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Abstract 
 
Consider a contract over trade in continuous time between two players, according to which 
one player makes a payment to the other, in exchange for an exogenous service. At each point 
in time, either player may unilaterally require an adjustment of the contract payment, 
involving adjustment costs for both players. Players’ payoffs from trade under the contract, as 
well as from trade under an adjusted contract, are exogenous and stochastic. We consider 
players’ choice of whether and when to adjust the contract payment. It is argued that the 
optimal strategy for each player is to adjust the contract whenever the contract payment 
relative to the outcome of an adjustment passes a certain threshold, depending among other 
things of the adjustment costs. There is strategic substitutability in the choice of thresholds, so 
that if one player becomes more aggressive by choosing a threshold closer to unity, the other 
player becomes more passive. If players may invest in order to reduce the adjustment costs, 
there will be over-investment compared to the welfare maximizing levels. 
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1. Introduction

In most economies, a large part of the transactions take place within long-term relationships.
Generally, players’ payoffs from these transactions depend on the rules or norms that govern the
relationship. For example, the payoffs to the parties in an employment relationship depend on the
labor contract. The payoffs to two partners in a partnership depend on how they share the benefits
and work within their relationship. The rules or norms in a relationship may be written down in
a formal contract, or they may just be given by a mutual understanding of “how things are done”.
In either case, the rules and norms are often constant over long time, until one player demands
that they are changed. In this paper we analyze the decision of whether and when to demand that
the rules are changed. For concreteness, we choose one specific type of transactions and rules,
where one player undertakes an exogenous service for the other, and where the remuneration for
the service is given in a contract. Trade takes place in continuous time, and players’ flow payoffs
depend on the prevailing contract.

Typically, a demand for adjustment of the contract may be motivated by changes in the “inside”
or the “outside” option. First, players’ payoff from trade under the contract may change to one
player’s disadvantage, causing this player to require an adjustment of the contract. We capture
this effect by assuming, realistically, that the contract payment is set in nominal terms, so that the
real value of the contract payment depends on the stochastic aggregate price level. Second, outside
alternatives may change, which we capture by assuming that the outcome of an adjustment of the
contract is given by an exogenous stochastic process, known to both parties at the time when an
adjustment is demanded.

Formally, we consider a two-player differential game. There is a contract, according to which
player B (the buyer) makes a fixed nominal payment V per unit of time to player A (the seller), as
a remuneration for some exogenous and unspecified service. The real value of the fixed payment,
R, depends on the aggregate price level Q, where R = V/Q. At each point in time, either player
may unilaterally induce an adjustment of the contract payment to a new real value Z, which we
shall refer to as the real adjustment outcome (implying a new nominal value V = ZQ). Adjusting
the contract payment carries an exogenous fee to both players. The aggregate price level Q and the
real adjustment outcome Z are exogenous stochastic processes. We consider players’ decision of
when to adjust the payment given in the contract, allowing for an unlimited number of adjustments
over an infinite horizon.

The model we consider is simple: There are only two players, and their only choice variable is
at each point in time whether to demand an adjustment of the contract. The result of a possible
adjustment is known to both players. Yet the decision problem facing the players is very complex.
When deciding whether to require an adjustment of the contract, a player must weigh the gain
from a possible improvement in contract terms against the costs of adjustment. However, the
player must also take into consideration that an adjustment now, making the contract terms more
favorable to himself, will make the contract less favorable to the opponent. This may cause the
opponent to require an adjustment at an earlier point in time than he otherwise would have done,
involving both adjustment costs and less favorable contract terms for the first player.

In principle, strategies may depend on anything that has happened in the history of the game,
and thus be immensely complicated. To keep the analysis tractable, we follow the tradition of the
differential games literature (see Isaacs [17] and Dockner, Jørgensen, Van Long, and Sorger [10])
of restricting attention to Markov strategies, i.e., strategies where actions are allowed to depend
on past history through the current value of the state variables only.

We show that the optimal strategies of the players are given by critical thresholds for the
ratio between the real contract payment, R, and the real adjustment outcome, Z. After each
adjustment, R is set equal to Z, implying that the ratio R/Z = 1. In equilibrium, player A will
demand an adjustment whenever R/Z is below player A’s threshold, irrespective of whether this
is caused by high inflation eroding the real value of the contract payment, or by an increase in
the real adjustment outcome. Conversely, player B will require an adjustment whenever R/Z is
above player B’s threshold.
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The thresholds depend, among other things, on the costs of adjustment and the expected drift
and volatility of the stochastic processes. As expected, we show that the higher the costs of
adjustment for a player, the more passive is the player, i.e., the further the critical threshold is
from unity. More volatility in the stochastic processes widens the interval between the thresholds,
yet adjustments occur more frequently.

Our key result is that there is strategic substitutability in the choice of threshold values, so
that if one player becomes more aggressive (i.e., setting a threshold closer to unity), the opponent
will become more modest (i.e., setting a threshold further from unity). The intuition for this
result is that if a player becomes more aggressive, the expected time until this player requires an
adjustment is reduced. Thus, the expected duration of a change in contract terms induced by the
opponent is reduced, which makes it less attractive for the opponent to require an adjustment.

One implication of strategic substitutability is that asymmetries between the players may be
exacerbated. For example, if adjustment becomes less costly for one of the players, making this
player more aggressive, the strategic effect will make the opponent more passive. As the opponent
becomes more passive, the first player becomes even more aggressive, exacerbating the direct effect
of reduced adjustment costs. Numerical examples suggest that the strategic effect in some cases
may be substantial.

The paper is related to several different strands of literature. As noted above, the model is
formally a type of differential game. Economically, the paper is closer related to the considerable
literature which studies the optimal choice of nominal prices (or wages) under a stochastic evolution
of money or aggregate prices (see, e.g., Sheshinski and Weiss [23], Danziger [7], Caplin and Spulber
[6], and Caplin and Leahy [5]). As in our paper, adjustment of the nominal price is costly. As
in our model, optimal behavior under state-dependent price setting is typically characterized by
threshold strategies, often termed (s, S) strategies, where the prevailing price is changed if it is
sufficiently far from the optimal new price, so that the gain from adjustment covers the adjustment
costs. Compared to this literature, we simplify by taking the adjustment outcome as exogenous,
focusing solely on the timing decision. On the other hand, by considering a two-player game, we
introduce a strategic dimension. Thus, when deciding whether to adjust the contract payment
now, a player must take into consideration that this may cause a subsequent adjustment by the
opponent, at an earlier stage than he otherwise would have done, inflicting additional costs on
both players.

Our paper is also related to the literature on the duration of labor contracts, see Danziger [9]
for a recent contribution with reference to previous literature. Most of this literature is concerned
about the duration of fixed-length (or time-dependent) wage-contracts, empirically, or as seen
from the point of optimality. In contrast, the main focus of the present paper is on the adjustment
decision in a state-dependent setting.

The model we consider is very similar to the model studied in Andersen and Christensen [3]. As
in our model, Andersen and Christensen consider bilateral trade in continuous time according to a
given contract, and players’ only decision is at each point in time whether to demand an adjustment
of the contract (which Andersen and Christensen refer to as a renegotiation of the contract). The
outcome of the renegotiation is assumed to be given by a geometric Brownian motion. However,
an important limitation of Andersen and Christensen [3] is that it only allows for one contract
renegotiation, implying that if one player has required a renegotiation, this option is no longer
open to the other player. Thus, Andersen and Christensen find strategic complementarity in
players’ contract renegotiation decisions, i.e., that the more reluctant one player is to demand
a renegotiation, the more reluctant the opponent will be, in contrast to our finding of strategic
substitutability.

In Andersen and Christensen [2] the model is extended to a large but finite number of contract
renewals, and the model is solved by use of backward induction from the last possible contract
renewal. However, it is not stated whether the strategic complementarity also holds in this case.

Our analysis is relevant for bilateral trade under a contract, e.g., a labor contract, a tenancy
agreement, or a delivery contract. Such contracts often specify an expiration date, seemingly
making the decision of when to require an adjustment less relevant. However, in spite of an
expiration date, such contracts are often renegotiated before the expiration date, or extended
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considerably beyond the date, making the decision of when to adjust the contract important. In
some contracts, there is an explicit renegotiation clause, allowing either of the parties to unilaterally
request a renegotiation. If the contract does not include a renegotiation clause, a player may
nevertheless enforce a renegotiation by credibly threatening to disrupt trade, if the opponent
prefers a renegotiation to a disruption of trade. Such threats may be possible if it is not verifiable
for the court which party violates the contract (MacLeod and Malcomson [19] and Hart and Moore
[13], or if the courts will not enforce any penalty provisions (Grout [11]). Thus, in practice, even
contracts without a renegotiation clause are occasionally renegotiated or terminated if a sufficiently
large shock takes place.

As to extension beyond the expiration date, many contracts have legal effects even after the
expiration date. In many countries, parties to an employment contract are legally bound by the
terms of the contract, even after the expiration date, unless both parties have agreed on a new
contract, or one party has terminated the relationship, see Malcomson [20] and Holden [14]. As an
illustration that contract extension really happens, consider the sample of Israeli labor contracts
studied by Danziger [8]: 86 percent of all new contracts were signed after the expiration of the
previous contract, with average delay 213 days. Again, the decision of when to adjust the contract
is relevant.

We believe that our analysis is also relevant for other applications. For example, the relationship
between two countries may be governed by various types of agreements, like trade agreements or
environmental agreements. A country may want to renegotiate such agreements if it believes
that this will lead to more beneficial terms. If one country is aggressive, in the sense of being
eager to exploit any possibility of improving the terms of trade, how will this affect the strategy
of the other? Another example is two partners in a business partnership, where the partners’
respective payoffs depend on how they share benefits and costs. Here, too, a partner may request
an adjustment of the shares if relevant circumstances change, e.g., a change in the partners’ real
payoffs from the partnership, or in the payoffs that can be obtained in alternative relationships.

The remainder of the paper is organized as follows. The basic model is described in Section 2.
Here we show that there exists no strategy that is better than a threshold strategy, specifying an
adjustment of the contract whenever the ratio of the real contract payment to the real adjustment
outcome passes a specific threshold. Section 3 analyzes the case when both players use threshold
strategies. In Section 4, we impose the assumption that the stochastic environment is continuous,
and we prove the existence of a Nash equilibrium. In Section 5, we again allow for discontinuities
in the stochastic environment, and show that in this case equilibrium may involve randomization.
In Section 6, we extend the basic model by allowing for a stage prior to the basic model, where
players may invest in reducing the adjustment cost, and we consider the efficiency of this invest-
ment decision. Section 7 summarizes some of the main results. An approximate formula for the
equilibrium is given in Appendix A. Proofs are provided in Appendix B. The case where only
one player is allowed to adjust the contract has been analyzed in detail in a working paper. For
brevity reasons these results are not included in the present paper.

2. The model

We consider a two-player differential game. There is a contract, according to which player B
makes a fixed nominal payment V (ti) per unit of time to player A, as a remuneration for some
exogenous and unspecified service. The time when the payment is set, is denoted ti. At each
point in time, either of the players may unilaterally adjust the nominal payment, inducing an
adjustment cost on both players.

