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I. Introduction 
This paper considers the estimation of panel data models with higher-order spatially 
autocorrelated error components and spatially autocorrelated dependent variables. Spatial 
interactions in data may originate from various sources such as strategic interaction between 
jurisdictions (to attract firms or other mobile agents) and firms (in their price, quantity, or 
quality setting) or general equilibrium effects which disseminate with spatial decay due to 
their transmission through trade flows, migration, or input-output relationships.1 Data sets 
used in empirical studies often share three features: first, they are available in the form of 
panel data, with a large cross-sectional and a small time series dimension; second, spatial 
interactions of various kinds co-exist – such as geography-related, trade-related, migration-
related interactions – or the decay function of a single spatial interaction is unknown; third, it 
is unclear whether spatial interactions are local – and affect only immediate neighbors – or 
global – and affect second third and other neighbors with repercussions. The estimator 
proposed here addresses the mentioned three features in a unified framework. It allows for 
panel data with a fixed but arbitrary number of channels or decay segments of spatial 
interaction in both the error components and the dependent variable, referred to as 
SARAR(R,S).  
 
In developing the estimator, we build on the SARAR(1,1) generalized moments (GM) 
framework in Kelejian and Prucha (1999) for a single cross-section and the SARAR(0,1) 
model in Kapoor, Kelejian, and Prucha (2007) for panel data error components models. 
Obvious advantages of the GM framework is that it does not rely on distributional 
assumptions and that it can be applied to large data-sets without imposing any restrictions on 
the matrices of spatial interdependence. We derive GM estimators for the spatial regressive 
parameters of the disturbance process based on alternative weighting schemes for the 
moments. We then define a feasible generalized two-stages least squares (FGTSLS) estimator 
for the model’s regression parameters. We determine asymptotic properties of the estimators 
for the case where the time dimension of the panel and the number of spatial interactions is 
fixed while the number of cross-sectional units approaches infinity. In particular, we prove 
that the proposed GM and FGTSLS procedures obtain consistent estimators of the model 
parameters and we derive their joint asymptotic distribution.  
 
                                                 
1 See Cliff and Ord (1973, 1981), Anselin (1988), and Cressie (1993) for classic references 
about spatial econometric models in general. Recent theoretical contributions of spatial panel 
data models include Baltagi, Song, and Koh (2003), Baltagi and Li (2004), Baltagi, Song, 
Jung, and Koh (2007), Kapoor, Kelejian, and Prucha (2007), Korniotis (2008), Baltagi, Egger, 
and Pfaffermayr (2008), and Lee and Yu (2008). Recent applications of spatial panel data 
models include Druska and Horrace (2004), Arbia, Basile, and Piras (2005), Egger, 
Pfaffermayr, and Winner (2005), Baltagi, Egger, and Pfaffermayr (2007), and Badinger and 
Egger (2008a). 
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The remainder of the paper is organized as follows. Section II introduces the basic model 
specification and some notation. Section III proposes GM estimators of the parameters of 
spatial dependence in the error components based on alternative weighting schemes of the 
moments. Section IV derives a two-stages least-squares routine to estimate the regression 
parameters of the model and derives the asymptotic variance-covariance matrix of all model 
parameters. The latter enables Wald tests on the structure and decay of spatial interactions in 
the SARAR(R,S) model. Section V presents the results of a Monte Carlo simulation exercise. 
Section VI summarizes our main findings and concludes. The appendix sketches the proofs of 
consistency and the asymptotic distribution of the model parameters, whereas the full details 
of the proofs are relegated to a technical appendix. 
 
 
II. Basic Model Specification and Notation 
The basic set-up of the error components model with spatially correlated error terms 
represents a generalization of Kapoor, Kelejian, and Prucha (2007), who consider a panel data 
error components model with nonstochastic explanatory variables and first-order spatial 
autoregressive disturbances, i.e., a SAR(1) model. The present paper delivers the following 
contributions. First, we allow for an R-th order spatial autoregressive process in the dependent 
variable and an S-th order spatial process in the disturbances cum error components, i.e., we 
consider a SARAR(R,S) panel data error components model. As we show below, this also 
covers the case of endogenous explanatory variables other than spatial lags of the dependent 
variable.2 Second, we prove consistency of proposed generalized moments (GM) estimators of 
the model parameters and derive their joint asymptotic distribution. In particular, we also 
relax the normality assumption used, for instance, in Kapoor, Kelejian, and Prucha (2007) to 
obtain a simplified version of the optimal weighting matrix for the moment conditions. Third, 
we provide some Monte Carlo evidence with a special emphasis on the spatial model 
parameter point estimates and the rejection probabilities of Wald tests of the SARAR(R,S) 
model against interesting alternatives such as the SARAR(1,1), SARAR(0,S), SARAR(R,0), 
and the non-spatial model. 
 
The basic model comprises Ni ,...,1=  cross-sectional units and Tt ,...,1=  time periods. For 
time period t, the model reads 
 

 )()()()(
1

,, tttt N

R

r
NNrNrNNN uyWβXy ++= ∑

=

λ , (1a) 

 
or  
 
                                                 
2 See Lee and Liu (2008) and Badinger and Egger (2008b) for cross-sectional spatial models 
with a SARAR(R,S) process. 
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 )()()( ttt NNNN uδZy += , (1b) 

 
where )(tNy  is an 1×N  vector with cross-sectional observations of the dependent variable in 

year t, )(tNX  is an KN ×  matrix of observations on K  non-stochastic explanatory variables, 

i.e., )](),...,([)( ,,1 ttt NKNN xxX =  with each 1×N  vector )(, tNkx  denoting the observations on 

the k-th explanatory variable. The structure of spatial dependence in )(tNy  is determined by 

the time-invariant NN ×  matrices Nr ,W , Rr ,...,1= , whose elements Nrijw ,,  are assumed to 

be known and will often (but need not) be specified as a decreasing function of geographical 
distance between the cross-sectional units i and j. The expression )()( ,, tt NNrNr yWy =  is 

referred to as the r-th spatial lag of Ny . The specification of a higher-order process allows the 

strength of spatial interdependence in the dependent variable (reflected in the spatial 
autoregressive parameters Nr ,λ , Rr ,...,1= ) to vary across a fixed number of R  subsets of 

relations between cross-sectional units. 
 
In equation (1b), the )( RKN +×  design matrix is given by )](),([)( ttt NNN YXZ = , with 

)](),...,([)( ,,1 ttt NRNN yyY = , and ),( ′′′= NNN λβδ , where the 1×K  parameter vector of the 

exogenous variables is given by ),...,( ,,1 ′= NKNN βββ  and the 1×R  vector of spatial 

autoregressive parameters of Ny  is defined as ),...,( ,,1 ′= NRNN λλλ .  

 
The 1×N  vector of error terms ])(),...,([)( ,,1 ′= tutut NNNNu  is assumed to follow a spatial 

autoregressive process given by  
 

 )()()(
1

,, ttt N

S

m
NNmNmN εuMu += ∑

=

ρ , (1c) 

 )()( tt NNN vμε += ,   (1d) 

 
where Nm,ρ  and Nm,M  denote the time-invariant, unknown parameters and the known NN ×   

matrix of spatial interdependence, respectively. The structure of spatial correlation in the 
disturbances is determined by the S  different, time-invariant NN ×  matrices Nm,M . As in 

equation (1a), the specification of a higher-order process allows the strength of spatial 
interdependence in the disturbances (reflected in the parameters Nm,ρ , Sm ,...,1= ) to vary 

across a fixed number of S  subsets of relations between cross-sectional units. The expression 
)()( ,, tt NNmNm uMu =  is referred to as the m-th spatial lag of Nu . The 1×S  vector of the 

spatial autoregressive parameters of )(tNu  is defined as .),...,( ,,1 ′= NSNN ρρρ  
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Finally, the 1×N  vector of error terms )(tNε  consists of two components, Nμ  and )(tNv . As 

indicated by the notation, Nμ  is time-invariant while )(tNv  is not. The typical elements of 

)(tNε  and )(tNv  are the scalars Nit ,ε  and Nitv , , respectively, and the 1×N  vector of unit-

specific error components is given by ),...,( ,,1 ′= NNNN μμμ . 

  
Stacking observations for all time periods such that t  is the slow index and i  is the fast index 
with all vectors and matrices, the model reads 
 
 NNNNNN uλYβXy ++= , (2a) 

 
or 
 
 NNNN uδZy += , (2b) 

 
with the KNT ×  regressor matrix ])(),...,1([ ′′′= TNNN XXX , and ),...,( ,,1 NRNN yyY = , where  

])(),...,1([ ,,, ′′′= TNrNrNr yyy  is the 1×NT  vector of observations on the r-th spatial lag of the 

dependent variable Nr ,y . The 1×NT  vector of disturbances )](),...,1([ TNNN uuu ′′=  for the 

spatial autoregressive process of order S  is given by  
 

 N

S

m
NNmTNmN εuMIu +⊗= ∑

=1
,, )(ρ , (2c) 

 
where TI  is an identity matrix of dimension TT × . The 1×NT  vector ])(),...,1([ ′′′= TNNN εεε  

is specified as  
 
  NNNTN vμIeε +⊗= )( , (3a) 

 
where Te  is a unit vector of dimension 1×T  and NI  is an identity matrix of dimension 

NN × . In light of (2c), the error term can also be written as  
 

 ∑∑
==

−⊗=⊗−=
S

m
NNmNmNT

S

m
NNmTNmNN

1
,,

1
,, )()( uMIIuMIuε ρρ . (3b) 

 
It follows that  
 

 ∑
=

−−⊗=
S

m
NNmNmNTN

1

1
,, ])([ εMIIu ρ , (4a) 
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and  
 

 N

R

r
NrNrNTNN

R

r
NrNrNTN t uWIIβXWIIy ])([)(])([ 1

1
,,

1

1
,,

−

=

−

=
∑∑ −⊗+−⊗= λλ , (4b) 

 
The following assumptions are maintained throughout this paper.  
 
