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Present value calculations require predictions of cash flows both at near and distant future 
points in time. Such predictions are generally surrounded by considerable uncertainty and 
may critically depend on assumptions about parameter values as well as the form and stability 
of the data generating process underlying the cash flows. This paper presents new theoretical 
results for the existence of the infinite sum of discounted expected future values under 
uncertainty about the parameters characterizing the growth rate of the cash flow process. 
Furthermore, we explore the consequences for present values of relaxing the stability 
assumption in a way that allows for past and future breaks to the underlying cash flow 
process. We find that such breaks can lead to considerable changes in present values. 
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1. Introduction

Present value relations play a key role in economics and finance and are used in testing the permanent

income hypothesis, in standard inventory models and to calculate the present value of assets such

as stocks and bonds. Computing present values requires forecasting a stream of future values of the

variable of interest at horizons that can be long, but finite (as in the case of bonds) or even infinitely

long (as in the case of stocks). It is customary in such calculations to assume that the underlying

driving process follows a simple ARMA process with stable and known parameter values. This

assumption is a gross oversimplification in almost any realistic economic context and so it becomes

important both to dispense with the assumption of known parameters and to consider the possibility

of past and future breaks in the data generating process of the driving variable.

As an example of a present value relationship, we study in this paper long-lived assets such as

stocks. Stocks are claims on unknown future dividends and so the stock price at any point in time

must reflect the present value of the expected future dividends. A key question that investors are

faced with is therefore how to compute expected values of future dividends in the presence of the

considerable uncertainty surrounding not just dividends in the near future but dividends at very

distant future points in time. In particular, how high is the growth rate of future dividends likely

to be and how much does it vary through time? These are key issues that investors must answer

when pricing long-lived assets with unknown future payoffs.

We shall consider the problem of present value calculations under a variety of circumstances.

To begin with we assume that the process of the driving variable is known with stable parameters

but consider the implications of incomplete learning and parameter uncertainty that arises when

dividends or incomes are predicted into an infinite future from a finite past. In the case of geometric

random walks with normally distributed innovations we show that expected present value can be

divergent even if the parameter uncertainty is confined to the mean of the dividend process. This is

a new finding and differs from similar results by Geweke (2001) and Weitzmann (2005) who show

that the expected utility does not exist in the case of power utility functions where the consumption

growth is normally distributed but with unknown mean and variance. In their set up expected

utility is well defined when consumption growth is normally distributed with a known innovation

variance. The non-convergence of the discounted sum of expected future values arises because

parameter uncertainty increases at a faster rate than the discounting of future outcomes.

In practice, dividends or labour income processes are unlikely to remain stable and may be

subject to structural breaks. Indeed, empirical studies have increasingly found evidence of incom-

plete learning and instability in a range of macroeconomic and financial time series processes that

are likely to be related to the determinants of asset payoffs. Stock and Watson (1996) document

evidence of breaks in the univariate time-series representation of a wide variety of financial and

macroeconomic variables.1 Similarly, Clements and Hendry (1998, 1999) emphasize the importance

1Other studies finding evidence of breaks in such time series include Alogoskoufis and Smith (1991), Banerjee et al

(1992), Garcia and Perron (1996), Koop and Potter (2004a,b), Pastor and Stambaugh (2001), Paye and Timmermann

(2005), Pesaran and Timmermann (2002), Pesaran, Pettenuzzo and Timmermann (2005) and Timmermann (2001).
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of breaks to forecasting performance.

Such evidence opens up the possibility that the dividend process underlying common stock

portfolios is also subject to breaks, a point verified by Timmermann (2001). Our paper presents

new evidence of breaks in US dividends over the period 1872 - 2003. We find evidence of five breaks,

three of which cluster over the period 1911-1930 (before the Great Depression), with the other two

occurring in 1952 (around the Korean War), and in 1960 (the start of the Golden Age). The

parameter estimates in the associated regimes differ significantly both in economic and statistical

terms in a way that suggests that the dividend process has become less volatile but also more

persistent through time.

Building on this evidence, we next explore how to forecast future dividends and compute the

present value of dividends in the context of a model where the dividend growth process is subject

to occasional structural breaks. Such breaks give rise to considerable uncertainty about the stock

price when compared to a model that ignores breaks although the latter, as we argue in this paper,

is clearly mis-specified. Our analysis uses the hierarchical hidden Markov chain model introduced

in Pesaran, Pettenuzzo and Timmermann (2005) for the purpose of forecasting time-series that

are subject to multiple breaks. Building on work by Chib (1998), this approach introduces a

meta distribution that characterizes the distribution from which parameters within each dividend

growth regime are drawn following a new break. Without this approach, forecasting future values

of dividends is infeasible unless, of course, the possibility of future breaks to the parameters of the

dividend process is ruled out. Using Gibbs sampling techniques we draw values from the parameter

distribution within the regime that is in effect at the time of the forecast. To allow for possible

breaks, we next draw new values of the discrete state indicator that characterizes how future states

evolve. In the event that a future break occurs, new values of the parameters of the subsequent

regime are drawn from the meta distribution.

Using the parameter estimates for the break point process fitted to US dividends, we find that the

present value stock price is very sensitive to the underlying modeling assumptions for the dividend

process. In particular, it depends on whether the possibility of past breaks during the historical

sample is considered and also whether future breaks are allowed for. Since the regimes identified

for the dividend process are typically quite persistent, there is no particular ranking of the present

value stock price computed under no (historical or future) breaks, under historical breaks only or

under past and future break scenarios. Instead, the ranking will reflect the value of the dividend

growth rate in the current state relative to its historical average computed across different regimes.

The outline of the paper is as follows. Section 2 presents new theoretical results on the existence

of present values under parameter estimation uncertainty. Section 3 discusses the role of structural

breaks and presents empirical results for a model with multiple break points fitted to US dividend

data. Section 4 shows how the present value stock price can be computed under different assump-

tions concerning parameter instability and reports empirical results for US data. Finally, Section 5

concludes.
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2. Parameter Uncertainty and Present Value Calculations

Many intertemporal optimization problems result in rational expectations models with future ex-

pectations whose solution involves calculation of the discounted value of an infinite sum of forecasts

formed at time T , for many periods ahead into the future. A simple example is given by

yT = lim
H→∞

(
HX
h=1

δhE (xT+h |IT )
)
, (1)

where IT is the forecaster’s information at time T , r > 0 is the (known) discount rate so the

discount factor, δ = (1 + r)−1, lies in (0, 1), and E (xT+h |IT ) is the conditional expectation taken
with respect to the probability distribution(s) assumed for the driving process, {xt}, over the past
m periods (t = T −m+1, T −m+2, ..., T ), and the future (t = T +1, T +2, .., T + h), where m is

the length of the estimation window while h is the forecast horizon. In general, the driving process

need not be known or stable. In many applications in finance and economics it is assumed that