The real value of the contract payment at time t, R(t, ω) is found by deflating the nominal
contract payment by the aggregate price level Q(t, ω) at time t, i.e., R(t, ω) = V (ti)/Q(t, ω). The
parameter ω denotes that Q(t, ω) and thus also R(t, ω) are stochastic. Players’ flow payoffs are
constant elasticity functions of the real contract payment, so that RηA (i.e., R raised to the power
ηA) and RηB are the flow payoffs of player A and B, respectively, and where the respective rates
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of risk aversion are ηA > 0 and ηB < 0 (implying that player A gains and player B loses from an
increase in R).1

If a player demands an adjustment of the contract at time t, the real value of the new contract
is set equal to the real adjustment outcome Z(t, ω), which is also an exogenous stochastic process.
The new nominal contract is thus V (t, ω) = Z(t, ω)Q(t, ω). Adjustment of the contract involves a
fee that is proportional to the real adjustment outcome; specifically, the adjustment fee is τνZην ,
where τν (ν = A or B) is assumed to be strictly positive, deterministic and independent of which
player is initiating the adjustment.2 (This assumption may be generalized, see observation II in
Section 4.)

Note that we do not consider the possibility that players care explicitly about the actions and
intentions of the other player. Thus, we neglect that a player may care about an adjustment per
se, viewing it as unfair or unwarranted; it is only the real contract payment and the adjustment
costs that enter the payoff functions.

The overall objective function of the players is the discounted sum of flow payoffs

Uν(t1, . . . , ω) =
∫ ∞

0

Rην (s, ω) exp(−βs)ds− τν

∞∑
j=0

Zην (tj+1, ω) exp(−βtj+1)(1)

where the discount rate β > 0 and tj the times of contract adjustment. To avoid unimportant
additional constants, we normalize by setting R(0, ω) = Z(0, ω) = 1, and t0 = 0. As noted above,
the players choose when to adjust the contract, so as to maximize their objective function. At
each time t, the contemporaneous values Z(t, ω) and Q(t, ω) are known to the players, but the
future values Z(s, ω) and Q(s, ω) for s > t are unknown.

One may argue that when the outcome of the adjustment is known to the players in advance,
the adjustment costs, which reflect time and uncertainty associated with agreeing upon a new
contract, should be negligible. However, it is straightforward, but cumbersome, to extend the
model so that players at time t only know the expected outcome of the adjustment at time t,
and where the actual adjustment outcome at time t is stochastic. In this extension, the expected
outcome might either be a function of the previous adjustment outcome, i.e., for t > ti, the
expected outcome in real terms is described by E{Z(t) | Z(ti, ω)} = exp(c(t − ti))Z(ti, ω) for
a constant c, or the expected outcome might be a stochastic process similar to Z and Q in the
present model. Under both alternatives, the qualitative results would be unaffected.

It might seem plausible that the real adjustment outcome Z would depend on the players’
adjustment costs, or the preference function, so that a player with lower adjustment costs, or a
less risk averse player, has a stronger position in the adjustment process, and thus is able to obtain
a better outcome. The fact that there is an existing contract may also have profound impact on
the renegotiation outcome, see MacLeod and Malcomson [19] and Holden [16]. However, making
the adjustment or renegotiation outcome endogenous would complicate the analysis considerably,
making key aspects less transparent. Thus, we neglect such aspects and treat Z as exogenous.

To ensure a high degree of generality, we assume that the real adjustment outcome and the
aggregate price level are given by the exponential of a Lévy process. Thus we assume that Z(s, ω) =
exp(F (s, ω)) and Q(s, ω) = exp(G(s, ω)) where F,G are Lévy processes. Lévy processes include
geometric Brownian motion, jump processes that follow a Poisson distribution and many other
stochastic processes that are, e.g., asymmetric or have heavier tails. For the benefit of the reader
we recall the definition of a Lévy process (see, e.g., Sato [22]).

1The payoff functions can be derived from a collective bargaining framework, where workers’ payoff is assumed
to be an increasing and isoelastic function of the real wage, R. For a price setting firm, with a constant elasticity
production function, labor as the only input, and constant elasticity of product demand, it is straightforward to

show that real profits will be a decreasing isoelastic function of the real wage. We further allow the firm’s payoff

to be an isoelastic function of real profits. Note, however, that as ηA > 0 and ηB < 0, the model is not symmetric.
Yet by use of the same method, it can be shown that the analysis and results would be qualitatively the same in a

symmetric model where the flow payoff of player B is −RηB , and ηB = ηA > 0.
2Proportional adjustment fees, adjusted for the constant elasticity ην , yield tractable solutions. In a labor

contract, adjustment costs may reflect time spent on bargaining, and the real contract payment (i.e., the real wage)

seems an appropriate measure of the costs of time.
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Definition 2.1 (Lévy process). A stochastic process Xt is a Lévy process provided the following
conditions hold:
(i) For any n and any 0 ≤ t0 < · · · < tn the random variables Xt0 , Xt1 −Xt0 , . . . , Xtn

−Xtn−1 are
independent.
(ii) X0 = 0 almost surely.
(iii) The distribution of Xs+t −Xs is independent of s.
(iv) The process is stochastically continuous, i.e., limt↓0 Prob(|Xt| > ε) = 0 for all ε > 0.
(v) The process is right-continuous with left limits.

For Lévy processes we have the Lévy–Khintchine formula for the characteristic function of Xt

(see, e.g., Sato [22])

E{exp(iλXt)} = exp
(
t
(
iαλ− 1

2λ2a2 +
∫ ∞

−∞
(eiλx − 1− iλxχ{|x|≤1}(x))dσ(x)

))
,(2)

where dσ is a σ-finite measure, denoted the Lévy-measure, with
∫∞
−∞ min(|x|2, 1)dσ(x) < ∞ and

σ({0}) = 0. The process is uniquely defined by the quantities (α, a, dσ). The measure σ describes
the size and intensity of the jumps in the process. The process is Gaussian if and only if σ = 0,
and in that case, α denotes the drift and a the volatility. If σ satisfies∫ ∞

1

eηxdσ(x) < ∞,

we may conclude that

E{exp(ηXt)} = exp
(
t
(
αη + 1

2η2a2 +
∫ ∞

−∞
(eηx − 1− ηxχ{|x|≤1}(x))dσ(x)

))
holds and is finite.

To ensure that the objective functions are finite, it is necessary to bound Z and Q relative to
the discount rate β. This requires two additional assumptions. First, we assume that the volatility
of the non-gaussian part is bounded, by assuming that the Lévy-measures satisfy∫ ∞

1

eηhxdσh(x) < ∞, h = z, q(3)

for some ηh. We may then define the drift in the processes for the real adjustment outcome Z and
the aggregate price level Q by

µν,h = αhην + 1
2η2

νa2
h +

∫ ∞

−∞
(eηνx − 1− ηνxχ{|x|≤1}(x))dσh(x), ην ≤ ηh,

for ν = A,B and h = z, q. We have that E{Zην (t, ω)} = exp(tµν,z) and E{Qην (t, ω)} = exp(tµν,q).
For example, µA,z is the expected rate of increase in the real adjustment payment, adjusted for the
relative rate of risk aversion of player A, ηA. The second assumption is that the drift parameters
µν,h must be bounded by the discount rate β.

Definition 2.2 (Property F). We say that the stochastic contract model has property F if the
following properties hold:
(i) The real adjustment outcome Z(s, ω) = exp(F (s, ω)) and Q(s, ω) = exp(G(s, ω)) where F and
G are Lévy processes given by (αz, az, dσz) and (αq, aq, dσq), respectively.
(ii) There exists ηh such that ∫ ∞

1

eηhxdσh(x) < ∞, h = z, q,

and assume that ην ≤ ηh for ν = A,B and h = z, q.
(iii) We have that

µν,h < β, ν = A,B, h = z, q.
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Note that by assuming that payoff functions exhibit constant elasticity in the real contract
payment R, and that the stochastic processes are given by the exponential of Lévy processes, we
ensure that the situation is the same after each adjustment, subject to a constant Z(t, ω). This
property is crucial for the analysis, as it implies that the same strategies are optimal after each
adjustment.

The strategy of a player is defined as a description of the criteria that apply for when the player
will require an adjustment of the contract. In principle, strategies may depend on anything that
has happened in the history of the game. However, we will follow the tradition of the differential
games literature and restrict attention to Markov strategies, where the players’ choice of action
only depend the state of the game. Thus, players may condition their play on the real contract
payment R, the real adjustment outcome Z, or any combination of these variables. We do not
allow players to condition their play on the opponent’s play, except for any effect via the state
variables R and Z. For example, we do not consider strategies where players punish a rapid
adjustment by the opponent by another adjustment, inflicting further adjustment costs on both
players.

The theorem below states that if one of the players uses a Markov strategy, there exists no
strategy for the other player that gives higher expected value of the objective function than
having a critical threshold for the ratio R/Z, i.e adjusting the contract whenever R/Z is equal to
or passes a certain threshold value. Other variables like R or Z separately, calendar time or the
time duration since the previous adjustment, need not be used in the strategy.

Theorem 2.3. Assume the stochastic contract model satisfies property F . Assume that one player
uses a Markov strategy. Then there exists no strategy for the other player that gives higher expected
payoff than the payoff that can be obtained with a threshold strategy based on the ratio R/Z.

Let rB and rA denote the critical thresholds, where rA < 1 < rB , as player A requires adjust-
ment if the real contract payment is low (R/Z ≤ rA), while player B requires adjustment if the
real contract payment is high (R/Z ≥ rB). Note that Theorem 2.3 does not imply that there
exists a pair (rA, rB) where rA is the optimal response to rB and rB is the optimal response rA;
in Section 5, a counterexample is given.

3. The model when both players use thresholds strategies

In the previous section it was proved that if one player uses a Markov strategy, the opponent
has no strategy that is better than what can be achieved by a threshold strategy for the ratio R/Z.
Thus, in this and the following sections we assume that both players use such threshold strate-
gies. In this section we derive formulas for the expected objective functions and their derivatives.
These formulas can be computed numerically, and possibly also analytically, for specific stochastic
processes. To illustrate the model, figure 1 shows a realization of the real contract payment R
when both players use threshold strategies.

Define the expected discounted sum of flow payoffs3

(4) uν(rA, rB) = E{Uν(rA, rB)}
where Uν(rA, rB , ω), with a slight abuse of notation, is defined from (1) when the players have
critical thresholds rA and rB . Let T (rA, rB , ω) be the time of the first adjustment given the thresh-
olds rA and rB , i.e., the first time after t = 0 that the contract payment relative to adjustment
payment is either equal or below rA or equal or above rB , viz.,

T (rA, rB , ω) = inf{t > 0 | R(t, ω)/Z(t, ω) 6∈ (rA, rB)}.
Given the thresholds, define the expected contribution to the objective function of player ν from
the start at t = 0 to the first contract adjustment,

fν(rA, rB) = E{
∫ T (rA,rB)

0

Rην (s, ω) exp(−βs)ds}.

3Here and in the following we will write E{Φ(a, b)} for the expectation value of a stochastic variable Φ(a, b, ω),

rather then more cumbersome E{Φ(a, b, ω)} or E{Φ(a, b, · )}.
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Figure 1. The figure shows one realization of the process R( · , ω) in the case with Z = 1
and Q is geometric (or exponential) Brownian motion Q = exp((αq−a2

q/2)t+aqBt) with
drift αq = .002 and volatility aq = .01. Here Bt denotes standard Brownian motion.
When the unit of time is interpreted as one month, this corresponds to 2.4% annual
inflation. The process is sampled at 5000 points.