Assumption 1.  
Let T be a fixed positive integer. (a) For all Tt ≤≤1  and 1,1 ≥≤≤ NNi , the error 

components Nitv ,  are identically and (mutually) independently distributed with 0)( , =NitvE , 

22
, )( vNitvE σ= , where ∞<<< vv b20 σ , and ∞<

+η4
, NitvE  for some 0>η . (b) For all 

1,1 ≥≤≤ NNi , the unit-specific error components Ni,μ  are identically and (mutually) 

independently distributed with 0)( , =NiE μ , 22
, )( μσμ =NiE , where ∞<<< μμσ b20 , and 

∞<
+η

μ
4

, NiE  for some 0>η . (c) The processes }{ , Nitv  and }{ , Niμ  are independent of each 

other. Assumption 1 as maintained here is slightly stronger than that in Kapoor, Kelejian, and 
Prucha (2007), since it requires not only the fourth but also the )4( η+ -th moments of the 
error components to be finite for some 0>η . This is required for the central limit theorem of 
Kelejian and Prucha (2008) to apply, which will be used to derive the asymptotic distribution 
of the parameter estimates in Section III.  
 
Assumption 1 implies that  

 
 22

,, )( vNjsNitE σσεε μ +=  for ji = and st = ,      (5a) 

 2
,, )( μσεε =NjsNitE  for ji =  and st ≠ ,            (5b) 

 0)( ,, =NjsNitE εε , otherwise.                                (5c) 

  
As a consequence, the variance-covariance matrix of the stacked error term Nε  reads 

 
 NTvNTNNN E IIJεεΩε

22
, )()( σσ μ +⊗=′= , (6a) 

 
where TTT eeJ ′=  is a TT ×  matrix with unitary elements and NTI  is an identity matrix of 

dimension NT × NT. Equation (6a) can also be written as  
 

 NNvN ,1
2
1,0

2
, QQΩε σσ += , (6b) 
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where 222
1 μσσσ Tv += . The two matrices N,0Q  and N,1Q , which are central to the estimation 

of error component models and the moment conditions of the GM estimator, are defined as    
 

 N
T

TN T
IJIQ ⊗−= )(,0 , (7) 

 N
T

N T
IJQ ⊗=,1 . (8) 

 
Notice that N,0Q  and N,1Q  are both of order NT × NT, symmetric, idempotent, orthogonal to 

each other, and sum up to NTI .3  

 
Assumption 2.  
(a) All diagonal elements of the matrices Nr ,W , Rr ,...,1= , and Ns,M , Ss ,...,1= , are zero.  

(b) The admissible parameter space is restricted as follows:  

 ),(,
rr

NNNr aa λλλ −∈ , with ∞<≤≤< λλλλ aaaa r
NN

rr ,,0 , r = 1, …, R,  and ∞<<∑
=

λλ A
R

r
Nr

1
, . 

The first part of Assumption (2b) requires the parameters Nr ,λ , Rr ,...,1=  to be finite. We 

take λa  such that )(max ,

,...,1

r

Rr
aa λλ

=
=  holds; the expression λa  will be used to denote an 1×R  

vector with elements λa . In the second part of Assumption (2b), the scalar λA  generally 

depends on the properties of the weights matrices Nr ,W . For example, with row-normalized 

matrices Nr ,W , Rr ,...,1= , assuming that 1=λA  ensures that )(
1

,,∑
=

−
R

r
NrNrN WI λ  is invertible, 

as required in Assumption (2c). If the matrices Nr ,W  are not row-normalized, Assumption 

(2c) is implied by 
1

,,...,1
max

−

=
⎟
⎠
⎞⎜

⎝
⎛= NrRr

A Wλ for some matrix norm   ⋅  (see Horn and Johnson, 

1985, p. 301). Analogous assumptions are made for the parameters of the spatial 
autoregressive error process: 

 ),(,
ss

NNNs aa ρρρ −∈ , with ∞<≤≤< ρρρρ aaaa s
NN

ss ,,0 , s = 1, …, S,  and ∞<<∑
=

ρρ A
S

m
Nm

1
, .  

We take ρa  such that )(max ,

,...,1

s

Ss
aa ρρ

=
=  holds; the expression ρa  will be used to denote an 

1×S  vector with elements ρa . As above, with row-normalized matrices Ns,M , Ss ,...,1= , the 

                                                 
3 Observe that pre-multiplying an NT × 1 vector with N,0Q  transforms its elements into 

deviations from cross-section specific sample means taken over time, and that pre-multiplying 
a vector by N,1Q  transforms its elements into cross-section specific sample means. See 

Remark A.2 in Appendix A for further properties of N,0Q  and N,1Q .  
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second part of this assumption ensures invertibility of )(
1

,,∑
=

−
S

m
NmNmN MI ρ  if 1=ρA . If the 

matrices Ns ,M  are not row-normalized, Assumption (2c) is implied by 
1

,,...,1
max

−

=
⎟
⎠
⎞⎜

⎝
⎛= NsSs

A Mρ  

for some matrix norm   ⋅ . 

(c) The matrices )(
1

,,∑
=

−
R

r
NrNrN WI λ  and )(

1
,,∑

=

−
S

m
NmNmN MI ρ  are nonsingular for 

),( rr
NNr aa λλλ −∈  and ),( rr

NNs aa ρρρ −∈ , respectively. This ensures that Nu  and Ny  are 

uniquely identified through equations (4a) and (4b).  
 
Assumption 3.  
The row and column sums of the matrices Nr ,W , Rr ,...,1= , Ns,M , Ss ,...,1= , 

1

1
,, )( −

=
∑−

R

r
NrNrN WI λ , and 1

1
,, )( −

=
∑−

S

m
NmNmN MI ρ  are bounded uniformly in absolute value. 

(See Remark A.1 in Appendix A for a definition of row and column sum boundedness.)  
 
In light of Assumptions 1-3 and Remark A.1 in the Appendix, it follows that 0u =)( NE  and 

the variance-covariance matrix of Nu  is given by  

 

 ∑∑
=

−

=

− ′−⊗−⊗=′=
S

m
NmNmNT

S

m
NNmNmNTNNN E

1

1
,,

1
,

1
,,, ])([])([)( MIIΩMIIuuΩu ρρ ε , (9a) 

 
and 
 

 ∑∑
=

−

=

− ′−−+=′
S

m
NmNmN

S

m
NmNmNvNN ttE

1

1
,,

1

1
,,

22 )())(()]()([ MIMIuu ρρσσ μ . (9b) 

 
Note that all variables and parameters except for the variances of the error components are 
allowed to depend on sample size N. Such a specification is consistent, for example, with 
models where the weights matrix is row-normalized and the number of neighbours of a given 
cross-sectional unit depends on sample size (see Kapoor, Kelejian, and Prucha, 2007, p. 102) 
or where the strength of interdependence (in terms of the spatial autoregressive parameters) 
changes with the number of neighbours. Note that NX  is allowed to depend on sample size 

and may thus also contain spatial lags of exogenous variables. As a result, the model 
specification in equations (1a)-(1c) is fairly general, allowing for higher-order spatial 
dependence in the dependent variable, the explanatory variables, and the disturbances. 
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III. GM Estimation of a SAR(S) Model 
In the following, we consider GM estimators for the spatial autoregressive parameters of the 
disturbance process in equation (1c) and derive the asymptotic joint distribution of all model 
parameters.  
 
1. Moment Conditions  
With an S-th order process (SAR(S), with 1>S ), the GM estimators of the parameters 

NSN ,,1 ,..., ρρ , 2
vσ , and 2

1σ  can be obtained by recognizing that – under Assumptions 1 and 2 – 

the moment conditions used by Kapoor, Kelejian, and Prucha (2007) hold for each matrix 

Ns,M , Ss ,...,1= . In particular, define for each Ns,M , Ss ,...,1=  

 

])()[()(
1

,,,,, ∑
=

⊗−⊗=⊗=
S

m
NNmTNmNNsTNNsTNs uMIuMIεMIε ρ . (10) 

 
A word on notation is in order here. In equation (10), subscript s has been introduced together 
with m to indicate that, with higher-order spatial processes, Ns,M  and Nm,M  meet in Ns,ε . 

While we will use index s  to refer to the matrix Ns,M , by which Nε  is pre-multiplied in 

equation (10), index m  is required for the summation over the terms NmNm ,, Mρ .  