{xt} follows the geometric random walk model

∆ lnxt+1 = μ+ σεt+1, (2)

where μ and σ are fixed constants, and εt+1 is identically and independently distributed with zero

means and unit variances. For given (known) values of μ and σ, and assuming that these values

apply to the past as well as to the indefinite future, we have

E (xT+h |IT ;μ, σ ) =
³
ehμ
´
[Mε(σ)]

h , (3)

where Mε(σ) is the moment generating function of εt, assuming that it exists. Under the above

assumptions the present value, yT , is convergent and is given by

yT =
δeμMε(σ)xT
1− δeμMε(σ)

, (4)

so long as λ = δeμMε(σ) < 1. In the case of normally distributed errors Mε(σ) exists and is given

by exp(0.5σ2). This yields the familiar result in the literature, λ = δ exp(μ+ 0.5σ2).2

2.1. Unknown μ with a Known σ2

Consider next the case where σ is known but μ is unknown and estimated based on the past

observations, Xm,T = (xT−m+1, xT−m+2, ...., xT )0, with a Gaussian prior:

μ ∼ N
¡
μ, σ2μ

¢
, σ2μ > 0. (5)

Assuming that εt+1 ∼ N(0, 1), the posterior distribution of μ will also be Gaussian and is given by

μ
¯̄
Xm,T , σ, μ, σ

2
μ ∼ N

¡
μ̄, σ̄2μ

¢
,

2Notice, however, that even when μ and σ are known, the present value calculations are quite fragile in the case of

geometric random walk models, where non-convergent outcomes will follow if the innovations, εt, are distributed as a

Student−t. A similar result has also been pointed out by Geweke (2001) in the case of expected utility optimization
where the consumption growth follows a geometric random walk model and the utility function is of the CRRA variety.
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where (see, for example, Geweke (2005, pp. 25-27))

μ̄ = σ̄2μ

µ
μ

σ2μ
+

m x̄m,T

σ2

¶
, (6)

x̄m,T = m−1
TX

t=T−m+1
xt, and

σ̄2μ =

µ
1

σ2μ
+

m

σ2

¶−1
(7)

In this case

E
¡
xT+h

¯̄IT ;σ, μ, σ2μ ¢ = xT
h
E
³
ehμ

¯̄IT ;σ, μ, σ2μ´i [Mε(σ)]
h

= xTE
³
ehμ

¯̄IT ;σ, μ, σ2μ´ e 12hσ2 , (8)

where

E
³
ehμ

¯̄IT ;σ, μ, σ2μ´ = ehμ̄+
1
2
h2σ̄2μ,

and the individual elements in the infinite sum, (1), exist and are given by

E (xT+h |IT ;σ ) = xT e
hμ̄+ 1

2
h2σ̄2μ+

1
2
hσ2 = xT

³
eμ̄+

1
2
hσ̄2μ+

1
2
σ2
´h

. (9)

Finally, the present value, truncated at forecast horizon H, becomes

yT :T+H = xT

HX
h=1

³
δeμ̄+

1
2
hσ̄2μ+

1
2
σ2
´h
= xT

HX
h=1

[ρ (h,m)]h , (10)

where

ρ (h,m) = e− ln(1+r)+μ̄+
1
2
hσ̄2μ+

1
2
σ2 . (11)

To check if this is convergent as H →∞, we first note that

μ̄ =
x̄m,T +

³
σ2

m

´³
μ

σ2μ

´
1 +

³
σ2

m

´³
1
σ2μ

´ = x̄m,T

∙
1−

µ
σ2

m

¶µ
1

σ2μ

¶¸
+

µ
σ2

m

¶µ
μ

σ2μ

¶
+O

µ
1

m2

¶
,

σ̄2μ =
σ2

m

⎛⎝ 1

1 + 1
m

³
σ2

σ2μ

´
⎞⎠ =

σ2

m
+O

µ
1

m2

¶
. (12)

Using these results in (11) yields ρ (h,m) = δe
1
2
σ2eg(h,m), where

g(h,m) = x̄m,T

∙
1−

µ
σ2

m

¶µ
1

σ2μ

¶¸
+

µ
σ2

m

¶µ
μ

σ2μ

¶
+

σ2

2

µ
h

m

¶
+O

µ
h

m2

¶
,

or after some algebra

g(h,m) = x̄m,T +

µ
σ2

m

¶∙
μ− x̄m,T

σ2μ

¸
+

σ2

2

µ
h

m

¶
+O

µ
h

m2

¶
.
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Typically one expects (μ−x̄m,T )/(mσ2μ) to be quite small and the present value would be dominated

by the term σ2

2

¡
h
m

¢
. Therefore,

yT :T+H ≈ xT

HX
h=1

³
e− ln(1+r)+

1
2
σ2(1+h/m)+x̄m,T

´h
, (13)

and even if λ̂m,T = exp(− ln(1 + r) + x̄m,T + 0.5σ
2) < 1 (the estimated certainty equivalence

convergence condition), yT :T+H will be divergent as H →∞.3
The only case where the present value convergences in the presence of the estimation uncer-

tainty will be if the limit of h/m as h → ∞ is bounded from above by some constant, κ <

2 [x̄m,T − ln(1 + r)] /σ2 − 1. This corresponds to a thought experiment in which the length of the
estimation sample (m) somehow grows at a sufficiently fast rate with the forecast horizon, h, so

that lim (h/m) tends to κ < 2 [μ− ln(1 + r)] /σ2−1, as h andm tend to infinity jointly. In practice,

of course, such thought experiments have little relevance since the estimation window (often deter-

mined by the historical data set available) and the forecast horizon are separate concepts and there

is no reason why they should be linked in any particular way. Furthermore, in cases with evidence

of instability in the parameters of the dividend process, an unbiased estimator of the parameters of

the dividend generating process can only be obtained by restricting the estimation sample to the

post-break data. This provides another reason for why m is finite in practice. In the following we

shall, without loss of generality, assume m = T and suppress the m notation for simplicity.

2.2. Unknown μ and σ2

The non-convergence problem of the present value will be accentuated if we also assume that σ is

unknown and is estimated from the past data, Xm,T . For example, using conjugate priors for μ and

σ2 the posterior distribution of μ will be t−distributed and E
¡
ehμ

¯̄IT ;μ, σ2μ, σ2, v ¢ ceases to exist
for any h > 0, where σ2 and v are the parameters of the gamma prior density assumed for σ2 which

can be written conveniently as
σ2

σ2
¯̄
σ2, v ∼ χ2 (v) .

As pointed out by Geweke (2001), the use of non-conjugate priors for μ and σ2 does help in resolving

the non-existence of E
¡
ehμ

¯̄IT ;μ, σ2μ, σ2, v¢. However, it does not resolve the non-convergence of
the infinite sums that are involved in present value calculations.

Non-Bayesian approaches to dealing with the uncertainty of μ and σ2 are unlikely to help either.

