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Abstract

This paper applies volatility measures and VAR spectral analytic techniques
to give a thorough description of the salient business cycle characteristics of
central NIPA aggregates for the G7. Furthermore, their role in contributing to
the supranational G7 and EURO15 cyclic dynamics is investigated. Several
refinements of conventional methods are suggested. Three different
detrending filters are used, including ones that tend to distort the spectrum in
opposite directions. As advocated in the literature, features of the spectra
which survive these different detrending procedures are considered to be
robust. The study reveals evidence of significant classical business cycles
with frequencies corresponding to about two to four and about seven to ten
years period lengths that are both reflected also in the spectra of the two
supranational economies.The central findings are summarized with regard to
(i) national product share, contribution-to-variance and volatility
charateristics, (ii) explained variance and prominence of the cyclicalities
contained in the different macro-aggregates and (iii) lead-lag and coherence
relationships with national and supranational product cycles.
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1. Introduction

Recently, Christiano and Fitzgerald (1998) note: “Good fiscal and monetary policy re-
quires a clear understanding of the workings of the economy, especially what drives the
business cycle ... Since at least the late 1800s, a full swing from the start of an economic
expansion to a recession and back to the start of another expansion has generally taken
between two to eight years. Every citizen is keenly aware of the state of the economy,
whether it is in prosperity or in recession,” p. 56. This is especially important with regard
to the recent early stages of implementation of the EMU and the impending second ‘De-
lors Stage’ of the Maastricht Treaty. Only a clear understanding of the national business
cycle dynamics in relation to a ‘supranational’ economy like the EMU, based on a thor-
ough and sophisticated descriptive analysis, will show the potential effectiveness, range of
coverage and limits of a concerted fiscal and monetary policy.! The present study aims to
undertake a step in this direction. Related studies are inter alia the ones based on time
domain analysis by Artis and Zhang (1999), Duecker and Wesche (1999) and Gallegatti
and Gallegatti (2000) and, based on time and frequency domain analysis, the ones by
Croux, Forni and Reichlin (2001), Forni and Reichlin (1999), Forni et al. (2001) and Den
Haan and Sumner (2001).

When dealing with the determination of business cycle stylized facts, it seems natural
to analyze the time series at stake first by means of a general analysis of variance to
quantitatively assess their relative volatility and contribution to the constitution of some
aggregate series and second to investigate their cyclical properties in the frequency do-
main by means of spectral analysis. Given that the latter method seems an ideal tool
for studying cyclical phenomena, one might wonder why it has not been used more in
economics. In my opinion the answer lies in four problems that spectral analysis faces
when confronted with economic data:

First, it can be applied only to stationary time series. Because most of economic
variables contain a trend component, this must be effectively removed. Failure to do this
leads to the “typical spectral shape,” reported by Granger (1966), where most of the
mass of the spectrum is skewed in a “hump-shaped” fashion to the low frequency range.
However, the technical appendix A to the present study suggests adequate strategies as
well as recently established detrending technologies to overcome this problem.

The second problem is that many economic series are so short that classical non-
parametric methods of spectral analysis cannot be successfully used. Although, this
circumstance led to the development of several modified standard methods, like window-
smoothing of spectra, they continued to fail to produce reasonable estimates: Both, the
standard periodogram and window-smoothed versions of it lack a satisfying degree of res-
olution in the case of short time series. They usually show many discrete spikes in the
estimated spectral densities which often lack a clear shape and make it very difficult, if
not impossible, to discriminate between different peaks. These drawbacks can result in
misleading interpretations in the sense of spurious cycles. Some authors even claim that
this difficulty in interpreting estimates of spectra in an “economically meaningful” way
has been the primary obstacle to a wider use of spectral analysis in economics, cf. the
argumentation in Zarnowitz (1985 and 1996, chapter 8). For a detailed examination and

I1Cf. also the discussion in Muellbauer (1997), whether Great Britain really should participate in
Delors II from a strategic (business cycle) policy point of view.



demonstration of the disadvantages of standard techniques see Woitek (1997, chapter 2).

A third reason for the relatively low spread of spectral analytical applications in eco-
nomics, might be their emphasis on description rather than testing, though they are re-
cently experiencing a kind of renaissance.? The request for standard errors and measures
of fit of the model is a request with which the business cycle analyst, who applies spectral
methods, is not seldomly confronted with. The duality-relationship between the paramet-
ric approach and AR/VAR processes is a feature that also overcomes this objection. In
the technical appendix to the present study, it is shown that ascribing standard errors to
the central AR spectral estimates is possible without relying on inadequate bootstrapping
or similar practices.

Finally, methods from the (putatively) less complex time domain, like cointegration
analysis, seem to (still) play the predominate role in applied business cycle analysis. How-
ever, standard time domain estimates, like cointegration measures, are often binary and
fail in contrast to multivariate spectral measures to establish different degrees of associ-
ation. In general, spectral measures can be quite more informative and quantitative in
nature in comparison to their corresponding time domain measures. See in the multi-
variate case (informational content of coherence vs. cointegration measures) Croux, Forni
and Reichlin (2001) or in the univariate case (informational content of autocovariance
functions vs. spectra) Howrey (1980).

The paper is divided into three main parts: A first non-technical part of the paper
describes the analyzed time series and data sources and presents a detailed interpretation
of the results. It is followed by a tabular part displaying, in detail, the estimation results
and figures. Finally, the technical appendices A to C outline the applied methodology
in technical terms. The text is organized as follows: The proceeding section gives an
overview of the data sources and macro-aggregates under investigation. It formulates
the addressed questions and briefly describes the central calculated volatility and spec-
tral measures. Section 3 then documents the national uni- and bivariate business cycle
stylized facts, both with regard to the respective aggregate’s contribution and to country
specific characteristics. Stylized facts that are salient over all three applied detrending
methods are considered to represent robust stylized facts. They are reported for uni- and
bivariate estimations in the last two subsections of section 3, respectively. Section 4 doc-
uments the contribution and respective bivariate relationship of the different aggregates
and economies to the cyclic dynamics of the G7 and EURO15 supranational economies.
Finally, section 5 concludes.

2. Data and Strategy

The central data source for the analysis of the present study is the national income
and productivity accounts (NIPA) annual statistics database maintained by EUROSTAT,
statistical office of the European Commission. As supplementary sources the OECD
Statistical Compendium (on CD-ROM) and the International Financial Statistics (IFS on
CD-ROM) provided by the IMF are considered.® The series are in annual frequency for the

2See inter alia the recent contributions of Forni and Lippi (1997), Croux, Forni and Reichlin (1999),
Forni and Reichlin (1999) and Forni et al. (2001).

3This reverting to OECD and IMF data sources concerns in detail: the private consumption (CON)
series for Canada for the years from 1961 to 1963 and the observation for 2000. The GDP series for Canada
from 1961 to 1964, the total private investment (TPI) series for Canada for the years 1961 to 1963, 1993,



period 1960 to 2000, making a total of 40 observations. Throughout, they are provided in
deflated form on the base year 1990.* Furthermore, the NIPA classification scheme of the
US Bureau of Economic Analysis (BEA) is widely adopted and corresponding additivity
guaranteed. Accordingly, the quantities add to GDP as displayed in the following;:

Gross Domestic Product (GDP)
1. Personal consumption expenditures (Private consumption: CON)®
2. Gross private domestic investment (Total private investment: TPI)
2a. Fixed investment (Gross fixed capital formation: GFCF)
2b. Change in private inventories (Inventory investment: II)
3. Net exports of goods and services (Primary current account: PCA)
3a. Exports (EXP)
3b. Imports (IM)
4. Government consumption and gross investment (Government spending: GOV)

By considering explicitly the two investment components, GFCF and II, the present
study places in the investment cycle tradition (see Hillinger (1992), p. 5-46) special
emphasis on these two variables. By means of the instruments described in detail in the
technical appendices the following questions are addressed:

1. How volatile is the respective series and how much does the series, as a constituting
component, contribute in magnitude and volatility terms to a respective aggregate
of higher statistical dimension?

2. Are there regular cycles in the series? What are the period lengths of these cycles?

3. Is the cyclical structure significant and how prominent is it in the overall dynamics,
i.e. how strongly and significantly is it damped?

4. If the series show profound and significant cyclical structure, how many cycles can
be identified?

5. How important are they, i.e. how large is the part of the variance explained by one
or more complex roots?

6. How robust are the results for different detrending procedures?

7. What can be said about the lead-lag relationship between the constituting cycles
and the respective national and supranational aggregate?

The following paragraphs give a short overview of the central calculated volatility and
spectral measures of the analysis, including how to quickly interpret them.

Relative trend level (RTL), standardized standard deviation (SSD)
& contribution to standard deviation (CTS):

1994 and 1997 to 2000, as well as for the US from 1996 to 2000. The data for gross fixed capital formation
(GFCF) and inventory investment (II) series stem for all analyzed economies from OECD databases.
4The quantities are throughout billion $US in prices and exchange rates from 1990.
5In parantheses are the (eventually) more familiar notations, mainly, though not uniformly, used by

the central databases of EUROSTAT, OECD and IMF.



The relative trend level quantifies the relative magnitude or share of the constituent series’
trend level to the corresponding aggregate series trend level; see equation (B.1), technical
appendix B. The SSD measure assesses the relative volatility of a variable. It is defined
as the standard deviation of the detrended series of a variable at stake standardized on
its mid trend level value; see equation (B.2), technical appendix B. CTS gives the con-
tribution to standard deviation measured in standard deviation terms of the respective
aggregate, i.e. in percent of the total aggregate’s standard deviation; see equation (B.3),
technical appendix B. A positive CTS-value identifies a destabilizing constituent compo-
nent, a negative CTS-value identifies a stabilizing constituent component.

Period length (period) & modulus:

Period denotes the period length (in years) of the contained cyclic structure in the series
according to the AR-spectral estimate. For the multivariate estimates it denotes the pe-
riod length (in years) at maximum of squared coherency (sc). The modulus measures the
damping rate of a cyclicality contained in a series. For a starting amplitude-value O, a
modulus of 0.5 implies that the cyclic component of the series has a remaining amplitude-
value of %@ after one year, (0.5)2 O after two years, etc.

Squared coherency (sc) & phase shift (phase):

Suppose that the spectra of two series exhibit peaks at a certain frequency w*. sc then
measures the extent of the linear relationship between the cycles in the two series. It can be
interpreted similarly to a correlation coefficient. Phase measures the lead-lag relationship
between two cyclicalities of the same frequency w™* in the two series at stake, i.e. the
distance between the turning points of contained cyclicalities with the same frequency. A
value of phase > 0 indicates a phase lead (in years), a value < 0 a phase lag (in years),
see equations (B.6) and (B.7), technical appendix B.

3. National Uni- and Bivariate Stylized Facts

The results of the preliminary analysis of volatility, relative magnitude and contribution to
aggregate volatility are presented in Table 1. The univariate spectral estimations are dis-
played in Tables 2 to 4 for the three detrending procedures outlined in technical appendix
A and Figures 1 to 3 for the modified Baxter/King (MBK)-filtered series® over the eight
NIPA aggregates GDP, CON, TPI, GFCF, II, EXP, IM and GOV. It should be noted that
in the case of two contained periodicities in the national series, the respectively longer
cycles and corresponding moduli are displayed throughout in the first row of the respec-
tive NIPA aggregate’s column, the respectively shorter cycle lengths and corresponding
moduli in the second row. The reported period lengths are given in years and the ad-
justed R?s correspond to the respectively underlying AR model estimation. Furthermore,
it should be noted that a visual inspection of the raw inventory investment series leads to
the conclusion that most of these series show stationary behavior. Log-differencing these
series leads to a destruction of any potentially contained cyclic dynamics. Therefore Table
4 displays estimation results for the unfiltered inventory investment series.

The results of the first set of bivariate spectral estimations, i.e. every NIPA aggregate
relative to its respective national GDP aggregate, are presented in Tables 5 to 7. Again,

6See technical appendix A.



in the case of two complex roots implied by the adjusted VAR system, the respectively
longer cycles and corresponding bivariate measures are displayed first.