 
The moment conditions are then given by 

Ma  2
,0,0 ]

)1(
1[]

)1(
1[ vNNNNNN TN

E
TN

E σ=′
−

=′
−

vQvεQε , (11)    

M1,s  )(1])(
)1(

1[]
)1(

1[ ,,
2

,0,,,0,,0, NsNsvNNNsNsTNNNsNNs tr
NTN

E
TN

E MMvQMMIQvεQε ′=′⊗′
−

=′
−

σ , 

M2,s  0])(
)1(

1[]
)1(

1[ ,0,,0,0, =′⊗′
−

=′
− NNNsTNNNNNs TN

E
TN

E vQMIQvεQε , 

Mb  2
1,1,1 )1(])(1[)1( σ=′+⊗′′=′ NNNNNTTNNNN N

E
N

E
N

E vQvμIeeμεQε ,  

M3,s ])(1[])(1[)1( ,1,,,1,,,,1, NNNsNsTNNNNsNsTTNNsNNs N
E

N
E

N
E vQMMIQvμMMeeμεQε ′⊗′+′⊗′′=′  

 )(1
,,

2
1 NsNstr

N
MM′= σ , 

M4,s  0])(1[])(1[)1( ,1,,1,,1, =′⊗′+′⊗′′=′ NNNsTNNNNsTTNNNNs N
E

N
E

N
E vQMIQvμMeeμεQε , 

 
where 222

1 μσσσ Tv += . The moment conditions associated with matrices Ns,M , Ss ,...,1= , 

through (10), are indexed with subscripts 1 to 4. The remaining two moment conditions, 



 10

which do not depend on s , are denoted as Ma and Mb. For an S-th order process as given by 
equation (2c), we thus have ( 24 +S ) moment conditions.4  
 
Substituting equations (3b), (10), and (1c) into the 24 +S  moment conditions (11) yields a 
( 24 +S ) equation system in ),,,...,( 2

1
2

,,1 σσρρ vNSN , which can be written as    

 
 0Γγ =− NNN b ,   (12) 

 
where Nb  is a 1]22/)1(2[ ×+−+ SSS  vector, given by 

 
 ),,,...,,...,,,..., ,,...,( 2

1
2

,,1,,1,2,1
2

,
2
,1,,1 ′= − σσρρρρρρρρρρ vNSNSNSNNNNSNNSNNb ,  

 
i.e., Nb  contains S linear terms Nm,ρ , Sm ,...,1= , S quadratic terms 2

, Nmρ , Sm ,...,1= , 

2/)1( −SS cross products NlNm ,, ρρ , SmlSm ,...,1  ,1,...,1 +=−= , as well as 2
vσ  and 2

1σ . For 

later reference, we define the 1)2( ×+S  vector of all parameters as 

), ,,...,(),,( 2
1

2
,,1

2
1

2 ′=′′= σσρρσσ vNSNvNN ρθ . 

 

Nγ  is a 1)24( ×+S  vector with elements ][ , Niγ , )24(,...,1 += Si , and NΓ  is a 

)24( +S × ]22/)1(2[ +−+ SSS  matrix with elements ][ ,, Njiγ , )24(,...,1 += Si , 

]22/)1(2[,...,1 +−+= SSSj . The elements Ni ,γ  and Nji ,,γ  will be defined below. The row-

index of the elements Nγ  and NΓ  will be chosen such that the equation system (12) has the 

following order. The first four rows correspond to the moment restrictions M1,1 to M4,1 
associated with matrix N,1M  through (10); rows five to eight correspond to M1,2 to M4,2 

associated with matrix N,2M , and so forth; rows )4( −S  to S4  correspond to the M1,S to M4,S 

associated with the matrix NS ,M . Finally, rows )14( +S  and )24( +S  correspond to the 

moment conditions Ma and Mb, respectively, which do not depend on s.  
 

                                                 
4 Notice that further moment conditions are available through pre- and post-multiplying N,0Q  

and N,1Q  with Nr ,ε′  and Ns,ε , sr ≠ , respectively, in moment conditions M1 and M3. The 

associated efficiency gain will depend on the properties of the weights matrices. If the two 
involved weights matrices are orthogonal, the corresponding moment condition is trivially 
satisfied and does not add any information. For the sake of brevity, we use the moment 
conditions given in (11), and leave an assessment of the potential efficiency gains from 
exploiting further moment conditions for future research. 
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The sample analogue to equation system (12) is given by  
 

 )(~~
NNNNN θΓγ ϑ=− b ,  (13) 

 

where the elements of Nγ~  and NΓ
~  are equal to those of Nγ  and NΓ  with the expectations 

operator suppressed and the disturbances Nu  replaced by (consistent) estimates Nu~ .  

 
GM estimates of the parameters NSN ,,,1 ..., ρρ , 2

vσ  and 2
1σ are then obtained as the solution to  

 

 )](~)([)]~~(~)~~[(minarg
2
1

2
21 ,,,..,,

NNNNNNNNNNNN
vS

 θΘθΓγΘΓγ ϑϑ
σσρρρ

′=−′− bb ,  (14) 

 
i.e., the parameter estimates can be obtained from a (weighted) non-linear least squares 

regression of Nγ
~  on the columns of NΓ

~ ; )( NN θϑ  can then be viewed as a vector of regression 

residuals. The optimal choice of the )24()24( +×+ SS  weighting matrix NΘ  and its 

estimation will be discussed below.  
 
In the following, we define the elements of Nγ  and NΓ , grouped by the corresponding 

moment conditions. Thereby, we use the following notation:  
 
 NNsTNs uMIu )( ,, ⊗= , Ss ,...,1= , and  (15a) 

 NNmNsTNNmTNsTNsm uMMIuMIMIu )())(( ,,,,, ⊗=⊗⊗= , Ss ,...,1= , Sm ,...,1= . (15b) 

 
At this point, we need to introduce an index Sl ,...,1=  for proper definition of the elements of 

Nγ  and NΓ .  

 
Moment condition M1,s delivers Ss ,...,1=  rows of equation system (12), appearing in rows 

1)1(4 +−s  with the following elements of Nγ  and NΓ : 

 

 
)1(

1
,1)1(4 −

=+− TNNsγ  )( ,,0, NsNNsE uQu′ , (16a)  

 )(
)1(

2
,,0,,,1)1(4 NsmNNsNms E

TN
uQu′

−
=+−γ , Sm ,...,1= , 

 )(
)1(

1
,,0,,,1)1(4 NsmNNsmNmSs E

TN
uQu ′

−
−=++−γ , Sm ,...,1= , 

 )(
)1(

2
,,0,,2/)1()1(,1)1(4 NslNNsmNmlmmmSs E

TN
uQu ′

−
−=−+−−++−γ , 1,...,1 −= Sm , Sml ,...,1+= , 
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 )(1
,,,12/)1(2,1)1(4 NsNsNSSSs tr

N
MM′=+−++−γ ,  

0,22/)1(2,1)1(4 =+−++− NSSSsγ . 

 
Moment condition M2,s consists of Ss ,...,1=  rows of equation system (12), appearing in rows 

2)1(4 +−s  with the following elements of Nγ  and NΓ : 

 

 )(
)1(

1
,0,,2)1(4 NNNsNs E

TN
uQu′

−
=+−γ , (16b)  

 )(
)1(

1
,,0,,0,,,2)1(4 NmNNsNNNsmNms E

TN
uQuuQu ′+′

−
=+−γ , Sm ,...,1= ,   

 )(
)1(

1
,,0,,,2)1(4 NmNNsmNmSs E

TN
uQu ′

−
−=++−γ , Sm ,...,1= ,   

 )(
)1(

1
,,0,,,0,,2/)1()1(,2)1(4 NlNNsmNmNNslNmlmmmSs E

TN
uQuuQu ′+′

−
−=−+−−++−γ , 1,...,1 −= Sm , 

 Sml ,...,1+= , 

 0,12/)1(2,2)1(4 =+−++− NSSSsγ , 

 0,22/)1(2,2)1(4 =+−++− NSSSsγ . 

 
Moment condition M3,s corresponds to Ss ,...,1=  rows of equation system (12), appearing in 

rows 3)1(4 +−s  with the following elements of Nγ  and NΓ : 

 

 
NNs
1

,3)1(4 =+−γ )( ,,1, NsNNsE uQu′ , (16c)  

 )(2
,,1,,,3)1(4 NsmNNsNms E

N
uQu′=+−γ , Sm ,...,1= , 

 )(1
,,1,,,3)1(4 NsmNNsmNmSs E

N
uQu′−=++−γ , Sm ,...,1= , 

 )(2
,,1,,2/)1()1(,3)1(4 NslNNsmNmlmmmSs E

N
uQu′−=−+−−++−γ , 1,...,1 −= Sm , Sml ,...,1+= ,   

 0,12/)1(2,3)1(4 =+−++− NSSSsγ , 

)(1
,,,22/)1(2,3)1(4 NsNsNSSSs tr

N
MM′=+−++−γ . 

 
Moment condition M4,s represents Ss ,...,1=  rows of equation system (12) appearing in rows 

4)1(4 +−s  with the following elements of Nγ  and NΓ : 
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 )(1
,1,,4)1(4 NNNsNs E

N
uQu′=+−γ , (16d)  

 )(1
,,1,,1,,,4)1(4 NmNNsNNNsmNms E

N
uQuuQu ′+′=+−γ , Sm ,...,1= ,   

 )(1
,,1,,,4)1(4 NmNNsmNmSs E

N
uQu ′−=++−γ , Sm ,...,1= ,   

 )(1
,,1,,,1,,2/)1()1(,4)1(4 NlNNsmNmNNslNmlmmmSs E

N
uQuuQu ′+′−=−+−−++−γ , 1,...,1 −= Sm , Sml ,...,1+= ,   

 0,12/)1(2,4)1(4 =+−++− NSSSsγ , 

 0,22/)1(2,4)1(4 =+−++− NSSSsγ . 