One possible approach would be to bootstrap the present values. This involves (i) drawing μ(b) and

σ(b) from the observed empirical distribution of the estimators of μ and σ2 (say μ̂m,T and σ̂2m,T ),

(ii) computing present values for each choice of μ(b) and σ(b) denoted as y(b)T , and (iii) obtaining

the bootstrap present value as B−1ΣBb=1y
(b)
T , where B is the total number of bootstraps. However,

for this procedure to yield a convergent outcome it will be required that y(b)T is convergent for each

3The above analysis also shows the danger of letting m→∞ first before computing the limit of the present value

with H →∞. In reality m could be quite large but still finite as H →∞.
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b, which is extremely unlikely unless the empirical distribution of μ̂m,T and σ̂2m,T is constrained so

that all draws from that distribution satisfy the conditions δeμ
(b)
Mε(σ

(b)) < 1 for all b.

2.3. Trend Stationary Log-linear Driving Processes

The non-convergence problem continues to be present if the unit root process in (2) is replaced by

the following trend stationary process:

∆ [lnxt+1 − a− μ(t+ 1)] = −(1− ρ) (lnxt − a− μt) + σεt+1, (14)

where |ρ| < 1, and as before μ represents the average growth of the logarithm of the driving process,
xt. In the case of this process

ln (xT+h/xT ) = −(1− ρh) (lnxT − a− μT ) + μh+ σ
hX

j=1

ρjεT+j ,

and

E (xT+h |IT ;a, μ, ρ, σ ) = e−(1−ρ
h)(lnxT−a−μT )

³
ehμ
´⎡⎣ hY

j=1

Mε(σρ
j)

⎤⎦ , (15)

which is a direct generalization of (8) and reduces to it for ρ = 1. It is clear that the various

issues discussed for the unit root case readily apply here. Even if εt+1 has a moment generating

function, the present value is unlikely to exist if μ is not known with certainty. For example, suppose

a, ρ and σ are known and μ is estimated based on the regression of lnxt − ρ lnxt−1 − a(1 − ρ) on

(1− ρ)t+ ρ. Assuming, as before, that conditional on a, ρ and σ the prior probability distribution

of μ is Gaussian and given by (5), then the posterior distribution of μ will be given by

μ
¯̄
XT , a, ρ, σ, μ, σ

2
μ ∼ N

¡
μ̄, σ̄2μ

¢
,

where

μ̄ = σ̄2μ

µ
μ

σ2μ
+

μ̂T
σ̂2T

¶
,

μ̂T =

TX
t=1

[lnxt − ρ lnxt−1 − a(1− ρ)] [(1− ρ)t+ ρ]

TX
t=1

[(1− ρ)t+ ρ]2

,

σ̂2T =
σ2

TX
t=1

[(1− ρ)t+ ρ]2

, and σ̄2μ =

µ
1

σ2μ
+
1

σ̂2T

¶−1
.

Hence

E (xT+h |IT ;a, ρ, σ ) =

⎡⎣e−(1−ρh)(lnxT−a) hY
j=1

Mε(σρ
j)

⎤⎦Eμ

³
e[h+(1−ρ

h)T ]μ
´
,

=

⎡⎣e−(1−ρh)(lnxT−a) hY
j=1

Mε(σρ
j)

⎤⎦ e[h+(1−ρh)T ]μ̄+ 1
2 [h+(1−ρh)T ]

2
σ̄2μ ,
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and for a fixed T its rate of expansion is governed by the term exp(.5σ̄2μh
2). Therefore, as far as the

existence of the present value is concerned the outcomes are very similar irrespective of whether the

logarithm of the driving variable has a unit root or is trend stationary. The differences between the

two cases is a matter of degree and differs only due to the differences in the precision with which

μ is estimated under the two cases. Under the unit root process the precision of μ is of order T−1,
while when lnxt is trend stationary it is given by T−3/2.

2.4. Present Values with a Stochastic Discount Factor: The Lucas Tree Model

Normally the discount rate is formed as the risk-free rate plus some risk-premium to reflect the un-

certain nature of future payoffs and correct for correlations between dividend shocks and variations

in the stochastic discount factor. It is clearly of interest to relate the discount rate−taken to be
fixed and strictly exogenous so far−to the growth rate in dividends, using equilibrium consumption
based asset pricing models. In the case of consumption based asset pricing models the expression

for the present value is more complicated and depends on a stochastic discount factor that varies

with x. In the context of a representative agent model with the utility function, u(ct), we have4

yT = lim
H→∞

(
HX
h=1

δhE

µ
u0(ct+h)
u0(ct)

xT+h |IT
¶)

, (16)

which reduces to the present value expression (1) in the risk neutral case where u(c) is linear. But for

a general specification of u (c) the analysis of convergence of the present value depends on the form

of the utility function and the nature of the dependence of ct+h and xt+h in a general equilibrium

context. Although such a general analysis is beyond the scope of the present paper, certain analytical

results can be obtained for the Lucas’s tree model (Lucas, 1978) where consumption is equal to

dividends (cT+h = xT+h) and the utility function is specified to have the power form u(c) =

(1− γ)−1(c1−γ − 1) (γ 6= 1). In this case,

yT = lim
H→∞

(
HX
h=1

E
³
e−h ln(1+r)+(1−γ)(lnxT+h−lnxT ) |IT

´)
,

and under the geometric random walk model (2) with a known mean and variance we have

E
¡
yT
¯̄
μ, σ2

¢
= xT lim

H→∞

(
HX
h=1

E
³
e−h ln(1+r)+(1−γ)μh+0.5(1−γ)

2σ2h
¯̄
μ, σ2,IT

´)
,

which is convergent for given values of μ and σ2 so long as − ln(1+r)+(1−γ)μ+0.5(1−γ)2σ2 < 0.
4See, for example, Cochrane (2005, p.24). Deriving (16) from the first order inter-temporal optimization conditions

also requires that the transversality condition

lim
h→∞

E
u0(cT+h)
u0(cT )

yT+h |IT = 0,

is satisfied.
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Consider now the case where μ is unknown and continue to assume that σ2 is given (known).

Then using the above results we have

E
³
e(1−γ)μh+0.5(1−γ)

2σ2h
¯̄
σ2,IT

´
= e(1−γ)μ̄h+0.5(1−γ)

2σ2h+0.5(1−γ)2h2σ̄2μ , (17)

where μ̄ and σ̄2μ are the posterior mean and variance of μ given by (6) and (7) wherem = T and that

do not vary with h. Hence, the elements in the series expansion of E
¡
yT/xT

¯̄
σ2
¢
eventually will

be dominated by terms e0.5(1−γ)
2h2σ̄2μ, h = 1, 2, ... and the present value expression will be divergent

unless γ = 1, corresponding to the special case of log-utility.

2.5. Possible Solutions to the Non-Convergence Problem

The reason for the fragility of the present value under the geometric random walk model with

constant but unknown parameters can be illustrated using a simple discrete state process for μ.