The expected flow payoff just after the first adjustment, discounted down to time t = 0, is defined
by

hν(rA, rB) = E{Zην (T (rA, rB)) exp(−βT (rA, rB))}.
Note that in the special case where the real adjustment outcome Z is a constant, hν is a pure
discount factor. Note also that the second inequality in Definition 2.2 ensures that hν < 1.

Then we may formulate the following theorem.

Theorem 3.1. Assume the real adjustment outcome Z and the aggregate price Q satisfy property
F . Furthermore, assume that both players use threshold strategies, implying that the contract is
adjusted as soon as the contract payment relative to the adjustment outcome R/Z exits the interval
(rA, rB). Then the following properties hold:
(i) The expected values of the objective functions immediately after an adjustment satisfy

(5) uν(rA, rB) =
fν(rA, rB)− τνhν(rA, rB)

1− hν(rA, rB)
, ν = A,B

and are defined for 0 ≤ rA < 1 < rB ≤ ∞.
(ii) Assuming f and h are differentiable, the derivatives satisfy

(6)
∂uν

∂rµ
=

∂fν

∂rµ
+ (uν − τν)∂hν

∂rµ

1− hν
, ν = A,B, µ = A,B.

We make the following observations:
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(I) To facilitate the interpretation of equation (5), one may compare with the deterministic case
where the contribution fν is deterministic between adjustments, and where the real adjustment
outcome Z is a constant, implying that hν is a pure discount factor. Recalling the formula for
the sum of an infinite geometric series (a + ka + k2a + · · · = a/(1 − k) when |k| < 1), we see
that equation (5) is on the same form, where a = fν − τνhν is the payoff accumulated in the time
interval between two adjustments, including the discounted adjustment costs, and k = hν is the
discount factor.

(II) Equation (6) captures the opposing effects of increasing the thresholds: For example,
increasing the threshold for player A, rA, reduces the expected time until the next adjustment.
This will reduce the expected payoff until the next adjustment, i.e., ∂fν

∂rA
< 0. Furthermore,

reducing the expected time until the next adjustment raises the discount factor ∂hν

∂rA
> 0, reflecting

that the adjustment cost τν is incurred earlier, but also that the value of the objective function
after an adjustment uν is received earlier. The denominator reflects that in terms of expected
values, all intervals between adjustments are identical, so the effect on payoff within one interval
multiplies.

4. Nash equilibrium

In order to prove the existence of a Nash equilibrium, we in this section impose the additional
assumption that both the real adjustment outcome Z and the aggregate price level Q are continu-
ous functions of time. This assumption implies that the Lévy measure vanishes, so that Z and Q
reduce down to geometric Brownian motions. Define the expected value of the objective functions
of each of the players, given optimal play by this player, as

um,A(rB) = sup
rA

uA(rA, rB),

um,B(rA) = sup
rB

uB(rA, rB).

Furthermore, define the optimal thresholds for player A, as a function of the threshold for player
B, mA(rB), and similarly for player B, mB(rA), as follows

mA(rB) = inf{rA ∈ [0, 1) | uA(rA, rB) = um,A(rB)},
mB(rA) = sup{rB ∈ (1,∞] | uB(rA, rB) = um,B(rA)}.

These definitions allow for the possibility that the optimal threshold is not unique, in which case
they pick the most lenient value, i.e., the threshold farthest from unity. However, in Theorem 4.1
below, we show that when Z and Q are continuous, then the optimal threshold is indeed unique.
If it is optimal for a player never to require contract adjustment, then we set mA(rB) = 0 (player
A) or mB(rA) = ∞ (player B).

When Z and Q are continuous, fν , hν , and hence uν are all continuous by Theorem 3.1.
Then um,ν are continuous and mν are well-defined, piecewise continuous and uA(mA(rB), rB) =
um,A(rB) and uB(rA,mB(rA)) = um,B(rA). We may then state the following theorem regarding
uniqueness of the optimal value and the existence of an equilibrium point.

Theorem 4.1. Assume the real adjustment outcome Z and the aggregate price level Q are geo-
metric Brownian motions, satisfying property F . Then the following properties hold:
(i) The expected value of the objective function for player A, uA(rA, rB), is increasing in the
threshold of player B, rB, i.e., ∂uA

∂rB
> 0. The expected value of the objective function for player

B, uB(rA, rB), is decreasing in the threshold of player A, rA, i.e., ∂uB

∂rA
> 0.

(ii) Given the threshold for player B, rB, there exists a unique best response for player A, i.e., a
unique value 0 ≤ rA = mA(rB) < 1 that maximizes uA(rA, rB). Correspondingly, given rA, there
exists a unique value ∞ ≥ rB = mB(rA) > 1 that maximizes uB(rA, rB).
(iii) If mA(rB) > 0, then the function mA(rB) is strictly increasing, and if mB(rA) < ∞, then
the function mB(rA) is strictly increasing.
(iv) If mA(rB) > 0, then mA(rB) is strictly decreasing in τA. Correspondingly, if mB(rA) < ∞,
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then mB(rA) is strictly increasing in τB.
(v) There is at least one Nash equilibrium point (re

A, re
B), where

re
A = argmaxr<1{uA(r, re

B)},
re
B = argmaxr>1{uB(re

A, r)}.
Theorem 4.1 ensures that both players have unique best response functions in the form of

thresholds rν . Furthermore, there exists a Nash equilibrium in thresholds. It is possible to prove
existence of a Nash equilibrium under weaker assumptions than Z and Q being continuous. The
essential criterion is that mA and mB are continuous. But this assumption leads to rather technical
assumptions on Z and Q.

Although we have not been able to construct cases with multiple Nash equilibria when Z and
R are continuous, we have been unable to prove uniqueness of the Nash equilibrium in the general
case. Thus, for each set of stochastic processes, it is necessary to verify that there is only one
equilibrium point. Andersen and Christensen [2] prove that the equilibrium is unique in their
model for a logGaussian price.

As expected, Theorem 4.1 (iv), shows that higher adjustment costs make players more reluctant
to require an adjustment, by pushing the threshold value for player A, mA, down, and for player
B, mA, up, i.e., both further from unity. The interaction effects are, however, more interesting.
First, part (i) shows that if one player becomes more aggressive (that is, has a threshold close to
unity), this reduces the expected value of the objective function for the opponent. The opponent
loses from both more frequent adjustment costs and on average a less favorable contract payment.

Second, and more important, Theorem 4.1(iii), identifies strategic substitutability in the choice
of thresholds. This follows from the optimal thresholds mA(rB) and mB(rA) being increasing
functions. If, in equilibrium, one player becomes more aggressive by choosing a threshold closer
to unity, the other player becomes more passive by choosing a threshold further from unity. In
other words, if, say, the adjustment fee of player B is reduced, making him more active, this will
induce player A to become more passive. The intuition for this result is as follows. Demanding
an adjustment involves an immediate cost, and then a gain by a more favorable contract payment
until the next adjustment. If the opponent is aggressive, i.e., the threshold of the opponent is
close to unity, the expected time until the next adjustment is short, so that the gain from a
more favorable contract will be short-lived. In contrast, if the opponent is more passive, with
a threshold further from unity, the gain from a more favorable contract is likely to last longer,
making an adjustment more attractive.

The strategic substitutability effect is in contrast to Andersen and Christensen [3], who find
strategic complementarity in the choice of thresholds. Their result appears to be due to the fact
that they consider only one contract adjustment, implying an incentive for players to preempt the
opponent. Thus, if one player is aggressive, the opponent has an incentive to also be aggressive, to
increase the likelihood of being the player who obtains the advantage of asking for an adjustment
at a suitable moment. Andersen and Christensen [2] consider the model with a finite, but large
number of contract renewals, but it is not stated whether the strategic complementarity holds in
that model.

Other observations include:
(I) If the nominal adjustment outcome ZQ is monotone, then only one of the players will be

active. The critical threshold of the other player is immaterial, thus, there is no unique optimal
strategy for this player.

(II) The model may be generalized to the case where the adjustment costs τA and τB depend
on which player that requires contract adjustment. In equations (5) and (6), this would require
that τν is replaced by the expected value of the contract adjustment fee, which again would be a
function of rA and rB . Theorem 4.1 is also valid in the generalized model, but in equations (12)
and (13) in the proof and the calculations leading to these equations, τA must be interpreted as
the contract adjustment when player A requires a contract adjustment. Similarly, in equation (14)
τB must be interpreted as the contract adjustment when player B requires a contract adjustment.
The model may also be generalized to allow for the adjustment fees being stochastic, where τν is
the expected value of the adjustment fee.
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Table 1. The Nash equilibrium point for the example illustrated in Figures 2–4.

re
A re

B uA(re
A, re

B) uB(re
A, re

B) P (re
A, re

B) E{T (re
A, re

B)}
.960 1.023 196.7 200.8 .65 9.7

(III) In special cases it is possible to find analytic expressions for some of the variables. As-
sume the real adjustment outcome relative to the real contract payment is given by a geometric
Brownian motion Z(t, ω)/R(t, ω) = Z(t, ω)Q(t, ω) = exp((α − a2/2)t + aBt(ω)) where the nota-
tion is simplified by the normalization Z(0, ω)Q(0, ω) = 1, and Bt denotes the standard Brownian
motion. Then (see Borodin and Salminen [4, p. 233, formula 3.0.1])

E{exp(−βT (rA, rB))} =
(
rγ
A(rσ

B − r−σ
B )− rγ

B(rσ
A − r−σ

A )
)(

(rB/rA)σ − (rB/rA)−σ
)−1

with γ = αa−2 − 1/2 and σ =
√

γ2 + 2βa−2. By differentiating this expression with respect to β

at β = 0 we find, where σ̃ =
√

a2 + 8β/(2a),

E{T (rA, rB)} =
1

a2γ(rArB)1/2

((rB

rA

)σ̃

−
(rB

rA

)−σ̃)−1

×
[
ln(rA)(rσ̃+1/2

A − r
−σ̃+1/2
A )− ln(rB)(rσ̃+1/2

B − r
−σ̃+1/2
B )

− ln(rB/rA)

(
rB

rA

)σ̃ +
(

rB

rA

)−σ̃(
rB

rA

)σ̃ −
(

rB

rA

)−σ̃

×
(
(rσ̃+1/2

A − r
−σ̃+1/2
A ) + (rσ̃+1/2

B − r
−σ̃+1/2
B )

)]
is the expected time to the first adjustment.

In Figures 2–4, we illustrate the model by presenting how key variables depend on the critical
threshold rA and rB , treating the thresholds as exogenous. Note that in almost all simulations,
we include a positive drift in the aggregate price level Q, αq > 0, representing inflation, implying
a tendency that the real value of the contract payment, R, falls over time, relative to the real
adjustment outcome, Z. Thus, it will usually be player A (the seller) who demands an adjustment,
unless the critical threshold of player B is close to unity.

Figure 5 illustrates the game in setting thresholds. The curves show the best response functions
mA and mB for different values of adjustment fees τν , and the intersections indicate Nash equilibria.
We observe that higher adjustment fee for one player leads to less aggressive play by this player,
in the form of a threshold further from unity. The strategic substitutability effect is also apparent:
reducing, say, the adjustment fee of player A, so that we consider thin curves further to the
right, involves higher thresholds rA for player A, but in Nash equilibrium (represented by the
intersections along one thick line), also higher thresholds for player B (i.e., lower values of 1/rB ,
indicating more passive play). The strategic effect varies between the different cases, but in some
cases it is rather strong.

