two-state, two-action decision problem is discussed in some detail in Granger and Pesaran
(1999).



stitutions. The Bank of England, for example, routinely publishes a range of outcomes for
its inflation and output growth forecasts (see Britton, Fisher and Whitley, 1998, or Wallis,
1999). In the statistics literature, Dawid (1984) has been advocating the use of probability
forecasting in a sequential approach to the statistical analysis of data; the so-called “prequen-
tial approach”.? In the econometric modelling literature, Fair (1980, 1993) was one of the
first to compute probability forecasts using a macroeconometric model of the US economy.
The National Institute use their model to produce probability statements alongside their
central forecasts (their methods are described in Blake, 1996, and Poulizac et al., 1996), and
in the financial sector, J.P. Morgan presents ‘Event Risk Indicators’ in its analysis of foreign
exchange markets.* However, it remains rare for forecasters to provide probability forecasts
in a systematic manner. One explanation may be due to the difficulty in measuring the
uncertainties associated with forecasts in the large-scale macroeconometric models typically
employed. Another explanation relates to the various types of uncertainty that are involved
in forecasting. For example, probability forecasts typically provided in the literature deal
with future uncertainty only, assuming that the parameters of the underlying model are
known with certainty. This is true of the probability forecasts published by the National
Institute, for example. To allow for parameter uncertainty, one also needs to compute con-
fidence intervals around the probability forecasts. Similar considerations also apply to the
uncertainty that surrounds the choice of the model.

In this paper, we discuss the use of event probability forecasts in the characterization
of the various sources of uncertainty that surround forecasts from a macroeconomic model.
The event can be defined with respect to the values of a single variable or a set of variables,
measured at a particular point in time, over a sequence of time periods, or over different
time intervals in the future. We consider alternative ways of characterizing the uncertainty
surrounding forecasts from a macroeconomic model and argue that probability forecasts
convey information about this uncertainty in a straightforward way and one which is superior
to many alternatives, including the use of confidence intervals. Having described formally a
framework for the analysis of probability forecasts in a general model, we provide probability
estimates of a number of macroeconomic events using a revised and updated version of the
small cointegrating macroeconometric model of the UK developed by Garratt et al. (1999).
Initially, we abstract from parameter uncertainty and focus on the “future uncertainty”
due purely to the stochastic nature of the model under consideration. We then extend the
analysis to allow for “parameter uncertainty”, and discuss its quantitative importance for
probability forecasts of output growth, inflation and interest rate.

Amongst the many possible macroeconomic events of interest, in our applications we
focus on the possibility of a “recession” and the likelihood of the inflation rate falling within
the target range currently considered by the Monetary Policy Committee (MPC) of the Bank
of England. We shall consider these and a number of related events both singly and jointly.
Although only a small number of events are considered, we show that these probability
forecasts can convey a considerable amount of information on the uncertainties surrounding
a forecast, and correspond with those which the public uses in making decisions and in

3The name prequential is derived by combining probability forecasting with sequential prediction. See
Dawid (1984, pp.278-279).
4For an academic reference, for example, see Berkowitz (1999).

[3]



judging policy-makers’ performance.

The lay-out of the rest of the paper is as follows. Section 2 considers the alternative ap-
proaches that are available for characterizing forecast uncertainty and notes the advantages
of the use of probability forecasts in a decision theoretic context. Section 3 considers proba-
bility forecasts in more detail, discussing the concept and estimation of probability forecasts
in general terms both in the presence and absence of parameter uncertainty. This section
also contains a brief overview of the issues involved in evaluation of probability forecasts.
The remainder of the paper is concerned with an application of the probability forecasting
approach to the UK economy. Section 4 provides a brief account of inflation targeting in
the UK and comments on the relationship between the fan charts published by the Bank of
England and probability forecasting. The macroeconometric model used in the computation
of forecast probabilities is discussed in Section 5. Section 6 presents single and joint event
probability forecasts involving output growth, inflation, and interest rates, paying particular
attention to the probability that inflation will fall in the range 1.5%-3.5%, the UK govern-
ment’s announced target and that recession will be avoided, at different forecast horizons.
We also use the estimated forecast probabilities of these two events, considered separately
and jointly, to investigate the (super) neutrality hypothesis that output growth and inflation
are independently distributed at different forecast horizons. Section 7 offers some concluding
remarks.

2 Alternative Approaches to Characterising Forecast
Uncertainty

All model-based forecasts are subject to four types of uncertainties:
e Measurement uncertainty (data inadequacies and measurement errors),
e Model uncertainty (including policy uncertainty),
e Parameter uncertainty (for a given model),
e Future uncertainty.

This paper focuses on future and parameter uncertainties and how to allow for them in the
computation of probability forecasts. Measurement and model uncertainties pose special
problems of their own and will not be addressed in this paper.® Future uncertainty refers
to the effects of unobserved future shocks on forecasts, while parameter uncertainty is con-
cerned with the robustness of forecasts to the choice of parameter values, assuming a given
forecasting model.

The standard textbook approach to taking account of future and parameter uncertainties
is through the construction of forecast intervals. For the purpose of exposition, initially
we abstract from parameter uncertainty and consider the following simple linear regression
model:

= X0 + uy, t=12,.. T\ T+1,..,T+h,

SFor a discussion on the problem of model uncertainy see Draper (1990) and Chatfield (1995).
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where x; is a k X 1 vector of regressors, the value of which is assumed known both over
the sample period, ¢t = 1,2, ...,T, and over the forecast horizon, t =T + 1,7 + 2,....,T + h,
and where it is assumed that u; ~ N(0,0?). The optimal forecast of y7,; at time T (in
the mean squared error sense) is given by x7., ;3. In the absence of parameter uncertainty,
the calculation of a probability forecast for a specified event is closely related with the
calculation of a confidence interval. For example, in the regression model described above,
we might be interested in the probability that the value of y;.; will lie below a specified
threshold, say a; that is, we are interested in Pr(yry1 < a | Qp), where Qp = (yr, Xr11),
yr = (y1,92,...,yr), and Xy = (x},x),...,x%)". In this simple application, denoting the
standard Normal cumulative distribution function by ®(o), we have

.
Pr(yT—H <a | QT) = (ﬂ),

g

while the (1 — )% forecast interval for yr1 is given by x 8+ c®~! (1 - 2).

In this case, there are obvious relationships between the two approaches. But we would
argue that the probability forecasting approach is more directly relevant when forecasts are
made for use in decision making contexts even in this simple case. The forecast interval
provides information about the probability of certain specific events relating to y7,1: under
the normality assumption, the point forecast provides the threshold value a = x/.,,3 for
which Pr (yry1 < a | Qr) = 0.5; and the forecast interval provides the threshold values ¢;, =
X B—0® 1t (1—-%), and cy = X, B+ 0P ! (1 — ) for which Pr(yr1 <cp |Qr) =%
and Pr (yr41 < cy | Qr) =1 — 5. Clearly, the thresholds values, ¢z, and ¢y, associated with
the (1 — )% forecast interval may or may not be of interest.° Only by chance will the
forecast interval calculations provide information in a way which is directly useful in specific
decision making contexts.

The relationship between probability forecasts and interval forecasts becomes less trans-
parent when parameter uncertainty is also taken into account. In the context of the above
regression model, the point estimate of the forecast is given by yr1 = x7, 8y, where B; is
the Ordinary Least Squares (OLS) estimate of 3 based on the sample of observations. The

relationship between the actual value of yr,; and its time T predictor can be written as

/
Yri1 = Xy B+ urg

= X1 Br +X71(B — Br) + uria, (1)
so that the forecast error, {71, is given by
§ri1 = yri1 — Yre1 = X1 (B — Br) + uria.

This example shows that there are two sources of uncertainty that surround the forecast of
yr11; namely, that relating to 3 and that relating to the distribution of ur,;. For any given

6The association between probability forecasts and interval forecasts are even weaker when one considers
joint events. For example, it would be impossible to infer the probability of the joint event of a positive
output growth and an inflation rate falling within a pre-specified range from single forecast intervals. Many
different such intervals will be needed for this purpose.
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sample of data, €)p, ,@T is known and can be treated as fixed. On the other hand, although
3 is assumed fixed at the estimation stage, it is unknown to the forecaster and, from this
perspective, it is best viewed as a random variable at the forecasting stage. Hence, in order
to compute probability forecasts which account for future as well as parameter uncertainties,
we need to specify the joint probability distribution of B8 and wur,q, conditional on Q7. As
far as uryq is concerned, we continue to assume that

ur11|Qr ~ N(0,0%),

and to keep the exposition simple, for the time being we shall assume that o is known and
that up; is distributed independently of 3. For 3, noting that

Br—B~N[0,0*(X;Xz) '], 2)
we assume that

B0 ~ N |Br.o*(XpXr) ™| (3)
which is akin to a Bayesian approach with non-informative priors for 3. Hence

Eri1 | X, 1 ~ N [0,0% (1 +x, (X5 Xr) ™ x7p1) ] -

The (1 — «)% forecast interval in this case is given by

- oY
et =X Br — 0 {1+ X (X Xe) Mk} P07 (1-F), (4)
and
_ o 7 / ' _1 1/2 4 o«
co =Xp1Br + 0 {1+ X0 (XpXe) xp } 7 (1 5 ) (5)

When o2 is unknown, under the standard non-informative Bayesian priors on (3,02), the
appropriate forecast interval can be obtained by replacing ®* (1 — <) in (4) and (5) with
the (1 — $)% critical value of the standard t-distribution with 7" — & degrees of freedom.
Although such interval forecasts have been discussed in the econometrics literature, the
particular assumptions that underlie them are not fully recognized.

Using this interpretation, the effect of parameter uncertainty on forecasts can also be
obtained via stochastic simulations, by generating alternative forecasts of yr; for different
values of B (and 0?) drawn from the conditional probability distribution of 3 given by (3).
Alternatively, one could estimate probability forecasts by focusing directly on the probabil-
ity distribution of y;,, for given values of x7;, simultaneously taking into account both
parameter and future uncertainties. For example, in the simple case where o? is known, this
can be achieved by simulating yrf,ﬂ)rl, 7=12 .. J, where

; ~(7) ;
y’EFJJ)rl = X718 +U(T])+1

and ,@(j) is the j-th random draw from a N (BT, JQ(X’TXT)*I) distribution and where u§2)+1

is the j-th random draw from a N (0,0?) distribution. This is an example of the “bootstrap
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predictive density” discussed in Harris (1989). Non-parametric stochastic simulation tech-
niques can also be utilized. In large samples, this simulated distribution will be the same
as that used in the calculation of the confidence intervals discussed above. However, the
stochastic simulation scheme is more generally applicable and will be used in this paper.
Further details are provided in the next section.

An alternative approach to allowing for the effects of future and parameter uncertainties
on prediction of yr1 would be to follow the literature on “predictive likelihoods”, where
a predictive density for y;y; conditional on Q7 and xp,; is derived directly.” In the case
of the regression example, the problem has been studied by Levy and Perng (1986) who
show that the optimal prediction density for yr,;, in the Kullback-Leibler information-
theoretic sense, is the Student t distribution with 7" — k degrees of freedom, having the
location 741 = X/, 18; and the dispersion 6% {1 + x/ 1 (X} X7) %741}, where 6% = (T —

k)Y PSS (g — x;,@T)/(yt — XQBT). This is the same as the Bayes predictive density of
yr41|Qr with a non-informative prior on (3,0%). In this way Levy and Perng provide a
non-Bayesian interpretation of Bayes predictive density in the context of linear regression
models. However, while this is the optimal prediction density in the original linear model,
Harris (1989) demonstrates that the bootstrap prediction density performs well in a number
of important cases.

3 A General Framework for Probability Forecasting

To formalize the discussion of probability forecasts, suppose we are interested in a decision
making process that requires probability forecasts of an event that involves one or more
of the m-variable vector, z; = (z1, 221, .., Zmt)’- Assume also that the forecasts are made
with reference to a parametric family of models, denoted by M (@), and characterized by
the joint density function of z; over the estimation and the forecast periods t = 1,2, ..., T,
and T+ 1,7 + 2,...,T + h, respectively. The probability model, M (), is a set of density
functions, each describing the probability of obtaining specified values for the observed and
forecasted data, and indexed by the unknown k x 1 parameter vector 8 assumed to lie in the
compact parameter space, O:

M(G) = {f (Zl,ZQ, cers L 2T 1y 2T 12y -oos ZT 1R 0) y 0 < @} . (6)

Throughout we shall assume that the true value of @, which we denote by 6y, is fixed and
remains constant across the estimation and the prediction periods and lies in the interior of
©. We denote the maximum likelihood estimate of 8y by @, and assume that f(.) satisfies
the usual regularity conditions so that

VT(07 — 6,) & N(0,Vy),

where & stands for “asymptotically distributed as”, and Vy is a positive definite covariance
matrix.® Under these assumptions, parameter uncertainty only arises when 7 is finite. The

7A large number of different predictive likelihoods have been suggested in the statistics literature.
Bj¢rnstad (1990) provides a review and discusses 14 different versions.