3.1 General salient facts

All of the following spectral estimations have to be seen in the light of the relative shares
of contribution of the analyzed aggregates to the respective national GDP. This needs
to be taken into account in both respects, first with regard to their relative trend levels
(NIPA constituent series to national GDP) and relative standard deviation (of NIPA
constituent series to mid trend level value of the constituent series), see equations (B.1)
and (B.2), technical appendix B. This information is summarized in Table 1. The first
measure, constituent trend level value relative to respective GDP trend level value, is
given at three distinct points of the estimated MBK-trend functions: a) at the starting
point, i.e. corresponding to the year 1963,” b) at the mid point, i.e. corresponding to
the year 1980, and finally c) at the end point, i.e. corresponding to the year 1997. There
are several things to note, regarding the results given in Table 1: For all economies the
majority of results shows quite constant shares of their NIPA constituents to national
GDP over the three selected points of observation - with inventory investment generally
showing the smallest, private consumption the largest fraction. The exception is given
by the two PCA constituents that display the least stable fractions over time, ranging
from 4 to 5% for the US at the starting point up to equal or close to 40% for Canada
at the mid point of the observation’s horizon. Concerning the SSD measures, changes
in private inventories, i.e. the II series, show throughout the highest volatility for all
NIPA constituent series. This volatility of inventory dynamics is, in comparison to the
volatility of the respective national GDP data, the highest for Germany, the U.K. and
especially Canada (making up to about 50-times the volatility of Canadian GDP), the
lowest it is for the Japanese economy (making up a little less than 5-times the volatility
of Japanese GDP). This suggests the interpretation that the extensive implementation
of innovative inventory management systems like just-in-time production, the Kanban-
system, etc. during the last decades has led to a remarkable reduction of the volatility in
the IT series of the Japanese economy in an international comparison. Nevertheless, Japan
shows the highest relative variance in GDP. A fact that might at least partially be induced
by the recent and severe breakdown of the financial system in Japan, known as the Asian
crisis. With the exception of the Japanese economy, the second most volatile series for all
other G7 economies are the two remaining investment series under investigation, namely
TPI and GFCF. Furthermore, the US economy shows a most distinct characteristics:
The high SSD measures of TPI and GFCF, compared to the US GDP series,® can be
seen as an indication that the United States play the role of an “investment dynamics
dominated” economy. An indication which is further underpinned in the course of the
present study. Throughout the G7 economies the least volatile series are the EXP and
CON series, while IM and GOV series seem to be intermediary volatile. Let us turn
to the remaining CTS measures, presented in Table 1. As argued above, a CTS-value
> 0 characterizes a destabilizing component, a CTS-value < 0 a stabilizing constituent
variable; see equation (B.3), technical appendix B. As widely agreed on, the calculated

"Note the MBK-filter shortens the series by three datapoints at the beginning and end of the series,
respectively.
8Even outnumbering the SSD of US GDP by taking on a value more than 5- to 6-times that of GDP.



figures of Table 1 classify for all G7 countries the IM series as a stabilizing variable.
Technically, it should be noted that for a substractively contributing variable, like TM
(since GDP = CON + TPI + GOV + PCA, where PCA is defined as EXP — IM), the
construction of the CTS-measure is modified in that the nominator of equation (B.3),
technical appendix B, becomes o (y*) — o (y* + y$). There are three more negatively
valued CTS measures displayed in Table 1, but their negligible absolute sizes suggest that
these series hardly contribute to the respective GDP series’ standard deviation at all.
While for all other G7 economies, the pattern is such that the CON series contributes
about double the value (on average 57% of standard deviation terms of the aggregate)
to the respective national product in contrast to the investment components TPI, GFCF
and II (for example TPI on average 24%), the US stand out: For the US economy the TPI
series contributes 57% to the standard deviation in US GDP and furthermore it shows,
in comparison to the CON series, a close to 1.6-times higher CTS value (37% vs. 57%).
Even the isolated GFCF series still contributes 39%, and therefore more than US CON,
to the standard deviation of the US GDP series. This can be seen as further evidence
pointing in the direction that the US product’s business cycle component extracted by
means of the MBK-filter is dominated by its constituting investment variables.

Table 1. G7 Economies: GDP MBK-trend level share, CTS and standardized std. dev.

CON TPI GFCF 1I EXP IM GOV

starting  0.61 0.23 0.22 0.01 0.18 0.18 0.14

Canada RTL mid 0.59 0.18 0.18 0.01 0.40 0.38 0.33
end 0.55 0.23 0.23 0.01 0.26 0.25 0.33

CTS 0.43 0.27 0.27 0.01 0.11 -.23 0.27

SSD (GDP: 0.03) 0.02 0.06 0.05 1.44 0.04 0.04 0.04

starting  0.61 0.24 0.23 0.01 0.13 0.12 0.13

France RTL mid 0.60 0.17 0.18 0.01 0.25 0.22 0.19
end 0.58 0.23 0.22 0.01 0.21 0.21 0.17

CTS 0.57 0.24 0.23 0.02 0.18 -.19 0.16

SSD (GDP: 0.06) 0.06 0.08 0.07 0.55 0.06 0.07 0.06

starting  0.59 0.27 0.25 0.01 0.17 0.16 0.15

Germany RTL mid 0.65 0.21 0.21 0.01 0.25 0.24 0.11
end 0.62 0.21 0.21 0.01 0.25 0.24 0.14

CTS 0.61 0.24 0.18 0.04 0.17 -.22 0.13

SSD (GDP: 0.08) 0.08 0.11 0.09 2.19 0.09 0.09 0.08

starting  0.62 0.23 0.27 0.01 0.14 0.14 0.13

Ttaly RTL mid 0.61 0.17 0.18 0.01 0.26 0.22 0.16
end 0.60 0.25 0.23 0.01 0.23 0.23 0.14

CTS 0.59 0.25 0.24 0.02 0.15 -.21 0.15

SSD (GDP: 0.07) 0.07 0.10 0.08 0.66 0.05 0.07 0.07

starting  0.58 0.34 0.31 0.02 0.09 0.09 0.08

Japan RTL mid 0.60 0.28 0.28 0.01 0.10 0.08 0.09
end 0.58 0.31 0.30 0.01 0.12 0.12 0.09

CTS 0.60 0.26 0.26 0.00 0.04 -.02 0.10

SSD (GDP: 0.14) 0.14 0.13 0.13 0.67 0.06 0.11 0.15



Table 1 (continued). G7 Economies: GDP MBK-trend share, CTS and std. std. dev.

CON TPI GFCF 11 EXP IM GOV

starting  0.65 0.18 0.17 0.01 0.19 0.20 0.17

U.K. RTL mid 0.64 0.16 0.17 0.01 0.28 0.29 0.18
end 0.59 0.18 0.17 0.01 0.27 0.26 0.21

CTS 0.62 0.18 0.19 -.01 0.19 .24 0.18

SSD  (GDP: 0.06) 0.07 0.10 0.09 3.23 0.05 0.08 0.06

starting  0.62 0.19 0.13 0.06 0.05 0.04 0.17

USA RTL mid 0.70 0.18 0.18 0.01 0.11 0.13 0.15
end 0.63 0.20 0.14 0.06 0.09 0.09 0.16

CTS 0.37 0.57 0.39 0.16 -.01 -.22 -.02

SSD  (GDP: 0.01) 0.01 0.05 0.06 0.07 0.05 0.04 0.01

General salient facts, regarding the spectral estimation results reported in Tables 2 to
4 and the spectra in Figures 1 to 3 are: As discussed in somehow greater detail in technical
appendix A, the HP(100)-filter is most obviously biased in favor of the lower frequencies,
i.e. higher period cyclicalities. Furthermore, as is the case for several national series,
the HP-filter does not sustain potential second periodicities. As expected the logD-filter
destroys a lot of contained periodicity and is biased towards relatively short cyclicalities,
cf. the results for the Japanese economy in Table 4.

The graphics of the spectral densities displayed in Figures 1 to 3 are inspired by
Sargent (1987, chapter XI, section 10). The central features that should become obvious
are a) the shape of the spectrum and b) its position (left or right) towards the median
peak frequency (below or above) of the G7 economies, as indicated by the parallel straight
line to the ordinate. Concerning a) on the one hand it is interesting whether one or more
periodicities are contained in the series, i.e. whether the power spectra are single or
double peaked. Secondly, the sharpness of the spectrum is relevant, i.e. the less damped
the roots are, the more regular are the cycles in the series, and the higher and sharper is
the peak in the spectrum, cf. the remarkably low bandwidth of the spectral density for
the Japanese GDP series, for example in comparison to the relatively flat spectrum of the
Canadian TPI series. Concerning b) the median period length is matched for GDP and
CON by Italy, for TPI, GFCF and II by Japan, for EXP and GOV by the US and finally
for the IM series by the U.K. economy. A final feature of the spectral graphics displayed
in Figures 1 to 3 is the dashed line that represents the integrated spectrum. The closer
this line is to an imaginary 45 degree line, the more the dynamics of the series are driven
by noise. The integrated spectrum of a white noise process would exactly equal the 45
degree line.?

Disregarding the two primary current account components, the clearest double peaking
spectral density is given by the German economy. Except for the two private investment
components the peak in the higher frequency range dominates the long cycle in the Ger-

9Note, there exist several tests that avail this feature of the integrated spectrum to test on cyclicality.
These include the Fisher Test, Bartlett’s Test, the Durbin-Test and the Kolmogorov-Smirnov-Test, see
for example Brockwell and Davis (1991, § 10.2). Unfortunately, they are throughout of weak power and
based on the (nonparametric) periodogram method and therefore unsuited for the short time series under
analysis in the present study.



man case. For the German investment components (GFCF and II, as well as TPI, i.e. the
sum of both,) both cycles concentrate a reasonable amount of spectral power, while the
longer cycle bears about 20 to 50% more spectral mass.

Another important and interesting piece of information is given by the median values
of estimated univariate spectral measures. These are displayed in the respective last row
of Table 2 to 4. As a technical remark, note that only in cases where > 2 periodicities and
corresponding measures are estimated over the 7 economies a median value is calculated.
Furthermore, in cases when the underlying distribution over the G7 economies is of an even
number of results, the median values are ‘artificial’ figures corresponding to the averages
of the two middle-valued estimation results. This is the case for the variables CON,
GFCF and II in Table 2, for GDP and IM in Table 4. Comparing these median values
for the different detrending filters (Table 2 to 4), it becomes obvious that in general the
highest importance, in the sense of explaining variance of the detrended series (adjusted
R? values), of the contained cyclicalities is estimated for the HP-, followed by the MBK-
filter. In both cases the cycles explain from about one third to more than 60% of the
variance of the respective series (in median terms). For the MBK-filter results, the most
variance is explained in median terms by the cycle in GFCF, followed by the one contained
in the GDP and GOV series, respectively. For the HP-filter results the corresponding top
three important cycles are to be found in CON, GDP and GFCF - throughout explaining
more than half of the variance contained in the respective series. For the logD-filter
these are II, CON and TPI. Concerning the prominence of the cycles, as expressed by
the median values of the moduli, the following patterns are striking: For the MBK-
filtered series, the cyclicalities of the TPI, Il and GFCF series are the most prominent,
showing reasonably high moduli > 0.85. Similarly, for the HP-filtered series, the cycles
contained in the CON, GFCF, GDP, IT and GOV series imply moduli > 0.8. Finally,
for the logD-detrending procedure, the inherent cycles in CON, TPI and II, though over
all rather weakly significant (in median R? terms), still show moduli > 0.65. Nearly
all median values of estimated period lengths (in years) lie in the frequency range of
classical (Juglar) business cycles with periodicities ranging from about 5-6 years up to
approximately 9 years. The only exception, in the sense of an outlier, is given for the
logD-filtered GDP series’ result (12.42 years). As expected the median values of period
lengths for the II series reflect the shortest cyclicalities over the 8 analyzed aggregates,
taking on values from about 3 to 6 years. Broadly interpreted, this is (weak) evidence for
a Kitchin periodicity in the G7 II series.