 
Moment condition Ma reflects one equation of the system in (12), appearing in row ( 14 +S ) 
with the following elements of Nγ  and NΓ : 

 

 )(
)1(

1
,0,14 NNNNS E

TN
uQu′

−
=+γ , (16e)   

 )(
)1(

2
,0,,,14 NNNmNmS E

TN
uQu′

−
=+γ , Sm ,...,1= ,    

 )(
)1(

1
,,0,,,14 NmNNmNmSS E

TN
uQu′

−
−=++γ , Sm ,...,1= ,    

 )(
)1(

2
,,0,,2/)1()1(,14 NlNNmNmlmmmSS E

TN
uQu′

−
−=−+−−++γ , 1,...,1 −= Sm , Sml ,...,1+= ,   

 1,12/)1(2,14 =+−++ NSSSSγ ,  

 0,22/)1(2,14 =+−++ NSSSSγ . 

 
Moment condition Mb is associated with one equation of the system in (12), appearing in row 

)24( +S  with the following elements of Nγ  and NΓ : 

 

 )(1
,1,24 NNNNS E

N
uQu′=+γ , (16f)   

 )(2
,1,,,24 NNNmNmS E

N
uQu′=+γ , Sm ,...,1= ,    

 )(1
,,1,,,24 NmNNmNmSS E

N
uQu′−=++γ , Sm ,...,1= ,    

 )(2
,,1,,2/)1()1(,24 NlNNmNmlmmmSS E

N
uQu′−=−+−−++γ , 1,...,1 −= Sm , Sml ,...,1+= ,   

 0,12/)1(2,24 =+−++ NSSSSγ , 

 1,22/)1(2,24 =+−++ NSSSSγ . 
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This completes the specification of the elements of the matrices Nγ  and NΓ . The similarity of 

the structure between the expressions resulting from the moment conditions Ma, M1,s, and M2,s 
on the one hand and Mb, M3,s, and M4,s on the other hand is apparent. First, they differ by the 
normalization factor and the corresponding matrix of quadratic forms, N,0Q  and N,1Q , 

respectively. Second, the rows in (12) associated with Ma, M1,s and M2,s, Ss ,...,1= , do not 

depend on 2
1σ  whereas the rows associated with Mb, M3,s, and M4,s, Ss ,...,1= , do not depend 

on 2
vσ . This fact will be used to define an initial GM estimator, which is based on a subset of 

moment conditions (Ma, M1,s, and M2,s) only, in order to obtain an estimate of the optimal 
weighting matrix NΘ . 

 
For future reference, we define the 1)12( ×+S  vector 0

Nγ  as the sub-vector containing rows 

s  and )1( +s , Ss ,...,1=  and row )14( +S of Nγ , corresponding to M1,s, M2,s, and Ma. 

Moreover, we define the )12( +S × ]12/)1(2[ +−+ SSS  matrix 0
NΓ  as the sub-matrix 

containing rows s  and )1( +s , Ss ,...,1= , and row )14( +S  of NΓ , corresponding to M1,s, 

M2,s, and Ma. 
 

Analogously, we define the 1)12( ×+S  vector 1
Nγ  as the sub-vector containing rows s2 , 

)12( +s , Ss ,...,1= , and row )24( +S  of Nγ , corresponding to M3,s, M4,s, and Mb. Finally, we 

define the )12( +S × ]12/)1(2[ +−+ SSS  matrix 1
NΓ  as the sub-matrix containing rows s2 , 

)12( +s , Ss ,...,1= , and )24( +S  of NΓ , corresponding to M3,s, M4,s, and Mb. 

 
2. Definition of GM Estimators  
We next define three alternative GM estimators for the spatial autoregressive parameters of 
the disturbance process given by (1c) and the variances of the error components.5  
 
2.1. Initial GM Estimation 
The initial GM estimator is a special case of (14), using the identity matrix as weighting 
matrix NΘ  and a subset of moment conditions (Ma, M1,s and M2,s) only. It is thus based on the 

the vector 0
Nγ  and the matrix 0

NΓ . Define 0
Nθ  as the corresponding parameter vector that 

excludes 2
1σ , i.e., ),,...,(),( 2

,,1
20

vNSNvN σρρσ =′= ρθ , and accordingly 

),,...,,...,,,..., ,,...,( 2
,,1,,1,2,1

2
,

2
,1,,1

0 ′= − vNSNSNSNNNNSNNSNN σρρρρρρρρρρb . 

 
The initial GM estimator is then obtained as the solution to  

                                                 
5 See Kapoor, Kelejian, and Prucha (2007) for analogous conditions under SARAR(0,1) 
estimation, assuming only nonstochastic regressors in equation (1a). 
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 }],0[, ),()(min{arg),,...,( 2
,

00002
,,1, vNvNNNNNvNSN b∈≤≤−′= σϑϑσρρ ρρ aρaθθ))) , (17a)  

with == ),()( 2000
vNN σϑϑ ρθ )~~( 000 bNN Γγ − .      

 
Using these initial estimates of ),...,( ,,1 NSN ρρ  and 2

vσ , the parameter 2
1σ  can be estimated 

from moment condition Mb: 
 

 ∑∑
==

−′−=
S

m
NmNmNN

S

m
NmNmNN N 1

,,,1
1

,,
2
,1 )~~()~~(1 uuQuu ρρσ )))  (17b) 

 ...~~...~~ 2
,11,24,,24,11,2424 NSSNSSSNSS γγγγ ρρρ )))

+++++ −−−−=  

 .~...~~
,,12/)1(2,24,2,112,24

2
,2,24 NSNSSSSSNNSSNSSS γγγ ρρρρρ )))))

−−+++++ −−−−  

 
2.2. Weighted GM Estimation 
While the initial GM estimator as defined in (17) is consistent (as will be shown below), it is 
inefficient. First, it ignores the information contained in moment conditions (Mb, M3,s and 
M4,s).

6 Second, it is well known from the literature on generalized method of moments 
estimation, that it is optimal to use as weighting matrix the inverse of the (properly 
normalized) variance-covariance matrix of the moments, evaluated at true parameter values. 
Denote the optimal weighting matrix, which will be derived in Subsection 3.2, by 1−

NΨ . In 

general, the optimal weighting matrix is unknown and has to be estimated, e.g., using the 
results from the initial GM estimation. In Subsection 3.3 we derive a consistent estimator of 

1−
NΨ ,  referred to as 1~ −

NΨ . The optimally weighted GM estimator is based on all )24( +S  

moment conditions and uses 1~~ −= NN ΨΘ  as the weighting matrix for the moment conditions. It 

is defined as: 
  

 }],0[],,0[, ),(~)({ minarg)~,~,~,...,~( 2
1

22
1,

2
,,1, cbvvNNNNNvNSN ∈∈≤≤−′= σσϑϑσσρρ ρρ aρaθΘθ ,   

 with μTbbc v +≥ , and == ),,()( 2
1

2 σσϑϑ vNN ρθ )~~( bNN Γγ − . (18)  

 
As already mentioned, the optimal weighting matrix is derived without distributional 
assumptions. As a consequence it involves third and fourth moments of the error components 

                                                 
6 This does not mean that any GM estimator using all moment conditions is necessarily 
superior. In fact, Kapoor, Kelejian, and Prucha (2007) show in a Monte Carlo study on their 
SAR(1) model that the initial GM estimator performs much better (in terms of bias and 
RMSE) than the unweighted GM estimator using all moment conditions. Their results suggest 
that a proper weighting of the moment conditions, in particular the weighting of moment 
conditions Ma, M1, and M2 relative to moment conditions Mb, M3, and M4 is of crucial 
importance.  
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Nitv ,  and Ni,μ . Kapoor, Kelejian, and Prucha (2008) use the assumption that Nitε ,  is normally 

distributed to obtain a simplified weighting matrix as an approximation of the true optimal 
weighting matrix. For comparison, we also consider this simplified optimal weighting matrix, 
which is shown to be a special case of 1−

NΨ  in the Appendix and referred to as 1)( −o
NΨ . The 

simplified weighted GM estimator is defined as the weighted GM estimator given in (18), 

using 1)~(~ −= o
NN ΨΘ . 

 
3. Asymptotic Properties of the GM Estimator for Nθ  

3.1 Consistency  
In order to prove consistency, the following additional assumptions are required: 
 
Assumption 4.  
Assume that NNNN ΔDuu =−~ , i.e., NNiNiNi uu Δd .,,,

~ =− , for NTi ,...,1= ,7 where ND  is an 

PNT ×  matrix, the P×1  vector Ni.,d  denotes the i-th row of ND  and NΔ  is a 1×P  vector. 

Let Nijd ,  be the j-th element of Ni.,d . For some 0>δ , we assume that ∞<≤
+

dNij ctdE
δ2

, )( , 

where dc  does not depend on N, and that )1(2/1
pN ON =Δ . 

 
Assumption 4 will be fulfilled in many settings, e.g., if model (1a) contains endogenous 
variables (such as spatial lags of Ny ) and is estimated using two-stages least squares. In that 

case, NΔ  denotes the difference between the parameter estimates and the true parameter 

values and Ni.,d  is the (negative of the) i-th row of the design matrix NZ  (compare Lemma 1 

in Subsection 2 of Section IV). Under certain conditions, Assumption 4 will also be satisfied 
if model (1a) involves a non-linear specification (see Kelejian and Prucha, 2008, p. 12). 