Suppose that over the forecast horizon T + 1, T + 2, ..., T + H, μ can take any one of the values

μ1, μ2, ..., μm with probabilities π1, π2, ..., πm where Σmi=1πi = 1,and 1 > πi > 0. To simplify the

analysis also assume that σ2, μi and πi are known at time T . Under this example, the present value

is given by

yT = xT

(
mX
i=1

πi lim
H→∞

HX
h=1

e−h ln(1+r)+hμi [Mε(σ)]
h

)
. (18)

Since 1 > πi > 0, yT exists if δeμiMε(σ) < 1 for all i. Contrast this result with the associated

certainty equivalent expression that accounts for uncertainty about the value of the underlying mean

parameter (but disregards uncertainty about future dividend innovations):

yCET = xT

(
lim

H→∞

HX
h=1

e−h ln(1+r)+hμ̄π [Mε(σ)]
h

)
, (19)

where μ̄π = Σ
m
i=1πiμi. The condition for y

CE
T to exist is given by δeμ̄πMε(σ) < 1. Clearly, it is

possible for the latter to be satisfied without δeμiMε(σ) < 1 being satisfied for all i. A sufficiently

large μi, even if it is extremely unlikely (with πi very close to zero), can result in divergence of yT ,

although for all other outcomes that are much more likely the associated infinite sums could be

convergent.

It is clear from this example that the non-convergence of the present value arises from the

particular combinations of (i) a geometric random walk driving process, (ii) an infinite horizon and

(iii) constant, but unknown parameters drawn from a Gaussian posterior distribution. One could

consider relaxing any one or all of these elements. We discuss the first two assumptions below and

then deal with the parameter stability assumption in more detail in the next section.

2.5.1. Use of Linear Driving Processes

The non-convergence problem can be avoided altogether if the geometric random walk model is

abandoned in favour of a linear driving process. Consider for example the simple random walk

8



model with drift

xt = μ+ xt−1 + σεt. (20)

Then E (xT+h |IT ) = xT + μh, and

yT = lim
H→∞

(
HX
h=1

δhE (xT+h |IT )
)

=
xT
1− δ

+ μ
∞X
τ=1

hδh,

or

yT =
xT
1− δ

+
μδ

(1− δ)2
. (21)

Uncertainty surrounding μ can easily be dealt with in a way that does not cause non-convergence

problems. Generalizing the process to higher order models with possible serial correlation in the

innovations, εt, would not alter the main conclusion. For example, for the pth order driving process

xt =
³
1−Σpj=1ρj

´
μ+Σpj=1ρjxt−j + σεt,

conditional on ρ = (ρ1, ρ2, ..., ρp)
0 we have

yT |ρ =
Σp−1j=0φj(δ)xT−j
1− φ0(δ)

+
δμ(1−Σpj=1ρj)
(1− δ) (1− φ0(δ))

, (22)

where

φj(δ) = Σ
p
i=j+1ρiδ

i−j, for j = 0, 1, ..., p− 1.
Under parameter uncertainty

yT = Σ
p−1
j=0E

∙
φj(δ)

1− φ0(δ)
|XT

¸
xT−j +

δ

1− δ
E

Ã
μ(1−Σpj=1ρj)
1− φ0(δ)

|XT

!
, (23)

where expectations are taken with respect to the posterior distribution of μ and ρ. These expecta-

tions are likely to exist for a sufficiently large T , and do not depend on the forecast horizon.

The problem with this approach is, as pointed out by Campbell, Lo and MacKinlay (1997, p.

258), that linear models for real dividends, consumption or labour income do not fit the data well

since these series tend to grow exponentially over time. This means that linear models are usually

dominated by log-linear specifications.

2.5.2. Use of Finite Horizons

A simple, but rather ad hoc, solution would be to define the present values over a given finite future,

say H̃, and then write the solution as

yT (H̃) =
H̃X
h=1

δhE (xT+h |IT ) , (24)
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which is finite so long as E (xT+h |IT ) exists for h = 1, ..., H̃. In practice the choice of H̃ could be

problematic. In the case of the life cycle consumption model, H̃ can be viewed as the life of the

household and treated as a truncated random variable. For example, we could assume that (for

0 < θ < 1)

Pr(H̃ = s) =
(1− θ) θs

θ
³
1− θH̄

´ , for s = 1, 2, ..., H̄
= 0, for s > H̄, (25)

where H̄ is an arbitrarily large but finite value. The non-truncated case where H̄ →∞ yields the

familiar geometric distribution used by Yaari (1965), Cass and Yaari (1967) and Blanchard and

Fischer (1989) to model uncertain life times in models of household consumption. Integrating out

the uncertainty of H̃ we have

EH̃

h
yT (H̃)

i
=

(1− θ)

θ
³
1− θH̄

´ H̄X
s=1

sX
h=1

θsδhE (xT+h |IT ) ,

which can be written more compactly as

EH̃

h
yT (H̃)

i
=

H̄X
s=1

1− θH̄−s+1

θ
³
1− θH̄

´ (θδ)sE (xT+s |IT ) . (26)

In this set up the choice of H̄ is of secondary importance. However, it is worth noting that for

H̄ →∞ the uncertain life time present value problem reduces to

lim
H̄→∞

EH̃

h
yT (H̃)

i
= θ−1

∞X
s=1

(θδ)sE (xT+s |IT ) , (27)

which is the infinite horizon problem with a lower discount factor given by θδ. By increasing the

discount rate the stochastic life time assumption will help towards achieving convergence, but does

not resolve the problem altogether. A finite H̄ would still be required in general.

3. Present Value Models with Structural Breaks

Perhaps a more appealing way to handle the non-convergence problem is to relax the assumption

that the parameters of the underlying growth process are constant through time. This assumption

clearly goes to the root of the non-convergence: As long as there is even an infinitesimal probability

of drawing a set of parameters for which the (constant) growth rate exceeds the discount rate,

the present value will not exist. Conversely, if the parameters of the growth rate are subject to

structural breaks, there are cases where the growth rate temporarily exceeds the discount rate, yet

the present value continues to exist. This happens provided that the underlying driving process

most of the time grows at a slower rate than the discount rate. The condition for the existence of

the present value is now the rather weaker one that paths leading to an unbounded present value
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have zero probability. This will trivially hold if the distribution of the maximum growth rate is

truncated so that it always falls below the discount rate, but can also hold in the absence of this

assumption.

Breaks to the cash flow process will not, however, in and of itself, resolve the problem. This

can easily be seen as follows. Suppose that the mean of the increment to the logarithm of the

first-differenced future dividend process falls in different regimes during the period T + 1, ...T + h.

Denote the number of these regimes by Nh and let their duration be h1, ..., hNh
, so that

PNh
i=1 hi = h.