8In the case of cointegrating vector autoregressive models analysed later in this paper, a more general
version of this result is needed. This is because the cointegrating coefficients converge to their asymptotic

[7]



case where 8y could differ across the estimation and forecast periods poses new difficulties
and can be resolved in a satisfactory manner if one is prepared to formalize how 6, changes
over time.

The density function f(.) can be decomposed in two ways. First, the sequential con-
ditioning decomposition can be employed to write f(.) as the product of the conditional
distributions on successive observations on the z;,

t

f (Z17Z27 "'7Zt;0) = Hf (ZS | 71,2, "'7ZS—1;Z070)7

s=1

for given initial values zy. And second, since we frequently wish to distinguish between
variables which are endogenous, denoted by y;, and those which are exogenous, denoted by
X;, we can write z; = (y},x})" and use the factorization:

[ (2| 21,20, ..., 2015 20,0) = f,, (V¢ | 21,22, ..., Ze_1, %45 20, 0y) ¥ fo (X¢ | 21,22, ..., 221520, 0,) .

(7)

Here f, (y: | 21,22, ..., Z—1, X¢; 29, 0,)) is the conditional distribution of y, given x; and the in-
formation available at time t—1, ;1 = (2o, 21, Z2, ..., Z—1), and f, (X¢ | 21, 22, ..., Zt_1; Zo, 02
is the marginal conditional density of x;. Note that the unknown parameters 8 are decom-
posed into the parameters of interest, 8,, and the parameters of the marginal density of the
exogenous variables, 8,. In the case where x; is strictly exogenous, knowledge of the marginal
distribution of x; does not help with the estimation of 8,, and estimation of these parameters
can therefore be based entirely on the conditional distribution f, (y: | x¢, 2—1; 6,).

Despite this, parameter uncertainty relating to @, can continue to be relevant for prob-
ability forecasts of the endogenous variables, y;, and forecast uncertainty surrounding the
endogenous variables is affected by the way the uncertainty associated with the future path
of the exogenous variables is resolved. In practice, the future values of x; are often treated
as known and fixed at pre-specified values. The resultant forecasts for y; are then referred
to as scenario forecasts, with each scenario representing a different set of known future val-
ues for the exogenous variables. This approach under-estimates the forecast uncertainties.
A more plausible approach would be to treat x; as strongly exogenous, and allow for the
forecast uncertainties of the endogenous and the exogenous variables jointly. The exogeneity
assumption will simplify the estimation and the forecasting tasks but does not eliminate the
need for a joint treatment of future uncertainties associated with the exogenous variables
and the shocks to the endogenous variables.

Now, suppose the joint event of interest is defined by

©j(Zpyq, 2040, Zryn) <aj for j=1,2,... L,

or, equivalently,
P (Zri1, 2142, - - 5 Z74n) < &,

distribution faster than the other parameters in the model. However, the general results of this section are
not affected by this complication.



where ¢(.) and a are defined by the L x 1 vectors ¢(.) =[01(.), @2(.), ...or()], a =
(a1, as,...,a1)’, ¢; (Zy,1, 2142, - -, Zryn) is a scalar function of the variables over the forecast
horizon 7'+ 1,..., T 4+ h and a; is the “threshold” value associated with ¢,(.). To simplify
the exposition, we denote this joint event by 2,. The (conditional) probability forecast
associated with this event is given by

m(a,h; 0(.),0) =Pr@ (27411, 2142,- - s Zren) < a| Qp;M(0)]. (8)

In practice, we might also be interested in computing probability forecasts for a number of
alternative threshold values over the range a; € [Gmin; @max)-

If the model is known to be M (8) defined by (6) but the value of 8 is not known, a point
estimate of 7 (a,h; ¢(.),0) can be obtained by

s (a,h; (P(),OT) = g f(ZT+1, 27495 y2ZT4h | QT, HT)dZT+1 e dZT—i—hu (9)
®

where f(z7y1,Z7r42, - 2Z74n | QT;gT) is the joint density of z7.1,... 27, conditional
on )y and evaluated at 6 :§T. This probability density function (viewed as a function of
a), also known as the “profile predictive likelihood”,? takes account of future uncertainties
arising from the model’s stochastic structure and the future uncertainty with respect to the
evolution of the model’s exogenous variables. It does not, however, take account of model or
parameter uncertainties, as it is computed for a given density function within M (0) and for a

fixed choice of 8, namely éT. To allow for parameter uncertainty, we assume that conditional
on ), the probability distribution function of @ is given by g (9 |0, QT). Then

7 (ah; ¢(.)):/ w(ahip().0) g (016,.00) do, (10)

6co

or, equivalently,

T (a,h; QO()) = / f(ZT—H; cee 32T ’ QT, 0) g (0 ‘/Q\T, QT) dZT+1. . .dZT+hd0.
6co J2A,

In practice, computation of 7 (a,h; ¢(.),§T) typically needs to be carried out by stochastic

simulations. For further details, see the application of Section 6 below and the associated
discussion of the Appendix.

In a Bayesian context, g (0 ]é\T, QT) could be derived from a prior on 0 assumed given

at the start of the estimation period. Alternatively, in the case where the asymptotic normal
theory applies to @, it may be reasonable to compute the probability density function
assuming

o |QT, /O\T g\ N(/G\T, T_li\fg).
For this specification of g (0 ]é\T, QT), it is then easily seen that the point estimate of the

probability forecast, m (a,h; cp(.),b\T) , and the estimate, 7 (a,h;(.)), that allows for pa-

rameter uncertainty are asymptotically equivalent, for a fixed h, and as T — oo. The latter

9See, for example, Bj¢rnstad (1990).



is the “bootstrap predictive density” described in Harris (1989) and its application to a
cointegrating VAR model will be discussed in Section 4. Also, both of these estimates tend
to m(a,h; ¢(.), 0,), which is the profile predictive likelihood for a known value of 6,. But
for a fixed T, the two estimates could differ substantially, as the applications in Section 6
demonstrate.

3.1 Evaluation of Probability Forecasts

There are two general approaches to the evaluation of probability forecasts. One is a purely
statistical approach where the empirical adequacy of the probability forecasts are judged
against realizations of the underlying process using the probability integral transforms pro-
posed by Dawid (1984).1° The other a decision theoretic approach, advocated in Granger
and Pesaran (2000), which bases the evaluation of the probability forecasts on their implied
economic value in the context of particular decisions. To be more specific, suppose we are
provided with a sequence of one-step ahead (continuous) probability density functions p; (z) ,
t =1,2,...,n, and the associated realizations zi, z,, ...,z,. The statistical approach makes
use of the probability integral transforms

u(zg) = / pe(z)dz, t =1,2,....n,

and tests the hypothesis that the transformed sequence u(z;), t = 1,2,...,n is a random
sample from UJ0,1]. The rationale behind this test is an early result due to Rosenblatt
(1952) who showed that the probability integral transforms, u(z;), will be distributed as
iid. U[0,1] under the null hypothesis that p, (z) coincides with the true density function
of the underlying process. Standard statistical techniques can now be used to carry out the
test of the i.i.d. uniformity of the probability integral transforms, u(z;), t = 1,2, ...,n. Some
useful practical considerations are discussed in Diebold, Gunther and Tay (1998). Also see
Diebold, Hahn and Tay (1999) and Berkowitz (1999).

In contrast, the decision theoretic approach to forecast evaluation uses utility or cost func-
tions that underlie the decision problem to transform the probability density functions into
realized utility outcomes. Different probability density functions are then compared by their
average realized utilities over the evaluation sample. For example, consider a single period
decision problem where at time ¢ the decision variable d; is chosen so that E[U(dy, z¢+1) | 4]
is maximized, where U(-) is a globally concave utility function, and z;,; is a vector of state
variables with the conditional probability distribution function Fy(z) = Pr(zi1 < z | Q).
Suppose Fy(z) is estimated by the probability distribution function, P,(z), and the aim is
to evaluate the adequacy of P;(z) for the decision problem at hand. The realized time
t + 1 utility value associated with the use of P,(z) is given by U {d} [P:(z)], 21}, where
d? [P;(z)] is the optimal decision variable. For a given sequence of probability distribution
functions, P,(z), t = 1,2,...,n and the associated realized values z;.1, t = 1,2,...,n, the

10The same idea is also discussed more recently by Diebold, Gunther and Tay (1998). A general approach
to forecast evaluation that could also be applied to evaluate probability forecasts is provided by West (1996).
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average economic value of the probability forecasts will be given by
Va(P(z)) =n™" Y U[d; (P(2)  2e41]
t=1

which can then be compared with a similar average value obtained for an alternative estimate
of Fy(z). For further details see Diebold, Gunther and Tay (1998), and Granger and Pesaran
(2000).

Both of these approaches require n to be sufficiently large, which is more likely to be
available in finance than in macroeconomic applications. Also the application of the decision
theoretic approach demands a complete specification of the decision problem which has been
rather rare in macro-economic policy evaluation. These are clearly important areas for future
research and will be beyond the scope of the present paper.

4 Inflation Targeting, Output Growth and Interest Rates

Inflation targets have been set explicitly in the UK since October 1992, following the UK’s
exit from the ERM. The Chancellor’s stated objective at the time was to achieve an annual
rate of inflation of 2% or less in the long term, but to keep underlying inflation within a
range of 1%-4%. In May 1997, the policy of targeting inflation was articulated further by
the setting up of the Monetary Policy Committee (MPC), where the main objective was to
meet inflation targets primarily through the setting of interest rates. Its current remit, as
defined annually by the Chancellor, is to achieve an average inflation target of 2.5%, with
the annual rate of inflation falling in the range 1.5%-3.5%.

The measure of inflation used by the MPC is the Retail Price Index, excluding mortgage
interest payments, (RPI-x), and the time horizon over which the inflation objective is to be
achieved is not stated. Inflation rates in excess of 3.5% or below 1.5% act as a trigger by which
the Governor of the Bank of England is obliged to write an open letter to the Chancellor
explaining why inflation had deviated so far from the target, the policies being undertaken
to correct the deviation, and how long it is expected before inflation is back on target. It
should be noted that the Bank is expected to conduct monetary policy so as to support
the general economic policies of the government, without damaging its primary commitment
to achieving its inflation target, and the presence of a (non-voting) representative of the
Treasury on the MPC provides a means for the government to express its views in this
respect.

Since October 1992, the Bank of England has produced a quarterly Inflation Report
which describes the Bank’s assessment of likely inflation outcomes over a two-year forecast
horizon. In addition to reviewing the various economic indicators necessary to place the
inflation assessment into context, the Report provides an explicit projection for inflation
over the two year forecast horizon, with bands presented around the central forecast to
illustrate the range of inflation outcomes that are considered possible. The projection is
based on the assumption of unchanged official interest rates. Since November 1997, a similar
projection for output growth has also been provided in the Report, providing insights on
the Bank’s perception of the likely outturn for the government’s general economic policies

[11]



beyond the maintenance of price stability. For a critical assessment of the Bank’s approach
to allowing for model and parameter uncertainties see Wallis (1999).

One of our objectives in this paper is to provide a model-based characterization of the
uncertainties that surround inflation and output growth forecasts that have come to concern
many central bankers. The so-called fan charts produced by the Bank of England acknowl-
edge the significance of forecast uncertainties in the decision making process. However, the
fan chart approach, as implemented by the Bank, suffers from two major shortcomings. First,
it does not seem likely that the fan charts can be replicated by independent researchers. This
is largely due to the subjective manner in which uncertainty is taken into account by the
Bank, which does not readily lend itself to independent analysis even though it may be
justified from a real time decision-making perspective. And second, the use of fan charts
is limited for the analysis of uncertainty associated with joint events. Currently, the Bank
provides separate fan charts for inflation and output growth forecasts, but in reality one is
generally interested in joint events involving both inflation and output growth, and it is not
clear how separate fan charts can be used for such a purpose. In this paper, we address
both of these issues by basing our analysis on a replicable core macroeconometric model of
the UK economy, and by focussing directly on presentation of probability forecasts rather
than fan charts. However, in this paper, we do not address the important issue of model
uncertainty, but our approach could be adapted to deal with it following a method similar
to that discussed in Draper (1990).