For example, we see from Figure 5 that if we reduce the adjustment costs of player A, τA, from
.35 to .05, keeping τB constant at .35, rA increases from .950 to .985, implying that player A now
requires an adjustment whenever he can increase the real contract payment by 1.5 percent, as
opposed to a critical threshold of 5 percent before the change. Then the strategic effect implies
that critical threshold of player B increases, from a threshold at 4 percent reduction in real contract
payment to a threshold of 8.2 percent reduction (1/rB falls from .960 to .918).

Comparison of Tables 2, 4–5 indicates that the threshold of player B is an increasing function
of the drift in the aggregate price level. For example, for τA = τB = 0.05, increasing the drift
from αq = 0 to αq = 0.006 raises rB from 1.017 to 1.024. This reflects that under high inflation
(high drift), player B need not demand a adjustment even if he has been “unlucky” with the
random movement, so that the contract payment is high relative to the adjustment payment. As
the contract payment is set in nominal terms, high inflation will fairly soon reduce the real value
of the contract payment, so player B need not incur the costs of an adjustment. In contrast, when
the drift is weak (i.e., inflation low), player B must use a lower threshold to avoid lengthy periods
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Figure 2. The expected discounted sum of flow payoffs of player A uA (top), and
player B, uB (bottom), for rA, 1/rB ∈ [.85, 1] with the same process and parameters as
in Figure 1. Furthermore, β = .005, ηA = 1, ηB = −1.5, and τA = τB = .1. The plots
are computed using 105 realizations, each sampled at 2 ·105 points up to time 200. Note
that uA increases when rB increases. Because of the drift in the aggregate price level Q,
there is a tendency that the real value of the contract payment falls over time, inducing
player A to demand an adjustment. Thus, rA is more important for both uA and uB

than rB is, except when rB is close to 1.
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Figure 3. The function P (rA, rB) is the expected fraction of times the process reaches
rA before it reaches rB , as a function of (rA, rB). Parameters and processes as in Figure
2.

Table 2. The Nash equilibrium points for various combinations of τA and τB . Drift
αq = .002 and volatility aq = .01. Other parameters as in Figure 2.

τA τB re
A re

B uA(re
A, re

B) uB(re
A, re

B) P (re
A, re

B) E{T (re
A, re

B)}
.05 .05 .973 1.020 197.3 199.3 .64 5.3
.07 .05 .968 1.017 196.3 200.3 .58 5.9
.05 .07 .976 1.026 198.0 197.9 .74 5.7
.07 .07 .971 1.023 197.1 199.1 .69 6.7
.13 .13 .965 1.029 196.4 198.9 .75 9.9
.13 .23 .970 1.044 197.6 195.9 .87 10.9
.23 .13 .951 1.024 193.7 201.7 .64 12.1
.23 .23 .957 1.035 195.2 199.0 .78 13.7

Table 3. The Nash equilibrium points for various combinations of τA and τB . Drift
αq = .002 and volatility aq = .03. Other parameters as in Figure 2.

τA τB re
A re

B uA(re
A, re

B) uB(re
A, re

B) P (re
A, re

B) E{T (re
A, re

B)}
.05 .05 .943 1.039 194.7 198.4 .44 2.6
.07 .05 .929 1.034 192.5 200.9 .36 2.9
.05 .07 .948 1.050 196.2 195.9 .52 2.9
.07 .07 .937 1.044 194.1 198.1 .44 3.2
.13 .13 .923 1.056 193.1 197.9 .47 5.1
.13 .23 .937 1.081 196.2 191.7 .60 5.9
.23 .13 .886 1.044 187.1 204.5 .31 6.1
.23 .23 .908 1.064 191.1 198.1 .46 7.2
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Figure 4. The function E{T (rA, rB)} is the expected time until an adjustment, i.e.,
until the process leaves the interval (rA, rB) the first time. Parameters and processes as
in Figure 2.

Table 4. The Nash equilibrium points for various combinations of τA and τB . Drift
αq = 0 and volatility aq = .01. Other parameters as in Figure 2.

τA τB re
A re

B uA(re
A, re

B) uB(re
A, re

B) P (re
A, re

B) E{T (re
A, re

B)}
.05 .05 .971 1.017 197.3 199.2 .37 5.2
.07 .05 .965 1.016 196.4 200.2 .31 6.1
.05 .07 .976 1.024 198.4 197.7 .49 6.2
.07 .07 .969 1.020 197.2 199.0 .38 6.7
.13 .13 .962 1.026 196.7 198.6 .40 10.3
.13 .23 .968 1.038 198.3 195.7 .53 12.4
.23 .13 .944 1.021 193.9 201.6 .26 12.5
.23 .23 .954 1.032 196.1 198.4 .40 15.4

Table 5. The Nash equilibrium points for various combinations of τA and τB . Drift
αq = .006 and volatility aq = .01. Other parameters as in Figure 2.

τA τB re
A re

B uA(re
A, re

B) uB(re
A, re

B) P (re
A, re

B) E{T (re
A, re

B)}
.05 .05 .973 1.024 196.3 199.4 .95 4.0
.07 .05 .968 1.020 195.2 200.7 .92 4.7
.05 .07 .974 1.032 196.5 198.2 .97 4.1
.07 .07 .969 1.028 195.6 199.5 .97 4.9
.13 .13 .960 1.034 193.6 200.0 .98 6.7
.13 .23 .960 1.054 193.8 196.8 .99 6.7
.23 .13 .945 1.028 190.9 203.3 .96 8.9
.23 .23 .947 1.043 191.3 200.6 .99 8.9
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Figure 5. The best response function mA (thin curves) and mB (thick curves) of players
A and B, respectively, for values of τA and τB from .05 to .35. Intersection between mA

and mB gives the Nash equilibrium point (re
A, re

B) for the particular set of (τA, τB).
Other parameters and processes are as in Figure 2.

Table 6. The Nash equilibrium points for various combinations of τA and τB . Drift
αq = .002, volatility aq = .01, ηA = .7, and ηB = −1.5. Other parameters as in Figure
2.

τA τB re
A re

B uA(re
A, re

B) uB(re
A, re

B) P (re
A, re

B) E{T (re
A, re

B)}
.05 .05 .968 1.018 197.4 200.3 .59 6.0
.07 .05 .960 1.016 196.5 201.7 .52 7.0
.05 .07 .971 1.023 197.9 199.1 .68 6.6
.07 .07 .964 1.020 197.0 200.5 .61 7.4
.13 .13 .955 1.024 196.3 200.8 .67 11.2
.13 .23 .962 1.039 197.4 197.7 .82 12.7
.23 .13 .937 1.019 194.0 204.3 .55 14.1
.23 .23 .947 1.030 195.4 201.2 .72 16.1

of a disadvantageous contract payment. This result is in contrast to the findings of Andersen
and Christensen [3], where increased drift makes player B (the principal in their model) more
aggressive. Their result is probably due to their assumption of only one renegotiation; if there is
drift that is disadvantageous to player B, there will be less reason for player B to postpone an
adjustment in the hope of a more favorable adjustment a later stage. Indeed, in Andersen and
Christensen [2], it is shown that the effect of drift is ambiguous in the case where it is allowed for
many renegotiations.

The threshold of player A is non-monotonic in the drift. For example, for τA = τB = 0.23,
increasing the drift from αq = 0, via αq = 0.002 to αq = 0.006 yields rA equal to 0.954, 0.952 and
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Table 7. The Nash equilibrium points for various combinations of τA and τB . Drift
αq = .002, volatility aq = .01, and ηA = −ηB = 1.0. Other parameters as in Figure 2.

τA τB re
A re

B uA(re
A, re

B) uB(re
A, re

B) P (re
A, re

B) E{T (re
A, re

B)}
.05 .05 .976 1.027 198.0 198.5 .75 5.8
.07 .05 .971 1.023 197.0 199.3 .68 6.6
.05 .07 .979 1.036 198.9 197.3 .85 6.4
.07 .07 .974 1.030 197.7 198.3 .77 7.2
.13 .13 .967 1.038 197.1 198.0 .83 10.7
.13 .23 .973 1.061 198.5 195.2 .94 11.6
.23 .13 .956 1.032 194.9 199.8 .75 13.5
.23 .23 .963 1.051 196.6 197.4 .90 15.2

0.947, respectively. This reflects two opposing effects. On the one hand, stronger drift implies
that for a given threshold, adjustments will be more frequent, so that the total costs incurred
from adjustment increase. To reduce the rise in costs from frequent adjustments, player A will
be more reluctant to demand an adjustment, thus the threshold is decreased. On the other hand,
the strategic substitutability in the choice of thresholds implies that when higher drift increases
the threshold of player B, making him less aggressive, it also increases the threshold of player A.
Intuitively, the increasing threshold of player B raises the possible gain for player A of requiring
an adjustment, in the hope of obtaining an advantageous evolution of the contract payment.

Comparing Tables 2–3 indicates that greater volatility makes both players more reluctant to
require an adjustment, so that the threshold of player A decreases, and the threshold of player B
increases, both further away from unity. The intuition is straightforward: with greater volatility,
thresholds close to unity will imply too frequent adjustments, thus players are less aggressive so as
to reduce adjustment costs. This result is the same as derived by Andersen and Christensen [3].
Note, however, that the change is not so large that it prevents that the expected time between
adjustments, ET , falls.

Table 6 shows the effect of reducing ηA, making player A more risk averse. Comparing with
Table 2, we see that the thresholds of both players are reduced, player A’s further away from
unity and player B’s closer to unity. Thus, risk aversion makes player A more reluctant to require
an adjustment, inducing player B to become more aggressive. We also see that player B obtains
higher expected utility when player A is more risk averse, corresponding to the well-known result
that it is advantageous to bargain with a risk averse player (see, e.g., Osborne and Rubinstein
[21, p. 18]). Likewise, Table 7 shows the effect of reducing ηB , making player B less risk loving.
This improves the situation for player A, as the threshold of both players increases, making player
A more aggressive and player B more passive, resulting in an increase in the expected utility of
player A. (Clearly, it is less relevant to consider the change in the expected utility for the player
whose utility function changes.)

5. Discontinuities in the real adjustment payment Z or the aggregate price Q

In this section we consider the effects of discontinuities in Z and Q. We show that in some
specific cases, Nash equilibrium requires that one of the players uses a mixed strategy. The reason
is that, if Z or Q are discontinuous and make occasional jumps, this may give discontinuities in the
optimal responses mν . In most cases, this will not affect the existence of a Nash equilibrium with
thresholds because the discontinuities in the mν will usually be very small. However, under some
circumstances jumps in Z or Q may imply that mA(rB) and mB(rA) do not intersect. Then there
will be no Nash equilibrium with constant threshold strategies. However, there will exist a Nash
equilibrium in mixed strategies, in the sense that one player randomizes between two threshold
values. To illustrate this, we consider a stylized example where there is a possibility that the real
adjustment outcome Z may take a large fall, which may lead player B to require an adjustment
to reduce the contract payment down to the new, low value of Z.