Finally, observe that Assumption 4 implies that ∑
=

+−
NT

i
NiNT

1

2
.,

1)(
δ

d  is )1(pO . 

 
Assumption 5. 

(a) The smallest eigenvalues of 00
NN ΓΓ ′  and 11

NN ΓΓ ′  are bounded away from zero, i.e., 

0)( *min >≥′ λλ i
N

i
N ΓΓ  for i = 1, 2. (b) )1(~

pNN o=−ΘΘ , where NΘ  are )24()24( +×+ SS  

nonstochastic, symmetric, positive definite matrices. (c) The largest eigenvalues of NΘ  are 

bounded uniformly from above, and the smallest eigenvalues of NΘ  are bounded uniformly 

away from zero. 

                                                 
7 Note that we use single indexation NTi ,...,1=  to refer to the elements of the vectors that are 
stacked over time periods. (See the remark on notation in Appendix A.)  
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Assumption 5 implies that the smallest eigenvalues of NNΓΓ′  and NNN ΓΘΓ′  are bounded 

uniformly away from zero, ensuring that the true parameter vector Nθ  is identifiable unique. 

Moreover, by the equivalence of matrix norms, it follows from Assumption 5 that NΘ  and 
1−

NΘ  are O(1). 

 
Assumptions 1-5 ensure consistency of the GM estimators for ),,( 2

1
2 σσ vNN ρθ ′= . We 

summarize these results in the following theorems, which are proved in Appendix B.  
 

Theorem 1a. Consistency of Initial GM Estimator 0~
Nθ  

Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter 

space, the initial GM estimators ),,...,( 2
,,1

0 ′= NvSNN ρρ σ))))
θ  defined by (17a), and 2

,1 Nσ) , defined 

by (17b) are consistent for NSN ,1, ,..., ρρ , 2
vσ , and 2

1σ , i.e.,  

 0  ,s,
p

NsN →− ρρ) , Ss ,...,1= ,   0  22
,

p
vNv →−σσ) , and 0  2

1
2
,1

p
N →− σσ)  as ∞→N . 

 

Theorem 1b. Consistency of Weighted GM Estimator Nθ
~  

Suppose Assumptions 1-5 hold. Then, provided the optimization space contains the parameter 

space, the weighted GM estimators ])~(~),~(~),~(~),...,~(~[)~(~ 2
,1

2
,,,1 ′= NNNNvNNSNNNN ρρ ΘΘΘΘΘθ σσ  

defined by (18) are consistent for ,,,..., 2
,1, vNSN σρρ  and 2

1σ , i.e.,  

 0  )~(~
,s,

p
NsNN →− ρρ Θ , Ss ,...,1= ,  0  )~(~ 22

,
p

vNNv →−σσ Θ , and 0 )~( ~ 2
1

2
,1

p
NN →−σσ Θ  as ∞→N . 

 
This result holds for an arbitrary weighting matrix (that satisfies Assumption 5). Hence, it 

applies to both the optimally weighted GM estimator defined by (18) with 1)~(~ −= NN ΨΘ and 

the simplified optimally weighted GM estimator o
Nθ

~  with 1)~(~ −= o
NN ΨΘ .  

 
3.2 Asymptotic Distribution of GM Estimator for Nθ   

In the following we consider the asymptotic distribution of the optimally weighted GM 

estimator Nθ
~ . To establish asymptotic normality of )~,~ ,~(~ 2

,1
2
, NNvNN σσρθ = , we need some 

additional assumptions. 
 
Assumption 6. 
Let ND  be defined as in Assumption 4, such that NNNN ΔDuu =−~ . For any real NN ×  

matrix NA , whose row and column sums are bounded uniformly in absolute value, it holds 

that )1()(11
pNNNNNN oENN =′−′ −− uADuAD . 
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A sufficient condition for Assumption 6 is, e.g., that the columns of ND  are of the form 

NNN εΠπ + , where the elements of Nπ  are bounded uniformly in absolute value and the row 

and column sums of NΠ  are bounded uniformly in absolute value (see Kelejian and Prucha, 

2008, Lemma C.2). This will be the case in many applications, e.g., for the model in equation 
(1a), if ND  equals (the negative of) matrix NZ  (compare Lemma 1 in Section IV). 

 
Assumption 7. 
Let NΔ  be defined as in Assumption 4. Then, 

  
 )1()()( 2/12/1

pNNN oNTNT +′= − ξTΔ , with ),( ,, ′′′= NNvN μTTT , ),( ′′′= NNN μvξ , i.e., 

 )1()()()( ,
2/1

,
2/12/1

pNNNNvN oNTNTNT +′+′= −− μTvTΔ μ ,  

 
where NT  is an PNNT ×+ )( -dimensional real nonstochastic matrix whose elements are 

bounded uniformly in absolute value; Nv,T  is of dimension )( PNT ×  and N,μT  is of 

dimension )( PN × . As remarked above, NΔ  typically denotes the difference between the 

parameter estimates and the true parameter values. Assumption 7 will be satisfied by many 
estimators. In Section IV, we verify that it holds if the model in equation (1a) is estimated by 
two-stages least squares (TSLS) or feasible generalized two-stages least squares (FGTSLS).  
 
The limiting distribution of the GM estimator of Nθ will be seen to depend on (the inverse of) 

the matrix NNN JΘJ′  and the variance-covariance matrix of a vector of quadratic forms in Nv  

and Nμ , denoted as Nq . We consider each of these expressions in the following. The 

)2()24( +×+ SS  matrix NJ  of derivatives of the 1)24( ×+S  vector of moment conditions in 

(11) is given by   
 

 
θ
ΓγθJ
′∂

−∂
=

)()( NNN
NN

b ),,,...,( ,,,,,,,1, 1 NiNiNSiNi jjjj
v σσ= , with (19a) 

 =Nsij ,,
s

NNiNi

ρ∂
−∂ )( .,., bΓγ

, )24(,...,1 += Si , Ss ,...,1= , 

=Ni v
j ,,σ

v

NNiNi

σ∂
−∂ )( .,., bΓγ

, )24(,...,1 += Si , 

=Nij ,, 1σ
1

.,., )(
σ∂

−∂ NNiNi bΓγ
, )24(,...,1 += Si , 

 
where Ni.,γ  and Ni.,Γ  denote the i-th row of Nγ  and NΓ  respectively. 
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Using 0
θ
γ

=
′∂

∂ N  and ignoring the negative sign, we have  

 

NNNNN Bb ΓΓ
θ

ρJ =
′∂

∂
=)( ,   (19b) 

 
where NΓ  is defined above and of dimension )24( +S × ]22/)1(2[ +−+ SSS  and NB  is a  

)2(]22/)1(2[ +×+−+ SSSS  matrix of the form  
 
 ),,,( ,4,3,21 ′′′′= NNNN BBBBB ,  (20a) 

 
with ),( 21 ×= SS 0IB , )]),2([ 2,1,2 ×== SNs

S
sN diag 0ρB , and ),...,( ,1,3,1,3,3 ′′′= − NSNN BBB  is an 

SSS ×− 2/)1(  matrix, consisting of )1( −S  vertically arranged blocks Nm,,3B , 

)1(,...,1 −= Sm , which have the following structure:  
 
 ),,,( 2)(,,,,,3 ×−= mSNmNmNmNm 0EdCB , (20b) 

 
where Nm,C  is a )1()( −×− mmS  matrix of zeros,8 Nm,d  is a 1)( ×− mS  vector, defined as 

),...,( ,,1, NSNmNm ρρ +=d , and mSNmNm −= I,, ρE . Finally, N,4B  is a )2(2 +× S matrix, defined 

as  
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

+×

×

1,
0,1,

11

1
,4

S

S
N 0

0
B . (20c) 

 
For later reference, note that NB  has full column rank )2( +S ; as a consequence, the 

)2()2( +×+ SS  matrix NNBB′  is positive definite (see, e.g., Greene, 2003, p. 835).  

 
We next consider the vector Nq  and its limiting distribution. First, define ),( NNN Δθq  as the 

1)24( ×+S  vector of sample moments as given by (11) with the expectation operator 
suppressed, evaluated at the true parameter values, and ignoring the deterministic constants: 
 

                                                 
8
 I.e., there is no block N,1C  in N,1,3B .  
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=),( NNN Δθq

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′
′

′
′
′
′

′
′
′
′

−

NNbN

NNaN

NNSN

NNSN

NNSN

NNSN

NNN

NNN

NNN

NNN

N

uCu
uCu
uCu
uCu
uCu
uCu

uCu
uCu
uCu
uCu

~~
~~
~~
~~
~~
~~

.