Our empirical analysis is based on quarterly time series observations on eight key macroe-
conomic variables relevant to the UK economy over the period 1965q1-1998q4 (see Table 1).
In particular, we measure price inflation using the all items retail price index, output growth
using real GDP at market prices, and use the 90 day Treasury Bill rate as the interest rate.
The plots of the actual values of inflation, output growth and interest rates observed over
the period 1965q1-1998q4 are given in Figure 1, while Tables 2 and 3 provide information on
the empirical frequency distribution of various events of interest. Specifically, Table 2 gives
the empirical probability distributions for the 4-quarter moving averages of output growth,
inflation and interest rates, while Table 3 reports the estimates of the joint empirical prob-
ability distributions of inflation and output growth. We report frequencies based on the
whole sample and also conditioning on the sub-periods 1970q1-1979q4, 1980q1-1989q4 and
1990q1-1998q4. These estimates show considerable variations across the three sub-periods,
particularly as far as the events involving inflation and interest rates are concerned. For
example, the empirical frequency of inflation falling below 5% is 2.5%, 40.0% and 83.3%
over the periods 1970q1-1979q4, 1980q1-1989q4, and 1990q1-1998q4, respectively. The cor-
responding figures for the interest rate falling below 8% are 45.0%, 0.0%, 66.7%, respectively.
In contrast, the empirical distribution of the output growth seems to have been relatively
stable. For example, the observed empirical frequencies of the average 4-quarterly output
growth falling below 2.0% are 40.0%, 37.5% and 44.4%, respectively. A similar picture also
emerges from the analysis of the joint empirical frequencies of inflation and output growth
reported in Tables 3(a)-3(d). For example, the empirical frequencies of output growth falling
below 2.5% and inflation falling below 5% were 2.5%, 5.0% and 41.7%, over the three sub-
periods, respectively. The empirical frequencies reported in Tables 2 and 3 provide a basis
for a better understanding of the conditional probability forecasts that we will be presenting
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in Section 6.

5 A Cointegrating VAR Model of the UK Economy

In principle, probability forecasts can be computed using any macroeconometric model, al-
though the necessary computations would become prohibitive in the case of most large scale
macroeconometric models, particularly if the objective of the exercise is to compute the
probabilities of joint events over different horizons. On the other hand, the use of small
unrestricted VAR models, while computationally feasible, may not be satisfactory for the
analysis of forecast probabilities over the medium term. An intermediate alternative that
we shall follow here is to use cointegrating VAR models that take account of the long-run
relationships that are likely to exist in a macro-economy. A model of this type has been
developed by Garratt et al. (1999, 2000a). This model is based on a number of long-run
relations derived from arbitrage conditions in goods and capital markets, solvency and port-
folio balance conditions. The model contains five domestic variables whose developments are
widely regarded as essential to a basic understanding of the U.K. economy; namely, output,
the price level, the exchange rate, the nominal interest rate and real money balances. It also
contains four foreign variables; namely, foreign output, the foreign interest rate, the foreign
price level, and oil prices. To simplify the analysis, and to avoid working with potentially
I[(2) variables, the model is constructed using domestic and foreign prices measured relative
to oil prices (in logs). As a result, there are only eight variables in the model, as listed in
Table 1.

The model was originally estimated over the period 1965q1-1995q4. For forecasting
purposes, we thought it would be appropriate to use a more up-to-date version of the model
based on the recently published national accounts data that conforms to the European
Standard of Accounts. We also thought that it would be instructive to estimate two versions
of the model: one in which no restrictions are imposed on the short-run dynamics (the ‘core
model’), and one obtained as the outcome of a specification search in which dynamic terms
are dropped from the model if they make no significant contribution to the model’s fit (the
‘restricted core model’). Both versions of the model embody the same long-run relationships,
associated with the economic equilibrium concepts described above, in a cointegrating VAR
framework. Both versions of the model also treat the relative foreign price variable as a
weakly exogenous I(1) variable, and the order of the VAR model in both is chosen using
familiar model selection criteria. Hence, the two versions of the model are very similar, but
differ in terms of their short-term dynamic properties, with the restricted version having a
more parsimonious but data-consistent specification.

The four long-run equilibrium relationships of the model are given by:

(pr — ) — (P} —P}) — e = arp + ant + E1,t+1, (11)
T — TE = ago + €941, (12)
Y — Y, = aso + €341, (13)
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hi — yr = aao + ant + Bagre + Basyr + €141, (14)

where p; is the logarithm of domestic prices, p; is the logarithm of foreign prices, p{ is the
logarithm of oil prices, e; is the logarithm of nominal exchange rate (defined as the domestic
price of a unit of the foreign currency, so that a depreciation of the home currency increases
et), y¢ is the logarithm of real per capita domestic output, y; is the logarithm of real per
capita foreign output, r, is the domestic nominal interest rate variable, 7 is the foreign
nominal interest rate variable, h; is the logarithm of the real per capita money stock, and
the €,,41, 7 = 1, ..,4, are stationary reduced form errors.

A detailed account of the framework for long run macromodelling, describing the eco-
nomic theory that underlies the relationships in (11) - (14), is provided in Garratt et al.
(1999). In brief, we note here that (11) is the Purchasing Power Parity (PPP) relationship,
which allows for a trend in the real exchange rate, based on international goods market
arbitrage; (12) is an Interest Rate Parity (IRP) relationship, and is based on arbitrage be-
tween domestic and foreign bond holdings; (13) is an “output gap” (OG) relationship, based
on a stochastic version of the Solow growth model in which there is common technological
progress in production at home and abroad;'' and (14) is a real money balance (RMB) re-
lationship, based on the condition that the economy must remain solvent in the long run. A
fifth long-run relationship, relating to the Trade Balance (TB), is also discussed in Garratt et
al.(1999). The TB relationship, and that in (14), are obtained by modelling the equilibrium
portfolio balance of private sector assets. However, under certain parameter values in the
TB relationship, it will be difficult to distinguish between the effects of the TB and those
of the modified PPP and OG relationships. As we discuss in more detail below, this turned
out to be the case in our data set, so that the empirical counter-part to the economic theory
discussed in Garratt et al. (1999) is described in (11) - (14).

The four long-run relations of the model, (11) - (14), can be written compactly as

&t = ,@'zt_l — (ao — al) — alt, (15)
where
o * * * o\’
Z; = (pt _ptaehrtartayt?yt?ht — Y, Py _pt) :
ag = (a107a20,@30,a40)/, a; = (G11,0707a41)7
g = (511575215:5315: 54t)/7
and
1 -1 0 0 0 0 0 -1
/ 0 0 1 —1 0 0O 0 0
p = 0 0 0 0 1 -1 0 0 (16)
0 0 —fGi3 0 —0s 0 1 0

We partition z; = (y}, pf — p?)’, where y; = (p; — 12, €s, T, 75, Yo, Y5, he — ;) is treated as
an I(1) vector of endogenous variables and z; = p; — p{ is treated as a weakly exogenous

1 Our use of the term ‘output gap relationship’ to describe (13) should not be confused with the more usual
use of the term which relates more specifically to the difference between a country’s actual and potential
output levels (although clearly the two uses of the term are related).
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I(1) variable, in the sense that changes in p; — p¢ have a direct influence on y;, but p; — p?
is not affected by error correction terms which measure the extent of disequilibria in the UK
economy. We then embody &; in an otherwise unrestricted VAR(s — 1) in Ayy:

s—1

Ay; = —ae; + Z ‘I’yiAZt—z' + @bA(p::k - pf) + Vi, (17)

i=1

where v,; is an 7 x 1 vector of serially uncorrelated shocks, a is an 7 x 4 matrix of error-
correction coefficients, {V,;,7 = 1,2,...,s — 1} are 7 x 8 matrices of short-run coefficients,
and 1 is an 7 x 1 vector representing the impact effects of changes in foreign prices relative
to the oil price on Ay;. Using equation (15), we have

s—1
Ay; = a(ag—ay) + aat — af, + Z U, Az i + PA(p; — pf) + Vi, (18)
=1

where §,= ,Blzt_l are the error correction terms. The above specification embodies the eco-
nomic theory’s long-run predictions by construction, in contrast to the more usual approach
where the starting point is an unrestricted VAR model, with some vague priors about the
nature of the long-run relations.

For forecasting, we also need to specify the marginal model for the exogenous I(1) vari-
able(s). For this purpose, we use

s—1

Azx, = Z Ui AZy i + Co0 + Vo, (19)

i=1
where U,;’s are unknown (1 x 8) coefficient matrices and ¢, is a scalar and, by construction,
. b 0
v, and v, are uncorrelated so that Vot id 0,%>, = Yy )
Vit 0 EUI
Combining (18) and (19), we obtain the following Vector Error Correction model in z,:

s—1
Az = —1Ilz;_ 1 + Z [';Az;_; + bg + byt + uy, (20)
i=1
where ( )
IRRZ | a(ag—ay _ | oy _ | Vu
\Ifi—|:\llzi:|,C0—|: €0 :|7C1—|:0:|7Vt_|:vzt:|7
and

A= { IT(’;y I_”’b ‘| s II = Ail |: a(l? ] s Fz = A_I\I/i, bo = A_ICO, b1 = A_1C1, u; = A_lvt.

x

Estimation of the parameters of the model, (18), can be carried out using the long-
run structural modelling approach described in Pesaran and Shin (1999) and Pesaran, Shin
and Smith (2000). With this approach, having selected the order of the underlying VAR
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model (using model selection criteria such as the Akaike Information Criterion (AIC) or
the Schwartz Bayesian Criterion (SBC')), we test for the number of cointegrating relations
among the 8 variables in z;. When performing this task, and in all the subsequent empirical
analysis, we work in the context of a VAR model in which the intercepts a(a, — a;) are
freely determined but the trend coefficients are restricted so that aa; = Iy, where II = af
and -y is an 8 x 1 vector of unknown coefficients. These restrictions ensure that the solution
of the model in levels of z; will not contain quadratic trends. We then compute Maximum
Likelihood (M L) estimates of the model’s parameters subject to exact and over-identifying
restrictions on the long-run coefficients.!? If there is empirical support for the existence of
four long-run relationships, as suggested by theory, exact identification in our model requires
four restrictions on each of the four cointegrating vectors (each row of 3), or a total of sixteen
restrictions on 3. These represent only a subset of the restrictions suggested by economic
theory as characterized in (16), however. Estimation of the model subject to all the (exact-
and over-identifying) restrictions given in (16) enables a test of the validity of the over-
identifying restrictions, and hence the economic theory, to be carried out. Of course, it also
provides the means for generating point forecasts and probability forecasts.

5.1 The Estimated Model

The entire exercise described above was conducted by Garratt et al. (1999) using UK
data over the period 1965q1-1995q4. To check the robustness of the estimated model, and
to enable more up-to-date forecasts to be considered, we carried the long-run structural
modelling exercise using data over the period 1965q1-1998q4.!® Having first confirmed that
a VAR(2) model is appropriate, as was the case in the original modelling exercise, the
cointegration tests were then carried out and the results of these tests are presented in Table
4. These provide mixed evidence on the number of cointegrating vectors existing among
the series: working at the 95% level of significance, the statistics indicate that there are
four cointegrating vectors according to the test based on the trace of the stochastic matrix,
but that there is just one cointegrating relationship according to the test based on the
maximal eigenvalue statistic. This is in contrast with the results obtained by Garratt et al.
(1999) where they found marginal support for five independent long-run relationships.'* We
therefore proceed on the assumption that there exists four cointegrating relations among the
variables.

On this basis, the core model was estimated first subject to sixteen restrictions which
exactly identify the system, and then subject to these and further eighteen over-identifying
restrictions as suggested by the economic theory.!® The test statistic takes the value of

2The computations were carried out using Pesaran and Pesaran’s (1997) Microfit 4.0.

13The extended data set requires use of revised figures for some variables, based on the European Standard
of Accounts (ESA). The results of this paper and Garratt et al. (1999) are not directly comparable therefore.

14Tn the earlier work, evidence for the fifth cointegrating relationship was less strong than for the others.
There was some support for the use of four cointegrating relationships even in Garratt et al. (1999) therefore.