Example 5.1. Assume that the aggregate price level Q is constant, except for sudden increases
according to a high intensity Poisson process, where the size of the increases are “small” and
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Figure 6. Two realization of R/Z for the same stochastic process, but corresponding
to two different thresholds for player A, r2 = .971 and r1 = .979, in Example 5.1. Player
B has threshold rB = r3 = 1.035. Threshold r1 gives adjustment after every jump where
R/Z increases, while the lower threshold r2 may give periods with high R/Z values. In a
Nash equilibrium, illustrated in Figure 7, player A randomizes between the thresholds r2

and r1. The two independent Lévy processes Z and Q are constants except for discrete
changes according to a Poisson process. The Poisson process for Z has intensity .8
and in the changes, Z decreases with a factor 1.0625. The Poisson process for Q has
intensity approximately 1200 and in the changes, Q increases according to a continuous
distribution such that E{ln(Q(t))} ≈ .13t and Var{ln(Q(t, ω))} ≈ .004t. Furthermore,
τA = .0017 and τB = .0057 The process is modeled with time step .001.

according to a continuous distribution. The real adjustment outcome Z is also constant except for
“large” discrete decreases at a fixed rate 1+ρ, according to a low intensity Poisson process. These
assumptions imply that the ratio of the contract payment relative to the adjustment outcome R/Z
is decreasing, except for sudden jumps where it increases with the percentage ρ.

Consider the situation if player B has chosen a threshold rB < 1 + ρ. Then, if Z jumps
immediately after an adjustment, R/Z will be above the critical threshold of player B, inducing
an immediate adjustment. Thus, player A will not benefit from a period with high R/Z after the
jump. On the other hand, if player A let R/Z fall below rB/(1+ ρ), a jump in Z will nevertheless
leave R/Z below the threshold of the player B. There will be no immediate adjustment, and
player A will benefit from a period of high R/Z. This discontinuity at rB/(1 + ρ) will imply a
discontinuity in mA, i.e., in the optimal threshold of player A.

When choosing the threshold, player A will have to weigh the loss of allowing a low R/Z (by
having a low threshold) against the possible gain of a period with high R/Z if there is a fall in
Z. However, if the threshold of player B is “rather low”, maintaining the possibility of reaping a
period of high R/Z will require a very low threshold for player A. For sufficiently low threshold of
player B, player A will then profit from neglecting the opportunity to benefit from a fall in Z. At
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that point, the optimal threshold of player A will be discontinuous; it will make a jump, as there
is now no gain to be reaped by having a low threshold.

The situation is illustrated in Figures 6 and 7. In equilibrium, player A randomizes between
two thresholds r1 ≈ .979 and r2 ≈ .971. Figure 6 shows that R/Z falls monotonically, except when
it increases to unity at an adjustment, or increases above unity when Z falls. Figure 7 illustrates
the strategic effects. For values of rB above r3 ≈ 1.035 ≈ 1/.966, the optimal threshold of player
A, rA is increasing in rB due to the strategic effect discussed in Section 4. For rB < r3 ≈ 1.035, a
fall in Z will always induce player B to adjust, implying that player A sets rA ≈ .979. However,
for rB = r3 ≈ 1.035, player A is indifferent between choosing a low threshold r1, maintaining the
possibility of benefiting from a fall in Z, and a high threshold r2, which removes this possibility.
In equilibrium, player A mixes between these two thresholds, with probabilities ensuring that it
is indeed optimal for player B to choose the threshold rB = r3 ≈ 1.035.

Let us now consider the consequences of discontinuities in Z and Q more formally. Define Sν

as the class of strategies for a player ν, where the player randomizes between two thresholds r1

and r2, where r1 is chosen with probability 1− q and r2 with probability q. Note that Sν includes
pure strategies, where q = 0. Let sν ∈ Sν denote a strategy. Furthermore, we assume that each
time R/Z is equal to unity or jumps from one side of unity to the other side of unity (either
because the aggregate price or the real adjustment outcome fluctuates, or because an adjustment
has taken place), players select one of the two thresholds at random. This procedure ensures
that past fluctuations of Z and Q have no impact on the probability each player perceives of the
thresholds of the opponent.

We extend the definition of the expected values of the objective functions uν to allow for
randomization by both players. Furthermore, we define the optimal threshold for each player
when the opponent randomizes:

mc
A(sB) = inf{rA ∈ [0, 1) | uA(rA, sB) = sup

r
uA(r, sB)},

mc
B(sA) = sup{rB ∈ (1,∞] | uB(sA, rB) = sup

r
uB(sA, r)}.

Thus, the function mc
B(sA) corresponds to the usual optimal response function for player B,

mB(rA), if player A uses a pure strategy. However, mc
B(sA) is also defined if player A randomizes

between thresholds r1 and r2, reflecting a discontinuity in mA(rB). If mc
B(sA) changes continuously

from mB(r1) to mB(r2) when q changes from 0 to 1, we say that mc
B(sA) is continuous. Continuity

of the function mc
A(sB) is defined similarly.

A Nash-equilibrium point is a pair of strategies (se
A, se

B) with se
A ∈ SA and se

B ∈ SB where

se
A = argmaxsA∈SA

{uA(sA, se
B)},

se
B = argmaxsB∈SB

{uB(se
A, sB)}.

In order to prove existence of a Nash equilibrium, we assume that mν is piecewise continuous and
that mc

ν is continuous in each of the discontinuities in mν . This is a property of the stochastic
processes Z and Q, but it will be fulfilled except in extreme cases. For example, it will not be
fulfilled if Z or Q only take discrete values.4 We may then formulate the more general theorem
for the existence of a Nash equilibrium.

Theorem 5.2. Assume the real adjustment outcome Z and the aggregate price Q satisfy property
F , that mν is piecewise continuous and that mc

ν is continuous in each of the discontinuities in mν .
Then there exists at least one Nash-equilibrium point in which at most one player randomizes.

When the stochastic processes are discontinuous, we are able to construct examples where there
exist multiple Nash equilibria. In Figure 8, there are two Nash equilibria with constant thresholds,
and one with randomization.

4If Prob(Z(t, ω) > r) and Prob(Q(t, ω) > r) are continuous in r for all values of t, then the functions fν , hν

are also continuous. Furthermore, uν is continuous by Theorem 3.1, um,ν is continuous and mν is well-defined,

piecewise continuous and uA(mA(rB), rB) = um,A(rB) and uB(rA, mB(rA)) = um,B(rA).
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Figure 7. The best response functions mA(RB) (thin curve) and mB(RA) (thick
curve)corresponding to Example 5.1, for rA, 1/rB ∈ [.92, 1] . The dashed curve is
rB = 1.0625rA. When the thresholds satisfy rB < 1.0625rA, there is an adjustment after
every jump in Z. Thus, within this interval rB is immaterial, implying that mA(rB) is
vertical above the dashed curve. In equilibrium, player A’s strategy sA implies random-
ization between the thresholds r2 ≈ .971 and r1 ≈ .979, the endpoints of the horizontal
line in mA for rB ≈ 1.035 ≈ 1/.966. The curve (E{rA(sA)}, mc

B(sA)) intersects the
horizontal line in mA at rA = r′ ≈ .973. In a Nash equilibrium, player A selects the
threshold r1 with probability (r′ − r2)/(r1 − r2) ≈ .25 and else r2. The randomization
makes the optimal threshold for player B equal to rB ≈ 1.035 ≈ 1/.966. R and Z are as
defined in Figure 6 and other constants are β = .005, ηA = 1, and ηB = −1.5. The plot
is based on 105 realizations, each sampled at 105 points up to time 100.

6. Efficiency of the choice of adjustment costs

In this section, we extend the model by allowing an additional stage of the model, taking place
ahead of the basic model, where each of the players may invest in adjustment capacity, reducing
his costs of adjustment of the contract. For example, a firm may have a large salary department,
taking care of the wage negotiations. Let the costs of obtaining adjustment fee τν be given by
the function cν(τν), where we assume that cν is differentiable and strictly decreasing, and that cν

converges to infinity when τν converges to zero, and cν converges to zero when τν converges to
infinity. For simplicity, we assume that cν approaches zero sufficiently fast when τν increases to
ensure that equations (7) and (8) below have a solution.

With a slight abuse of notation, let Wν(τA, τB) denote the expected value of the objective
function of player ν, derived from Nash equilibrium in the basic model with adjustment fees τA

and τB . (We do not wish to go into issues of equilibrium selection here, so if there are multiple
Nash equilibria, we assume that players observe a signal indicating which equilibrium applies.
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Figure 8. This figure shows non-uniqueness in the Nash equilibrium due to multiple
crossings of the best response curves mA (thin curve) and mB (thick curve) for the
process illustrated in Figure 7 with τA = .0005 and τB = .0045.

Associating probabilities with the various Nash equilibria, players take the expected value of the
objective functions.)

When both players optimize their investment in adjustment capacity, the adjustment fees are
given by the first order conditions

(7)
∂Wν

∂τν
− c′ν(τν) = 0, ν = A,B.

Assuming for simplicity that overall welfare can be measured by the sum of players’ expected
utility, the welfare maximizing levels of investment in adjustment capacity is given by

(8)
∂WA

∂τν
+

∂WB

∂τν
− c′ν(τν) = 0, ν = A,B.

From the fact that ∂WA/∂τB > 0 and ∂WB/∂τA > 0, it follows that the values of τν that satisfy
(7) give positive values when put into the left-hand side of the equations (8). This implies that for
each solution of (7), there exists a solution of (8) with higher values of τν . This implies that when
each player determines the adjustment fee from (7), there is an over-investment in adjustment
capacity compared to a solution of equations (8).

This over-investment in adjustment capacity is due to the following. First, each of the players do
not take into consideration that the contract payment in our setting is only a matter of a transfer
between the players, so that what one player gains by adjusting the payment is directly linked to
what the other player loses. Second, the first effect is exacerbated by the strategic substitutability
in the choice of thresholds. By investing in adjustment capacity, thus reducing the adjustment fee,
the threshold of the player is moved closer to unity, leading the other player to choose a threshold
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Figure 9. The figure shows the function WA(τA, τB) for τA, τB ∈ [.01, .5]. The data
used are the same as in Table 2 and Figure 2.

further away from unity. The player gains from both changes, i.e., both from lowering his own
adjustment fee, and from inducing the opponent to set a threshold further away from unity.

7. Concluding remarks

The assumption that wages and prices are sticky in nominal terms plays a key role in macro and
monetary economics. However, usually the timing of price adjustment is taken as exogenous. This
has motivated a considerable literature studying the optimal adjustment of prices under stochastic
evolution of money or aggregate prices. In this paper we extend this analysis by considering
bilateral adjustment, where both parties to the trade, both the seller and buyer, are allowed to
require adjustments of the contract. This follows Andersen and Christensen [3], but they focus on
only one adjustment, while we consider much more general stochastic processes, with an infinite
horizon allowing for an unlimited number of adjustments.

We show that several of the key results from the literature on unilateral price adjustment
also hold in the more general case of bilateral adjustment. Optimal behavior is characterized by
threshold strategies, where players demand adjustment whenever they can improve the contract
terms by a certain percentage, i.e., whenever the real contract payment, R, is too far away relative
to the outcome of an adjustment of the contract, Z. Player A adjusts whenever R/Z ≤ rA < 1,
while player B requires adjustment whenever R/Z ≥ rB > 1. As expected, higher volatility and
larger adjustment costs make players more reluctant to demand an adjustment, implying threshold
values further from unity.