~~
~~
~~
~~

,

,

,,4

,,3

,,2

,,1

,1,4

,1,3

,1,2

,1,1

1  ,    (21) 

 
  where 
 

 ∑∑
==

−⊗′⊗′−⊗
−

=
S

m
NmNmNTNNsNsTN

S

m
NmNmNTNs T 1

,,,0,,,0
1

,,,,1 )]([)()]([
)1(

1 MIIQMMIQMIIC ρρ , 

 ∑∑
==

−⊗′+⊗′−⊗
−

=
S

m
NmNmNTNNsNsTN

S

m
NmNmNTNs T 1

,,,0,,,0
1

,,,,2 )]([)]([)]([
)1(2

1 MIIQMMIQMIIC ρρ ,

 ∑∑
==

−⊗′⊗′−⊗=
S

m
NmNmNTNNsNsTN

S

m
NmNmNTNs

1
,,,1,,,1

1
,,,,3 )]([)()]([ MIIQMMIQMIIC ρρ , 

 ∑∑
==

−⊗′+⊗′−⊗=
S

m
NmNmNTNNsNsTN

S

m
NmNmNTNs

1
,,,1,,,1

1
,,,,4 )]([)]([)]([

2
1 MIIQMMIQMIIC ρρ , 

 ∑∑
==

−⊗′−⊗
−

=
S

m
NmNmNTN

S

m
NmNmNTNa T 1

,,,0
1

,,, )]([)]([
)1(

1 MIIQMIIC ρρ , 

 ∑∑
==

−⊗′−⊗=
S

m
NmNmNTN

S

m
NmNmNTNb

1
,,,1

1
,,, )]([)]([ MIIQMIIC ρρ . (22) 

 
By Assumption 3 and Remark A.1 in Appendix A, the row and column sums of the 
symmetric NTNT ×  matrices Nsp ,,C , 4,...,1=p , Ss ,...,1= , Na,C , and Nb,C  are bounded 

uniformly in absolute value. Also, note that Ns,,3C , Ns,,4C , Nb,C  differ from Ns,,1C , Ns,,2C , 

Na,C  only by the normalization and the use of N,1Q  versus N,0Q . 

 
In light of (21) and Lemma B.1 (see Appendix B), the elements of ),(2/1

NNNN Δρq  can be 

expressed as  
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 =),(2/1
NNNN Δθq )1(

.

2/1
,,

2/1

2/1
,,

2/1

2/1
,,4,,4

2/1

2/1
,,3,,3

2/1

2/1
,,2,,2

2/1

2/1
,,1,,1

2/1

2/1
,1,4,1,4

2/1

2/1
,1,3,1,3

2/1

2/1
,1,2,1,2

2/1

2/1
,1,1,1,1

2/1

p

NNbNNaN

NNaNNaN

NNSNNSN

NNSNNSN

NNSNNSN

NNSNNSN

NNNNN

NNNNN

NNNNN

NNNNN

o

NN
NN

NN
NN
NN
NN

NN
NN
NN
NN

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′+′
′+′
′+′
′+′
′+′
′+′

′+′
′+′
′+′
′+′

−

−

−

−

−

−

−

−

−

−

ΔαuCu
ΔαuCu
ΔαuCu
ΔαuCu
ΔαuCu
ΔαuCu

ΔαuCu
ΔαuCu
ΔαuCu
ΔαuCu

, (23) 

 
where )(2 ,,

1
,, NNspNNsp EN uCDα ′= − , 4,...,1=p , Ss ,...,1= , )(2 ,

1
, NNaNNa EN uCDα ′= − , and  

)(2 ,
1

, NNbNNb EN uCDα ′= − . By Lemma B.1 the elements of the 1×P  vectors Nsp ,,α , 

4,...,1=p , Ss ,...,1= , Na,α  and Nb,α  are bounded uniformly in absolute value.  

 
Using (22), (3c), Assumption 7, and NNNN vQεQ ,0,0 =  we obtain:  

 

 ),(2/1
NNNN Δθq )1(

)1(
1

.

)]([
2
1

)(

)]([
)1(2

1

)(
)1(

1

,,1

,,0

,,4,1,,,1

,,3,1,,,1

,,2,0,,,0

,,1,0,,,0

2/1
p

NNbNNN

NNaNNN

NNsNNNsNsTNN

NNsNNNsNsTNN

NNsNNNsNsTNN

NNsNNNsNsTNN

o

T

T

T

N +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′+′

′+′
−

′+′+⊗′

′+′⊗′

′+′+⊗′
−

′+′⊗′
−

= −

ξaεQε

ξavQv

ξaεQMMIQε

ξaεQMMIQε

ξavQMMIQv

ξavQMMIQv

,  (25) 

 
for Ss ,...,1= . The 1)( ×+ NNT  vector ),( ′′′= NNN μvξ , NspNNsp T ,,

1
,, αTa −= , 4,...,1=p , 

Ss ,...,1= , NaNNa T ,
1

, αTa −= , and NbNNb T ,
1

, αTa −= , which can also be written as  

 
])(,)[(),( ,,,,,,

1
,,,,,, ′′′=′′′= −

NspNNspNvNsp
v

NspNsp T αTαTaaa μ
μ , Ss ,...,1= , 4,...,1=p , and  

])(,)[(),( ,,,,
1

,,, ′′′=′′′= −
NaNNaNvNa

v
NaNa T αTαTaaa μ

μ ,  

])(,)[(),( ,,,,
1

,,, ′′′=′′′= −
NbNNbNvNb

v
NbNb T αTαTaaa μ

μ . 
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Observe that the elements of Nsp ,,a , 4,...,1=p , Ss ,...,1= , Na,a , and Nb,a  are bounded 

uniformly in absolute value by Assumption 7 and Lemma B.1. Utilizing  
  (26) 
 NNNsNsTNN εQMMIQε ,1,,,1 )( ′⊗′ NNsNsNNNNsNsTNN T μMMμvQMMIQv ,,,1,,,1 )( ′′+′⊗′= ,  

 NNsNsNNNNsNsTNNNNNsNsTNN
T μMMμvQMMIQvεQMMIQε )(
2

)]([
2
1)]([

2
1

,,,1,,,1,1,,,1 ′+′+′+⊗′=′+⊗′ ,  

 NNN εQε ,1′ NNNNN T μμvQv ′+′= ,1 , 

 
we have 
  (27) 
 

)1(

)1(
1

.

)(
2

)]([
2
1

)(

)]([
)1(2

1

)(
)1(

1
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,,1

,,0
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,,2,0,,,0
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2/12/1
p

NNbNNNNN

NNaNNN
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NNN o

T
T

T
T
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T

NN +

⎥
⎥
⎥
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⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′+′+′

′+′
−

′+′+′+′+⊗′

′+′′+′⊗′

′+′+⊗′
−

′+′⊗′
−

= −

ξaμμvQv

ξavQv

ξaμMMμvQMMIQv

ξaμMMμvQMMIQv

ξavQMMIQv

ξavQMMIQv

Δθq  

 )1()1(*2/1
pNpN ooN +=+= − qq .   

 
Next, consider the 1)24( ×+S vector  
 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

== −−

*
,

*
,

*
,

*
,1

2/1*2/1

.

Nb

Na

NS

N

NN NN

q

q

q

q

qq .  (28) 

 
Each element *

,Nsq , Ss ,...,1= , is a 14×  vector, given by  

 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

*
,,4

*
,,3

*
,,2

*
,,1

*
,

Ns

Ns

Ns

Ns

Ns

q

q

q

q

q , (29) 
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where *
,, Nspq , 4,...,1=p , Ss ,...,1= , *

,Naq , and *
, Nbq  can be written as linear quadratic forms in 

the 1)( ×+ NNT  vector ),( ′′′= NNN μvξ , i.e., we have  

 
 NNspNNspNNsp ξaξAξ ,,,,

*
,, ′+′=q , 4,...,1=p , Ss ,...,1= ,    (30) 

 NNaNNaNNa ξaξAξ ,,
*
, ′+′=q , and  

 NNbNNbNNb ξaξAξ ,,
*
, ′+′=q . 

 
 We consider each of these terms in the following.  
 

NNsNNsNNs ξaξAξ ,,1,,1
*

,,1 ′+′=q , where (31) 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ′⊗
−=⎥

⎦

⎤
⎢
⎣

⎡
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××

×

×

×

NNNTN

NNTNNsNsTN

NsNTN

NNT
v

Ns
Ns T

00

0QMMIQ
A0
0A

A ,0,,,0

,,1

,,1
,,1

)(
)1(

1
μ  , and  

 ),( ,,1,,1,,1
′′=′ μ

Ns
v

NsNs aaa , 

 
and the 0  terms denote zero-matrices, whose dimensions are indicated by the subscript.   

 

NNsNNsNNs ξaξAξ ,,2,,2
*

,,2 ′+′=q , where 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ′+⊗
−=⎥

⎦

⎤
⎢
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×
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NNTNNsNsTN

NsNTN

NNT
v
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Ns T

00

0QMMIQ
A0
0A
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,,2

,,2
,,2

)]([
)1(2

1
μ , and  (32a) 

 ),( ,,2,,2,,2
′′=′ μ

Ns
v

NsNs aaa . 

 
 NNsNNsNNs ξaξAξ ,,3,,3

*
,,3 ′+′=q , where  

 ⎥
⎦

⎤
⎢
⎣

⎡
′

′⊗
=⎥

⎦

⎤
⎢
⎣

⎡
=

×

×

×

×

NsNsNTN

NNTNNsNsTN

NsNTN

NNT
v
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Ns T ,,

,1,,,1

,,3

,,3
,,3

)(
MM0

0QMMIQ
A0
0A

A μ , and  (32b) 

 ),( ,,3,,3,,3
′′=′ μ

Ns
v

NsNs aaa . 