15When over identifying our system we impose three zero restrictions on the four time trends in the long
run. Economic theory suggests no time trend in both the IRP and OG relationships (see equations (12)-(13))
providing two restrictions. However theory allows for the possibility of a time trend in the PPP relationship,
whilst not specifying whether or not a time trend should be present in the RMB relationship. Hence we
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40.26, and although the statistic is asymptotically distributed as the chi-squared variate
with eighteen degrees of freedom, the appropriate critical values need to be calculated using
bootstrap techniques to take into account the relatively small sample of data used in this
modelling exercise. These provide critical values of 74.55 (90%) and 80.52 (95%) and on
the basis of such a test, therefore, there is no evidence with which to reject the assumed
restrictions suggested by economic theory. The estimated long-run relationships, and the
associated error correction specification for the model, are presented in Table 5. It is worth
noting that, even apart from the absence of the TB relationship, there are some interesting
differences between the estimated long-run relationships of Table 5 and those described
in Garratt et al. (1999). Notably, the PPP relationship now holds, while it required a
modification (relating to oil price movements) in the version developed by Garratt et al.
(1999). Further, in the RMB relationship, the estimated parameter on the interest rate is
larger in the present version of the model than was obtained previously (the estimate here

.. 39.03 20.33 .
1 (1131) compared to (5.00) where standard errors are in parentheses).

In order to evaluate the fit of the core model reported in Table 5, we can compare the R
of these equations with those of a benchmark univariate ARMA model estimated on the first
difference of the seven endogenous variables in the model. For each variable, the benchmark
model is chosen from the class of ARMA(s, q), s, ¢ =0, 1,..., 4 models using the AIC. This
comparison shows that, broadly speaking, the error correction equations in the core model
outperforms the associated benchmark models, in some cases to a substantial degree. The
error correction equation for domestic prices (relative to oil prices) explains around 70 per
cent of the total variation in Ap; compared with 60 per cent for the corresponding benchmark
model.'® For the domestic output growth equation, R? = 0.24 as compared with 0.02 for
the benchmark model. Similar comments apply to all of the remaining equations, indicating
that the fit of the equations of the core model relating to foreign output growth, domestic
and foreign interest rates, real money balances and the exchange rate equation all display
good explanatory power relative to their ARM A counterparts.

Having obtained the estimated core model, the more parsimonious ‘restricted core’ model
is obtained undertaking a specification search in which insignificant coefficients on short-run
dynamic terms have been set to zero. In this case, the cointegrating relations are taken as
given (and equal to those of the core model), and the seven error correction regressions are
estimated using the SURE method. In all, forty-one zero restrictions are imposed on the
short-run parameters to obtain the restricted core model. The log-likelihood ratio statistic
for testing these restrictions turned out to be 56.89, which is just below the 95% critical value
of the chi-squared distribution with 41 degrees of freedom. The error correction specifications
of the restricted core model are provided in Table 6. Comparison with Table 5 shows that
the omission of the dynamic terms has relatively little impact on the model: the standard
errors associated with the parameter estimates have been reduced, so that significance levels

allow both the trend terms in the PPP and RMB relationships to be estimated but impose a third zero
restriction on the trend term in the PPP relationship (as it was not significantly different from zero). These
three restrictions, plus the thirty-one contained in (16), make up the total number of restrictions, eighteen
of which are over-identifying restrictions.

16The R reported for the A(p; — pg) equation in Table 4 refers to Ap;, which is directly comparable to

-2 . . . . . .
the R~ obtained for the univariate benchmark model which is estimated on Ap;.
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are typically higher, but the point estimates of those parameters which are significantly
different from zero in the two tables are broadly the same. Given this, one might expect
the point forecasts based on the two models to be broadly comparable, so that differences
in probability forecasts will be attributable mainly to the effects of parameter uncertainty.

In order to compute forecasts from the model, we need to supplement the estimated
relationships of the model described above with a model for the exogenous variables. We
therefore assume that the oil price level remains unchanged in the future (so that there is
no uncertainty related to forecasts arising from this source), while foreign prices relative
to the oil price are modelled by the following autoregressive distributive lag, ARDL(2,2),
specification:!7

0.003  0.5227 0.3008
A(pF — p? _ * 0 Alp* o —p°
(pt pt) (0001) + (0083) (ptfl ptfl) + (0080) (pt72 pt72)
0.9901 0.5270 0.3020
- Ap? Ap? Ap? ,+ T 21
(0.002) P (0.082) 2Pt T (0.079) PP 2 T (21)

R%, = 0.7548, 6, = 0.0038, x%3c[4] = 13.34, xFp[l] = 0.72, x3[2] = 8.48, xF[1] = 8.13.

The model was again obtained using data over the period 1965q1-1998q4 and is of the
same form (and has similar parameter estimates) as that presented in Garratt et al. (1999)
obtained over the shorter sample. Generating values for u; over the forecast horizon by
random draws from a N(0, &,.) distribution, (21) can be used recursively to obtain forecasts
of A(p; — p?), and hence of Ap; and p}, given that it is assumed that oil prices are constant
over the forecasting horizon.

6 Probability Forecasts of Inflation, Output Growth
and Interest Rates

In this section, we consider probability forecasts of a number of events of interest using the
unrestricted and the restricted versions of the long-run structural model developed in the
previous section. Initially, we present plots of estimated predictive distribution functions for
inflation, output growth and interest rates at a number of selected forecast horizons using the
unrestricted model estimated over 1965q1-98q4 as set out in Table 5. These plots provide us
with the necessary information with which to compute probabilities of a variety of (single)
events, and demonstrate the usefulness of probability forecasts in conveying the future and
parameter uncertainties that surround the point forecasts. But our substantive discussion of
the probability forecasts will focus on the central events of interest in macroeconomic policy-
making in the UK; namely, keeping the rate of inflation within the announced government
target range of 1.5% to 3.5%, and avoiding recessions. We define a recession as an event where
the average four-quarterly rate of change in GDP is negative. Other concepts of recessions,

I"This specification was chosen from all ARDL(s1,382), 81,82 < 4 models according to the Akaike model

. . =2 . .
selection criterion. Note that the R~ for the A(p} —pg) equation is computed with respect to Ap;. Standard
errors are given in paranthesis.
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such as two successive negative quarterly growth rates, could also be considered.'® However,
we do not expect the probability estimates presented in this section will be much affected
by which one of these notions is adopted.

6.1 Point and Interval Forecasts

Before reporting the probability forecasts it is worth briefly outlining the broad properties of
the point forecasts generated by the unrestricted model of Table 5. This should help place
the probability forecasts in the traditional context where point and (occasionally) interval
forecasts are provided. All the forecasts are generated on the assumption that oil prices
follow a random walk without a drift and, since the estimation period ends in 1998q4, the
forecasts are therefore computed assuming oil prices are set at their 19984 level (namely at
$11.85 per barrel (p/b)). The likely consequences of the much higher oil prices experienced
more recently on the probability forecasts will be discussed briefly at the end of this section.

The point forecasts of foreign price inflation, computed using (21), are predicted on
average to be around 5.6% per annum over the period 1999q1-2004q4, as compared to the
average annual figure of 6.8% achieved over the estimation period, 1965q1-1998q4. This lower
average inflation forecast is in line with recent experience, since over the period 1985q1-
1998q4, the average rate of foreign inflation amounted to around 5.5%. Table 7 provides
the corresponding point forecasts for domestic inflation rates, output growth and interest
rates over the period 1999q1-2004q4 together with their 95% confidence intervals. These
forecasts refer to 4-quarterly moving averages. The inflation forecasts are computed as,
Pron — Prin_4, Where pr refers to the log of retail price index in the base quarter, 1998¢4,
and prop, h = 1,2, ..., the corresponding indices for the subsequent quarters.!® Similarly, the
4-quarter moving average of output growth and the level of interest rates are computed as
ID(GDPT+h/GDPT+h,4) and (TT+h + T'T4h—1 + T'T1h—2 + TT+h73)/4; respectively. The GDP
growth predictions were obtained from the forecasts of per capita output, yrp, generated
from the core model and assuming a population growth of 0.21% per annum.

As can be seen from Table 7, the average annual rate of inflation is predicted to fall
slightly in 1999q2 before rising steadily thereafter. These point forecasts are higher than the
inflation rates realized during 1999 and tend to be higher than the current consensus inflation
forecasts. But they are subject to a wide margin of uncertainty as reflected in the forecast
intervals. Output growth is predicted to be positive throughout the forecast horizon, falling
in 1999 but then rising to around 2.0-2.10% thereafter. Annual average interest rates are
predicted to be around 5.2% in the first quarter of 2000 and falling slowly thereafter. Once
again these forecasts are subject to a high degree of uncertainty. For example, while the point
forecast of inflation is predicted to lie above the government central inflation target of 2.5%,
the annual rate of inflation in 2000q1 is predicted (at 95% level) to lie in the range -1.74 to
+9.45. Similarly the annual rate of output growth in 2000q1 is predicted to lie in the interval
-1.56 to +5.17; a very wide range indeed. But it is difficult to evaluate the significance of
these forecast intervals for policy analysis. As we have argued, a more appropriate approach

18See, for example, Harding and Pagan (2000) .
9Tn interpreting the probability estimates in this section, it should be born in mind that the inflation
target is expressed in terms of RPI-x, while the core model uses the RPI as a measure of inflation.
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would be to directly focus on the uncertainty associated with the events of interest, and this
is the topic that we shall turn to now.

6.2 Predictive Distribution Functions

In the case of single events, probability forecasts are generally represented by means of prob-
ability distribution functions. Figures 2a-2c give the estimates of these functions for the
4-quarterly moving averages of inflation, output growth and the interest rate for a number
of selected quarters over the forecast horizon, 1999q1-2004g4. These estimates are computed
using the parametric stochastic simulation technique described in some detail in the Ap-
pendix and take account of future and parameter uncertainty. We shall refer to them as the
bootstrap predictive density (BPD) estimates.

Figure 2a, presents the BPD estimates for the probability of average inflation falling below
threshold values ranging from -2% to +10% per annum at four selected forecast horizons. It
is clear that the estimated probability distribution functions all shift uniformly to the right
of the graph as longer forecast horizons are considered, indicating that the probability of
inflation falling below a given threshold declines with the forecast horizon. For example, the
forecast probability that inflation lies below 3.5% becomes progressively smaller at longer
forecast horizons, falling from approximately 80% in 1999q1 to 5% in 2004q4. These forecast
probabilities are in line with the historical evidence. The empirical frequencies of inflation
obtained over different ranges across different sample periods are set out in Table 2a. Over
the whole sample period, 1965q1-1998q4, the average annual rate of inflation fell below
3.5% only in 22.8% of the quarters. The same figure during the 1990s was much higher and
amounted to 61.1%. Whether we consider the probability forecasts presented in Figure 2a
as realistic very much depends on how one views the current policies as having been effective
in bringing about appropriate structural changes to the UK economy.

Figure 2b relates to four-quarter moving average of output growth, In(GD Py, /GDPrip_4),
and should be viewed in the light of the fact that output growth, although falling, was rela-
tively high in the last quarters of 1998 and that moderate levels of growth are also forecast
over the longer term. Hence, the estimate of the probability of a recession in 1999q1 is 8%,
falling to 3% in 19994, before rising to around 7-8% over the long run. It is worth noting
that historically (over the period 1965q1-1998q4) the unconditional probability of a recession
has been around 13.2% (see Table 2b).

Finally, Figure 2c gives the bootstrap predictive distribution functions for the four-quarter
moving average of the level of interest rates. The shape of the plot for 1999q1 is dominated
by the relatively high interest rates experienced during the last 3 quarters of 1998. The plot
registers a small probability of 0.13 for the average annual rate of interest to fall below 6%,
but this probability starts to rise steadily in subsequent years.

6.3 Probability Forecasts of Events of Interest

In addition to providing estimates of the probability distribution functions, it is often useful
to compute probability estimates of events of particular interest. Here we consider two such
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events:
A : Four-quarterly moving average rate of inflation lies in the range 1.5% to 3.5%,

and
B : Four-quarterly moving average rate of output growth is positive.

6.3.1 Inflation

Figure 3a presents alternative estimates of Pr(Ar., | ) at different forecast horizons
h = 1,2,3,... . The probability estimates themselves are given in Table 8. This figure
provides two sets of probability estimates: the BPD’s that allow for parameter uncertainty
and the profile predictive likelihoods (PPL) described earlier which only take account of the
future uncertainty. There are important differences between the two sets of estimates at least
at some forecast horizons, and this demonstrates the importance of allowing for parameter
uncertainty in probability forecasting.