Furthermore, we prove under rather general assumptions the existence of a Nash equilibrium in
thresholds. A main result is that in equilibrium, there is strategic substitutability in players’ choice
of threshold: If one player becomes more aggressive, setting a threshold closer to unity, the other
player becomes more passive, setting a threshold further from unity. The strategic substitutability
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may exacerbate asymmetries. For example, if the adjustment costs of player A are reduced, player
A will respond by raising the threshold closer to unity. However, this effect will be strengthened
by player B raising his threshold, further away from unity. Numerical simulations indicate that
the strategic effect may be substantial. We also find that a risk averse player will be more passive,
setting a threshold further from unity, thus benefiting the opponent.

One possible implication of the strategic substitutability is that it suggests that wages and
prices set in bilateral bargaining are more sticky than wages and prices that are set unilaterally
by one party. Unilateral price or wage setting may be seen as a special case of our model where
the opponent is entirely passive. Thus, the strategic substitutability effect suggests that a price
or wage setting firm will be more aggressive, in the sense of having a threshold closer to unity,
than a firm which is linked to an opponent who may also adjust the price or wage. Typically, one
would expect bilateral bargaining to be more frequent for wages than for prices, suggesting that
wages stickiness might be more prevalent than price stickiness.5

We extend the basic model by introducing a stage prior to the model, where players may invest
in “adjustment ability”, in the sense that they may reduce their own costs of undertaking an
adjustment (e.g., by having a personnel department doing the wage negotiations). We then find
that players will over-invest as compared to the socially efficient level. The over-investment arises
for two reasons. First, players require an adjustment too often from a social point of view, as
they do not take into consideration that their own gain from better contract terms is reflected in
a loss by the opponent. By investing to lower one’s own adjustment costs, a player will require
an adjustment more often, thus hurting the other player. Secondly, the strategic substitutability
mentioned above exacerbates the first effect. By reducing one’s own adjustment costs, a player
becomes more aggressive. This makes the opponent more passive, which adds to the gain of the
first player, as an adjustment requested by the opponent becomes less likely.

Our analysis is cast in a specific, but important setting, namely state-dependent adjustment of a
nominal contract between two players, e.g., a labor contract or a tenancy agreement. However, we
believe that our analysis also has wider applications. For example, the gains from trade between
two countries may depend on the trade agreement that prevails between the countries. If one
country perceives adjustment of the agreement as less costly than the other, the former country
will be more aggressive in the sense of being willing to adjust the agreement even when only a
small improvement is possible. Our finding of strategic substitutability in thresholds suggests that
such asymmetry will be exacerbated, in the sense that the aggressive behavior of one country will
make the other country more passive. This exacerbating of asymmetries resembles the finding of
Haller and Holden [12], where it is shown that asymmetries in the bargaining positions of two
countries over an international treaty may be exacerbated by the country with the “stronger”
bargaining position setting a stricter super-majority ratification requirement, thus magnifying the
effect of the strong bargaining position.

Appendix A. Approximate formulas

Given the weak assumptions we impose on the stochastic processes, explicit formulas are difficult
to obtain. However, we can derive some approximate formulas that may provide useful intuition
for how the model works, and to get some sense of the numerical magnitudes that are involved.

We will first explore the effect on the payoff of a player from a marginal reduction in his
threshold. Let players A and B have threshold r1 > 1 and rB < ∞. Consider the situation at T1

when R(T1, ω)/Z(T1, ω) = r1. If player A sticks to the threshold r1, there will be an immediate
adjustment at T1. In contrast, if player A adopts a new threshold r2 < r1, there will be an
adjustment at T2, where T2 denotes the first time after T1 where R/Z has decreased at least by a
factor r2/r1, or increased at least by a factor rB/r1. Formally

T2 = inf{s > 0 | R(T1 + s, ω)/Z(T1 + s, ω) 6∈ (r2, rB)}.

5However, the degree of stickiness varies among different prices, and there are also other differences between

wage and price setting. Empirically, the relative stickiness of nominal wages versus nominal prices is disputed; see

discussion in Spencer [24].
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Considering the payoffs associated with selecting the threshold r2, when we let r2 converge towards
r1 from below, we obtain the effect of a marginal reduction in r1. The limit of the ratio of R/Z is
then

(9) vA(r1, rB) = lim
r2→r1−

E{
∫ T2

0
RηA(T1 + s) exp(−βs)ds}

E{
∫ T2

0
ZηA(T1 + s) exp(−βs)ds}

.

Define vB(rA, r1) correspondingly.
Assume there is a Gaussian component in either Z or Q, i.e., that either az > 0 or aq > 0.

Then a well-known property of Gaussian processes implies that when r1 is reached, the probability
of reaching rB before r2, converges to zero when r2 → r1−. Furthermore, the expected time until
r2 is reached converges to zero, i.e.,

(10) lim
r2→r1−

E{T2(r2/r1, rB/r1)} = 0.

Equation (10) implies that

(11) vA(r1, rB) ≈ rηA

1 .

Thus, vA is quite insensitive with respect to variation in rB . (The more volatile the ratio R/Z
is, and the closer r1 and rB are to 1, the more vA(r1, rB) is sensitive with respect to variation
in rB .) We do not have equality in the limit when r2 → r1, since with probability zero, the
time T2(r2/r1, rB/r1, ω) is positive and in this time period we have that R(s, ω)/Z(s, ω) > r2 and
R(s, ω)/Z(s, ω) may reach rB before r2. In the approximation we neglect the possibility that T2

does not vanish in the limit. By a similar argument, we have vB(rA, rB) ≈ rηB

B .
In the proof of Theorem 4.1 below, equation (19), it is shown that the optimal threshold satisfies

(12) vA(mA(rB), rB) = (β − µA,z)(uA(mA(rB), rB)− τA)

if uA(mA(rB), rB) > τA. Correspondingly, if uB(rA,mB(rA)) > τB , then

vB(rA,mB(rA)) = (β − µB,z)(uB(rA,mB(rA))− τB).

When combining (11) and (12) we get the approximations

uA(mA(rB), rB) ≈ 1
β − µA,z

mηA

A (rB) + τA,(13)

uB(rA,mB(rA)) ≈ 1
β − µB,z

mηB

B (rA) + τB .(14)

To obtain some intuition for these expressions, consider the case with time invariant adjustment
outcome, Z = 1, implying that µν,z = 0. If in addition, ηA = 1 and ηB = −1, then (13) and (14)
read uA ≈ rA/β + τA and uB ≈ 1/(rBβ) + τB , which can be rearranged to rA ≈ (uA − τA)β and
1/rB ≈ (uB − τB)β.

The following heuristic argument explains these expressions: By renegotiating the contract, a
player incurs the adjustment fee, and then obtains the expected utility after an adjustment, uν .
Multiplying by the discount rate β, we obtain the equivalent flow payoff. A player should demand
an adjustment when the real contract payment equals the equivalent flow payoff from requiring
an adjustment, i.e., the critical thresholds are given by these formulas.

These approximations imply that the volatility only influences the thresholds through the ex-
pected objective functions uν. These relations may be useful in order to find the optimal thresholds.
Comparing with the numerical simulations in Section 4, these approximations underestimate uA

and uB by about 2 percent. The approximation is better the smaller the volatility in Z and Q.

Appendix B. Proofs

We have the following two technical results that are proved at the end of this section.

Lemma B.1. Assume the real adjustment outcome Z and the aggregate price Q are continuous
and satisfy property F . Then vA(rA, rB) is continuous, increasing in both variables and

∂vA(rA, rB)
∂rB

< (β − µA,z)
∂uA(rA, rB)

∂rB
.
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Correspondingly, vB(rA, rB) is continuous, decreasing in both variables and

∂vB(rA, rB)
∂rA

> (β − µB,z)
∂uB(rA, rB)

∂rA
.

Lemma B.2. If the real adjustment outcome model Z is continuous and satisfies property F , then

E{1− Zην (t) exp(−βt)} = (β − µν,z)E{
∫ t

0

Zην (s) exp(−βs)ds}.

Proof of Theorem 2.3. The objective function may be written

Uν(t1, . . . , ω) =
∞∑

j=0

( ∫ tj+1

tj

Rην (s, ω) exp(−βs)ds− τνZην (tj+1, ω) exp(−βtj+1)
)

= τν +
∞∑

j=0

Zην (tj , ω) exp(−βtj)
( ∫ tj+1

tj

Qην (tj , ω)
Qην (s, ω)

exp(−β(s− tj))ds− τν

)
.

The expected value of integral in the last expression above is bounded due to property F . Then
E{Uν} is bounded if the number of adjustments is finite.

If there is an infinite number of adjustments, it is in addition necessary to bound

E{
∞∑

j=0

Zην (tj) exp(−βtj)}.

This expression is bounded due to property F .
When both τA, τB > 0, neither player benefits from requiring adjustment immediately all the

time, e.g., have a critical threshold equal to 1. Hence the problem is well-defined.
Let T satisfy ti < T ≤ ti+1. Define CT as the contribution to the objective function for t < T

that cannot be changed when t ≥ T , that is,

CT =
i−1∑
j=0

( ∫ tj+1

tj

Rην (s, ω) exp(−βs)ds− τνZην (tj+1, ω) exp(−βtj+1)
)

(15)

+
∫ T

ti

Rην (s, ω) exp(−βs)ds

and Hν(ti+2 − ti+1, . . . , ω) as the contribution to the object function after ti+1, that is,

Hν(ti+2 − ti+1, . . . , ω) =
∞∑

j=i+1

( ∫ tj+1

tj

Rην (s, ω) exp(−βs)ds

− τνZην (tj+1, ω) exp(−βtj+1)
)
.

The function Hν(ti+2−ti+1, . . . , ω) has the same distribution as Uν(t0, . . . , ω). Then we may write
the objective function as

Uν(t1, . . . , ω)

= CT + Zην (T, ω) exp(−βT )
(Rην (T, ω)

Zην (T, ω)

∫ ti+1

T

Rην (s, ω)
Rην (T, ω)

exp(−β(s− T ))ds

+
Zην (ti+1, ω)
Zην (T, ω)

exp(−β(ti+1 − T ))(Hν(ti+2 − ti+1, . . . , ω)− τν)
)
.

The ratios R(s, ω)/R(T, ω) and Z(ti+1, ω)/Z(T, ω) are independent of R(T, ω) and Z(T, ω) due
to the Markov properties. The future contribution to the object function depends on R(T, ω) and
Z(T, ω), but the optimal strategy is only a function of the ratio R(T, ω)/Z(T, ω) and there is no
memory in the game, i.e., dependencies on tj < T , R(s, ω) for s < T or Z(s, ω) for s < T .

Let sB and sA denote the strategies of player B and player A, respectively. With a slight
abuse of notation, let UA(sA, sB , ω) denote the objective function with the strategies sA and sB ,
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respectively. Then supsA
E{UA(sA, sB)} is well-defined and there is a sequence sA,i such that

(16) lim
i→∞

E{UA(sA,i, sB)} = sup
sA

E{UA(sA, sB)}.

Define the sequence of sets Si where r ∈ Si if player A with strategy sA,i requires contract
adjustment for any interval for any price Q( · , ω) at time t where R(t, ω)/Z(t, ω) = r. To ensure
that the sets are non-empty, add the number 0 to Si. If the adjustment is not the first time t when
R(t, ω)/Z(s, ω) = r, this is not critical, since it is the contribution to the objective function of the
player in the future that is critical. Since all r ∈ Si satisfies 0 ≤ r < 1, then for any sequence {ri}i

with ri ∈ Si, there is an accumulation point r′ (if several, take the largest). Consider a strategy
s′ with a critical threshold r′. Since the expected value of the future contribution to the objective
function at time t only is a function of the present R(t, ω)/Z(t, ω), and equation (16), then

E{UA(s′, sB)} = sup
sA

E{UA(sA, sB)}.