3.2 Robust univariate stylized facts: National cycles

Germany most clearly shows a “two cycle”- or “M/W-cyclical” dynamic structure over
all NIPA aggregates. With the exception of the two PCA series this M/W-shape is
confirmed over all three detrending procedures and might therefore be seen as a robust
stylized fact. As indicated by the relatively higher moduli and lower standard errors, the
shorter cyclic pattern dominates the German economy, cf. also the argumentation above
and the spectra in Figures 1 to 3. As we will see this fact will be confirmed by the national
and supranational bivariate spectral estimations, too. In contrast to this finding, for the
French economy, only in the case of series detrended by the MBK-filter, the GFCF and II
series show a long as well as a short business cycle periodicity at the classical frequencies.
Japan shows a remarkably prominent long cycle of about 7 years length in its NIPA



aggregates. Taking the results for the HP- and logD-filter into account, Japan’s TPI and
GFCEF series seem to also bear this period length, while Japanese inventory investment
series show a weakly estimated and more strongly damped classical Kitchin periodicity of
about 4 to 5 years length. The latter seems to hold also for the U.K. economy. Although
the shorter and more strongly damped cycle seems to stem from an aliasing'® of a double-
cycle inventory dynamics. In line with earlier findings, cf. Woitek (1996), the United
States seem (in contrast to the other G7 economies) be predominated by a periodicity of
an intermediary length of about 5 to 6.5 years length in GDP and TPI. This can clearly
be seen also from Figure 1, where the US spectra nearly throughout peak right from, i.e.
at a higher frequency than the median G7 frequency, as indicated by the parallel line
to the ordinate. The exceptions are the US government spending and export series that
match the G7 median frequencies.

3.3 Robust bivariate stylized facts: National cycles

In this subsection I will first describe and interpret the bivariate spectral findings country
by country (for all three filters) and then illuminate the salient bivariate features of the
NIPA business cycle components in general by means of the mean bivariate spectra (for
the MBK-filter), as displayed, constituent by constituent, in Figure 4.

Concerning Canada: Obviously, the Canadian exports series contribute about 5 to 10%
to the standard deviation of Canadian GDP and lag the Canadian GDP cycle, according
to the MBK- and HP-filter results of Table 5 and 6, by 1 to 2 years. Most probably
this also holds for the Canadian imports (a stabilizer, reducing GDP volatility by about
20%), though by slightly less time, i.e. by about 0.5 to 1 year. Both PCA components
fluctuate less coherent with Canadian GDP than the other NIPA constituents that be-
have remarkably coherent. According to the MBK- and logD-filter results, the cycle in
Canadian inventories obviously lags the national product cycle by approximately 2.5 to 3
years, though contributing negligibly to the variance of the Canadian product cycle.

Concerning France: One can hardly make any real robust statement on the bivariate
dynamics of the French NIPA series with its GDP cycle. Nevertheless, it can be stated
that: Firstly the French PCA components seem to move quite coherent with the French
GDP cycle at a single periodicity of about 6.5 to 10 years period length. And secondly,
according to the logD- and HP-filtered series’ results, the inventory cycle potentially bears
an unconventionally long period length of about 9 to 10 years length and lags the GDP
cycle by about one year.

Concerning Germany: All German constituent series are highly coherent with the
national GDP cycle, while in growth rates (logD-filter) only CON and the two investment
components (GFCF and II) show coherent cyclic dynamics with regard to the German
GDP cycle. Most of the German constituent NIPA aggregate cycles also fluctuate quite
in phase with the cyclic pattern in GDP. Comparing the MBK- and HP-filter results, it
remains unclear whether German exports lead or lag the GDP cycle by about one year.

Concerning ltaly: According to the national GDP bivariate estimation results, the
Italian economy is especially characterized by a traditional and approximately in GDP
cycle phase TPI cycle with a traditional length of about 7.5 to 10 years, see Table 5 and

10 Aliasing in the context of spectral analysis denotes the case when two frequencies close in value “fuse”
due to their closeness to one single frequency in the spectrum; see, for example, Marple (1987, section

2.6).
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6. Furthermore, Italy seems to bear a robust (i.e. over all filtering methods consistently
estimated) inventory cycle in the constitution of its national GDP with a rather uncon-
ventional length of about 6 to 10 years. This inconvenient II cycle fluctuates, as in the
case of the French economy, only weakly coherent to the GDP cycle and lags it by up to
about a half year.

Concerning Japan: The Japanese economy is robustly characterized by its highly GDP
coherent investment (including inventory investment) cycle dynamics and the cyclicalities
inherent in its import series. The former!! reflects the “central role” that “investment has
played ... in both the growth and fluctuations in the Japanese economy.” This feature as
well as the questions why “business cycles in Japan were basically investment-led” and
“why Japanese firms invest so much,” are extensively outlined in a historical perspective
of the Japanese post world war II economy by Yoshikawa (1995), chapter 7, p. 244-
291. For the Japanese inventory series, the in GDP cycle phase periodicity shows the
classical short cycle period length of 4 to 5 years, although it is certainly estimated less
coherent and contributing marginally in standard deviation terms (for the aforementioned
reasons) to the longer Japanese GDP cycle periodicity, cf. Figure 1. The GFCF series
contributes about 27% to the product series’ standard deviation. It shows its highest
coherency with the GDP cycle at period lengths of about 11 to 12 and 7 years. These
periodicities might be aliased to a single periodicity of 10.75 years length at the maximum
of squared coherency in the HP-filter case. A further indication for an aliasing problem
in this context is that for both logD- and MBK-filter results, the one cycle slightly leads,
the other slightly lags the GDP cycle. Similarly, the two periodicities (of about 12 and 2
to 7 years length) at maximum of squared coherency for logD- and HP-filtered TPT series
might be aliased to a single period length of 6.5 years, shared with the GDP cycle, in
the case of the MBK-filtered TPI series. On the contrary, there is a robust double period
coherency pattern for the Japanese import series, though stabilizing the Japanese GDP
cycle only marginally (< 10%). Most robustly, the Japanese imports fluctuate a) quite
regularly, cf. the narrow bandwidth of the spectrum displayed in Figure 2, b) highly and
the most coherent with the Japanese GDP cycle at a period length of about 7 to 7.5
years'?) and c¢) with a phase lead of approximately 1.5 years relative to the national GDP
cycle.

Concerning the United Kingdom: As expected on base of the univariate spectral es-
timations and since the U.K. shows the longest of all G7 GDP cycles, see Figure 1, the
highest coherency of U.K. NIPA constituents with the national GDP cycle is estimated
at a period length of, on average, 8 years. Especially the TPI and GOV series show a
high coherency at a traditional long cycle frequency corresponding to 8 to 9 years and
a relatively lower coherent classical short cycle at a period length of approximately 3 to
4 years. Robustly, the TPI cycles slightly lag, while the GOV cycles slightly lead the
cyclicalities contained in the U.K. GDP series. Concerning the TPI cycle the long one
most probably stems from a traditional long and GDP coherent common cycle in the
GFCF series (< 8 years) in combination with an approximately 8 years cycle, contained
in the IT component and lagging the GDP cycle by about 2 years. The short lagging cycle,
also inherent in the TPI series, may be constituted from the short cyclicality of about

H Contributing roughly 30% to the standard deviation of the Japanese GDP cycle component.
12 Although there is another shorter period cycle of about 3 to 4 years length that less coherently
fluctuates in line with the Japanese GDP cycle.
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4 years contained as well in the II series. This is at least indicated for the MBK- and
logD-filtered series’ results. Furthermore, it should be noted that the CON series of the
U.K. fluctuates robustly both strongly coherent to and in phase with the national GDP
series at a somehow shorter than the univariate GDP cycle length of about 7 to 8 years.

Concerning the United States: As can be seen from the CTS measures in Table 5, the
US TPI and GFCF series highly contribute to the standard deviation of the MBK-filtered
GDP series (in both cases even more than does the MBK-filtered private consumption
series). It is noteworthy that, as in the case of the Japanese economy, the US economy is
robustly characterized by its highly GDP coherent investment (including inventory invest-
ment) cycle dynamics'® and the cyclicalities inherent in both national PCA components.
There is a “small but growing” body of empirical literature that investigates the business
cycle nexus between Japan and the United States as well as generally on international
business cycle interdependencies. It is surveyed inter alia in Selover (1997), Artis and
Zhang (1999) and Imbs (1999). Selover (1997) also finds that despite the popular say-
ing in Japan that ‘if the United States sneezes, Japan catches a cold’, “the US does not
‘drive’ the Japanese economy, rather it transmit shocks which partially synchronize the
two economies, perhaps through the ‘mode-lock’ phenomenon,” p. 385. Besides its cyclic
dynamic analogy to the Japanese economy, the US exports quite robustly fluctuate the
most coherent with national GDP at a periodicity of 6.5 to 8 years length and lag the
GDP cycle by about 1.5 to 2 years. On the contrary, US imports slightly lead the GDP
cycle and show an intermediate strength of coherency at a period length of approximately
6 to 6.5 years.

Let me now turn to document the salient bivariate features of the NIPA business
cycle components in general, i.e. constituent by constituent series. I will do so on the
base of the mean bivariate spectra (for the MBK-filter), namely the mean densities of the
respective coherence spectra, see equation (B.7), and phase spectra, see equation (B.6),
technical appendix B. The idea to construct the mean bivariate spectral densities over
a population of units of investigation (in the present case economies) is adopted from
Forni and Lippi (1997, Fig. 14.4) and Forni and Reichlin (1998, Fig. 7). These authors
proceed similarly in constructing the sum of cospectral® over sectoral estimation results.
The essential findings can be summarized in the following: The respective CON series
fluctuates on average highly coherent to the respective GDP series of the G7 economies.
Both bivariate spectra show a clear and smooth shape. The phase spectrum suggests that
the fluctuations contained in the CON series, on average, represent a leading indicator
for the GDP cycles with a phase lead of about one year, as measured at the maximum
of sc. The TPI cycles fluctuate also highly coherent to the GDP cyclicalities - maximally
at frequencies corresponding to periodicities of approximately 9 and 4.5 years. It should
be noted that the first peak of the coherence spectrum is rather broad, suggesting that
for the first periodicity high coherence values are also obtained for classical cyclicalities
with period lengths starting from 6 up to 9 years. These first shared cyclicalities nearly
coincide with the GDP cyclicalities, while the second shorter ones obviously lead it by

13 These, although sometimes showing two periodicities at their respective maximum of squared co-
herency, are dominated by a 5 to 5.5 years cycle that manifests itself and is reflected in the US GDP cycle
- at least for the MBK-filtering routine.

14T .e. the real parts of the cross-spectra, implied in squared absolute expressions in the nominator of
the coherence spectrum’s definition, see equation (B.7), technical apendix B.
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about two years. The GFCF cycles are on average as well estimated strongly coherent
to the GDP cyclicalities, the strongest at a period length of 7.6 years with a marginal
phase lag. On the other hand, the II series fluctuate on average less coherent to the
GDP cycles, reflected in a maximum peak of the mean coherence spectrum at a sc-value
of about 0.6. The mean phase spectral density has a quite jagged shape and indicates
a coincidence relationship to the GDP cycle at a period length of about 6 to 7 years.
Both PCA components show on average a quite high sc with GDP cycles, taking on a
maximal value at the classical frequencies, corresponding to period lengths of about 7.5
to 7.8 years. Both represent rather coinciding GDP indicators. Finally, the coherence
spectra of the GOV series show on average their highest coherence with GDP cycles at
a periodicity of about 10 years, though the peak is, as in the case of TPI quite broad,
implying also periodicities with higher frequencies (shorter period cycles) to stand in a
relatively high coherence relation to the GDP cycles.