Of more economic significance here, however, the plots also provide a direct indication of
the probability that the Bank of England will achieve inflation rates within the announced
target range both in the short run and in the medium to the long run. The probability
estimates are not encouraging and except for the immediate future are rather low. The
probability that inflation will fall within the target range is estimated to be quite high in
1999, but it then falls steadily towards zero. The BPD estimates that allow for parameter
uncertainty are generally lower than the PPL estimates that do not take account of param-
eter uncertainty. These results correspond with those in Figure 2a which showed that the
probability of four-quarter average inflation being above 3.5% is relatively low in the very
short run (0.25 in 1999q1), but that this probability rises rapidly over time, reaching 50% in
2000q1 and 90% in 2002q2. Again, it is important to place these estimates in their historical
contexts by comparing them with the corresponding empirical frequencies reported in Table
2a. Over the sample as a whole, inflation fell within the range [1.5%, 3.5%] on just 15.4% of
occasions, and again most of these occurred in the latter part of the sample.

These results appear very discouraging from the point of view of the Bank of England.
They show that, taking into account stochastic uncertainty, the uncertainty surrounding
the evolution of the exogenous variables and the uncertainty surrounding the estimated pa-
rameters of the model, the probability that the Bank can achieve the government inflation
objectives is very slim indeed over reasonable time horizons. Of course, the probability fore-
casts have not taken into account model uncertainty, and it is possible that the model that
we have estimated, and on which the probability forecasts are based, is the wrong model.
Alternatively, it is possible that our model represents a reasonable characterization of the
historical core relationships of the UK macroeconomy but that a structural break occurred
towards the end of the sample which would render the probability forecasts based on our
model inappropriate. We have checked the statistical properties of our estimated model and
there seems no evidence to suggest that such a structural break has taken place in our sam-
ple. However, it is widely argued that a structural break occurred in the determination of
UK inflation in the nineties when the monetary authorities switched to a policy of inflation
targeting, and the establishment of the Bank of England as an independent body implement-
ing monetary policy in 1997 was certainly a break with previous policy arrangements. If this

[21]



were the case, it would be difficult to establish statistically whether the break has occurred
or not, given the short period of time that has elapsed since the hypothesised break. The
conclusion drawn from our probability forecasts, therefore, is simply this: that the Bank’s
inflation target is unlikely to be achieved in the medium to long term if the underlying
macroeconomic structure, as captured by our macroeconometric model, remains unchanged.
Hence, in the long run pursuit of the Government’s inflation policy, it is important that
appropriate policy changes are put in place. Whether this has already been done is rather
difficult to establish or refute using econometric techniques of the type advocated in this

paper.

6.3.2 Output Growth

Figure 3b plot the estimates of Pr(Br., | Qr); namely, the probability that the four quarter
moving average of output growth exceeds 0% at T'+ h, h = 1,2, .... In this case, the BPD
estimates are systematically below the PPL estimates, showing once again the importance of
allowing for parameter uncertainty. However, both sets of estimates suggest a relatively high
probability that a recession can be avoided. Using the BPD estimates, conditional on the
available information at the end of 1998q4, the probability that a recession can be avoided
is estimated to be around 0.90 in 1999q1, falling to 0.86 in 2001ql and rising thereafter
towards 1. It is worth emphasising that these estimates are computed conditional on the
information available at the end of 1998 and need to be adapted recursively for a “real time”
analysis. But such an exercise is beyond the scope of the present paper.

6.3.3 Joint Events involving Inflation and Output Growth

Figure 3¢ provides illustrations of the probability forecasts relating to the joint event that
the four-quarter moving average of inflation lies within the target range of [1.5%, 3.5%)] and,
at the same time, recession is avoided; namely, Pr(Ap,, N Bryy | Qr), h = 1,2,.... The
BPD estimates are again below the PPL estimates, but only over the medium term; over
the long horizon, the reverse is true. These probability forecasts are similar in shape and
magnitude to those of Figure 3a that relate to Pr (Ar.p, | Q7). This is not surprising as
the probability of a recession is estimated to be relatively small at most forecast horizons,
so that one would expect the plots in Figure 3¢ to be only a little lower and of a similar
shape to those in Figure 3a. However, this is not to understate the potential usefulness
of computing the probability of joint events. In a decision-making context, it is often the
joint events that matter. A firm’s decisions to invest generally depend on growth prospects
and financial stability. The probability forecasts provided in Figure 3c provide the type of
probabilistic information required for such decisions. Moreover, this information would be
difficult to derive from confidence intervals of the sort typically provided. This is because
these two events are unlikely to be independent of each other at all forecast horizons and for
all types of inflationary experiences.



6.4 A Neutrality Index

The single and joint event probabilities can also be employed to shed light on the hypothesis
of the long-run neutrality, viewed as the stochastic independence of output growth and
inflation. Under the neutrality hypothesis at all forecast horizons, we have:?"

Pr([l Q) = PT(AT-HL N BT+h | Q) or Pr(ATJ’_h | Qr) Pr(BT+h | Qr) _,

where A,y is the event that the h-period average rate of inflation lies in the range 1.5%
to 3.5%, and BT+h denotes the event that the h-period average rate of output growth is
positive. Therefore, the extent to which there are departures from the neutrality hypothesis
can be measured by the probability ratio

[ Pr(Arin | Q) Pr(Bran | Q1)
h= - = : (22)
Pr(Agryn N Brys | Q7)

which we call the “Neutrality Index”. The estimates of the neutrality index are given in
Figure 3d. They are close to unity for most forecast horizons, indicating that the departure
from neutrality is relatively minor in the present application.

The neutrality index is a function of the forecast horizon, h, and for given events A and B
can be viewed as a probabilistic characterization of the generalized impulse response function
discussed in Koop et al. (1996). The use of probabilities for this purpose is attractive on
a number of grounds. The neutrality (or the independence) index, I, is well defined so
long as the probability of the events A and B do not take the extreme values of 0 and 1.
The evolution over time of I, provides important information on short-run as well as the
long-run properties of the underlying model. It is also relatively easy to allow for the effect
of parameter uncertainty on I,. As Figure 3d shows for the evolution of I, in this application
parameter uncertainty does not seem to be an important consideration.

6.5 Comparison of Event Probabilities across Alternative Models
and Estimation Periods

In this Section, we consider the robustness of the event probability forecasts described above,
based on the unrestricted core model (see Table 5), by comparing these forecasts with the
corresponding probabilities obtained from three alternative models. Specifically, we shall
consider the probability estimates based on (i) the restricted core model estimated over
the whole sample period 1965q1-1998q4 and presented in Table 6; (ii) a version of the
unrestricted model of Table 5 estimated over the more recent period, 1985q1-1998q4 (the
‘unrestricted 1985-98 model’); and (iii) a restricted version of the model estimated over the
period 1985q1-1998q4.

To obtain the restricted and the unrestricted 1985-98 versions of the model we started
with the cointegrating relationships from the 1965-98 versions summarized in Tables 5 and
6. This procedure is justified on the grounds that these long-run relationships might not

20We assume that the events A and B are defined such that Pr(A) > 0 and Pr(B) > 0.
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be reliably estimated on a sample size of 56 observations.?! Therefore, the ‘unrestricted

1985-98 model’ has the same form as the model set out in Table 5, incorporating the same
long-run relationship, but has different short-run coefficients. Importantly, the underlying
error-correction regressions also allow for different intercepts to be estimated across different
sample periods. This provides a flexible modelling framework which is potentially capable of
taking account of intercept shifts that could have come about due to possible regime changes
in the conduct of the monetary policy during the recent past.??

Figures 4a-4d give the plots of the estimates of Pr(Ary | Qr), Pr(Bryy | Qr), Pr(ArinnN
Brin | Qr), and I, defined in equation (22), for h = 1,2, ..., based on the unrestricted and
restricted versions of the 1965-98 model. Figures 5a-5d present the probability estimates
based on the unrestricted 1965-98 and unrestricted 1985-98 models. The probability es-
timates themselves are provided in Table 9. Figure 4 shows that the imposition of the
restrictions on the short-run dynamics has relatively little effect on the various estimated
event probabilities, with the two sets of estimates lying very close to each other. Figure 5,
on the other hand, shows that the estimates obtained from the whole-sample and the recent-
sample models are different in important ways, especially at short forecast horizons. The
Bank is substantially more likely to achieve inflation rates within the acceptable range over
the next two years according to the probabilities generated by the 1985-98 version model
when compared to those from the whole-sample model. According to the 1965-98 model, the
single event probability, Pr(Azr,, | Qr), takes the value 0.66 in 1999q1, falling to 0.41 after
4 quarters, to 0.21 after two years, and to 0.08 over long horizons. The recent-sample model
provides corresponding probability estimates of 0.89, 0.58, 0.22, and 0.16. While the Bank
is unlikely to achieve its targets over the longer horizons according to both sets of figures,
therefore, the prospects of achieving its aims over the shorter, one-two year horizons, are
much brighter according to the estimates computed using the 1985-98 model.

The probability forecasts presented in the paper have not taken into account model
uncertainty. The results presented in Figure 5 suggest that this form of uncertainty, including
the effects of changing estimation periods necessary to capture the effects of possible regime
shifts and structural breaks, can be important.

6.6 Probability Forecasts Under a Higher Oil Price Scenario

In this section we briefly consider the effects of the recent sharp increases in oil prices on our
probability estimates. The average quarterly oil prices during 1999q1-2000q1 increased from
$11.79 p/b in 1999q1 to $16.37 p/b in 1999q2, $20.66 p/b in 19993, $23.74 p/b in 1999q4 and
seems to have stablised to around $25 p/b during 2000g2. Oil prices are notoriously difficult
to predict, but it is generally believed that the current relatively high level of oil prices are
unlikely to be sustainable in the longer run. We shall therefore assume that oil prices will

21Given the sensitivity of forecasts to changes in intercepts and trends, we re-estimated the coefficient on
the time trend in the RMB relationship. It turned out that this coefficient was not significantly different
from zero when the core model was estimated over the 1985q1-1998q4 period. This restriction was, therefore,
imposed in the 1985-1998 model. This is in line with Jansen’s (1996) observations on the slowdown in the
rate of technological progress in the payment system in the UK.

22The restricted version of the 1985-98 model was obtained using a similar procedure as to the one followed
in deriving the restricted version of the 1965-98 model from its unrestricted counter part.
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remain at their present high levels of $25 for the rest of 2000 but fall back to the lower level
of $18 p/b over the subsequent periods. The probability estimates of the joint event that the
four-quarter moving average of inflation lies within the target range of [1.5%, 3.5%] and, at
the same time, recession is avoided; namely, Pr (Ap, N Bryy | Q7), b = 1,2, ..., under this
oil price scenario are shown in Figures 6a and 6b (calculated using the unrestricted model
estimated over the periods 1965q1-1998q4 and 1985q1-1998q4, respectively). As might be
expected, the higher oil prices reduce the probability of the joint event of interest, at least
in the short to the medium run. The long run probabilities are, however, hardly affected by
the move from the low to the high oil price scenario.

7 Concluding Comments

One of the many problems economic forecasters and policy makers face is conveying to the
public the degree of uncertainty associated with point forecasts. Policy makers recognise that
their announcements, in addition to providing information on policy objectives, can them-
selves initiate responses which effect the macroeconomic outcome. This means that Central
Bank Governors are reluctant to discuss either pessimistic possibilities, as this might induce
recession, or more optimistic possibilities, since this might induce inflationary pressures.
There is therefore an incentive for policy makers to seek ways of making clear statements re-
garding the range of potential macroeconomic outcomes for a given policy, and the likelihood
of the occurrence of these outcomes, in a manner which avoids these difficulties.

In this paper, we have argued for the use of probability forecasts as a method of chara-
terising the uncertainty around forecasts from a macroeconomic model believing this to be
superior to the conventional way of trying to deal with this problem through the use of
confidence intervals. We argue that the use of probability forecasts has an intuitive ap-
peal, enabling the forecaster (or users of forecasts) to specify the relevant “threshold values”
which define the event of interest (e.g. a threshold value corresponding to an inflation tar-
get of 2.5%). This is in contrast to the use of confidence intervals which define threshold
values only implicitly, through the specification of the confidence interval widths, and these
thresholds may or may not represent thresholds of interest. A further advantage of the use
of probability forecasts compared with the use of confidence intervals and over other more
popular methods is the flexibility of probability forecasts, as illustrated by the ease with
which the probability of joint events can be analysed. Hence, for example, we can consider
the likelihood of achieving a stated inflation target whilst simultaneously achieving a given
level of output growth and we can convey this information in a single number. In situations
where the utility of loss functions are non-quadratic and/or the constraints are non-linear
the whole predictive probability distribution function rather than its mean is required for
decision making. This paper shows how such predictive distribution functions can be ob-
tained in the case of long-run structural models, and illustrates its feasibility in the case of
a small macroeconometric model of the UK.