 

NNsNNsNNs ξaξAξ ,,4,,4
*

,,4 ′+′=q , where  

⎥
⎥
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⎦

⎤

⎢
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⎢

⎣

⎡
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=⎥

⎦
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NsNsNTN
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v
NsNTN

NNT
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Ns T MM0

0QMMIQ
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 ),( ,,4,,4,,4
′′=′ μ

Ns
v

NsNs aaa . 
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 NNaNNaNNa ξaξAξ ,,
*
, ′+′=q , where  
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⎢
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⎣

⎡
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NaNTN

NNT
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0Q
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,
, )1(

1
μ , and  (32e) 

 ),( ,,,
′′=′ μ
Na

v
NaNa aaa . 

 
 NNbNNbNNb ξaξAξ ,,

*
, ′+′=q , where  

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

×

×

×

×

NNTN

NNTN

NbNTN

NNT
v

Nb
Nb TI0

0Q
A0
0A

A ,1

,

,
, μ , and  (32f) 

 ),( ,,,
′′=′ μ
Nb

v
NbNb aaa . 

 
Note that the row and column sums of the symmetric )()( NNTNNT +×+  matrices 

NsNs ,,4,,1 ,...,AA , Ss ,...,1= , Na,A , and Nb,A , are bounded uniformly in absolute value by 

Assumption 3 and Remark A.1. Moreover, the elements of the ),( ′′′= NNN μvξ  are 

independently distributed by Assumption 1. Hence, the variance-covariance matrix of Nξ  is  

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

×

×

NNTN

NNTNTv
N I0

0I
Ωξ 2

2

,
μσ

σ
. (33) 

 
In order to calculate the variance-covariance matrix of Nq , denoted as NΨ , we invoke 

Lemma A.1 in Kelejian and Prucha (2008). It is given by )( **1 ′= NN
-

N EN qqΨ , which is a 

symmetric )24()24( +×+ SS  matrix, and takes the following form: 
 
 )( ,, NsrN E=Ψ , 1,...,1, += Ssr , i.e.,  (34a) 

 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

++++

+

+

NSSNSSNS

NSSNSSNS

NSNSN

N

,1,1,,1,1,1

,1,,,,1,

,1,1,,1,1,1

..
.

EEE

EEE

EEE

Ψ .  (34b) 

 
Observe that the matrix NΨ  contains three parts. 

 
i) The upper left block is of dimension SS 44 × , consisting of 2S  blocks of dimension 4 × 4, 
which are defined as   
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 )()( ,
,

*
,

*
,

1
,,

qp
srNsNrNsr EN E=′= − qqE , Ssr ,...,1, = , 4,...,1, =qp .   (34c) 

 
The elements qp

Nsr
,

,,E , 4,...,1, =qp , Ssr ,...,1, =  are defined as  

 
 ),( *

,,
*

,,
1,

,, NsqNrp
qp

Nsr CovN qq−=E   (34d)  

 )(2)(2 ,,,,
14

,,,,
14 μμ

μσσ NsqNrp
v

Nsq
v

Nrpv TrNTrN AAAA −− +=  

 μμ
μσσ NsqNrpN

v
Nsq

v
Nrpv NN ,,,,

12
,,,,,

12 aaaa ′+′+ −−

 ∑∑
=

−

=

− −+−+
N

i
NiisqNiirp

NT

i

v
Niisq

v
Niirpvv aaNaaN

1
,,,,,,

14)4(

1
,,,,,,

14)4( )3()3( μμ
μμ σσσσ  

 ∑∑
=

−

=

− ++++
N

i
NisqNiirpNiisqNirp

NT

i

v
Nisq

v
Niirp

v
Niisq

v
Nirpv aaaaNaaaaN

1
,,,,,,,,,,,,

1)3(

1
,,,,,,,,,,,,

1)3( )()( μμμμ
μσσ , 

 
where v

Niirpa ,,,  and μ
Niirpa ,,,  denote the i-th main diagonal element of the matrices  v

Nrp ,,A  and 
μ

Nrp ,,A , respectively, and v
Nirpa ,,,  and v

Nirpa ,,,  denote the i-th element of the vectors v
Nrp ,,a  and 

μ
Nrp ,,a  respectively. The terms )3(

vσ , )3(
μσ  and )4(

vσ , )4(
μσ  denote the third and fourth moment 

of Nitv ,  and Nit ,μ , respectively. 

 
ii) The last two rows and columns are matrices of dimension )42( S×  and )24( ×S , 
respectively, each of which is made up by S  blocks of dimension  )42( ×  )24( × , defined as  
 
 ),()( *

,,
*

,
1,

,,1,,1 NsqNp
qp

NsSNsS CovN qq−
++ == EE , bap ,= , 4,...,1=q , and Ss ,...,1= , (34e) 

 
and )( ,11, ′= ++ sSSs EE , Ss ,...,1= . The elements qp

NsS
,

,,1+E  are defined as in (34d), using the 

corresponding indexation.   
 
iii) Finally, the lower right block of dimension 2 × 2, is defined as  
 
 ),()( *

,
*

,
1,

,1,1,1,1 NqNp
qp

NSSNSS CovN qq−
++++ == EE , baqp ,, = ,  (34f) 

 
where the elements qp

NsS
,

,,1+E  are defined as in (34d), using the corresponding indexation. 

 
For definiteness, we add that the position of each block Nr,s ,E  is such that its upper left 

element appears in row )34( −r  and column )34( −s  of the )24()24( +×+ SS  matrix NΨ . 

The position of each block sS ,1+E , Ss ,...,1= , is such that its first element appears in row 
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)14( +S  and column )34( −s  of NΨ . Finally, the upper left element of the block ( ),1,1 NSS ++E  

appears in row )14( +S  and column )14( +S  of NΨ  . 

 
The expression given by (34d) holds generally. Part of the elements of NΨ  can be stated in 

simpler terms, considering the matrices and vectors in (32), which appear in the quadratic 
forms. In particular, the submatrices μ

Nsp ,,A , 2,1=p , and μ
Na,A  are zero such that the second 

term in the first line of (34d), and the second term in the third line, drop out for 2,1=p  or 

2,1=q  and where Na,A  is involved. If both sub-matrices associated with Nit ,μ  are zero 

( 2,1== qp , or where Na,A  appears twice), the second term in the fourth line drops out as 

well. Further, the matrices Nsp ,,A  have zero main diagonal elements for 4,2=p  such that the 

terms involving the fourth moments are zero for 4,2=p  or 4,2=q ; for 4,2=p  and 4,2=q  

or 4=q , the expressions involving the third moments of Nitv ,  and Nit ,μ  are zero as well. 

Moreover, due to the orthogonality of N,0Q  and N,1Q , the terms in the first line drop out when 

N,0Q  and N,1Q  meet in the trace expression. Finally, if Nv  and Nμ  are normally distributed, 

the terms involving the third and fourth moments of Nv  and Nμ  drop out for all elements of 

NΨ ; we denote the variance-covariance matrix under the assumption that Nv  and Nμ  are 

normally distributed as o
NΨ . If Nv  and Nμ  are not normally distributed, o

NΨ  can be regarded 

as an approximation of the true matrix NΨ .  

 

To derive the asymptotic distribution of Nq  and Nθ
~  we invoke the central limit theorem for 

vectors of linear quadratic forms given by Kelejian and Prucha (2008, Theorem A.1) and 
Corollary F4 in Pötscher and Prucha (1997). We summarize the results regarding the 

asymptotic distribution of Nθ
~  in the following Theorem, which is proved in Appendix B.  

 

Theorem 2. (Asymptotic Normality of Nθ
~ ) 

Let Nθ
~  be the GM estimator defined by (18). Suppose Assumptions 1-7 hold and, 

furthermore, that 0)( *
min >≥ ΨΨ cNλ . Then, provided the optimization space contains the 

parameter space, we have  
 

 )1()()~( 2/112/1
pNNNNNNNNN oN +′′=− − ξΨΘJJΘJθθ , with  

 NNNNN Bb ΓΓ
θ

J =
′∂

∂
= ,  and 

 ),0( 24
2/1

+
− →= S

d
NNN N IΨξ q , 
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where )( NNN E qq ′=Ψ  and ))(( 2/12/1 ′= NNN ΨΨΨ . 

 

Furthermore )1()~(2/1
pNN ON =− θθ  and 

 
 11

~ )()()( −− ′′′= NNNNNNNNNNNNN
JΘJJΘΨΘJJΘJΘΩθ , 

 
where 

Nθ
Ω~  is positive definite. 

 
Theorem 2 implies that the difference between the cumulative distribution function of 

)~(2/1
NNN θθ −  and that of ),0( ~

N
N θΩ  converges pointwise to zero, which justifies the use of 

the latter as an approximation of the former.9 
 
Note that 111

~ )()( −−− ′= NNNNN
JΨJΨΩθ and that )()( 1

~~
−− NN NN

ΨΩΘΩ θθ  is positive semidefinite. 

Thus, using a consistent estimator of 1−
NΨ  (which will be derived below) as weighting matrix 

NΘ  leads to the efficient GM estimator. We add that NΨ  is not exactly equal to the variance-

covariance matrix of the moments, since the GM estimates are based on estimated rather than 
the true disturbances and since there is an endogenous right-hand side variable in equation 
(1). 
 
Remark 1. Under normality, Theorem 2 holds, with NΨ  replaced by o

NΨ . If Nε  is not 

normal the use of o
NΨ  delivers an approximation to the true variance-covariance matrix of 

Nθ
~ .  