4. Supranational Bivariate Stylized Facts

Hitherto our investigations have shown that the MBK-filter provides reasonably inter-
mediary results concerning the spectral estimation results of all three applied filtering
procedures. Furthermore, it is the latest detrending technology and in several respects
superior to the conventional BK bandpass filter, see Woitek (1998). I therefore decided
to concentrate on spectral estimation results based on MBK-filtered series. In Figure 5,
the univariate GDP cycle estimates for the (artificial) supranational economies G7 and
of the so-called Eurol5-zone (EURO15), including the economies of Austria, Belgium,
Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands,
Portugal, Spain, Sweden and Great Britain) are displayed. Both show a double peaking
spectrum at approximately similar periodicities of about 8 and 4 years. In contrast to the
G7 GDP cycle, the EURO15 GDP cycle is characterized by a quite stronger prominence of
its contained shorter classical cycle. In analogy to the bivariate stylized facts of national
cycles, T will first make some brief general statements and then go through (only) the
most salient supranational bivariate stylized facts country by country.
In general it can be noted that, for the above discussed reasons, Japan contributes the
most in standard deviation terms to the total G7 GDP fluctuations, followed by the Ger-
man, French and U.K. economy. The least contribute the Canadian and US economy.
The most contribute the CON series, followed by the investment components (with the
exception of II, contributing at maximum 1% in CTS terms), while both PCA compo-
nents contribute throughout marginally to the amplitudes in supranational product series.
Regarding the signs of CTS-values, the IM series play the role of a stabilizer. Germany,
Italy and France contribute more or less in equal shares of about 18% to EURO15 GDP
in standard deviation terms. In contrast, the U.K. contributes a relatively less figure of
about 12%. Prima facie, the German economy seems to be responsible for the profound
short cycle in the EURO15 GDP series and maybe also for the rather less profound one
in the G7 GDP series. Most national GDP cycles close to coincide with the respective
supranational ones. The period lengths at maximum of sc throughout match with classi-
cal frequencies, for Germany mainly with a short Kitchin periodicity of about 4 years, for
the other 6 economies mainly with a traditional Juglar frequency of about 6.5 to 8 years
length.

Concerning Canada: For Canada only the cyclicality inherent in the GFCF and CON
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series fluctuates - at a period length of slightly more than 7 years - profoundly coherent
with and leads the G7 cycle by about 1.5 and 2 years, respectively.

Concerning France: Obviously, the French economy contributes to the classic long
investment cycle of about 6 to 9 years found in both supranational GDP cycles. French
inventory investments clearly lag the supranational product cycles and fluctuate only
weakly coherent to and in phase with the short cycle frequency contained in both of
them, cf. Figure 5. The most in phase with a supranational GDP cycle is French TPI,
namely with the EURO15 GDP cycle.

Concerning Germany: Looking at the period lengths that a VAR system with German
NIPA and supranational GDP series bears, it becomes quickly obvious that, despite the
German GFCF series and partly also the German EXP series, all other German NIPA
series at stake contribute clearly and, as reflected in relatively high sc values, profoundly
to the secondary short periodic regularity found in both analyzed supranational series.
Most constituent series, as well as the German GDP aggregate, are at this frequency quite
in phase with both supranational series. Only the German GFCF series seems to slightly
lag the supranational cycles and German exports lead the G7 product cycle by about
one year.'® It is noteworthy that the German economy shows the highest CTS to the
EURO15 GDP values with regard to the other European economies.

Concerning [taly: The Ttalian NIPA series share an “in between”-frequency with the
G7 product cycle, i.e. in between of the two frequencies found in the G7 GDP series. This
might be due to the fact that the spectra for Italian series are mainly one-time peaking,
see Figures 1 to 3. The Italian series seem to be closely related to the short European
GDP periodicity, indicated by the shared period lengths, relatively high sc values (with
the exception of the fluctuations in the II series) and a phase position quite in phase (< 1
year) with both supranational product cycles. This may be interpreted as an indication in
favor of the hypothesis put forward by Artis and Zhang (1999). Accordingly, the Italian
cycle had a “strong idiosyncratic element” in the pre-1975 period, while for the post-1975
period EU countries in general had become “more synchronized with the German cycle,”
p- 120-122.

Concerning Japan: The outstanding volatility of the Japanese business activity is
reflected in the highest destabilizing CTS measures of all analyzed economies. This fact
is, as already mentioned, not that surprising if one considers the development of the
Japanese economy in the last 15 years. For example Kiyotaki and West (1996) note: “In
the last decade, the Japanese economy has gone through both its strongest expansion of
the last twenty years and its most severe recession of the last forty years. During this
decade, business fixed investment was unusually volatile, and ... seemed to be a dominant
factor in both the recent 1986-1991 boom and the post-1991 bust,” p. 277. As in the
Italian case, Japanese NIPA series are characterized by sharing “in between”-frequencies
with the G7 product cycle. With the exception of the Japanese inventory fluctuations,
they move quite coherent and, with the exception of the bivariate VAR for Japanese
imports and supranational product series, quite in phase with the G7 GDP cycle.

Concerning the United Kingdom: In contrast to German macro aggregates, the ones
of the U.K. behave first and foremostly in line with the long traditional cycle, found
in both supranational GDP series. The constituent and national GDP series move quite

15Regarding the national stylized facts above, the reader may be warned that the latter result may be
dependent on the applied detrending procedure.
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coherent and in phase with the supranational product cycles. The obvious exception, as in
the case of the French economy, is the II series that shares an intermediary periodicity in
combination with a weak coherence with and a phase lag relationship to the supranational
product cycles.

Concerning the United States: As already stated above and indicated in the results
displayed in Table 1, the US economy’s cyclical structure is coined by investment cycle
dynamics. A fact that is also reflected in the bivariate spectral estimations for its invest-
ment components and the G7 GDP series. In contrast to the other US NIPA series, there
is a strong coherency between the G7 GDP cycle and the US investment NIPA series,
TPI and GFCF. It is estimated at a classical business cycle frequency corresponding to
an approximate period length of 7.5 to 8 years. The US TPI and GFCF cycles are lagging
the G7 GDP cycle by a little less than one year. On the contrary, US private consumption
and exports are clearly leading indicators for the G7 GDP cycle with a phase lead of 2.1
and 1.2 years, respectively.

5. Concluding Remarks and Summary of Results

The study reveals evidence of classical business cycles with frequencies corresponding to
about two to four and about seven to ten years period lengths that are both also reflected in
the spectra of the two supranational economies. Close to all univariate spectral measures
are estimated significantly. We may summarize:

(i) The central contribution-to-variance, GDP share and volatility characteristics are
the following: As generally agreed on, imports act as stabilizing quantities in the
constitution of the national product series. The most destabilizing variable is pri-
vate consumption with the exception of the US economy for which the total private
investment series is the most contributing to volatility and standard deviation terms
of the GDP series (about 60% percent to the standard deviation of the GDP business
cycle component). For all analyzed economies the majority of results shows quite
constant shares of their NIPA constituents to national GDP over different points of
the observation horizon - with inventory investment generally showing the smallest,
private consumption the largest fraction. As expected, the inventory investment
series show throughout the highest volatility of all NIPA constituent variables. This
volatility of inventory dynamics is the highest for Germany, the U.K. and Canada,
the lowest for the Japanese economy. Nevertheless, Japan shows the highest relative
variance in its national product series. With regard to the supra-economic dynam-
ics, Japan contributes the most in standard deviation terms to the total G7 GDP
fluctuations, followed by the German, French and U.K. economy. Germany, Italy
and France contribute more or less in equal shares of about 18% to the EURO15
GDP series in standard deviation terms. In contrast, the U.K. contributes a rel-
atively less figure of about 12%. The most contribute the private consumption
series, followed by the investment components, while both PCA components and
government spending contribute throughout only marginally to the amplitudes in
the supranational product series.

(ii) The most variance is, in median terms, explained by the cycle in gross fixed capital
formation, followed by the one contained in the GDP series. Throughout these
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(iii)

cyclicalities explain more than half of the variance contained in the respective series.
On average, the most prominent cycles are found in the investment components,
i.e. in total private investment, inventory investment and fixed investment. The
estimated periodicities correspond to classical business cycle lengths of about two to
four and about seven to ten years length. T'wo economies stand out: First, Germany
most clearly shows a double-cyclic dynamic structure over the majority of NIPA
aggregates. Second, in line with earlier findings, the US seem to be predominated
by a single periodicity of an intermediary length of about 5 to 6.5 years length in
GDP and total private investment.

On average the lead/lag and coherence relationships are characterized by the follow-
ing features: The national private consumption series fluctuate on average highly
coherent to the respective GDP series of the G7 economies. The phase spectra sug-
gest that the fluctuations contained in the consumption series, on average, represent
a leading indicator for the national product cycles with a phase lead of about one
year. The cycles in the total private investment series also fluctuate highly coherent
to the GDP cyclicalities - on average, maximally at frequencies corresponding to
periodicities of about 9 and 4.5 years. They close to coincide with the GDP cycles.
The same holds true for the fixed investment series at a period length of about 7.5
years, while inventories fluctuate less coherent to the national product cycles. The
PCA components show on average a quite high coherency with the product cycles,
taking on a maximal value at a classical business cycle frequency, corresponding to a
period length of about 7.5 years. Both represent rather coinciding GDP indicators.

16



DETAILED TABLES AND FIGURES

Table 2. G7 Economies: MBK-filtered series, univariate spectral estimations

GDP CON TPI GFCF 1II EXP M GOV
Canada Period® 7.206 7.923 5.025 7.447 4.787 5.608 5.614 5.253
(0.102) (0.170) (0.202) (0.087) (0.014) (0.324) (0.050) (0.057)
Modulus® 0.777 0.760 0.436 0.812 0.817 0.822 0.760 0.721
(0.002) (0.002) (0.006) (0.001) (0.001) (0.001) (0.002) (0.002)
adj. R-squ.  0.305 0.316 0.018 0.398 0.199 0.324 0.158 0.166
AR order 3 3 2 3 3 3 3 2
France Period 6.202 6.073 8.381 6.499 6.839 6.305 6.120 5.190
(0.062) (0.059) (3.843) (0.069) (0.043) (0.054) (0.056) (0.084)
3.864 3.218
(0.850) (0.003)
Modulus 0.767 0.770 0.872 0.782 0.947 0.798 0.781 0.541
(0.002) (0.002) (0.003) (0.002) (0.001) (0.001) (0.002) (0.003)
0.809 0.869
(0.023) (0.002)
adj. R-squ. 0.167 0.166 0.245 0.224 0.180 0.294 0.239 0.097
AR order 3 3 5 3 5 3 3 2
Germany  Period 9.683 9.933 9.200 8.282 5.664 5.919 4.942 9.268
(2.222) (2.457) (1.703) (2.660) (1.878) (0.037) (0.016) (2.237)
4.113 4.180 3.887 3.797 3.031 4.124
(0.313) (0.303) (0.383) (1.258) (2.162) (0.371)
Modulus 0.820 0.839 0.838 0.859 0.899 0.791 0.774 0.838
(0.009) (0.013) (0.038) (0.072) (0.001) (0.001) (0.001) (0.028)
0.953 0.981 0.925 0.876 0.857 0.954
(0.009) (0.010) (0.001) (0.001) (0.001) (0.007)
adj. R-squ.  0.408 0.520 0.413 0.268 0.436 0.133 0.359 0.485
AR order 5 5 5 5 5 3 2 5
Ttaly Period 6.389 6.313 8.064 6.342 7.279 5.685 6.026 8.141
(0.054) (0.048) (2.568) (0.045) (7.698) (0.045) (0.035) (2.541)
3.676 3.324 3.989
(0.508) (0.573) (0.769)
Modulus 0.789 0.793 0.871 0.807 0.775 0.703 0.817 0.889
(0.001) (0.001) (0.001) (0.001) (0.023) (0.001) (0.001) (0.007)
0.824 0.875 0.769
(0.029) (0.007) (0.009)
adj. R-squ. 0.234 0.225 0.190 0.327 0.230 0.327 0.303 0.330
AR order 3 3 5 3 5 2 3 5
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Table 2 (continued). G7 Economies:

MBK-filtered series, univ. spectral estimations

GDP CON TPI GFCF 1II EXP M GOV
Japan Period? 7.069 7.156 6.517 6.645 5.350 7.845 6.689 7.131
(0.028) (0.019) (0.043) (0.034) (0.028) (0.156) (0.025) (0.020)
2.515 3.418 2.772 3.289 3.208 3.304
(0.024) (0.058) (0.004) (0.016) (0.009) (0.022)
Modulus® 0.991 0.990 0.895 0.939 0.872 0.990 0.994 0.993
(0.001) (0.001) (0.002) (0.001) (0.001) (0.003) (0.001) (0.001)
0.537 0.531 0.641 0.865 0.561 0.605
(0.007) (0.004) (0.004) (0.014) (0.005) (0.001)
adj. R-squ.  0.446 0.510 0.309 0.383 0.197 0.252 0.700 0.502
AR order 4 5 3 3 4 5 4 5
U.K. Period 7.861 7.876 8.381 8.237 5.655 6.821 5.971 7.331
(0.988) (1.152) (3.843) (2.671) (0.037) (0.050) (0.031) (0.990)
3.606 3.651 3.864 4.294 2.988 2.945 3.745
(0.704) (0.794) (0.850) (1.824) (0.005) (0.005) (0.691)
Modulus 0.951 0.955 0.872 0.900 0.867 0.880 0.832 0.913
(0.002) (0.010) (0.003) (0.016) (0.001) (0.001) (0.001) (0.001)
0.762 0.751 0.809 0.746 0.867 0.614 0.780
(0.050) (0.034) (0.023) (0.009) (0.001) (0.004) (0.033)
adj. R-squ.  0.483 0.505 0.245 0.486 0.365 0.351 0.341 0.377
AR order 5 5 5 5 4 4 3 5
USA Period 5.229 5.385 6.171 5.438 6.197 6.174 4.739 5.583
(0.025) (0.191) (0.037) (0.014) (3.809) (0.040) (0.044) (0.067)
2.895 2.824
(0.004) (3.809)
Modulus 0.737 0.704 0.853 0.918 0.787 0.828 0.547 0.625
(0.009) (0.002) (0.001) (0.001) (0.002) (0.001) (0.003) (0.002)
0.656 0.810
(0.003) (0.001)
adj. R-squ. 0.334 0.191 0.261 0.439 0.128 0.520 0.062 0.233
AR order 2 2 4 4 4 2 2 2
median  Period 7.069 7.256 8.064 6.517 5.664 6.174 5.971 7.131
3.606 3.651 3.864 3.103 3.867
Modulus 0.789 0.793 0.871 0.859 0.867 0.822 0.781 0.838
0.762 0.751 0.809 0.862 0.774
adj. R-squ. 0.334 0.316 0.245 0.383 0.199 0.324 0.303 0.330

Note: a. standard errors in brackets
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Table 3. G7 Economies: HP-filtered series, univariate spectral estimations

GDP CON TPI GFCF 11 EXP M GOV
Canada Period® 10.09 11.40 9.140 9.747 6.053 6.181 8.020 7.316
(0.29) (0.327) (0.293) (0.142) (0.043) (0.126) (0.170) (0.446)
Modulus® 0.823 0.871 0.762 0.901 0.836 0.611 0.747 0.607
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002)
adj. R-squ.  0.629 0.724 0.402 0.694 0.162 0.285 0.297 0.397
AR order 3 3 3 3 3 2 3 2
France Period 9.337 9.096 8.620 8.941 — 8.733 8.230 10.66
(1.837) (1.381) (1.518) (3.025) (0.913) (0.947) —
Modulus 0.559 0.554 0.621 0.602 — 0.669 0.625 0.504
(0.002) (0.003) (0.002) (0.002) (0.001) (0.002) (0.069)
adj. R-squ.  0.457 0.438 0.502 0.498 — 0.541 0.476 0.434
AR order 2 2 2 2 — 2 2 2
Germany  Period 12.70 12.96 12.18 10.78 5.766 7.934 10.76 12.35
(3.92) (4.486) (1.63) (2.14) (3.312) (0.137) (2.204) (8.59)
3.966 4.006 3.832 3.248 2.910 3.995 3.949
(0.628) (0.620) (0.003) (2.47) (0.067) (0.663) (0.012)
Modulus 0.888 0.910 0.879 0.849 0.623 0.768 0.814 0.873
(0.038) (0.063) (0.012) (0.001) (0.005) (0.008) (0.038) (0.023)
0.940 0.956 0.917 0.797 0.868 0.880 0.922
(0.001) (0.001) (0.003) (0.001) (0.003) (0.001) (0.013)
adj. R-squ.  0.568 0.635 0.606 0.463 0.225 0.309 0.477 0.629
AR order 5 5 5 4 5 3 5 5
Ttaly Period 8.951 8.845 7.t 7.940 — 8.718 7.565 8.753
(0.217) (0.215) (1.383) (0.339) (0.635) (0.371) (0.126)
Modulus 0.787 0.780 0.565 0.682 — 0.693 0.643 0.830
(0.002) (0.002) (0.002) (0.001) (0.001) (0.002) (0.001)
adj. R-squ. 0.514 0.474 0.387 0.529 — 0.579 0.453 0.523
AR order 3 3 2 2 — 2 2 3
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Table 3 (continued).

G7 Economies: HP-filtered series, univ. spectral estimations

GDP CON TPI GFCF 1II EXP M GOV
Japan Period? 7.052 6.969 7.574 7.701 4.257 7.030 7.119 7.337
(0.047) (0.035) (0.102) (0.143) (0.019) (0.109) (0.037) (0.027)
Modulus® 0.906 0.918 0.723 0.753 0.558 0.848 0.877 0.919
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001)
adj. R-squ.  0.603 0.624 0.544 0.590 0.051 0.302 0.555 0.568
AR order 4 4 2 2 2 3 3 3
U.K. Period 7.931 7.999 7.870 8.348 6.534 6.969 6.899 7.261
(0.037) (0.037) (0.078) (0.064) (0.063) (0.109) (0.119) (0.052)
3.019
(0.003)
Modulus 0.905 0.908 0.833 0.884 0.841 0.713 0.694 0.837
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
0.670
(0.003)
adj. R-squ. 0.623 0.640 0.543 0.647 0.251 0.485 0.458 0.460
AR order 3 3 3 3 4 2 2 3
USA Period 6.679 10.59 6.006 10.52 8.874 7.918 7.089 8.908
(0.086) (1.09) (0.102) (3.07) (0.169) (0.114) (7.118) (2.410)
4.071 4.724 2.857
(1.221) (0.193) (0.001)
Modulus 0.715 0.953 0.610 0.829 0.804 0.806 0.456 0.615
(0.001) (0.002) (0.002) (0.002) (0.001) (0.001) (0.005) (0.002)
0.802 0.894 0.810
(0.018) (0.035) (0.001)
adj. R-squ.  0.466 0.597 0.272 0.498 0.125 0.654 0.218 0.512
AR order 2 5 2 5 4 2 2 2
median  Period 8.951 9.069 7.870 8.941 6.053 7.934 7.565 8.753
2.910
Modulus 0.823 0.908 0.723 0.829 0.804 0.713 0.694 0.830
0.810
adj. R-squ. 0.568 0.624 0.502 0.529 0.162 0.485 0.458 0.512

Note: a. standard errors in brackets
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Table 4. G7 Economies: logD-filtered series, univariate spectral estimations

GDP CON TPI GFCF 1II° EXP IM GOV

Canada  Period® — 5.309 — — —
(0.045)
Modulus® — — — — 0.814 — — —
(0.002)
adj. R-squ. — — — — 0.160 — — —
AR order — — — — 4 — — —
France Period — — 8.708 16.37 — — — —
(=) (=)
Modulus — — 0.279 0.233 — — — —
(0.021)  (0.017)
adj. R-squ. — — 0.100 0.100 — — — —
AR order — — 2 2 — — — —
Germany  Period 17.77 19.53 11.95 11.68 6.045 — 9.805 4.026
(8.57) (8.80) (9.35) (8.51) (8.997) (=) (0.010)

4.012 4,109 3.798 3.654 2.929
(0.334)  (0.309) (0.374) (0.704)  (0.075)

Modulus 0.725 0.736 0.790 0.753 0.774 — 0.409 0.688
(0.001)  (0.001) (0.010) (0.010)  (0.008) (0.045)  (0.001)

0.834 0.856 0.852 0.757 0.848
(0.005)  (0.006) (0.001) (0.001)  (0.008)

adj. R-squ. 0.117 0.214 0.163 0.006 0.212 — 0.059 0.222
AR order 5 5 5 5 5 — 2 3
Ttaly Period 16.64 — 7.026 — 12.51 — 7.599 —
(=) (0.144) (12.14) (=)
3.387
(0.521)
Modulus 0.198 — 0.671 — 0.831 — 0.380 —
(0.014) (0.003) (0.005) (0.039)
0.835
(0.005)
adj. R-squ.  0.077 — 0.058 — 0.370 — 0.048 —
AR order 2 — 3 — 5 — 2 —
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Table 4 (continued).

G7 Economies: logD-filtered series, univ.

spectral estimations

GDP CON TPI GFCF 1IIP EXP IM GOV
Japan  Period® 2.761 2.690  5.834 6.694 — — 8.385 -
(0.747)  (1.023) (-—) (=) (=)
Modulus® 0.401 0.218 0.290 0.290 — — 0.238 —
(0.002)  (0.021)  (0.023)  (0.023) (0.016)
adj. R-squ.  0.001 0.001 0.017 0.054 — — 0.052 —
AR order 4 4 2 2 — — 2 —
UK. Period 8.208 8.201 8.539 8.949 7.671 5.842 5.428 6.124
(0.135)  (0.142)  (0.257) (2.839) (1.620) (1.121)  (0.221)  (0.054)
3.304 3.378 3.393 3.691
(0.042)  (0.051)  (0.054)  (0.633)
Modulus 0.902 0.907 0.879 0.908 0.581 0.427 0.468 0.727
(0.001)  (0.001)  (0.002)  (0.001)  (0.003)  (0.005)  (0.004)  (0.002)
0.634 0.612 0.681 0.705
(0.014)  (0.017)  (0.015)  (0.007)
adj. R-squ.  0.001 0.271 0.177 0.306 0.365 0.051 0.054 0.081
AR order 5 5 5 5 2 2 2 3
USA Period — — — 7.793 2.924 11.53 — —
(6.708)  (0.002) ( —)
Modulus — — — 0.540 0.757 0.446 — —
(0.025)  (0.001)  (0.053)
adj. R-squ. — — — 0.001 0.804 0.069 — —
AR order — — — 3 2 — —
median  Period 12.42 8.201 8.539 8.949 6.045 7.992
Modulus 0.563 0.736 0.671 0.540 0.774 0.395
adj. R-squ. 0.039 0.214 0.100 0.054 0.365 0.050

Note: a. standard errors in brackets, b. not filtered

22



Figure 1. GDP CON TPI
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Figure 2.
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Figure 4.3. GFCF 11
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Table 5. G7 Economies: MBK-filtered series, national bivariate spectral estimations