Equivalently, the fraction of the time spent in regime i is given by πi = hi/h, 0 < πi < 1. Suppose

that μi ∼ N(μ̄, σ2μ). We then get the present value as follows:

yT = ET

⎡⎣xT HX
h=1

exp

⎡⎣− ln(1 + r)h+ h

NhX
i=1

πiμi + σ
hX

j=1

εj

⎤⎦⎤⎦
= xT

HX
h=1

exp

"
− ln(1 + r)h+ h(μ̄+

1

2
σ2) +

1

2
σ2μh

2
NhX
i=1

π2i

#
. (28)

Notice that the last term is not convergent as H →∞. Hence while the possibility of breaks adds
some flexibility to the model, one has to be careful to ensure convergence of the present value either

by using a finite H, by truncating the distribution from which the future growth rate is drawn, or

through some other means.

3.1. A Dividend Model with Breaks

To illustrate the above issues, we next consider the empirical evidence of breaks in the dividend

process underlying US stocks. Real dividends underlying broadly diversified stock market indices

are often assumed to follow a simple process of the form (2) with εt+1 ∼ N(0, 1). Depending on the

frequency at which dividends are modelled, autoregressive dynamics may also be present, in which

case the process can be generalized to

∆ ln(xt+1)− μ =

pX
i=1

βi(∆ ln(xt+1−i)− μ) + σεt+1, (29)

where βi (i = 1, ..., p) are autoregressive parameters and μ reflects the long-run mean of the dividend

growth rate, whereas μ̃ = μ(1−Pp
i=1 βi) is the intercept for the AR(p) process in ∆ ln(xt+1). Both

specifications (2) and (29) assume that the parameters of the dividend growth process remain

constant through time−an assumption that, in view of the significant shocks to economic growth
observed throughout the twentieth century, is unlikely to be satisfied over the long sample periods

typically used for estimation of the parameters of the dividend growth process, see Timmermann

(2001).

To capture the possibility of structural shifts in the parameters of the dividend growth process,

we adopt the change-point process proposed by Chib (1998).5 This approach assumes that shifts to

5McCulloch and Tsay (1993) is another prominent example of breakpoint analysis in a Bayesian setting.
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the parameters of a time-series process are determined by the evolution in a discrete state variable,

St, initialized so that S1 = 1 and increasing over time to capture the possibility of breaks. Every

time the state variable increases by one unit, the parameters of the process shift. Hence, if the

break point indicator ST = K + 1, this means that there were K breaks between time 1 and time

T . For example, assuming that the dividend process can be characterized as an AR(1) model whose

parameters are subject to breaks, we have

∆ ln(xt+1)− μ1 = β1(∆ ln(xt)− μ1) + σ1εt+1, τ0 ≤ t ≤ τ1

∆ ln(xt+1)− μ2 = β2(∆ ln(xt)− μ2) + σ2εt+1, τ1 + 1 ≤ t ≤ τ2
...

...

∆ ln(xt+1)− μK+1 = βK+1(∆ ln(xt)− μK+1) + σK+1εt+1, τK + 1 ≤ t ≤ T

(30)

where τ1, ..., τK are the breakpoints and {μSt+1 , βSt+1 , σ2St+1} are the parameters associated with
the dividend process regime that is in effect at time t+ 1. Our other assumptions follow Pesaran,

Pettenuzzo and Timmermann (2005) which we next briefly review. The state variable, St+1, can

either remain in the kth regime, which happens with probability pkk or move on to the next regime,

which happens with probability pk,k+1 = 1 − pkk. These probabilities are assumed to be drawn

independently across regimes from a beta distribution with prior parameters a and b:

pii ∼ Beta (a, b) , for i = 1, 2...,K. (31)

For the AR(1) specification the parameters determining the conditional mean of the divi-

dend growth process, βi= (μ̃i, βi) for i = 1, 2, ...,K + 1, are drawn from a Gaussian distribution,

βSt+1 ∼ N(b0,B0), while the error term precision parameters, σ−2St+1, are identically, independently
distributed (IID) draws from a Gamma distribution, σ−2j ∼ G (v0, d0). At the level of the meta

distribution, we make the following distributional assumptions:

b0 ∼ N
³
μβ,Σβ

´
(32)

B−10 ∼ W
³
vβ,V

−1
β

´
, (33)

where W (.) is a Wishart distribution. μβ, Σβ, vβ and V
−1
β are hyperparameters that are specified

a priori. Finally, the error term precision, v0 and d0 are assumed to follow an exponential and

Gamma distribution, respectively, with hyperparameters ρ0, c0 and d0:

v0 ∼ Exp
³
ρ0

´
(34)

d0 ∼ Gamma
¡
c0, d0

¢
. (35)

We refer to this specification as the composite-meta model. All prior parameters are under-scored.

3.2. Estimation Results

We use data from Shiller (2000) available at http://www.econ.yale.edu/~shiller/data.htm. This

provides monthly dividends paid by the firms included in a broad index of US firms. The data
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runs from 1871:03 to 2003:09. Nominal dividends are divided by the consumer price index to get

a time-series of real dividends. Statistics on the first-differenced values of this series are provided

in Table 1. Monthly dividend growth rates are serially correlated and left-skewed with fat tails.

Figure 1 plots the associated time-series and indicates strong evidence of instability in the underlying

process as it has evolved over the sample. Most notably, the volatility was very high in the early

parts of the sample, and around World War II, and has become much lower after this period. In

addition, the persistence of the series appears to have shifted over time as reflected in a more volatile

(less persistent) time-series plot in the early parts of the sample. These are of course only visual

impressions and must be confirmed by a more formal econometric analysis.

To this end we next document the presence of breaks in the dividend process. Table 2 shows

estimates for a variety of models with different numbers of breaks. Bayes factors based on the

ratios of the marginal likelihoods for models with different numbers of breaks suggest selecting a

model with five breaks, i.e. a break occurring roughly every 25 years. In fact, assuming equal prior

probabilities on the models with between zero and six breaks, almost all of the posterior probability

mass goes to the model with five breaks.

Based on the posterior modes for the probability of a shift in the state variable, St, the five breaks

are estimated to have occurred in 1911, 1922, 1930 (at the beginning of the Great Depression), 1952

(around the Korean War) and in 1960 (the start of the Golden Age of Capitalism). Figure 2 shows

that the date of the first break is very poorly determined with probabilities of a break in individual

months well below 6% and spread out between 1900 and 1920. The remaining break dates are more

precisely determined with modal probabilities varying from 0.15 to 0.35.

Table 3 reports parameter estimates for the model with five breaks (six regimes). As one might

expect from a sample period as heterogenous as the twentieth century, there is considerable variation

in the parameters across regimes. The intercept parameter varies from -0.02 to 0.16, while the AR(1)

parameter varies from a low point of 0.37 (between 1871 and 1911) to a high point of 0.73 between

1930 and 1952. Confirming the visual impression from Figure 1, the standard deviation of the

dividend process has varied considerably from a peak of 0.78 prior to 1911 to its value of 0.15 after

1960. Clearly the dividend process has become less volatile but also more persistent through time.

Finally, the mean value of the ‘stayer’ probability parameter that characterizes the duration of the

various states has varied from a high of 0.9997 in the regime prior to 1911 to 0.985 in the regime

over the period 1952 to 1960.