Our application yields a number of potentially important results. It shows that without
appropriate structural changes in the conduct of the monetary and fiscal policies the chances
of the Bank of England meeting the Treasury’s announced inflation target in the long run
seem rather slim; although the probability of the inflation target being met in the short run
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is estimated to be quite high, around 70 per cent. Whether the required structural changes
have been put in place or are in the process of being implemented is difficult to tell. But
the recent substantial rises in oil prices and increased uncertainties surrounding financial
markets should serve as warning signals against undue complacency.

A Appendix: Computation of Probability Forecasts by
Stochastic Simulation Techniques in the Case of the
Cointegrating VAR Models

In this Appendix, we consider some of the computational difficulties that will typically be
encountered in the calculation of probability forecasts and note how these can be circum-
vented through the use of stochastic simulation methods. These methods involve repeatedly
simulating the future values of the variables under study, z;, (say S times), using the as-

sumed stochastic structure of the data generating process, to obtain zglh(a), h =12 ..,
and ¢+ = 1,2,....5. On each simulation, the occurrence or non-occurrence of the event of
interest is noted and, eventually, the probability of the event occurring can be calculated as
the proportion of the S simulations in which the event was observed to occur. We illustrate
the use of these methods below in the context of the general vector error correcting model
used in the paper.

For forecasting purposes we first write the error correction model (20) in the following

form

Z ZZ(I)th,S—I—bO—I—blt—l—ut, t = 1,2,...,T, (Al)

J=1

where
(I)l = Im - H+F17 (I)z = Fz - Fi—l; L= 2737 sy 8 17 (I)s = _Fs—h

and u, is assumed to be a serially uncorrelated itd vector of shocks with zero means and
a positive definite covariance matrix, . In what follows, we consider the calculation of
probability forecasts using (A.1), first assuming that the parameters are known and then
taking into account parameter uncertainty.

Forecasts in the absence of parameter uncertainty Suppose that the ML estimators
of ®;, 7 =1,...,s, by, b; and ¥ are given and denoted by <f>j, j=1,...,s, bo, b; and 3,
respectively. Then the point estimates of the h-step ahead forecasts of z,;, conditional on
Qp, which we denote by Z7.;, can be obtained recursively by

Pran =Y P +bo+bi(t+h), =12, (A.2)

=1



where the initial values, zr,zp_1,...,2Zr_s11, are given. To obtain probability forecasts
using stochastic simulation methods, we need to simulate the values of z;,; by

2, = Zcbz%hj+b0+b1(t+h)+u;>+h,h:1,2,...,z‘=1,2,...,5, s
A3

(4) (4) (4)

where superscript ‘(4)’ refers to the i-th replication, and z;’ = zr, 2, = 2p_1,..., 27, =
z7 s for all . The uglh’s can be drawn by parametric or nonparametric methods as de-
scribed in section B below. The probability of the event ¢ [zg,fll(e) zg,fJ)rQ(/O\) ce zgfih(b\)} <

a, can then be computed as

o (ie(0,8) =4 1 {a -0 [ 0100 2£,0)

where I(-) is an indicator function which takes the value of unity if
a—¢ [zg,fll(/é) zgm)ﬂ(/é) zg’ih(b\)} > 0, and zero otherwise.

Forecasts in the presence of parameter uncertainty To allow for parameter uncer-
tainty, we first use the simulation methods to obtain R simulated values of within sample
values of z;, t = 1,2, ..., T, denoted by z.”,

ZCI)zt 4+ by +byt+ul”, t=1,2,..T, r=1,.R;

where actual observations on the initial values, z_1,... ,z_ are used for this purpose. Again,
the u ( "’s can be drawn either by parametric or nonparametric methods. Having obtained

the R set of the simulated in-sample values, {ZY), zg), cee (T)} the VAR(s) model (A.1)

is re-estimated R times to obtain new maximum likelihood estimates, @g- ), =12 ...s,

f)ér), BY) and £, r = 1,2,...,R. On each occasion, we undertake similar exercises to
that described in the previous sub-section to obtain measures of the probability forecast,
denoted simply by 7", r = 1,2, ..., R. Then, the empirical mean of the probability forecast

is obtained by
__ 1 ER: )
R
r=1

and the associated 100ac % lower and upper confidence bands computed as the R a-th
smallest and largest values of 7("), r = 1,2, ..., R, respectively.??

23We can also obtain the empirical mean of the point forecasts by

ZT-‘rh - R Z ’(jflha - 1127 ey

and construct their associated 100a % lower and upper confidence bands as the RS a-th smallest and largest
values of zgfﬁz, 1=1,2,...,58, r=1,2,..., R, respectively.
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B Generating Simulated Errors

In this section, we briefly comment on the alternative methods that can be used to simulate
errors for use in the stochastic simulations and the bootstrap exercises described above,
allowing for the contemporaneous correlations that exist across the errors in the different
equations of the model. The first is parametric method where the errors are drawn from an
assumed probability distribution function. Alternatively, one could employ a non-parametric
procedure. These are slightly more complicated and are based on re-sampling techniques in
which the simulated errors are obtained by a random draw from the observed errors (see, for
example, Hall (1992)).

In what follows the application of these two approaches to generate forecast probabilities
at different horizons, T'+ h, h = 1,2, ..., H, will now be described.

Parametric Approach In our application of the parametric approach we assume that the
errors are drawn from a multivariate Normal distribution with zero mean and the covariance
matrix, Y. The procedure makes use of the matrix P, where P~! is the lower triangular
Choleski decomposition of ¥ such that ¥ = PP’. In this case, &, = P~lu; is an m x 1
vector of standard normal disturbances. To obtain simulated errors for m variables over
h periods, say, we generate mh draws from the standard normal distribution, denoted by
{er41,€r42,... ,€r4n}, and these are used to obtain {ur 1, uriq ..., ury,} via the trans-
formation ur,, = Pep,.

Non-Parametric Approaches The most obvious non-parametric approach to generating
simulated errors, ur.,j, which we shall denote ‘Method 1, is simply to take h random draws
from the observed errors {uy, ... ,ur}, replacing the chosen error vector after each draw. The
simulated errors thus obtained clearly have precisely the same distribution and covariance
structure as that observed in the original sample. However, this method is susceptible to the
criticism, discussed below, that serial independence is introduced at longer forecast horizons
since there is a set of just 1" observations from which we sample each time.

An alternative non-parametric method for generating simulated errors, ‘Method 2’, makes
use of the Choleski decomposition of the estimated covariance employed in the parametric
approach. Having identified the matrix P for which ¥ = PP’, we can obtain a set of mT
transformed error terms {e1, ... ,er} whereg; = P tuy, t = 1,...,T. The mT individual error
terms are uncorrelated with each other, but retain the distributional information (relating to
extreme values, and so on) contained in the original observed errors. A set of mh simulated
errors can be obtained through random draw, with replacement, from the transformed errors,
and these can be arranged into a set of m x 1 vectors {€741, ... , &y} which can be used to
obtain {uyyq,... ,upys} using ury, = Pepyy,. Given that the P matrix is used to generate
the simulated errors, it is clear that the ury; again have the same covariance structure
as the original estimated errors. And being based on errors drawn at random from the
transformed originals, these generated simulations will also display the same distributional
features. Further, given that the re-sampling occurs from the mT" transformed error terms,
Method 2 also has the advantage over Method 1 that the serial dependence introduced
through sampling with replacement will be problematic only at longer time horizons.
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Choice of Approach The non-parametric approaches described above have the advantage
over the parametric approach that they make no distributional assumptions on the error
terms, and are better able to capture the uncertainties arising from (possibly rare) extreme
observations. However, they suffer the disadvantage that they require random sampling with
replacement. Replacement is essential as otherwise the draws at longer forecast horizons are
effectively ‘truncated’ and unrepresentative. On the other hand, for a given sample size, it is
clear that re-sampling from the observed errors with replacement inevitably introduces serial
dependence in the simulated forecast errors at longer horizons as the same observed errors are
drawn repeatedly. When generating simulated errors over a forecast horizon, therefore, this
provides an argument for the use of non-parametric methods over shorter forecast horizons,
but suggests that a greater reliance might be placed on the parametric approach at longer
time horizons.
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Table 1

List of Variables and their Descriptions in the Core Model

natural logarithm of the UK real per capita GDP at market prices (1995 = 100).
natural logarithm of the UK Retail Price Index, All Items (1995 = 100).

is computed as r, = 0.251In(1 + R;/100), where R; is the 90 day Treasury Bill average
discount rate per annum.

natural logarithm of UK real per capita M0 money stock (1995 = 100).

natural logarithm of the nominal Sterling effective exchange rate (1995 = 100).

: natural logarithm of the foreign (Total OECD) real per capita GDP at market prices

(1995 = 100).

: natural logarithm of the foreign (Total OECD Consumer Price Index) (1995 = 100).

;@ is computed as r; = 0.25In(1 + R;/100), where R} is the weighted average of 90 day

interest rates per annum in the United States, Germany, Japan and France.

: natural logarithm of oil prices, measured as the Average Price of Crude Oil.

t : time trend, taking the values 1,2,3,... , in 1965¢1, 196592, 1965¢3, .. ., respectively.

Notes: The data set used in the probability forecasting exercise is based on the European Standard of

Accounts. For more detail of the data sources and a description of the construction of the series see the
Data Appendix in Garratt et al. (2000b).
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Table 2a

Empirical Frequencies of Inflation Falling Below Selected Thresholds

Thresholds (per cent)

Sample Period |[1.5] 25 [ 35 [ 5.0 [ 6.0 [ 7.0 | 80 [ 9.0 [ 10.0 | 15.0 | 20.0
1970¢1 — 1979¢4 | 0.0 | 0.0 | 0.0 | 2.5 | 7.5 | 12.5 | 30.0 | 40.0 | 52.5 | 72.5 | 90.0
1980g1 — 1989¢4 | 0.0 | 0.0 | 10.0 | 40.0 | 55.5 | 62.5 | 75.0 | 77.5 | 77.5 | 92.5 | 100
1990¢1 — 1998¢4 | 2.8 | 22.2 | 61.1 | 83.3 | 86.1 | 86.1 | 88.9 | 91.7 | 100 | 100 | 100

| 1965g1 — 1998¢4 || 1.5 | 7.4 | 22.8 | 44.9 | 55.1 | 59.6 | 69.1 | 73.5 [ 79.4 | 89.7 | 97.1 |

Notes: The figures show the percentage of the time the 4-quarter moving average of inflation was below the
stated threshold values over the specified periods.

Table 2b

Empirical Frequencies of Output Growth Falling Below Selected Thresholds

Thresholds (per cent)

Sample Period || -2.0 [ -1.0 | -0.5 | 0.00 | 1.00 | 2.00 | 2.50 | 3.00 | 4.00 | 5.00
1970q1 — 1979¢4 | 5.0 | 12.5 | 15.0 | 15.0 | 17.5 | 40.0 | 52.5 | 70.0 | 85.0 | 90.0
1980q1 — 1989¢4 || 10.0 | 12.5 | 12.5 | 12.5 | 20.0 | 37.5 | 42.5 | 50.0 | 72.5 | 92.5
1990q1 —1998¢4 | 2.8 | 8.3 | 16.7 | 19.4 | 27.8 | 44.4 | 58.3 | 69.4 | 91.7 | 100

| 19651 —1998¢4 || 5.1 | 9.6 [ 12.5]13.2]19.1 [ 38.2 [ 51.5 | 64.7 | 83.1 [ 94.9 |

Notes: As in Table 2a but with respect to 4-quarter moving average of output growth.

Table 2¢

Empirical Frequencies of Interest Rates Falling Below Selected Thresholds

Thresholds (per cent)

Sample Period 5) ‘ 6 | 7 | 8 ‘ 9 | 10 ‘ 11 | 12 ‘ 13 | 14 ‘ 15
19701 — 19794 || 5.0 | 12.5 | 27.5 | 45.0 | 52.5 | 60.0 | 80.0 | 95.0 | 97.5 | 100 | 100
1980g1 — 1989¢4 || 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 35.0 | 52.5 | 65.0 | 77.5 | 90.0 | 95.0
1990q1 — 1998¢4 || 2.8 | 27.8 | 58.3 | 66.7 | 69.4 | 75.0 | 80.6 | 83.3 | 86.1 | 88.9 | 100

| 1965g1 — 1998¢4 || 2.2 | 16.9 | 34.6 | 45.6 | 51.5 | 62.5 [ 75.0 | 83.8 [ 89.0 | 94.1 | 98.5 |

Notes: As in Table 2a but with respect to 4-quarter moving average of interest rates.