GDP — CON TPI GFCF II EXP M GOV
Canada CTS 0.434 0.275 0.278 0.004 0.113 -.237 0.275
period 8.62/3.06 8.62/3.23 8.85/3.04 8.62/2.31 8.57/3.67 8.26/3.27 9.00
sc 0.98/0.82  0.90/0.73 0.93/0.60 0.95/0.85 0.75/0.67 0.64/0.67 0.95
phase 0.29/-.18  -47/0.18 -.29/0.11 -3.2/0.20 -1.4/0.28  -1.1/0.25 0.40
VAR order 2 3 3 2 2 2 5
France CTS 0.578 0.248 0.232 0.026 0.182 -.199 0.166
period 6.15 — — — 7.09 6.36 —
sc 0.99 — — — 0.93 0.93 —
phase 0.07 — — 0.15 0.33 —
VAR order 2 — — 2 2 —
Germany  CTS 0.612 0.242 0.188 0.043 0.179 -.225 0.130
period 10.9/4.23 12.5/4.14 9.34/4.44  4.21/2.89 7.51/4.29 6.53/3.98  7.40/4.23
sc 0.99/0.99 0.97/0.99 0.99/0.99 0.99/0.97 0.97/0.99 0.71/0.88  0.99/0.99
phase 0.22/0.09  0.33/0.02 0.16/-.30 0.30/-.73 1.03/-.40 0.53/-.14  -.23/0.13
VAR order 5 5 5 5 5 2 5
Ttaly CTS 0.596 0.258 0.242 0.020 0.152 -.217 0.157
period 9.80/4.36  7.51 7.56 6.32/2.75  19.6 6.32 —
sc 0.99/0.99  0.93 0.96 0.40/0.08  0.83 0.89 —
phase 0.06/0.06  0.06 0.21 -.38/0.93  -.42 0.28 —
VAR order 5 2 3 2 1 2 —
Japan CTS 0.602 0.262 0.267 -.003 0.043 -.026 0.102
period 6.53 6.53 11.4/7.44  6.75/4.08 7.04 7.57/3.57 6.75/2.35
sc 0.99 0.96 0.95/0.99 0.95/0.64 0.99 0.99/0.79  0.99/0.99
phase -.01 0.32 -.14/0.20 2.18/0.10  0.67 1.52/0.63 -.06/0.02
VAR order 3 1 4 4 3 4 4

Table 5 (continued). G7 Economies: MBK-filtered series, national bivariate spectra

GDP — CON TPI GFCF 11 EXP M GOV

U.K. CTS 0.627 0.183 0.198 -.011 0.190 -.245 0.188
period 7.24 8.00/3.98 7.81/3.23 8.00/4.92 8.13/3.96 8.00/4.23 7.46/4.85
sc 0.99 0.98/0.65 0.98/0.87 0.91/0.58 0.98/0.75 0.95/0.68 0.98/0.90
phase 0.06 -16/-27  0.07/0.20 -2.0/-1.6  -.30/-.13  -.04/-31  0.37/0.25
VAR order 3 5 5 5 5 5 3

USA CTS 0.375 0.571 0.399 0.169 -.015 -.225 -.020
period 5.68 5.34/2.84 7.51/5.05 5.52 6.41/3.33  5.65 5.49/2.81
sc 0.87 0.99/0.85 0.87/0.99  0.67 0.85/0.23  0.80 0.68/0.67
phase 21 -.02/0.09 -.65/0.21  -.20 1.57/-27  0.38 2.27/1.27
VAR order 2 4 4 2 2 2 5
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Table 6. G7 Economies: HP-filtered series, national bivariate spectral estimations

GDP — CON TPI GFCF 11 EXP M GOV
Canada  CTS 0.526 0.313 0.322 -.021 0.046 -.203 0.267
period 14.4/8.47 11.3/2.36  9.17/2.47 4.76/2.25 9.52/3.10 10.5 10.5
sc 0.99/0.98 0.93/0.74 0.93/0.60 0.95/0.90 0.49/0.51 0.64 0.78
phase -.01/0.37 -.30/0.14 -37/0.16 1.53/0.30 -2.1/0.01 -.54 0.54
VAR order 5 3 3 5 2 3 2
France TS 0.572 0.250 0.227 0.023 0.195 -.204 0.172
period 15.3 13.6/8.33  8.85/13.5 9.52 10.6 9.90 14.0/4.40
sc 0.99 0.98/0.97 0.99/0.99  0.59 0.97 0.96 0.99/0.98
phase 0.12 -54/0.36  0.47/-.44  -.73 0.28 0.44 0.41/0.12
VAR order 1 5 5 2 2 2 5
Germany CTS 0.612 0.245 0.205 0.035 0.158 -.208 0.130
period 13.6/4.13  13.1/4.08 13.5/4.18 13.5/2.82 14.2/8.26 13.1/4.03  13.6/4.11
sc 0.99/0.99  0.99/0.98 0.99/0.98 0.99/0.98 0.99/0.99 0.99/0.98  0.99/0.99
phase 0.27/0.08 0.10/-.01 0.21/-27 -.50/-.85 -1.2/0.81  0.09/0.01 0.24/0.13
VAR order 5 5 5 5 5 5 5
Ttaly CTS 0.589 0.278 0.245 0.036 0.152 -.212 0.157
period — 10.8 — 10.0 6.94/15.1  9.00 10.7
sc — 0.93 — 0.48 0.95/0.88  0.93 0.96
phase — 0.07 — -41 -.37/1.48  0.50 0.16
VAR order — 2 — 2 4 2 2
Japan CTS 0.577 0.287 0.284 0.005 0.048 -.040 0.096
period 7.63 12.6/6.99 12.1/7.09 11.1/5.29  7.57 7.14/4.40  6.94
sc 0.99 0.97/0.99  0.98/0.99 0.62/0.76  0.98 0.99/0.91  0.99
phase 0.03 -.36/0.23  -.33/0.17 -.2.2/0.87 0.55 1.56/0.43  -.07
VAR order 3 4 4 4 2 5 3

Table 6 (continued). G7 Economies: HP-filtered series, national bivariate spectra

GDP — CON TPI GFCF II EXP IM GOV

U.K. CTS 0.627 0.206 0.219 -.013 0.181 -.239 0.176
period 7.93 9.17/4.40  11.7/7.69  7.81 7.93 8.00 8.19/3.95
sc 0.99 0.97/0.62  0.97/0.99  0.64 0.95 0.88 0.98/0.83
phase 0.04 -45/-57  -95/0.29  -2.2 -.23 12 0.37/0.11
VAR order 3 5 5 3 3 3 3

USA CTS 0.468 0.397 0.317 0.173 -.032 -.248 0.040
period 7.93 11.9/5.98 7.40/4.60 9.25/2.81 7.93 6.71 11.3/4.29
sc 0.87 0.95/0.98  0.92/0.99  0.73/0.90  0.54 0.76 0.45/0.18
phase -.08 -2.1/-.08  -21/-10  0.42/0.08 1.91 0.15 0.32/1.89
VAR order 2 4 5 5 2 2 2
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Table 7. G7 Economies: logD-filtered series, national bivariate spectral estimations

GDP — CON TPI GFCF I® EXP IM GOV
Canada  CTS 0.572 -.619 -.210 -.010 -.213 -1.27 -1.47
period — — — 8.13 — — —
sc — — — 0.39 — — —
phase — — — -2.5 —
VAR order — — — 2 —
France CTS 0.879 0.461 0.643 0.025 0.498 -.935 0.746
period — — — 10.3 — — —
sc — — — 0.27 — — —
phase — — — -1.2 — —
VAR order 1 — — 1 — —
Germany CTS 0.825 0.418 0.526 0.055 0.363 -.899 0.726
period 8.19 — 12.0/3.95 4.16/2.80 — — —
sc 0.98 — 0.96/0.95 0.99/0.98 — — —
phase 0.14 — 0.17/-.05 0.25/-75 — — —
VAR order 1 — 5 5 —
Ttaly CTS 0.874 0.262 0.517 0.024 0.451 -1.00 0.661
period — — — 5.95 — — —
sc — — — 0.21 — — —
phase — — — -.05 — — —
VAR order — — — 2 — —
Japan CTS 0.826 0.539 0.645 -.005 0.085 -734 0.671
period 12.1/2.35  10.75 7.14/3.96 — 6.71/2.77
sc — 0.95/0.95 0.95 0.91/0.36 — 0.96/0.66 —
phase — -11/0.01  0.18 3.29/0.09 — 1.45/0.91 —
VAR order 4 1 4 — 5 —
Table 7 (continued). G7 Economies: logD-filtered series, national bivariate spectra
GDP — CON TPI GFCF I# EXP IM GOV
UK. CTS 0.712 0.132 0.320 -.014 0.358 -.936 0.588
period 6.99 8.69/3.62 — 8.00/4.71 — — 8.06/2.43
sc 0.99 0.96/0.65 — 0.88/0.53 — 0.98/0.94
phase 0.04 -.26/-.07  — -2.0/-1.3  — 0.34/0.01
VAR order 3 5 — 5 — 4
USA CTS 0.432 -2.14 -2.06 -.195 -2.46 -3.17 -.549
period — 5.12/2.44  4.71 5.49/2.84  6.49 5.71 —
sc 0.98/0.88  0.88 0.79/0.84  0.54 0.51 —
phase -.03/0.13  -.02 -.25/0.09  1.40 0.59 —
VAR order 5 2 4 1 1 —

Note: a. not filtered
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Figure 4. G7 Economies: Mean bivariate spectra (filter: MBK)
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Figure 4 (continued). G7 Economies: Mean bivariate spectra (filter: MBK)
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Table 8. G7 Economies: Supranational bivariate spectral estimations (filter: MBK)

lar lar

Canada GDP CON TPI GFCF II EXP IM GOV
CTS(ar-app) 0.003 0.001 0.002 0.002 0.001 0.006 -.004 0.001
period(G7-Gpp)™ 7.576 7.246 6.667 7.299 8.197 6.494 7.752 7.194
SC(G7-GDP) 0.672 0.980 0.535 0.987 0.491 0.843 0.563 0.944
phase(a7-cpP)™ 1.705 2.471 1.040 1.489 -1.28 0.323 0.461 2.170
VAR order 1 5 2 5 2 3 2 1
France

CTS(ar-app) 0.163 0.094 0.044 0.038 0.007 0.030 -.030 0.027
CTS(EU-GDP) 0.179 0.103 0.048 0.043 0.007 0.035 -.037 0.030
period(a7-app)™ 6.667 6.623 6.849 6.579 5.780 8.403 6.579 6.667
period(ku-GpP)"® 5.814 — 7.692 7.874 7.874 8.621 6.369 4.219
SC(G7-GDP) 0.930 0.923 0.901 0.871 0.452 0.980 0.900 0.890
SC(EU-GDP) 0.967 — 0.984 0.974 0.429 0.989 0.920 0.987
phase(c7-Gpp)™ 0.239 0.280 0.354 0.371 -.376 0.350 0.649 0.219
phase(Eu-GDP)™ -.073 — 0.040 0.164 -1.20 0.139 0.267 0.098
VAR order(a7) 2 2 2 2 2 5 2 2
VAR order(EU) 2 — 3 3 1 5 2 5
Germany

CTS(ar-app) 0.173 0.105 0.043 0.041 0.005 0.038 -.036 0.023
CTS(EU-GDP) 0.184 0.113 0.047 0.038 0.011 0.046 -.046 0.024
period(G7-Gpp)™ 4.202 4.255 4.032 6.803 3.953 7.042 4.049 4.255
period(ku-GpP)" 4.098 4.149 4.000 6.897 4.132 4.367 4.975 4.132
SC(G7-GDP) 0.998 0.999 0.990 0.976 0.924 0.999 0.978 0.997
SC(EU-GDP) 0.996 0.996 0.990 0.999 0.922 0.980 0.839 0.999
phase(c7-Gpp)™ 0.045 0.128 0.039 -.407 0.209 0.950 0.044 0.127
phase(Eu-GDP)™ -.018 0.034 0.029 -.429 0.265 -.385 0.070 0.101
VAR order(a7) 5 5 5 5 5 5 5 5
VAR order(rU) 5 5 5 5 5 5 2 5
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Table 8 (continued). G7 Economies: Supranational bivariate spectra (filter: MBK)

Ttaly GDP CON TPI GFCF 1II EXP IM GOV
CTS(ar-app) 0.141 0.086 0.040 0.036 0.007 0.029 -.033 0.023
CTS(rU-GDP) 0.183 0.112 0.051 0.046 0.008 0.033 -.041 0.029
period(G7-GDP) 6.757 6.667 6.061 4.049 5.882 6.667 6.329 2.222
period(EU-GDP) 4.065 4.115 — 2.128 5.952 6.250 6.289 4.202
SC(G7-GDP) 0.988 0.993 0.686 0.945 0.195 0.876 0.839 0.969
SC(EU-GDP) 0.997 0.998 — 0.966 0.195 0.937 0.882 0.949
phase(a7-app) 0.673 0.799 0.426 0.112 0.049 0.289 0.642 -.305
phase(EU-GDP) 0.039 0.079 — -.070 -.305 -.157 0.259 0.037
VAR order(a7) 3 3 3 5 2 2 2 5
VAR order(rU) 5 5 — 5 2 2 2 5
Japan

CTS(ar-app) 0.267 0.172 0.103 0.101 0.003 0.015 -.019 0.031
period(G7-GDP) 6.757 2.212 6.579 6.623 5.319 2.217 8.333 2.208
SC(G7-GDP) 0.996 0.966 0.952 0.997 0.267 0.940 0.991 0.971
phase(a7-app) -.311 0.331 -.090 -.203 0.717 0.340 1.230 0.349
VAR order 3 3 3 3 2 5 5 5
U.K.