Consistent with the large variation across regimes in the parameters of the dividend growth

process, the mean value of the standard errors of the meta distribution parameters (b0(1), b0(2)) are

quite large at 0.04 and 0.08, respectively. In fact, Table 4 shows that the 95% confidence interval

for b0(1), the parameter in the meta distribution characterizing the mean intercept across regimes,

goes from -0.021 to 0.104 and from 0.43 to 0.68 for b0(2), the parameter in the meta distribution

characterizing the mean persistence across regimes. Following a future break, the parameters of

the dividend process will be drawn from the meta distribution so these values indicate that there is

considerable uncertainty about the process driving future dividend growth.

Figure 3 shows that parameter instability of the dividend growth process has a large effect on
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the predictive density. It shows the predictive density under three different models at horizons of

1, 12, 24, 36, 48 and 60 months. The first model is the full-sample, no-break model, while the

other two models allow for past breaks and past and future breaks. The model that allows for past

breaks effectively bases predictions of future values on the parameters from the last regime−the
regime prevailing from 1960-2003 in this case−while the model that allows for future breaks starts
off from this regime but lets new parameters following a future break be drawn from the meta

distribution. This also explains why the predictive densities are more concentrated under the break

regimes in Figure 3 since the standard deviation of innovations to dividends was very low in this

regime compared with the full-sample average value. While the dispersions of the densities are quite

different, however, in this regime the centering of the dividend growth process is not greatly affected

by the presence of breaks.

The relationship between the predictive density under breaks and under no breaks can be quite

different depending on the parameter values in the regime from which the forecast is calculated. To

see this, we plot in Figure 4 the same three graphs but now for the case where the parameters in

the last regime are based on their values in the regime prevailing during 1922-1930. It now becomes

clear that, particularly at the longer horizons, the three predictive densities are very different once

breaks are considered. In this case breaks shift the mean growth rate to the right compared with

the no-break case. The reason why the difference is largest at the longer horizons is due to the

cumulated effect of having different mean and persistence parameters under the three scenarios.

Since the forecasts from the AR(1) model are computed based on the same initial value of the

dividend process, differences in the parameters have a relatively smaller effect at short horizons.

This observation is by no means unique to the regime from 1922-1930 and−as shown in Figure
5−also holds for the regime that was in effect from 1952-1960.

Differences between predictive densities under the two breakpoint models can be explained with

reference to Figure 6. This figure plots the weight on the current regime (thus assuming that the

parameter values for the final regime remain in effect) as a function of the forecast horizon. This is

similar to a survival plot for the current state and shows how the probability of a break (computed

as one minus the ‘stayer’ probability plotted in Figure 6) increases to more than 50% as the forecast

horizon extends beyond five years.

4. Present Value Stock Price under Breaks

As we showed in Section 2, to compute the present value of future dividends, we need to evaluate

an expression of the form

lim
H→∞

yT = lim
H→∞

HX
h=1

δhET [xT+h] = lim
H→∞

HX
h=1

exp(−h ln(1 + r))ET [xT+h]. (36)

Notice that ET [.] is calculated not just conditional on current dividends, xT , but on the entire past

sequence {xt}Tt=1. Hence the complete historical track record of dividends matters when forecasting
future dividends.
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To compute the future stream of dividends, we use the Gibbs sampler to generate draws from the

predictive distribution of ∆ ln(xT+1),∆ ln(xT+2), ..,∆ ln(xT+H). To see how this works, consider

the sum of log first-differences of dividends between period T + 1 and period T +H:

HX
h=1

∆ ln(xT+h) = ln(xT+H/xt), (H ≥ 1) (37)

so

xT+H = xT exp(
HX
h=1

∆ ln(xT+h)),

or, in terms of present values,

δHxT+H = xT exp(
HX
h=1

∆ ln(xT+h)−H ln(δ)). (38)

First assume that there are no breaks between period T and T + h. When dividends follow the

AR(1) process (30), the value of ∆ ln(xT+h) is given by

∆ ln(xT+h)− μST = βhST (∆ ln(xT )− μST ) +
hX
i=1

βh−iST
εT+1+h−i. (39)

Using (37), we see after some algebra that

ln(xT+h/xT ) = hμSt +
βST (1− βhST )

1− βST

£
∆ ln(xT )− μST

¤
+ εT+1:T+h, (40)

where εT+1:T+h denotes the weighted shocks to the present value of dividends between period T

and T + h, defined by

εT+1:T+h = εT+h +

Ã
1− β2ST
1− βST

!
εT+h−1 +

Ã
1− β3ST
1− βST

!
εT+h−2...+

Ã
1− βhST
1− βST

!
εT+1.

It is now easily seen that

V ar(εT+1:T+h) =
h+

β2ST
(1−β2hST )
1−β2ST

− 2βST
(1−βhST )

1−βST
(1− βST )

2
. (41)

Future dividends can therefore be simulated by drawing a set of parameters, {μST ,βST }, and,
for these parameters, compute

xT+h = xT exp

(
hμST +

βST (1− βhST )

1− βST

£
∆ ln(xT )− μST

¤
+ εT+1:T+h

)
, (42)

where εT+1:T+h has mean zero and variance as given in (41).
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Turning to the case that allows for breaks between periods T + 1 and T + h, and recalling that

μ̃ST+i = μST+i(1− βST+i), we have

∆ ln(xT+1) = μ̃ST+1 + βST+1∆ ln(xT ) + εT+1

∆ ln(xT+2) = μ̃ST+2 + βST+2 μ̃ST+1 + βST+2βST+1∆ ln(xT ) + εT+2 + βST+2εT+1

∆ ln(xT+3) = μ̃ST+3 + βST+3 μ̃ST+2 + βST+3βST+2 μ̃ST+1 + βST+3βST+2βST+1∆ ln(xT )

+εT+3 + βST+3εT+2 + βST+3βST+2εT+1

... (43)

∆ ln(xT+h) = μ̃ST+h + εT+h +
h−1X
j=1

⎛⎝ hY
i=j+1

βST+i

⎞⎠ (μ̃ST+j + εT+j) +

⎛⎝ hY
i=j+1

βST+i

⎞⎠∆ ln(xT ).
Comparing this expression to (39), clearly, the presence of breaks complicates calculations of future

expected dividends very considerably and numerical methods are required to compute the present

value.

4.1. Computing Present Values

In practice we calculate the present value of the stock price as follows:

lim
H→∞

yT = lim
H→∞

HX
h=1

exp(−h ln(1 + r))

Z
xT+hp(xT+h|IT )dxT+h, (44)

where It is again the forecaster’s information set at time T , which we shall assume comprises past
dividends only, i.e. IT = {x1, ...., xT}. p(xT+h|IT ) is the predictive density of dividends at time
T + h conditional on IT .