Table 3a

Bivariate Empirical Frequencies of Output Growth and Inflation: 1965q1- 1998q4

(per cent)
Pr (Ay < a)

Pr(Ap<b) || 2[-1]-05] 0 [ 1 [ 2 [25] 3 [ 4 ] 5 [ o
1.5 0Jo] o] oo [15]15]15[15][15] 15
2.5 0Jo] o | o[ o0 ]10[37][51]66][74] 74
35 00| 0o | 0 [15]44]88[11.8[17.6[21.3] 228
5 0 |07] 22 | 29 [ 51 [11.8]19.1[25.7]36.8[42.6 | 44.9
6 07]15[ 29 [ 37 ] 59 [140[235]309[44.9]52.9 ] 55.1
7 07]15] 29 [ 3759 [147[243]331[47.1[574] 59.6
8 07]15[ 29 [ 37]6.6 [17.6[27.2]382[55.1]66.2] 69.1
9 07[22] 37 [ 4474 [191[30.1[41.1[581][69.1] 735
10 07[22] 44 | 51| 88 |228[34.6|46.3]64.0]75.0] 79.4
15 29 [59] 81 | 88 [14.0[30.1[42.6 | 54.4 | 72.8 | 84.6 | 89.7
20 4.4[81[11.0 [11.8]18.9]35.3[48.5|61.8[80.1[91.9 [ 97.1

| 00 [5.1]9.6] 125 [13.2[19.1[382]51.5]64.7[83.1]94.9 | 100.0 |

Notes: The figures in the tables indicate the percentage of the specified period in which the joint event that

the 4-quarter moving average of output growth falls below a threshold value and the 4-quarter moving

average of inflation falls below a given threshold value. The last column and row, represent the marginal

distributions for the single event probability of inflation and output growth respectively.

Table 3b
Bivariate Empirical Frequencies of Output Growth and Inflation: 1970q1- 1979q4

(per cent)
Pr ( Ay < a)

Pr(Ap<b) [ 2] 10]—-05] 0 [ 1 [ 2 [25] 3 [ 4 [ 5 [ o
1.5 0] 0 0 0o ]ofJo]o]Jo]o]o
2.5 0] 0 0 0o ]JofJof]o]o]o]o
3.5 0] 0 0 o J]oJoJo]Jo]JoJo]o
5 0] 0 0 0 | 0 |25 [25][25][25][25]25
6 0] 0 0 0 | 0 |25][50[50[75]75]75
7 0] 0 0 0 | 0 [25]50][100]125]125]125
8 0] 0 0 0 | 0 [ 25 ][50 [150][250]27.5]30.0
9 0] 0 0 0 | 0 | 50 [10.0[20.0][30.0]32.5]40.0
10 0] 0 0 0 | 0 [10.0[17.5[30.0]425]45.0]52.5
15 25] 5 5 [ 5.0]5.07]200][30.0]425]57.5]625]725
20 2575 ] 10 [10.0[10.0[30.0 [42.5]60.0 | 75.0 | 80.0 | 90

| 00 | 5.0[ 125 15.0 | 15.0 [ 17.5 | 40.0 | 52.5 | 70.0 | 85.0 | 90.0 | 100 |

See the notes for Table 3a.
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Table 3¢

Bivariate Empirical Frequencies of Output Growth and Inflation:1980q1- 1989q4

(per cent)
Pr (Ay < a)

Pr(Ap<b) | =2 =1 —=05] 0 [ 1 | 2 [25] 3 [ 4 [ 5 ] ~
1.5 0 0 0 0 0 0 0 0 0 0 0.0
2.5 0 0 0 0 0 0 0 0 0 0 0.0
3.5 0 0 0 0 0 0 0 0 2.5 | 5.0 | 10.0
Y 0 0 0 0 0 9.0 | 5.0 | 7.5 | 22,5 |32.5| 40.0
6 0 0 0 0 0 7.5 [10.0|15.0| 35.0 | 47.5 | 55.5
7 0 0 0 0 0 7.5 [10.0|15.0 | 35.0 | 55.0 | 62.5
8 0 0 0 0 25 | 15.0|17.5|25.0|47.5|67.5| 75.0
9 0 0 0 0 2.5 [ 15.0]20.0|27.5|50.0|70.0]| 77.5
10 0 0 0 0 2.5 [ 15.0]20.0|27.5|50.0|70.0]| 77.5
15 5 | 75 | 7.5 | 7.5 |15.0]30.0 | 35.0|42.5|65.0|85.0 92.5
20 10 | 12,5 | 12.5 | 12.5]20.0 | 37.5 | 42.5 | 50.0 | 72.5 | 92.5 | 100.0

| o0 | 10 [12.5] 125 [ 12.5[20.0 [ 37.5 [ 42.5[50.0 [ 72.5 | 92.5 | 100.0 |

See the notes for Table 3a.
Table 3d

Bivariate Empirical Frequencies of Output Growth and Inflation:1990¢q1-1998q4

(per cent)
| Pr ( Ay < a)

Pr(Ap<b) | —20][-1.0]-05] 0 [ 1T [ 2 [25] 3 [ 4 [ 5 [ o
L5 0 0 0 J]oJ o] o]28[]28]28] 28] 28
2.5 0 0 0 | 0 [ 0 |28[11.1][13.9]194] 22.2 | 222
35 0 0 0 | 0 [28]139[25.0[33.3]528] 61.1 | 61.1
5 0 | 28 | 83 |[11.1[16.7|27.8[41.7][52.8|75.0| 83.3 | 83.3
6 28 | 5.6 [ 11.1 [13.9]19.4[30.6[44.4|55.6 | 77.8 ] 86.1 | 86.1
7 28 | 5.6 [ 11.1 [13.9]19.4|30.6[44.4|55.6 | 77.8 | 86.1 | 86.1
8 2.8 | 5.6 [ 11.1 [13.9]19.4]33.3[47.2|58.3[80.6 | 88.9 [ 88.9
9 2.8 | 83 [13.9 [16.7]22.2]36.1[50.0]|61.1[83.3] 91.7 [ 91.7
10 2.8 | 83 [16.7 [19.4]27.8 | 44.4[58.3 | 69.4 | 91.7 [ 100.0 | 100.0
15 2.8 | 83 [ 16.7 [ 19.4]27.8 | 44.4|58.3 | 69.4 | 91.7 | 100.0 | 100.0
20 2.8 | 83 [16.7 [ 19.4]27.8 | 44.4[58.3 | 69.4 | 91.7 [ 100.0 | 100.0

| 00 Il 28 | 83 [16.7[19.4[27.8]44.4]583]69.4]91.7 | 100.0 | 100.0 |

See the notes for Table 3a.
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Table 4

Cointegration Rank Statistics for the Core Model: 1965q1-1998q4

(pt _p§7etyrtur:uyt7y:7ht - yt:p:‘,k —p?)

Trace Max
H, H, || Statistic | 95% cv | 90% cv || Statistic | 95% cv | 90% cv
r=0|r= 212.71 163.01 | 157.02 60.81 52.62 49.70
r<l|r= 151.91 128.79 | 123.33 44.02 46.97 44.01
r<2|r= 107.88 97.83 93.13 33.22 40.89 37.92
r<3d|r= 74.66 72.10 68.04 28.76 34.70 32.12
r<4|r= 45.89 49.36 46.00 24.59 28.72 26.10
r<d|r= 21.31 30.77 27.96 16.18 22.16 19.79
r<6|r=7 5.13 15.44 13.31 5.13 15.44 13.31

Notes: The underlying V' AR model is of order 2 and contains unrestricted intercepts and restricted trend
coefficients, with pj — pf treated as exogenous | (1) variable. The statistics are computed using 136
observations for the period 1965Q1-1998q4. “Trace” and “Max” represent Johansen’s log-likelihood-based
trace and maximum eigenvalue statistics, respectively, and ‘cv’ stands for critical value of the tests, which
are obtained from Pesaran, Shin and Smith (2000).
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Table 5

Error Correction Specification for the Core Model: 1965q1-1998q4

Equation Alpp)) | Aey | Ary, | Ary Ay, | Ay | A(hey)
A —.005 051t .002 .001* 014" .018t —.013
€1t (.006) (.023) (.002) (.001) (.007) (.003) (.010)
A —.568" 1.383 037 1147 1.052f 767t —.369
€24 (.301) (1.17) (.095) (.043) (.338) (.164) (.519)
A .0541 —.183 —.012 —.005 —.1417 —.009 110"
€3t (.029) (.111) (.009) (.004) (.032) (.015) (.049)
A 020" —.055 —.005% —.001 —.038t —.024% —.001
Eat (.007) (.028) (.002) (.001) (.008) (.004) (.012)

° 533t .540* .039 .009 .137 a1 —.486"
A(Ptfl-]?tfl) (.080) (.311) (.025) (.011) (.090) (.044) (.138)
Ae .002 2267 —.007 —.002 .010 .009 .022

t—1 (.023) (.092) (.007) (.003) (.027) (.013) (.041)

A 694" —1.469 .142 —.073 .649* .221 —.726
Tt-1 (.320) (1.244) | (.101) (.045) (.360) (.174) (.551)

Ar* —1.260" 3.619 654t 4591 575 637 —.863
t—1 (.624) (2.422) | (197 (.088) (.702) (.340) (1.07)

A 210" .0168 —.019 .016 —.046 .049 —.229
Yt—1 (.097) (.378) (.031) (.014) (.109) (.053) (.168)

At —.084 —.773 —.062 .047* .009 071 687"

Yi 1 (.176) (.684) (.056) (.025) (.198) (.096) (.303)
A(h ) ) .053 347 .029 017 .086 —.013 —.243"
t—1"Yt-1 (.056) (.219) (.018) (.008) (.063) (.031) (.097)

A( * o) 1.0047 .022 —.001 —.001* L0127 .002 —.0247
PPy (.005) (.018) (.001) (.001) (.005) (.002) (.008)
o — 541t —525 | —.038 —01 145 | —.116' 502"

A(pi -1 4) (.080) (311) | (025 | (o11) | (090) | (.043) (.138)

—
R .669 104 .106 334 .239 412 278

—

Benchmark R 0.604 .032 .082 .229 .023 243 .00
o .008 .005 .003 .001 .009 .005 .014
Xacol4] 1.61 0.39 | 351 | 11.68" | 3.28 1.13 5.44
X2 1] 0.37 0.14 0.86 | 5.267 0.08 3.25 0.56
2] 55.897 | 11.58" | 12.65" | 27.96" | 104.28" | 898" | 27.83
X1 0.28 157 | 475 | 804" | 0.65 92 0.09

Notes: The four error correction terms are given by

/6\17,54_1 Pt — p: — €t — 4.9985

/6\27,54_1 = Tt — T’:‘ — 00056, /6\37754_1 =Y — yf -+ 00305,
39.0293 0.00715

5 = h; — t + 0.3086

Sat+1 U s T 0.001) T

” indicates significance at the 5%

Standard errors are given in parenthesis. “*” indicates significance at the 10% level, and “
level. The diagnostics are chi-squared statistics for serial correlation (SC), functional form (FF), normality (N) and
heteroscedasticity (H). The_R2for the A(pt - pg) equations refers to the Apt equation.