CTS(a7-apP) 0.108 0.067 0.026 0.024 0.003 0.025 -.030 0.020
CTS(BU-GDP) 0.125 0.076 0.024 0.025 0.001 -.001 -.032 0.026
period(G7-GDP) 8.000 8.065 7.353 6.897 6.711 6.494 6.289 8.197
period(EU-GDP) 7.813 7.874 — 7.194 6.329 7.246 7.246 7.407
SC(Q7-GDP) 0.995 0.999 0.659 0.928 0.393 0.893 0.820 0.965
SC(EU-GDP) 0.979 0.982 — 0.888 0.492 0.875 0.711 0.984
phase(a7-cpp) 0.637 0.745 0.477 0.438 -1.27 0.493 0.572 0.832
phase(EU-GDP) 0.152 0.175 — 0.059 -1.70 -.011 0.075 0.448
VAR order(a7) 5 5 2 3 2 2 2 5
VAR order(EU) 4 5 — 3 2 2 2 5
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Table 8 (continued). G7 Economies: Supranational bivariate spectra (filter: MBK)

USA GDP CON TPI GFCF 1II EXP IM GOV
CTS(a7-app) 0.043 0.009 0.018 0.024 -.039 0.017 -.022 0.001
period(a7-GpP) 6.803 4.292 7.576 7.752 — 5.988 6.711 2.299
sc(Q7-CDP) 0.640 0.822 0.955 0.952 — 0.969 0.531 0.896
phase(a7-apP) -.875 2.100 -.892 -.923 — 1.212 -.131 -.595
VAR order 2 2 2 5 — 2 2 5

Note: a. throughout only the measures for the contained cyclicality with highest sc-value are displayed.

Figure 5. Supranational GDP series’ spectra (filter: MBK)

G7 GDP-Cycle (filter: MBK) EURO15 GDP-Cycle (filter: MBK)

MAXIMUM ENTROPY SPECTRUM MAXIMUM ENTROPY SPECTRUM

Power

00 01 02 03 0.4 05 0.6 0.7 08 039 1.0
Power
00 01 02 03 0.4 05 0.6 07 08 09 1.0

00 01 02 03 04 05 06 07 08 08 1.0 00 01 02 03 04 05 06 07 08 08 1.0

frequency in radians (0.5 = 0.5Pi) frequency in radians (0.5 = 0.5Pi)
Period® Modulus® adj. R-squ. AR order Period® Modulus® adj. R-squ. AR order
8.206 0.906 0.389 5 8.324 0.854 0.307 5
(3.203)  (0.001) (1.048)  (0.012)
3.963 0.804 4.076 0.833
(1.084)  (0.027) (1.259)  (0.014)

Note: a. standard errors in brackets
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TECHNICAL APPENDICES
Technical Appendix A. Detrending

The raw time series under analysis in the paper are not stationary and need to be trans-
formed to apply the spectral methods suggested in the following. A large literature on
detrending exists which shows that an inappropriate detrending method distorts the spec-
trum of the residuals and may produce spurious cyclical behavior, see inter alia Canova
(1994), Harvey and Jaeger (1993), Canova (1998) and more recently Schenk-Hoppé (2000).
Much effort has been devoted to developing tests to determine the correct detrending pro-
cedure for a given time series. Inter alia these unit root (UR) tests imply the Dickey-Fuller,
Augmented Dickey-Fuller and Phillips-Perron tests. Unfortunately, these tests are rather
weak, cf. the comprehensive outline in Banerjee et al. (1993).16 An alternative to test-
ing, is to use several filters, including ones that tend to distort the spectrum in opposite
directions, cf. Reiter (1995, Section 2.3), Woitek (1997, Section 4.2 and Appendix A).
Features of the spectrum which survive different filtering procedures are considered to
be robust. Such a strategy has also been advocated by Canova (1998). The following
set of widely used filtering methods is chosen in the present study: first log-differences
(logD), i.e. growth rates in a first approximation, the Hodrick-Prescott (HP) filter and a
modified version of the Baxter-King (MBK) filter as proposed by Woitek (1998). Their

mathematical objectives and determinations are given by the following set of equations:?
logD: Ut — Ui—1 =In(y) — In (yi—1) = % (A1)
HP(100): {mi}r,}, S (@ — 7)) st
Yo [(Ter1 = 70) = (e = 7-1)]° < pr, where (A.2)
7; = trend, u = smoothing (Lagrangian = 100 for annual data)
(M)BK:  min fjﬂ I8 (w) — (w)|2 dw s.t. a(0) =0, where
f (A.3)

a (w) = Fourier transform of a; (K = 3 for annual data)
B (w) = “ideal” filter gain

According to (A.1) to (A.3) the outcome of log differencing is given by ¢ |iogp = Yt —
Yr—1 = In(y¢) —In(y;_1), of the HP-filtering routine by y; |gp = ¥ — 7 = In (y¢) — 7, of

16 Another recent reference in the unit root discussion is Diebold and Senhadji (1996) who note: “There
is no doubt that unit-root tests do suffer from low power in many situations of interest ... Our results
suggest that U.S. aggregate output is not likely to be difference-stationary: the dominant autoregressive
root is close to, but less than, unity ... There is simply no substitute for serious, case-by-case, analysis,”
p. 1297.

7In my opinion the most intuitive outline of the HP-filter’s logic is given in Prescott (1986). A survey of
the statistical justifications of the HP-filter is provided by Reeves et al. (1996). For a detailed specification
of the ‘digital’ or ‘bandpass’ filters, BK- and MBK-filter, the exact differences in their derivation and their
effects on series with different frequencies (i.e. annual, quarterly and monthly), the reader is referred to
the thorough presentation and discussion in Woitek (1998). A comparison of unfiltered, HP- and BK-
filtered series, having a peak in their spectrum at business cycle frequencies, can be found in Guay and
St-Amant (1997).
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the MBK-filter by its moving average (MA) representation, i.e. y; |MBx = Zszf K 4 Liy,
of order K, respectively.

As widely known, the logD-filter tends to amplify the high frequencies, the HP-filter
to amplify the low frequencies and for the MBK-filter the gain function is relatively flat
over the relevant business cycle frequencies. As can be seen from equations (A.1) to
(A.3), the logD-procedure shortens the time series by one datapoint, the MBK-filter by
six (three at the beginning, three at the end of the respective series) and the HP-filter
leaves the length of the series unchanged. In this context, it is noteworthy that Den Haan
and Sumner (2001) recently provide a proof that band-pass filters like the MBK-filter
isolate the desired set of frequencies even in the case when the raw series are I (1) or
1(2), i.e. actually difference stationary or follow a linear and/or quadratic trend. Their
benchmarking contribution gives a further justification to refrain from UR tests.

Technical Appendix B. Volatility and Spectral Analysis

Contribution-to-Variance Analysis. To quantitatively assess the relative'® fluctua-
tions of a time series under investigation or, generally speaking, its relative volatility and
contribution to the constitution process to an aggregate series of higher dimension, the
following three measures are suggested: relative trend level (RTL), standardized standard
deviation (SSD) and contribution to standard deviation (CTS).

The first of these measures is a straightforward method to quantify the relative magni-
tude or share of the ith constituent series’ trend level 7; (y;) to the corresponding aggregate

series’ trend level 7, (va yi), where ¢ = 1, ..., N. It is calculated according to

mm—:é%%j (B.1)

for all 7 constituent components at several distinct points of the observation period t =
1,...,T. Actually, as reported in the text, starting point (¢t = 1), mid point (¢ = T,,) and
end point (¢t =T') of 7 are considered.

The standardized standard deviation (std. std. dev.), defined as the standard devi-
ation of the detrended series of a variable at stake standardized on its mid trend level
value, provides an adequate measure of the relative volatility of a variable:

%D:”m“;”@my (B.2)

This measure is similar, though preferable, to the volatility measure of a variable
suggested by Christiano (1988), whose ratio employs the mean of absolute changes of the
undetrended time series of a variable in the nominator, the mean of the undetrended series
in the denominator, cf. also Fitzgerald (1997).1% The std. std. dev. measure, as given
by (B.2), is superior to Christiano’s measure, because the latter implies arithmetic means
which tend to weight a deviation proportional to the magnitude of the deviation. This
undesirable feature is overcome by the std. std. dev. measure (B.2).

181.e. relative to its median trend level value or to the fluctuating properties of a higher-dimensional
aggregate series.
19A survey of similar volatility measures is given by McKenzie (1999).
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Consider the aggregate y* of ¢ = 1, ..., N business cycle components y5, as extracted
by an adequate detrending method from the original series. The standard deviation of y®
is then theoretically composed by the following relationship

o2 (Zy) = lZUQ W) +2) > cov(yfwi)|
7 7 7 k

where i = 1,...,N and k = i + 1,..., N. Obviously, the respective variances o2 (y¢) con-
tribute positively to o (y®), but given a constituent y¢ is mainly correlated negatively with
the other constituent series, there might be a damping impact on o (y*) from including
y$ in the constitution of y®. Therefore the contribution of the ith constituent component
to the aggregate series’ standard deviation is adequately captured by

W' —vi) o) —o" —yi)
o (y) o (y*)

crs=1-2 : (B.3)

where o (y® — y§) denotes the reduction in standard deviation of the aggregate, when y¢
is dropped in the constitution process. It is theoretically given by

oy —ys) = \/(72 (y2) — o2 (y§) — QZCOV (v$,y5), where k # .
k

Therefore, CTS, as given by (B.3), is the contribution to standard deviation measured
in standard deviation terms of the aggregate, i.e. in percent of the total aggregate’s
standard deviation. Following the argumentation above, a CTS-value > 0 characterizes
a destabilizing variable, whereas a CTS-value < 0 characterizes a stabilizing constituent
variable.

(V)AR Spectral Analysis. For the general multivariate case, the spectral density
matrix F (w) of an n-dimensional stochastic process is given by the Fourier transform of
the covariance function of the process:

1 Ix ‘
F(w):§ Z r(ne ™, —r<w<m, (B.4)
with
Y1 (w) o v (W) fu) o fin (W)
Fw)=1]": KR and F (w) = | KR
'Ynl(w) ’Vnn(w) fnl(w) fnn(w)

Because F (w) is an even function, it is sufficient to examine it in the interval [0,7].