The expectation is computed under three different scenarios capturing different assumptions

about the forecaster’s beliefs:

1. A model that accounts for parameter estimation uncertainty but ignores past and future

breaks to dividends by using the predictive density:

p(xT+h|ST+h = 1,IT ) =
Z

p(xT+h|Θt, ST+h = 1, IT )π(ΘT |ST+h = 1,IT )dΘT , (45)

where Θ are the constant model parameters whose posterior distribution given the data at

time T is π(Θ|ST+h = 1,IT ).

2. A model that accounts for historical breaks to the dividend process but ignores the possibility

of future breaks (and hence assumes that the last regime stays in effect forever but with

uncertain parameters) by using the predictive density:

p(xT+h|ST+h = K+1, IT ) =
Z

p (xT+h|ΘK+1, ST+h = ST = K + 1, IT )π (ΘK+1|H, p,IT )dΘK+1,

(46)

where ΘK+1 are the parameters in the last regime (labelled K+1), while H is the set of hyper
parameters.

16



3. A model that accounts for parameter estimation uncertainty as well as past and future breaks

to the dividend process by using the following predictive density:Z
p(xT+h|ST+h = K + nb + 1, ST = K + 1, IT ), (47)

where nb is the maximum number of out-of-sample breaks so the predictive density can be cal-

culated (integrating out uncertainty about the dates of the breaks, τK+1 = T+j1, ..., τK+nb =

jnb) as

p(xT+h|ST+h = K + nb + 1, ST = K + 1,IT ) =
h−nb+1P
j1=1

...
hP

jnb=jnb−1+1

Z
· · ·
Z

p(xT+h,ΘK+2, ...,ΘK+nb+1,H, ST+h = K + nb + 1,

τK+1 = T + j1, ..., τK+nb = T + jnb , ST = K + 1, IT )
×π (τK+1 = T + j1, ..., τK+nb = t+ jnb |ST+h = K + nb + 1, ST = K + 1) (48)

×π (ΘK+2, ...,ΘK+nb+1,H|IT )dΘK+2...dΘK+nb+1dH.

To get a more complete picture of the possible impact of breaks on the present value price,

we compute the stock price under the three scenarios based on different terminal regimes. One

thousand draws from the Gibbs sampler were used (after discarding the first 500 draws) to forecast

dividends and the present value of dividends. In computing the monthly dividends, we set the

forecast horizon at H = 1000 and assumed an annualized discount rate of 10%. The parameters

of the prior were as follows: pii ∼ Beta (a, b) with a = b = 0.5. We assume an uninformative

prior for the parameters of the conditional mean of the dividend process by setting μβ = 02×1,
Vβ = 1000I2 (recall that βi= (μ̃i, βi)

0 in the ith regime). The hyperparameters determining the
error term precision are c0 = 1; d0 = 1/100; ρ0 = 100, while the prior for the transition probability

matrix is assumed to be drawn from a Gamma(a0, b0) distribution with a0 = 1; b0 = 1/10.

To shed light on the practical importance of our choice of H, the terminal value at which

dividends are computed, Figure 6 plots the present value of the expected dividend as a function

of the forecast horizon, H. The sum of expected discounted dividends stabilizes rapidly under all

three models, suggesting that, in this parameterization and for our choice of discount rate r = 10%

per annum, the present value is not very sensitive to our choice of H. Our earlier theoretical results

suggest, however, that if we were to let H → ∞, the results could be quite different. Consistent
with this, when we chose a smaller value for the discount rate of r = 5% per annum, the present

value series failed to converge, blowing up in the process. These results suggest that in the presence

of parameter estimation uncertainty and model instability the present value stock price can be very

sensitive to modeling assumptions.

4.2. Empirical Results

Table 5 reports the stock price computed under these assumptions relative to the stock price from

the model that ignores model instability which we normalize at 100.6 As indicated by the parameter
6Since we are using a finite horizon in these calculations, normalizing the present values in this way is innocuous.
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estimates in Table 3, the mean value of the log first-differenced dividends in the regime prevailing

during 1922-1930 was unusually high. As a result, in this regime the stock price computed under

the assumption that the last regime stays in effect and no future breaks occur (the middle column in

Table 5) was nearly 40% higher than the full-sample, no-break stock price. In this regime, the stock

price computed under the composite-meta model that allows for both past and future breaks lies in

the middle of the full-sample and current regime values, 20% above the no-break price. Stock prices

under past and/or present breaks that exceed the value under the no-break assumption are also

observed under the parameters based on the regime that was in effect during the period 1952-1960.

Conversely, the stock price based on dividend growth parameter values from the regime prevailing

from 1930-1952 falls below the full-sample value by 7% since dividend growth was quite low in this

regime as indicated by the negative intercept for this state shown in Table 3. Furthermore, in this

regime the stock price computed under the composite meta distribution, at 101, is only marginally

above the full-sample value. A similar set of results is obtained on the basis of the parameters from

the last regime prevailing during 1960-2003.

The reason for these rankings is easy to understand from Figure 7: At short investment horizons,

the weight on the current state tends to be very high, but this weight declines gradually as the

horizon is expanded and the weight on draws from the meta distribution increases. Consequently,

the stock price under the current regime lies above both the full-sample value and the price computed

under the composite meta distribution whenever dividend growth is very high in the current regime,

i.e. the parameters associated with the current regime are drawn from the right tail of the meta

distribution. In this situation, the stock price under the composite-meta distribution is also likely

to be considerably higher than its full-sample counterpart, but it falls below the value conditioned

on remaining in the last regime since dividend growth after a future break is likely to be below the

growth rate in the current regime.

These results also demonstrate that, in general, the stock price under the composite meta

distribution will tend to be above the full-sample value due to the convexity of the mapping from

the dividend growth rate to the stock price implied by the present value relation (see Timmermann

(2001)). This explains why we see higher stock prices as a result of accounting for parameter

uncertainty and model instability. Furthermore, model instability generally increases the effect of

parameter uncertainty. The intuition for this finding is that under breaks fewer observations are

effectively used to estimate the model parameters in the last regime, so the standard errors of the

parameters tend to increase under breaks compared with full-sample estimates.

However, in a given regime, any ranking between stock prices under the three scenarios is in

fact possible. For example, if the current state experiences a sufficiently low dividend growth rate

and the state is highly persistent, then the effect of conditioning the stock price on the dividend

growth parameters from the current state will dominate the convexity effect and hence the stock

price under the composite meta distribution (as well as under the assumption that the current state

remains in effect) will be smaller than the full-sample, no break price.

Furthermore, stock prices under the model that accounts for breaks need not exceed prices

under a no-break assumption in models where shocks to the dividend growth process are correlated
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with a stochastic discount factor and uncertainty surrounding future dividend growth leads to a

higher risk premium. This will occur, for example, in consumption asset pricing models where

dividends have a large positive correlation with consumption growth. But our discussion of the

Lucas model in Section 2.4 suggests that taking account of possible correlations between dividends

and consumption growth might not be sufficient to resolve the non-convergence problem so long as

there are important uncertainties surrounding the future mean dividend growth rates.