If the adjustment outcome ZQ does not only change in discrete jumps, then the adjustments will
come with shorter and shorter time intervals if rA → 1. Assuming τA > 0, then the adjustment
cost dominates the objective function which implies that the accumulation point r′ < 1. If the
price ZQ only changes in discrete jumps, then the relative flow payoff can only take discrete
values and r = 1 cannot be an accumulation point for the chain where all elements in the chain
satisfies ri < 0. This implies that the critical threshold may be set equal to the accumulation
point 0 ≤ r′ < 1.

Correspondingly, if player A has the same strategy in each time interval, then there is a cor-
responding argument showing that there cannot be a better strategy for player B than what is
possible to obtain with a critical threshold rB . �

Proof of Theorem 3.1. Let H ′
ν be defined as Hν in the proof of Theorem 2.3 but with T < t1 and

with parameters rA and rB instead of t1 − t0, . . . . The definition of Uν(rA, rB , ω) in (1) and (4)
implies

Uν(rA, rB , ω) =
∫ t1

t0

Rην (s, ω) exp(−βs)ds + Zην (t1, ω) exp(−βt1)(H ′
ν(rA, rB , ω)− τν).

The stochastic variables Uν and H ′
ν have similar distribution and have expectation equal to uν .

The time for the end of the first interval t1 is independent of what is happening after t1 due to the
Markov property. Hence Zην (t1, ω) exp(−βt1) is independent of H ′

ν(rA, rB , ω). This implies that

uν(rA, rB) = fν(rA, rB)− τνhν(rA, rB) + hν(rA, rB)uν(rA, rB),

leading to

uν(rA, rB) =
fν(rA, rB)− τνhν(rA, rB)

1− hν(rA, rB)
.

This equation may also be written as

(17) uν(rA, rB) =
fν(rA, rB)− τν

1− hν(rA, rB)
+ τν .

Assuming f and h are differentiable, the derivatives satisfy

∂uν

∂rµ
=

∂fν

∂rµ
(1− hν) + (fν − τν)∂hν

∂rµ

(1− hν)2
=

∂fν

∂rµ
+ (uν − τν)∂hν

∂rµ

1− hν

for µ = A,B. �

Proof of Theorem 4.1. (i) Using Lemma B.2 we have

(18)
fA

1− hA
=

E{
∫ T

0
RηA(s) exp(−βs)ds}

(β − µA,z)E{
∫ T

0
ZηA(s) exp(−βs)ds}

.
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Hence the fraction on the left hand side is a constant times the average of RηA until the first
contract adjustment divided by the average of ZηA in the same interval for rA < R/Z < rB . We
will show that the fraction (18) is increasing in rB . Let r′B > rB and

T ′ = inf{s ≥ T | R(s, ω)/Z(s, ω) 6∈ (rA, r′B)}.
Define further T ≤ T ′′ ≤ T ′ as

T ′′ = inf{s ≥ T | R(s, ω)/Z(s, ω) 6∈ (1, r′B)}.
The lower endpoint is set equal to 1 since R(0, ω)/Z(0, ω) = 1. Then

E{
∫ T ′

0

RηA(s) exp(−βs)ds} = E{
∫ T

0

RηA(s) exp(−βs)ds}

+ E{
∫ T ′′

T

RηA(s) exp(−βs)ds}

+ E{
∫ T ′

T ′′
RηA(s) exp(−βs)ds}.

Let P be the probability that there exists times s1 and s2 with T < s1 < T ′′ < s2 < T ′ such that
R(s1, ω)/Z(s1, ω) ≥ rB and R(s2, ω)/Z(s2, ω) ≤ 1. Then

E{
∫ T ′

T ′′
RηA(s) exp(−βs)ds} = PE{

∫ T ′

0

RηA(s) exp(−βs)ds}

since R( · , ω)/Z( · , ω) varies in the same interval (1, r′B) in both expressions. This implies that

E{
∫ T ′

0

RηA(s) exp(−βs)ds} =
1

1− P

(
E{

∫ T

0

RηA(s) exp(−βs)ds}

+ E{
∫ T ′′

T

RηA(s) exp(−βs)ds}
)
.

Correspondingly, we have

E{
∫ T ′

0

ZηA(s) exp(−βs)ds} =
1

1− P

(
E{

∫ T

0

ZηA(s) exp(−βs)ds}

+ E{
∫ T ′′

T

ZηA(s) exp(−βs)ds}
)
.

We have
E{

∫ T ′′

T
RηA(s) exp(−βs)ds}

E{
∫ T ′′

T
ZηA(s) exp(−βs)ds}

>
E{

∫ T

0
RηA(s) exp(−βs)ds}

E{
∫ T

0
ZηA(s) exp(−βs)ds}

since on the left-hand side R(T, ω)/Z(T, ω) ≥ rB , and R( · , ω)/Z( · , ω) varies in the interval
(1, r′B) while on the right-hand side R(0, ω)/Z(0, ω) = 1, and R( · , ω)/Z( · , ω) varies in the interval
(rA, rB). Then

E{
∫ T ′

0
RηA(s) exp(−βs)ds}

E{
∫ T ′

0
ZηA(s) exp(−βs)ds}

>
E{

∫ T

0
RηA(s) exp(−βs)ds}

E{
∫ T

0
ZηA(s) exp(−βs)ds}

.

Hence the fraction on the left hand side of (18) is increasing in rB .
When rB increases, E{T} increases and hA decreases due to property F . This implies −τA/(1−

h) increases when rA increases. Hence by using (17) we see that increasing rB increases uA. The
corresponding argument may be applied for uB(rA, rB).

(ii) Since Z and Q are continuous, fA, hA, and hence uA are continuous by Theorem 3.1. Then
um,A is continuous and mA is well-defined, piecewise continuous and uA(mA(rB), rB) = um,A(rB)
and uB(rA,mB(rA)) = um,B(rA).

Let rB > 1 be fixed. We will first prove that there is a value 0 ≤ rA < 1 that maximizes
uA(rA, rB). The function uA(rA, rB) is defined for 0 ≤ rA < 1. We will give an argument
that the maximum value is attained for rA in the closed interval [0, 1 − ε] for ε > 0 sufficiently
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small. Since the interval is closed, the maximum value will be attained for a value rA = mA(rB).
Since Z and Q are continuous, then T (rA, rB) vanishes with probability 1 when rA → 1. Then
hA(rA, rB) → 1 and fA(rA, rB) → 0 when rA → 1. Further, the expression (5) for uA implies that
uA(rA, rB) → −∞ when rA → 1. Hence for each value for rB , there is a value rA = mA(rB) < 1
where uA(rA, rB) = um,A(rB).

We will prove that the value rA = mA(rB) is unique, i.e., if rA 6= mA(rB), then uA(rA, rB) <
um,A(rB). Let t1 be the time for the first contract adjustment. Furthermore, let W1 and W2 be
two new stochastic variables that are identical to UA except that a different strategy (a different
limit for rA) is used before t1. After t1, we set rA = mA(rB). The first contract adjustment in W2

and W1, if required by player A, is required when R/Z reaches the values r2 < r1 < 1, respectively.
Let Pr1 denote the probability that R(t, ω)/Z(t, ω) reaches r1 before it reaches rB . In case the
ratio reaches rB first, there is no difference between W1 and W2. Further, let T1 = T (r1, rB , ω)
denote the time of the first contract adjustment for W1. Finally, let

Er1 = E{exp(−βT1(r1, rB))}

given that r1 is reached. For the strategy associated with W2 there is a contract adjustment when
R/Z reaches r2 or rB . Assuming r1 is reached, there is contract adjustment when either the ratio
decreases with a factor r2/r1 or increases with a factor rB/r1. Let T2 = T (r2/r1, rB/r1, ω) denote
the time between r1 is reached and either r2 or rB is reached. Let w1 and w2 be the expected
values of W1 and W2, respectively. Assuming that r1 is reached before rB , then

w1 = E{CT1}+ Er1E
{
(um,A(rB)− τA)ZηA(T1) exp(−βT2)

}
and

w2 = E{CT1}+ Er1E
{ ∫ T2

0

RηA(T1 + s) exp(−βs)ds

+ (um,A(rB)− τA)ZηA(T1 + T2) exp(−βT2)
}

where CT1 is defined in (15). As noted above, W1 = W2 are identical except if r1 is reached. Since
the probability that r1 is reached before rB is Pr1 , the difference is

w2 − w1 = Pr1Er1E
{ ∫ T2

0

RηA(T1 + s) exp(−βs)ds

− (um,A(rB)− τA)(ZηA(T1)− ZηA(T1 + T2) exp(−βT2))
}

= Pr1Er1E
{ ∫ T2

0

RηA(T1 + s) exp(−βs)ds

− (β − µA,z)(um,A(rB)− τA)
∫ T2

0

ZηA(T1 + s) exp(−βs)ds
}

= Pr1Er1

(E{
∫ T2

0
RηA(T1 + s) exp(−βs)ds}

E{
∫ T2

0
ZηA(T1 + s) exp(−βs)ds}

− (β − µA,z)(um,A(rB)− τA)
)

× E{
∫ T2

0

ZηA(T1 + s) exp(−βs)ds}.

Lemma B.2 is used in the second equality. Define the limit of the discounted real adjustment
outcome when the lower threshold is slightly reduced by

LA(r1, rB) = lim
r2→r1−

E{
∫ T2

0
ZηA(T1 + s) exp(−βs)ds}

r2 − r1
.

Due to the Markov property and property F , the numerator is monotone and hence the limit is
well-defined. Letting r2 → r1, we have

∂w1

∂r1
= −Pr1Er1(vA(r1, rB)− (β − µA,z)(um,A(rB)− τA))LA(r1, rB)
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where vA is defined by (9). Hence, ∂w1
∂r1

= 0 when

(19) vA(r1, rB) = (β − µA,z)(um,A(rB)− τA).

According to Theorem 3.1 and Lemma B.1, um,A(rB) and vA(r1, rB) are continuous and
vA(r1, rB) is increasing in r1. Consider the function w1(r1, rB) with rB fixed. Then w1(r1, rB)
reaches its maximum with respect to r1 either for r1 = 0 or for a value r1 > 0 when ∂w1(r1,rB)

∂r1
= 0.

Since vA(r1, rB) is increasing in r1, then ∂w1
∂r1

changes sign when (19) is satisfied. Hence, the max-
imum is unique. Since the periods between contract adjustments are independent then the value
r1 that maximizes w1 also maximizes uA(rA, rB). Hence, there is a unique value rA = mA(rB)
that maximizes uA(rA, rB).

The corresponding argument may be applied for uB(rA, rB). However, since rB varies in an
unbounded interval we should consider uB as a function of 1/rB instead of rB when applying the
argument. This is possible since uB(rA, rB) is well-defined as rB approaches ∞.

(iii) Above it is proved that the optimal value mA(rB) satisfies equation

vA(mA(rB), rB) = (β − µA,z)(uA(mA(rB), rB)− τA).

Differentiating both sides with respect to rB gives
∂vA

∂rA

dmA

drB
+

∂vA

∂rB
= (β − µA,z)(

∂uA

∂rA

dmA

drB
+

∂uA

∂rB
).