The univariate case: The diagonal elements fi11 (w), ..., fon (w) are the real-valued
autospectra or power spectra (in the text referred to as univariate AR spectra). The
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underlying estimation model can be interpreted as a standard AR model of order p. In
general defined as

P
Ty =011 +@2%t—2 + ... + QpXy_p + ¢ = E a;jx¢_j + €y,
Jj=1

where ¢, follows a white noise process with mean 0 and variance o2. Applying the notation
of a standard lag operator a (L) z; = &;, where a (L) = 1—a; L—ag L?>—...—a, LPand L"z; =
Zi—pn with m = 1,2, ..., the e; can be expressed as the output of a linear filter a (L) applied
to the AR process 4 e, = a (L) 4. If the process x; is a stationary process,e.g. achieved
by extraction from the raw series via an adequate detrending procedure, the process z;
can be vice versa represented as output of the linear filter a (L)f1 applied to the irregular
component €, x; = a (L)f1 g¢. With regard to the constitution of macroeconomic time
series, Granger and Newbold (1986) note: “T'wo situations where series are added are of
particular interpretational importance. The first is where series are aggregated to form
some total, and the second is where the observed series is the sum of the true process
plus observational error, corresponding to the classical ‘signal plus noise’ situation,” p.
30. Most macroeconomic series, such as GDP, or in general NIPA aggregates, as analyzed
in the present study, are such aggregated series. In this context, Granger and Newbold
(1986) derive a central theorem that implies that “[ijf the observed series is the sum of
a ‘true’ series that is AR(p) plus a white noise observation error, then an ARMA (p, q)
series results,” p. 31, cf. also Forni and Lippi (1997, chapter 10 and appendix A.T). For
ARMA (p, q) models a series x; is supposed to be generated by?°

p q
Ty = E ;T j + E bj&t_j,
Jj=1 Jj=0

where &; is a zero-mean white noise and by = 1. Applying for x; the lag operator L, leads
to
a(L)xy =b(L) &

so that the corresponding generating function form is
a(z)x(z) =b(2)e(z), wherea(z) =1— Zasz and b(z) = ijzj.
Jj=1 j=0

From this representation the following three implications can be proven to hold in general
(see Granger and Newbold (1986), p. 25-26):

(i) The ARMA process is stationary if the roots of a(z) = 0 all lie outside the unit
circle |z| = 1;

(ii) if the process is stationary, then there is an equivalent MA(co) process

o] = j
Ty = Zcﬁt*j, where ¢o = 1 and ¢(z) = chz B a(z);
Jj=0 =0

20The following argumentation widely summarizes Granger and Newbold (1986, section 1.5 - 1.7).
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(iii) there is an equivalent AR(co0) process

T = Zdjxt_j, where d (z) =1 — Zdjzj = Zg)),
j=1

Jj=1

provided the roots of b(z) = 0 lie outside the unit circle |z| = 1, that is, provided
the so-called invertibility condition holds.

From (i) to (iii) it follows that a stationary process “can always be well approximated” by
an MA or AR process of sufficiently high order, cf. Granger and Newbold (1986), p. 26.
To determine the right order several information criteria are suggested in the literature,
including the final prediction error criterion (FPE), Akaike’s information criterion (AIC),
the Hannan-Quinn criterion (HQ) and the Schwarz criterion (SC); see e.g. Liitkepohl
(1991). Recently, several Bayesian information criteria are refined and suggested in the
literature, e.g. the BAC criterion by Heintel (1998) has been shown in a series of simulation
experiments to be first best in determining the right order of a (V)AR model. As in
the case of choosing the adequate detrending procedure, I follow a serious, case-by-case,
strategy. I rely primarily on the latest order determination technology, i.e., the BAC
suggested by Heintel (1998), and consider a visual analysis of respective orders and implied
spectra for cases in which the standard information criteria FPE, AIC, HQ and SC diverge
on the majority from the order suggested by the BAC criterion. Since in a general AR(p)
model g, is assumed i.i.d., s.t. E (g;) = 0, applying an expectation operator, renders the
deterministic part of the process, or in other words, the homogenous part of a difference
equation of order p. The deterministic system can always be reformulated in a first order
lag form w; = Awy_1, where

Tt a; azx az ... Q Ly

Ly 1 0 0 ... 0 L%z,
W, = L%z, A= 0 1 0 ... 0 and w; | = L3z,

LPx, 0 O 0 1 0 Lrtig,

The eigensystem of the above system is given by Ay = Ay, where A denotes the eigen-
values of the quadratic matrix A and y # 0 expresses the eigenvector of the system.
For y # 0 the characteristic polynomial is found via |[A — AI| = 0, where I denotes an
identity matrix of order p. Solving the characteristic polynomial renders a real part c;
and a complex part ¢y for one or more (potentially) complex solutions in terms of the AR
coefficients as, ...,a,. The (angular) frequency w for the respective (potentially) complex

solution is defined as
(CQ ) o
w=arctan | — | = —,
C1 P

where P denotes the period length for a cyclic solution, as given in the case of complex
(i.e. negative) roots in the solution of the characteristic polynomial.
The modulus of the respective complex solution is given by

mod = y/c? + c3.
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A mod close to value 1 characterizes the fact that the complex roots of the determinis-
tic part of the process are almost undamped and therefore the spectral density function
is peaking at the frequency corresponding to an implied period length P of the respec-
tive complex roots, as defined above. The closer mod approaches a zero value, the more
damped is a contained cyclicality of a series. In general, the less damped the roots are,
the more regular is (are) the cycle(s) contained in a series under investigation and the
higher and sharper is (are) the peak(s) in the spectrum.

The multivariate case: The off-diagonal elements of the VAR system (B.4) reflect cross
spectra fji (w) = ¢jr (w) —igji (w), consisting of ¢ (w) cospectra and ¢ (w) quadrature
spectra. Uni- and bivariate spectral measures are derived by the estimated parameter
matrix A of a general VAR(p) process adjusted to a respective pair of series:

F(w) = %A(w)—l d AW, (B.5)

where > denotes the error variance-covariance matrix, A (w) the Fourier transform of the
matrix lag polynomial A (L) = I —A;L—... A; L? and superscript “*” complex conjugate
transpose. The off-diagonal elements of (B.4), estimated via (B.5) allow the computation
of the phase shift measure by means of the following simple manipulation

—93k (@) (B.6)

ps (w) = arctan
) 51 )

The phase shift (ps) measures the phase lead or lag of a series j over the series k at a
certain frequency w. The respective ps measure is computed at the maximum of squared
coherency sc, i.e. at that frequency w, where the cyclic components contained in the two
series at stake show the highest degree of linear relationship, as defined by

2

sc= K2, (UJ)_ |fjk (UJ)|

!  fi (@) frr (W)

The sc measure takes on values between 0 and 1. Precisely, it indicates the proportion
of the variance of the component of frequency w of either series that can be explained
by its linear regression on the other series; see Koopmans (1995), p. 142. For example,
if the series are statistically independent from each other, sc equals zero; if one process
is a linear transformation of the other one, sc would consequently take on a value of
one. Both spectral parameters ps and sc can certainly also be calculated and displayed
for a range of different frequencies. These illustrations are called phase and coherence
spectrum, respectively. For sc < 1, the relationship between the two business cycle
components under investigation is not strict, but the phase spectrum can be interpreted
as displaying the expected values of respective phase shifts for different frequencies (cf.
Koopmans (1995), p. 138). Reiter (1995) accurately summarizes: “The bivariate spectral
parameters are ideal tools for investigating the comovements of series over the business
cycle. For example, a good leading indicator is a series having a positive lead relative to
the reference series, which can be seen from the phase spectrum, and a high coherency,”
p- 25.

(B.7)
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Technical Appendix C. Ascribing Standard Errors to mod and period

The method that will be presented in the following is superior to conventional bootstrap
strategies since, as Kiefer (1996) notes, “the bootstrap method scrambles the order of
the observations,” p. 50, by randomly sampling from data and therefore violating the
autoregressivity of the series at stake. It stems from an approximation strategy adopted
from continuous time econometrics which is called sensitivity analysis.

Following Wymer (1993, Section 3.3), the general continuous time model (of sufficient
order to imply a complex root) can be written as

Dy(t) = A(@)y(t) + B(¢) 2 (t) +u(t), (C.1)

where Dy (t) = Mdtﬁ and ¢ is the vector of all parameters to be calculated and the
elements of A and B are any differentiable functions of ¢ incorporating in the simplest
case the restrictions derived from linearization of a more general model. The second term
on the right-hand side, B (¢) z (t), can be interpreted as the inhomogeneous part of the
differential equation system (C.1) and is for reasons of simplicity left out of the further

derivation:

Dy (t) = A(¢)y (t) +u (). (C.2)
As Wymer (1993) notes, this model can be represented by a stochastically equivalent
difference equation system such that this exact discrete model will be satisfied by any set
of equispaced observations generated by the system of differential equations and can be
estimated from a sample of such observations. For any such linear difference equation
system the eigensystem is given by

A=H'AH, (C.3)

where, providing that the eigenvalues of A are distinct, H is the matrix of eigenvectors
and A is a diagonal matrix of eigenvalues );. Complex conjugate eigenvalues of the form
c1 £ i = v+ iw (where ¢; and ¢z denote real and imaginary values of the complex
root, respectively) correspond to a cycle with an amplitude proportional to e?, a period
of |2 /w| length and an implied modulus or damping rate \/c? + c3; see Wymer (1993,
Section 3.4), or Gandolfo (1981, Section 2.2.4). The task of the present subsection is to
determine and assign standard errors to periodicities and moduli implied by a discrete
analogue of model (C.2), i.e. an AR(p) process of an arbitrary order p > 2 for which an
eigensystem of the form (C.3) can be calculated, given parameter estimates of the model.
The applied concept will be the concept of sensitivity analysis, as suggested by Gandolfo
(1981), Wymer (1993) and Reiter (1995).

At the heart of sensitivity analysis stands the evaluation of the partial derivatives of
the eigenvalues A; with respect to the elements aj;, of the parameter matrix A of the
system given in (C.3). These partial derivatives are also called sensitivity coefficients.
The columns @ of the sensitivity coefficient Jacobian matrix with respect to the elements
of the difference equation system J4 ; is given by

O _ O , where A = (aji) . (C.4)

A= 94 = Bage

And since the elements a;, of A are differentiable functions of the parameters ¢, of the
system, where p equals the order of the adjusted AR(p) process, the sensitivity coefficient
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matrix with respect to the estimated AR parameters ¢, can be constructed in the following
way

8)\1' 8a'k .
Js = 7% for all i, p. C.5

For a numerically specified system matrix A and estimates of the parameters ¢, the
calculation of (C.4) is straightforward and can be conducted numerically. Gandolfo (1981)
and Wymer (1993) suggest the following general way to obtain J4 and therefrom J; via
the relationship given in (C.5): Accordingly, J4 can be constructed by letting h; be the
ith column of the matrix of eigenvectors H in (C.3), h} the column vector corresponding
to the i’” row of the inverse matrix H—!, and \; the i'* eigenvalue of A. Equation (C.4)
can then be expressed in terms of h; and h}:

o\ o\ !
94 Bay hih; (C.6)
and J,, is obtained by (C.5). A formal proof for this procedure is given in Gandolfo
(1981), Section 2.2.4.2.

Following Reiter (1995, Section 13.2), the computation of Jg needs to be computed
separately for the real and imaginary parts of A (with column elements A7 and A%, respec-
tively, where superscript “r” and “2” denote real and imaginary parts of the respective
column A; of matrix A). The standard errors of the real ¢; and imaginary parts ca of the
complex roots of system (C.2) are therefore given as the square roots of the diagonal of

Jai

the following matrix product, involving the estimated variance-covariance matrix > of
the regression coeflicients ¢,, (with dimension p X p):

52 = diag [J;P/Z\ (J(,))} , (c.7)

52, = diag [J;;pz (J;p)/} . (C.8)

Analogously, it is possible to ascribe standard errors to moduli mod; implied by fully
numerically specified systems, where I numerically construct the Jacobian of the moduli
with respect to the regression coefficients:

8 HlOdi
dpp

and apply the analogue strategy as above, in (C.7) and (C.8):

mod __
Jgt =

(C.9)

— ,70.5
5. =diag [J;;OC‘Z (Jrf;fd) ] . (C.10)

I proceed in the same way for the implied period length(s). Nota bene: Though the ratio of
estimated measure and standard error, determined according to (C.9) and (C.10), can be
interpreted in the spirit of a Student’s t-value for the mod measures,?! this interpretation

21The corresponding null would be a mod = 0, i.e. a fully out-damped cyclic component, contained in
the series under investigation.

41



is not possible in the case of estimated period lengths. In the latter case a confidence
interval interpretation is quite suggestive, providing an additional piece of information.
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