The benchmark E /S are computed using univariate ARIMA (p,1,q) models where p and q are estimated by searching over

p,g =0, 1, 2, 3 and 4, using AIC as the model selection criteria.
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Table 6

Error Correction Specification for the Restricted Core Model: 1965q1-1998q4

Equation Alpepy) | Aey Ary | Arf | Ay | Ay; | A(heye)
A —.006 .037* 001 001* | 015 018t —.002
€Lt (.005) 019) | (002) | (001) | (.005) | (.003) (.010)
A _.589" 601 005 | .114" | 9891 767t .049
€2t (.267) (1.01) | (.083) | (043) | (201) | (.164) (.451)
- 052" 183" | —.007 | —.005 | —.127T | —.009 079"
3t (.028) (107) | (009) | (004) | (031) | (015) (.048)
A 019" —.039* | —.003" | —.001 | —.032f | —.024% —.017*
Eaz (.006) (021) | (002) | (001) | (.006) (.004T) (.009)T
.5461 .092 —.336
A(pt—l‘p?_1) (.072) - - - - (.037) (.114)
2137
Aer _ (o76) | - - -
714 A11%
Ariy (.289) — 7 — | (257) 7 —
A+ —1.163" - 594t | 419t | 755 -
Ti—1 (.529) (158) | (.084) (.271T)
t
151 078
Ay (.071) - 7 7# 7 (.037) -
057
Ay;tk—l o o o (.025) e o o
011 114 —.199'
A(hi—1-ys-1) 7 7 7 (.006) | (.046) 7 (.079)
* 1.005F .0097 —.027f
A(pi-py) (.004) — — — | (oo05) — : (.008)
—.5561 —.095 .346
A(p; 1-p71) (.072) 7 7 7 7 (.037) (.113)
—3
R 673 .071 .101 316 231 413 .261
o .008 .005 .003 .001 .009 .004 .014

Notes: The four error correction terms are given by

gl,tJrl = Pt — p: — €t — 4.9985
527t+1 = Tt — T’: — 00056, /6\37754_1 =Y — yf + 00305,
39.0293 0.00715

t +0.3086
(1139 " 000" T

Eqt41 = hy — s

Estimated using SURE. Standard errors are given in parenthesis. “*” indicates significance at the 10% level, and “T”
indicates significance at the 5% level. The diagnostics are chi-squared statistics for serial correlation (SC), functional form

_2 °
(FF), normality (N) and heteroscedasticity (H). The R for the A(pt — pt) equations refers to the Apt equation.
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Table 7

Point and Interval Forecasts of Inflation, Output Growth and Interest Rates

(Unrestricted Model, 65q1-98q4)

Forecast Inflation (%pa) Output Growth (%pa) Interest Rate
Horizon Aprain AIn(GDPryp) Ryyn
1999q1 || 2.927 (4.498, 1.356) | 1.223 (2.989, -0.544) | 6.252 (6.781, 5.726)
1999q2 2.890 (5.747, 0.033) 1.195 (3.439, -1.048) 5.734 (6.673, 4.802)
1999q3 || 2.952 (7.036,-1.132) | 1.199 (3.837, -1.440) | 5.350 (6.674, 4.043)
1999q4 || 3.358 (8.550, -1.834) | 1.612 (4.645,-1.422) | 5.253 (6.941, 3.592)
2000q1 || 3.871 (9.485, -1.742) | 1.801 (5.165, -1.563) | 5.202 (7.163, 3.276)
2000q2 || 4.221 (10.081, -1.638) | 1.929 (5.641,-1.782) | 5.166 (7.324, 3.052)
20003 || 4.437 (10.476, -1.602) | 2.043 (6.003, -1.916) | 5.148 (7.453, 2.804)
2000q4 || 4.581 (10.758, -1.596) | 2.119 (6.232,-1.992) | 5.143 (7.558, 2.781)
2001ql || 4.692 (10.967, -1.583) | 2.158 (6.356, -2.039) | 5.145 (7.648, 2.699)
2001q2 || 4.789 (11.130, -1.551) | 2.165 (6.410, -2.080) | 5.150 (7.723, 2.639)
2001q3 || 4.883 (11.267, -1.501) | 2.149 (6..422, -2.124) | 5.155 (7.786, 2.580)
2001q4 || 4.976 (11.390,-1.37) | 2.121 (6.412, -2.171) | 5.157 (7.835, 2.545)
2002q1 || 5.068 (11.503, -1.368) |  2.087 (6.391, 2.217) | 5.153 (7.872, 2.502)
20022 || 5.154 (11.606, -1.297) | 2.054 (6.367, -2.258) | 5.142 (7.896, 2.457)
200293 || 5.235 (11.699, -1.229) |  2.025 (6.344, -2.203) | 5.124 (7.911, 2.409)
2002q4 || 5.308 (11.782, -1.166) | 2.003 (6.325, -2.319) | 5.100 (7.916, 2.358)
2003q1 || 5.374 (11.855, -1.108) | 1.986 (6.311, -2.338) | 5.072 (7.915, 2.303)
200392 || 5.431 (11.919, -1.057) | 1.976 (6.301, -2.350) | 5.038 (7.908, 2.245)
200393 || 5.481 (11.974, -1.012) | 1.970 (6.297, -2.358) | 5.002 (7.898, 2.184)
2003q4 || 5.524 (12.021, -0.974) | 1.967 (6.295, -2.361) | 4.964 (7.884, 2.122)
2004q1 || 5.610 (12.062, -0.940) | 1.968 (6.297, -2.361) | 4.923 (7.869, 2.058)
200392 || 5.593 (12.098, -0.911) | 1.970 (6.299, -2.359) | 4.882 (7.852, 1.993)
2004q3 || 5.621 (12.129, -0.886) | 1.974 (6.304, -2.356) | 4.839 (7.834, 1.928)
20044 9.646 (12.156, -0.864) 1.978 (6.309, -2.353) 4.796 (7.816, 1.862)

Notes: Forecasts are based on the unrestricted model of Table 5. The first set of numbers reported in each
column are the point forecasts and the numbers in parenthesis are the upper and lower 95% confidence
intervals, respectively. The point forecasts refer to the 4-quarter moving average rate of inflation defined as
100[(pr4+n — Prin_4)], where pr is the natural logarithm of the retail price index in 1998q4 and pr.yp,
h = 1,2,..., are the figures for the subsequent quarters. The point forecasts for output growth refer to the
4-quarter moving average growth rate defined as 100[In(G D Pyyp,/GDPryp_4)], where GD Py is the
real Gross Domestic Product in 1998q1, and GD Prj, h = 1,2,.... are the GDP figures for the subsequent
quarters computed from the forecasts of per capita output, Y7 p, assuming a population growth of 0.21%
per annum. The point forecasts for interest rates refer to the 4-quarter moving average forecast value of
the 90-day Treasury average discount rate, Ry, defined as Ry, = 100 [exp(47744) — 1] where
Treh = (Prin + Tr4h—1 + Trgpn—2 + rryn_3) /4.
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Table 8. Probability Estimates of Single and Joint Events
Involving Inflation and Output Growth (Unrestricted Model, 65q1-98q4)

Forecast || Pr(1.5 < Ap < 3.5) | Pr(Aln(GDP) > 0) | Pr Al‘lt,)n(ff ; izg
Horizon | PPL BPD PPL BPD PPL _BPD
1999q1 0.714  0.693 0.916 0.899 0.663 0.637
19992 0.721  0.646 0.911 0.877 0.666 0.580
199943 0.725  0.576 0.918 0.868 0.673 0.512
19994 0.631  0.455 0.970  0.920 0.619 0.427
2000q1 0.385 0.311 0.899  0.864 0.361  0.282
20002 0.209 0.251 0.921 0.877 0.288  0.234
200043 0.244 0215 0.927 0.877 0.237  0.202
20004 0.210  0.190 0.930 0.879 0.204 0.180
2001q1 0.179  0.168 0.935 0.879 0.175  0.161
20012 0.160 0.151 0.938 0.878 0.157  0.146
20013 0.136  0.136 0.937 0.878 0.133  0.132
20014 0.120  0.121 0.935 0.880 0.118 0.118
20021 0.105 0.109 0.933 0.882 0.103  0.106
200242 0.089  0.098 0.928 0.884 0.088  0.096
200243 0.085  0.089 0.935 0.888 0.082  0.087
200244 0.075  0.081 0.927  0.891 0.073  0.079
20031 0.070  0.075 0.925 0.895 0.069 0.074
20032 0.059  0.071 0.930  0.898 0.058  0.069
200343 0.055 0.067 0.926  0.902 0.054  0.066
2003q4 0.055  0.064 0.926  0.905 0.054  0.063
20041 0.049  0.062 0.931  0.908 0.048  0.060
20032 0.049  0.059 0.927  0.910 0.048  0.058
200443 0.048  0.057 0.934 0.913 0.048  0.055
2004q4 0.042  0.055 0.927 0.915 0.041 0.054

Notes: The probability estimates for output growth refer to the 4-quarter moving averages defined as
Pr(In(GDPyryn/GDPyryy_4) > 0], where GD Py is the real Gross Domestic Product in 1998q4 and
GDPryp, h =12,..., are the GDP figures for the subsequent quarters computed from the forecasts of per
capita output, assuming a population growth of 0.21% per annum. The probability estimates for inflation
are the 4-quarter moving average defined as Pr (1.5 < pryp — pron_4 < 3.5), where p is the natural
logarithm of the retail price index. The estimates given under the heading PPL are based on the “Profile
Predictive Likelihood” and do not allow for parameter uncertainty. The estimates under the heading BPD
are based on the “Bootstrap Predictive Density” and account for parameter uncertainty. The parameter
uncertainty (when applicable) is taken into account through the parametric re-sampling draws from the
historic residuals with 400 replications, whereas the future uncertainty is taken into account using
parametric stochastic draws from the in-sample residuals with 10,000 replications for PPL and/or 1,000

replications for BPD. See the Appendix for further details.
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Table 9. Probability Estimates of Single and Joint Events

Involving Inflation and Output Growth (Unrestricted Model, 85q1-98q4)

Forecast || Pr(1.5 < Ap < 3.5) | Pr(Aln(GDP) > 0) | Pr Al‘lgl(ff f ng
Horizon PPL, BPD PPL,  BPD PPL,  BPD
1999q1 0.935 0.895 0.993  0.99%4 0.933  0.839
19992 0.941 0.773 .00 0.981 0.941  0.759
199943 0.945 0.674 1.00  0.944 0.944  0.642
19994 0.933  0.578 100 0.939 0.934  0.556
20001 0.542  0.395 100 0.903 0.541  0.379
200042 0.426  0.351 0.923  0.853 0.424 0.331
200043 0.286  0.287 0.990 0.838 0.283  0.272
20004 0.173  0.224 0.985 0.828 0.171  0.213
20011 0.123  0.197 0.976  0.817 0.121  0.186
20012 0.103  0.185 0.970  0.825 0.101  0.174
20013 0.086 0.178 0.961 0.834 0.083  0.168
2001q4 0.078  0.175 0.959  0.846 0.076  0.167
200241 0.080 0.174 0.960 0.858 0.077  0.166
200242 0.079  0.174 0.964 0.872 0.076  0.167
200243 0.086 0.174 0.971  0.888 0.083  0.168
200244 0.089  0.173 0.974  0.902 0.087 0.168
200391 0.098 0.175 0.977  0.915 0.097  0.171
20032 0.100  0.174 0.983  0.928 0.098  0.170
20033 0.103  0.173 0.985  0.940 0.101  0.169
200344 0.119  0.172 0.991  0.949 0.118  0.169
2004q1 0.113  0.169 0.994 0.957 0.112  0.166
200342 0.124  0.166 0.993  0.962 0.124  0.165
200493 0.121  0.165 0.996  0.966 0.121  0.163
20044 0.115 0.164 0.996  0.969 0.115 0.162

See the notes to Table 8.
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Figure 3a. Probability Estimates of Inflation Falling between 1.5% and 3.5%
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Figure 3c. Probability Estimates of Inflation Falling between 1.5% and 3.5%

and Output Growth being Positive (Unrestricted Model, 65q1-98q4)
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Figure 4a. BPD Probability Estimates of Inflation Falling between 1.5% and 3.5%

(Restricted and Unrestricted Models, 65q1-98q4)
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Figure 4c. BPD Probabilities of Inflation Falling between 1.5% and 3.5%

and Positive Output Growth (Restricted and Unrestricted Models, 65q1-98q4)
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Figure 5a. BPD Probability Estimates of Inflation Falling between 1.5% and 3.5%

(Unrestricted Models Estimated Over 65q1-98q4 and 85q1-98q4 )
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Figure 5b. BPD Probability Estimates of Output Growth Being Positive

(Unrestricted Models Estimated Over 65q1-98q4 and 85q1-98q4 )
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Figure 5c. BPD Probabilities of Inflation Falling between 1.5% and 3.5%

and Positive Output Growth (Unrestricted Models Over 65q1-98q4 and 85q1-98q4)
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Figure 6a. Probability Estimates of Inflation Falling between 1.5% and 3.5%

and Output Growth being Positive
(Unrestricted Model over 65q1-98q4, High Oil Price Scenario)
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Figure 6b. Probability Estimates of Inflation Falling between 1.5% and 3.5%

and Output Growth being Positive
(Unrestricted Model over 85q1-98q4, High Oil Price Scenario)
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