5. Conclusion

This paper showed how to compute stock prices as the present value of future dividends when we

do not assume that the dividend process is stable through time and that its parameters are known.

We showed that stock prices can be quite sensitive to the nature of the assumptions concerning

uncertainty and instability of the parameters of the dividend process. These findings suggest that

our understanding of the dynamics in stock prices can be improved by focusing on the uncertainty

surrounding the underlying fundamentals process.

Our emphasis on the sensitivity of present values to uncertainty about the growth rate in dif-

ferent ‘regimes’ or states of nature is closely related to the literature on how investors’ learning

about the dividend growth process can give rise to the ‘excess volatility’ patterns observed for asset

prices, c.f. Timmermann (1993). Even with a finite horizon, present values can be very sensitive to

small changes in the estimated growth rate, particularly as this gets close to the discount rate. It

is also related to recent work on asset pricing puzzles by Weitzmann (2005) who, following earlier

insights by Geweke (2001), points out the sensitivity of equilibrium asset prices and returns to

assumptions concerning the precision of the parameters characterizing the distribution from which

fundamentals are generated, questions the ergodicity assumption made in much of the rational ex-

pectations literature and proposes modifications to this. For example, Weitzmann (2005) writes

that “the unobservable nature of structural growth parameters adds to expectation beliefs a per-

manent thick-tailed background layer of uncertainty that never converges to a stationary-ergodic

rational expectations equilibrium.”

The empirical results presented here clearly have implications for the equity premium puzzle,

although we chose not to address this issue here. Recent papers by Barro (2005), de Santis (2005)

and Weitzmann (2005) emphasize the importance of parameter uncertainty, instability and rare

events as potential explanations of the historically large equity premium. Indeed, through their

large effect on the present value stock price, persistent shifts in the dividend growth rate tend to

increase the uncertainty about future returns which may be a reason why a larger equity premium

is required compared to the standard model that ignores such effects.7

7Allowing for estimation uncertainty could also be important in resolving the so called Deaton’s paradox, namely

the excess smoothness of observed consumption growth to changes in labour income growth. See, for example, Deaton

(1992).
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Figure 1: Monthly real dividend growth rates, 1871:3 - 2003:9



Figure 2: Posterior probability of break occurrence in the AR(1) model for the real dividend growth

rate, assuming K = 5.



Figure 3: The graphs show the predictive distributions for the dividend series under various forecast

horizons. The solid line represents the predictive density from the composite-meta model (assuming

K=5 breaks) while the dotted line represents the predictive denstity under the last regime (1960-

2003). Finally, the dashed/dotted line represents the predictive density from the full sample/no

breaks model.



Figure 4: The graphs show the predictive distributions for the dividend series under various forecast

horizons. The solid line represents the predictive density from the composite-meta model (assuming

K=5 breaks) while the dotted line represents the predictive denstity under regime 3 (1922-1930).

Finally, the dashed/dotted line represents the predictive density from the full sample/no breaks

model.



Figure 5: The graphs show the predictive distributions for the dividend series under various forecast

horizons. The solid line represents the predictive density from the composite-meta model (assuming

K=5 breaks) while the dotted line represents the predictive denstity under regime 5 (1952-1960).

Finally, the dashed/dotted line represents the predictive density from the full sample/no breaks

model.



Figure 6: Posterior probability of staying in regime K + 1 at time T + h,

Pr (sT+h = K + 1j sT = K + 1). h is the forecast horizon that ranges from 1 to 60 months.



Figure 7: Cumulative discounted dividend
Xh

j=1

xT+j
(1+r)j

under di¤erent scenarios, where 1 � h �
1000 months and r = 10% per annum. The solid line represents the predictive density from the

composite-meta model (assuming K = 5 breaks) while the dotted line represents the predictive

denstity under the last regime. Finally, the dashed/dotted line represents the predictive density

from the full sample/no breaks model. The dividend is set at the end of sample value, xT = 15:12.



� log (xt) Sample Statistics

Mean Std. dev. Skewness Kurtosis 1st order AC 12th order AC

0.0004 0.0064 -0.5133 7.5251 0.5220 0.0480

Table 1: Sample statistics for the monthly growth rate of the real dividends, � log(xt). The sample

period is 1871:3-2003:9.



No. of breaks Log lik.(LL) Marginal LL Break dates

0 -1298.05 -1329.4062

1 -806.482 -875.8323 Feb-52

2 -749.527 -820.8898 Sep-11 Apr-60

3 -723.086 -795.1873 May-11 Feb-52 Apr-60

4 -705.76 -778.9393 Jan-11 Nov-30 Jan-52 Apr-60

5 -693.636 -769.1268 Jan-11 Jan-22 Nov-30 Jan-52

Apr-60

6 -692.465 N.A. Nov-17 Jun-20 Feb-31 Jan-52

Sep-60 Oct-60

Table 2: Model comparison. This table shows log likelihood and marginal log likelihood values

for �rst-order autoregressive models with di¤erent numbers of breaks. Also reported are posterior

modes of the time of the breaks.



Parameters estimates

Regimes

1 2 3 4 5 6

date 71-11 11-22 22-30 30-52 52-60 60-04

Constant

Mean 0.071 -0.022 0.155 -0.009 0.030 0.009

s.e. 0.035 0.044 0.052 0.033 0.025 0.006

AR(1) coe¢ cient

Mean 0.372 0.606 0.398 0.729 0.621 0.658

s.e. 0.043 0.073 0.104 0.042 0.069 0.032

Standard deviation

Mean 0.781 0.589 0.310 0.597 0.270 0.148

s.e. 0.028 0.039 0.024 0.027 0.020 0.005

Transition Probability matrix

Mean 0.997 0.989 0.986 0.994 0.985 1

s.e. 0.003 0.010 0.011 0.005 0.012 0

Table 3: Posterior parameter estimates for the AR(1) hierarchical Hidden Markov Chain model

with �ve break points in the monthly growth rate of real dividends.



Mean Parameters

Mean s.e. 95% conf interval

b0(1) 0.039 0.040 -0.021 0.104

b0(2) 0.563 0.078 0.430 0.684

Variance Parameters

Mean s.e.

B0(1; 1) 0.008 0.008

B0(2; 2) 0.032 0.037

Error term precision

Mean s.e. 95% conf interval

v0 1.281 0.555 0.531 2.336

d0 0.113 0.059 0.035 0.217

Table 4: Posterior estimates of the hyperparameters of the meta distribution for the AR(1) hier-

archical Hidden Markov Chain model with �ve break points for the monthly growth rate of real

dividends.



yT

Regime Full sample/No breaks Last regime Composite-Meta

1960-2003 100 97.736 101.272

1922-1930 100 136.427 120.306

1930-1952 100 93.012 101.036

1952-1960 100 104.677 107.656

Table 5: Stock price yT under di¤erent scenarios when the interest rate is set at 10 % per annum.
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