Since
∂vA

∂rB
< (β − µA,z)

∂uA

∂rB

from Lemma B.1 and ∂uA/∂rA = 0 since mA(rB) is the optimal value of rA, this implies that
∂vA

∂rA

dmA

drB
> 0.

Since ∂vA/∂rA > 0, then also dmA/drB > 0, i.e., mA(rB) is a strictly increasing function. The
proof that mB(rA) is strictly increasing is similar.

(iv) Equation (6) may be used in order to prove that mA(rB) decreases when τA increases,
assuming mA(rB) > 0. The function uA(rA, rB) has an optimal value for rA = mA(rB) > 0. Since
uA is differentiable, there exists an ε > 0 such that ∂uA

∂rA
(rA, rB) > 0 for mA(rB)−ε < rA < mA(rB)

and ∂uA

∂rA
(rA, rB) < 0 for mA(rB) < rA < mA(rB) + ε. If τA is increased, then ∂uA

∂rA
is decreased

which implies a reduction in the rA value where ∂uA

∂rA
= 0. This implies that increasing the

adjustment fee reduces the optimal threshold value mA(rB). Correspondingly, it is proved that
mB(rA) strictly increases when τB increases assuming mB(rA) > 0.

(v) Since um,ν and vν are continuous, we infer that the functions mA(rB) : (1,∞] → [0, 1) and
mB(rA) : [0, 1) → (1,∞] are continuous. In the infinite rectangle defined by 0 ≤ rA < 1 and
rB > 1, mA(rB) gives a continuous path between the lines defined by rB = 0 and rB = ∞.
Similarly, mB(rA) gives a path in the same rectangle between the lines defined by rA = 0 and
rA = 1. Hence, these two curves must intersect at least once, giving an equilibrium point. �

Proof of Theorem 5.2. The existence of at least one equilibrium point (re
A, re

B) is proved similarly
as in Theorem 4.1 where it is assumed that the price ZQ is continuous, i.e., the equilibrium point
is the intersection between mA(rB) and mB(rA). But in this case, these curves are not necessarily
continuous which implies that there might not be an intersection.

Define graphs MA and MB by extending the curves mA(rB) and mB(rA) by continuity as
follows: Wherever mA(rB) or mB(rA) make jumps, connect the two sides across the jump by
straight lines with constant rB and rA, respectively. (See Figure 7.) Since MA and MB are
continuous, they must intersect. If the intersection is on the straight lines, then randomization is
necessary as illustrated in Section 5. Assume mB(rA) intersects a straight line in MA connecting
the two points (r1, r

e
B) and (r2, r

e
B). Then mB(r1) and mB(r2) give values of rB on opposite side of

re
B . We may then define a one parameter family of strategies sA where the probability for choosing

r1 varies in the interval 0 ≤ q ≤ 1. Since mB(r1) and mB(r2) give values of rB on opposite side
of re

B , then also the endpoints mc
B(sA) when sA varies in the one-parameter family give values
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on the opposite side of re
B . The continuity of mc

B(sA) ensures that there is a strategy se
A that

randomizes rA between r1 and r2 such that mc
B(se

A) = rB . There is a corresponding argument if
mA(rB) intersects a straight line in MB .

The continuity of mc
A(sB) and mc

B(sA) implies that it is not necessary that both players ran-
domize at the same time. If MA and MB intersect with two straight lines, then there may be two
Nash equilibria defined by using mc

A(sB) and mc
B(sA), respectively. �

Proof of Lemma B.1. Assume R(T1, ω)/Z(T1, ω) = r1. Define T3(c, rB/r1) as the first time after
T1 where either R(T1 + T3, ω)/Z(T1 + T3, ω) = cr1 or R(T1 + T3, ω)/Z(T1 + T3, ω) = rB for a
constant 0 < c < 1. Define

vc
A(r1, rB) =

E{
∫ T3

0
RηA(T1 + s) exp(−βs)ds}

E{
∫ T3

0
ZηA(T1 + s) exp(−βs)ds}

,

i.e., limc→1− vc
A(r1, rB) = vA(r1, rB). Let r2 < cr1 and consider the function vc

A(r2, rB). Assume
R(T2, ω)/Z(T2, ω) = r2 and define T4(c, rB/r2) as the first time after T2 where either R(T2 +
T4, ω)/Z(T2 + T4, ω) = cr2 or R(T2 + T4, ω)/Z(T2 + T4, ω) = rB . The interval (T2, T2 + T4) may
consist of several intervals (t1i , t

2
i ), i.e., T2 < t1i < t2i ≤ T2 + T4 that satisfies the properties of a

(T1, T1 + T3) interval, i.e., R(t1i , ω)/Z(t1i , ω) = r1, cr1 < R(s, ω)/Z(s, ω) < rB for t1i < s < t2i and
R(t2i , ω)/Z(t2i , ω) = cr1 or R(t2i , ω)/Z(t2i , ω) = rB . Let Ω1 = ∪i(t1i , t

2
i ) and Ω2 = (T2, T2 +T4)\Ω1.

Then

vc
A(r2, rB)

=
E{

∫
Ω1

RηA(T1 + s) exp(−βs)ds}+ E{
∫
Ω2

RηA(T1 + s) exp(−βs)ds}
E{

∫
Ω1

ZηA(T1 + s) exp(−βs)ds}+ E{
∫
Ω2

ZηA(T1 + s) exp(−βs)ds}
.

We have that

vc
A(r1, rB) =

E{
∫
Ω1

RηA(T1 + s) exp(−βs)ds}
E{

∫
Ω1

ZηA(T1 + s) exp(−βs)ds}
,

since each interval (t1i , t
2
i ) has the same properties as (T1, T1 + T3). Furthermore, we have that

E{
∫

Ω2

RηA(T1 + s) exp(−βs)ds} = γcE{
∫

Ω2

ZηA(T1 + s) exp(−βs)ds}

for a value (cr2)ηA < γc < rηA

1 since γc is a weighted average of RηA(T1 + s, ω) divided by the
weighted average of ZηA(T1 + s, ω) where the ratio R/Z is varying in the same interval for each ω
and pointwise in the integral. This implies that

vc
A(r2, rB) =

[
vc

A(r1, rB)E{
∫

Ω1

ZηA(T1 + s) exp(−βs)ds}

+ γcE{
∫

Ω2

ZηA(T1 + s) exp(−βs)ds}
]

×
[
E{

∫
Ω1

ZηA(T1 + s) exp(−βs)ds}

+ E{
∫

Ω2

ZηA(T1 + s) exp(−βs)ds}
]−1

= (1− d)vc
A(r1, rB) + dγc,

for 0 < d < 1. Note that γc < rηA

1 and d > 0 also when c → 0 since Ω2 cannot be empty due
to the first interval 0 < s < t11 where cr2 < R(T1 + s, ω)/Z(T1 + s, ω) < r1. This implies that
vc

A(r2, rB) < vc
A(r1, rB). Since limc→1− vc

A(r1, rB) = vA(r1, rB), then vA(r1, rB) is increasing in
r1. The function vA(r1, rB) is increasing and continuous in rB since this makes it possible with
high R(t, ω)/Z(t, ω) values and the probability for reaching rB changes continuously. From the
definition of vA we have that cvA(r1, rB) = vA(cr1, crB). This implies that vA(r1, rB) also is
continuous in r1. The function vB(rA, rB) has similar properties. This function is decreasing in
both arguments since ηB < 0.
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The proof that
∂vA

∂rB
< (β − µA,z)

∂uA

∂rB

is quite similar to the above argument. Assume R(T5, ω)/Z(T5, ω) = r1/c where 0 < c < 1.
Define T6(c, rB/(cr1)) as the first time after T5 where either R(T5 + T6, ω)/Z(T5 + T6, ω) = r1

or R(T5 + T6, ω)/Z(T5 + T6, ω) = rB . Consider vc
A(r1/c, rB) and compare this with uA(r1, rB)

where R(s, ω)/Z(s, ω) starts at 1 and ends at either r1 or rB . Define T7 > 0 as the first time
R(T5 + T7, ω)/Z(T5 + T7, ω) = 1, if this value is obtained. Define Ω1 = (T7, T6) and Ω2 =
(T5, T6) \ Ω1. Note that Ω1 may be empty. Then

vc
A(r1/c, rB)

=
E{

∫
Ω1

RηA(T5 + s) exp(−βs)ds}+ E{
∫
Ω2

RηA(T5 + s) exp(−βs)ds}
E{

∫
Ω1

ZηA(T5 + s) exp(−βs)ds}+ E{
∫
Ω2

ZηA(T5 + s) exp(−βs)ds}
.

Using (5) assuming for a moment that τA = 0 and using Lemma B.2 gives

(β − µA,z)
fA

1− hA
=

E{
∫
Ω1

RηA(T5 + s) exp(−βs)ds}
E{

∫
Ω1

ZηA(T5 + s) exp(−βs)ds}
,

since the interval (T7, T6) has the same properties as in the variation of uA. Furthermore, we have
that

E{
∫

Ω2

RηA(T5 + s) exp(−βs)ds} = γcE{
∫

Ω2

ZηA(T5 + s) exp(−βs)ds}

for a value rηA

2 < γc < 1 by the same argument as above since in this case r2 < R/Z < 1. This
implies that

vc
A(r2, rB) =

[
(β − µA,z)

fA

1− hA
E{

∫
Ω1

ZηA(T5 + s) exp(−βs)ds}

+ γcE{
∫

Ω2

ZηA(T5 + s) exp(−βs)ds}
]

×
[
E{

∫
Ω1

ZηA(T5 + s) exp(−βs)ds}

+ E{
∫

Ω2

ZηA(T5 + s) exp(−βs)ds}
]−1

= (1− d)(β − µA,z)
fA

1− hA
+ dγc,

for 0 < d < 1. Note that γc is independent of rB and d > 0 since Ω2 cannot be empty due to the
first interval 0 < s < T7. Since limc→1− vc

A(r1/c, rB) = vA(r1, rB) and ∂hA/∂rB < 0, we have
∂vA

∂rB
< (β − µA,z)

∂

∂rB

( fA

1− hA

)
< (β − µA,z)

∂

∂rB

(fA − τA

1− hA

)
= (β − µA,z)

∂uA

∂rB
.

Correspondingly, it is proved that
∂vB

∂rA
> (β − µB,Z)

∂uB

∂rA
.

Note that since ηB < 0 both expressions above are negative. �

Proof of Lemma B.2. Let ti = it/n and Z(0, ω) = 1. Then

E{1−Zην (t) exp(−βt)}

= E{
n∑

i=0

(
Zην (ti) exp(−βti)− Zην (ti+1) exp(−βti+1)

)
}

= E{
n∑

i=0

Zην (ti) exp(−βti)(1−
Zην (ti+1)
Zην (ti)

exp(−β(ti+1 − ti))}
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=
1
t1

E{1− Zην (t1) exp(−βt1)}E{
n∑

i=0

Zην (ti) exp(−βti)t1}.

We have that

lim
t→0

E{1− Zην (t) exp(−βt)
t

} = lim
t→0

1− E{Zην (t)} exp(−βt)
t

= lim
t→0

1− exp(t(µν,z − β))
t

= β − µν,z

and

lim
n→∞

E{
n∑

i=0

Zην (ti) exp(−βti)t1} = E{
∫ t

0

Zην (s) exp(−βs)ds}.

Combining these three calculations proves the lemma. �
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