 

3.3 Estimation of the Variance-Covariance Matrix of Nθ
~  

In the following, we develop a consistent estimator for the variance-covariance matrix of Nθ
~ . 

Define   
 

 NNN B
~~~ ΓJ = . (35) 

 
We next specify estimators for NspNNsp ,,,, αTa = , 4,...,1=p , Ss ,...,1= , NaNNa ,, αTa = , and 

NbNNb ,, αTa = . The matrix NT  will often be of the form 

 
 NNN PFT =   with ),( ,, ′′′= NNvN μFFF ,   (36a) 

                                                 
9 Compare Corollary F4 in Pötscher and Prucha (1997). 
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which can also be written as  
 
 ),( ,, ′′′= NNvN μTTT  with NNvNv PFT ,, = , NNN PFT ,, μμ = ,  

 
and  
 

 N

S

m
NmNmNTNv HMIIF ∑

=

−′−⊗=
1

1
,,, ])([ ρ ,  (36b) 

 N

S

m
NmNmNTNTN HMIIIeF ∑

=

−′−⊗⊗′=
1

1
,,, ])()[( ρμ , 

 
or, alternatively,  
 

 N

S

m
NmNmNTNNv HMIIΩF ε ∑

=

− −⊗=
1

,,
1
,, )]([ ρ ,  (36c) 

 N

S

m
NmNmNTNTN HMIIIeF ∑

=

− −⊗⊗′=
1

,,
2

1, )]()][([ ρσμ , 

 
where Nv,F  is a real nonstochastic *PNT ×  matrix, N,μF  is a real nonstochastic *PN ×  matrix, 

NH  is a real nonstochastic *PNT ×  matrix of instruments, and NP  is a real nonstochastic 

PP ×*  matrix, with P as in Assumption 7.  

 
To be more specific, when equation (1a) is estimated using twp-stages least squares (TSLS), 

)~( NNN δδΔ −=  and the matrix NP  will be of the structure as defined above and can be 

estimated consistently by some estimator NP~  (see Section IV).  

 
The estimators for NT  are defined as  

 

 NNvNv PFT ~~~
,, = ,  NNN PFT ~~~

,, μμ = ,  (37a) 

 N

S

m
NmNmNTNv HMIIF ∑

=

+′−⊗=
1

,,, ])~([~ ρ , or                 (37b) 

 N

S

m
NmNmNTNTN HMIIIeF ∑

=

+′−⊗⊗′=
1

,,, ])~()[(~ ρμ ,        

 
or  
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 N

S

m
NmNmNTNNv HMIIΩF ε ∑

=

− −⊗=
1

,,
1
,, )]~([~~ ρ ,          (37c) 

 N

S

m
NmNmNTNTNN HMIIIeF ∑

=

− −⊗⊗′=
1

,,
2

,1, )]~()][(~[~ ρσμ .           

 
The estimators of NspNNsp ,,,, αTa = , bap ,,4,...,1= , Ss ...,1= , NaNNa ,, αTa = , and 

NbNNb ,, αTa =  are then given by 

 

 NspNNsp ,,,,
~~~ αTa =  (38) 

  

with )~~(2~
,,

1
,, NNspNNsp N uCDα ′= − , and the matrices Nsp ,,

~C , 4,...,1=p , Ss ,...,1= , Na,
~C , and 

Nb,
~C  are given by (22) with Nρ  replaced by Nρ

~ .  

 

The elements of the estimated )24()24( +×+ SS  matrix NΨ~  are defined in (34d), with Nv,σ  

and N,μσ  replaced by Nv,
~σ  and Nv,

~σ . The third and fourth moments of Ni,μ  and Nitv , , 

denoted as )3()3( , vσσ μ  and )4()4( , vσσ μ , can be estimated consistently as follows (see Appendix 

B): 
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as well as  
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where ∑
=

−⊗=
S

m
NNmNmNTN

1
,,

~)~(~ uMIIε ρ .10 Based on NΨ~ , we can now define the estimator for 

Nθ
Ω~  as  

 

  ++ ′′′= )~~~(~~~~~)~~~()~(~
~ NNNNNNNNNNNNN

JΘJJΘΨΘJJΘJΘΩθ . (41) 

 

The following theorem establishes the consistency of NΨ~  and 
Nθ

Ω~
~ . 

 
Theorem 3. Variance-Covariance Matrix Estimation 
Suppose all of the assumptions of Theorem 2, apart from Assumption 5, hold and that 
additionally all of the fourth moments of the elements of ND  are bounded uniformly. Suppose 

furthermore (a) that the elements of the nonstochastic matrices NH  are bounded uniformly in 

absolute value, (b) 1sup
1

, <∑
=

S

s
NsN ρ  and that the row and column sums of NM  are bounded 

uniformly in absolute value by one and some finite constant respectively, and  

(c) )1(~
pNN o=− PP  with )1(ON =P . Then, )1(~

pNN o=−ΨΨ  and )1(~ 11
pNN o=− −− ΨΨ . 

Furthermore, if Assumption 5 holds, then also )1(~
~~ po

NN
=− θθ ΩΩ . 

 
Remark 1. 

Theorem 3 also holds, if Nθ
~  is replaced by some other estimator )1()()( 2/1

pNN ONT =− θθ
(

. 

Notice that condition (b) can be dropped in case that N

S

m
NmNmNTNNv HMIIΩF ε ∑

=

− −⊗=
1

,,
1
,, )]([ ρ  

and N

S

m
NmNmNTNTN HMIIIeF ∑

=

− −⊗⊗′=
1

,,
2

1, )]()][([ ρσμ . The consistency result for 1~ −
NΨ  

verifies that this estimator for 1−
NΨ  can indeed be used in the formulation of an efficient GM 

estimator.  
 
3. Joint Distribution of the GM Estimator for Nθ  and Estimators of Other Model 

Parameters  

Note that both )~(2/1
NNN θθ −  and NNT Δ2/1)( , and thus also NN Δ2/1  are asymptotically 

linear in Nξ . Hence, the joint distribution of the vector ])~(,[ 2/12/1 ′′−′ NNN NN θθΔ  can be 

derived invoking the central limit theorem for vectors of quadratic forms by Kelejian and 
Prucha (2008). 
                                                 
10 Compare Gilbert (2002) for the estimation of third and fourth moments in error component 
models without spatial lags and without spatial autoregressive disturbances. 
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 Consider the 1)24( * ×++ SP  vector of linear and linear quadratic forms in Nξ :  
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.     (42) 

 
Its variance-covariance matrix is of dimension )24()24( ** ++×++ SPSP  and given by: 
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ΨΨ
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,,

θ

θ  , (43a) 

 
where the )24()24( +×+ SS  matrix NΨ  is defined above, N,ΔΔΨ  is of dimension ** PP ×  and 

defined as  
 
 )()(])[( ,,

2
,,

211
, NNNvNvvNNNNN NTNTE μμμσσ FFFFFξξFΨ ′+′=′′= −−

ΔΔ , (43b) 

 
and the )24(* +× SP  matrix N,θΔΨ  is given by  

 
 ])[( 2/1

, NNNN NTE q′′= −
Δ ξFΨ θ  (43c) 
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where v

Nqp ,,Aκ  and μ
Nqp ,,A

κ  are 1×NT  and 1×N  vectors, whose i-th element corresponds to the 

i-th main diagonal element of v
Nqp ,,A  and μ

Nqp ,,A , respectively.  

 
As we demonstrate in Appendix B, the matrix No,Ψ  can be estimated consistently by  
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Regarding the joint limiting distribution of )~(2/1
NNN θθ −  and NNT Δ2/1)( , we now have the 

following result.  
 

Theorem 4. Joint Distribution of Nθ
~  and Other Model Parameters 

Suppose all assumptions used in Theorem 3 hold and 0)( *
,min >≥

o
cNo ΨΨλ . Then,   

 

 )1(
)()~( ,
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⎦
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⎡
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 ⎥
⎦

⎤
⎢
⎣

⎡

′⎥
⎦

⎤
⎢
⎣

⎡

′′
′

=
+

−

+

−

)~~~(~~
~~

~~)~~~(

~~ 2/1

,

2/1

,
NNNNN

N
No

NNNNN
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Moreover,  
 

 )1(~
,, pNoNo o=−ΨΨ , )1(~

,, pNoNo o=−ΩΩ , and )1(, ONo =Ψ , )1(, ONo =Ω . 

 
Theorem 4 implies that the difference between the joint cumulative distribution function of 

])~(,[ 2/12/1 ′′−′ NNN NN θθΔ  and that of ),( ,NoN Ω0  converges pointwise to zero, which justifies 

the use of the latter distribution as an approximation of the former. The theorem also states 

that  No,
~Ω  is a consistent estimator of No,Ω . The proof of Theorem 4 is given in Appendix B.  

 
Remark 2. 
As in Kelejian and Prucha (2008, p. 17), Theorem 4 can also be used to obtain the joint 

distribution of )~( NN θθ −  and some other estimator **
NΔ , where 

)1()()( **2/1**2/1
pNNN oNTNT +′= ξTΔ , ******

NNN PFT = , ****** ~~~
NNN PFT = , assuming that analogous 

assumptions are maintained for this estimator. In particular, the results remain valid, but with 

NF , NP  replaced by **
NF , **

NP , and NF~ , NP~  replaced by **~
NF , **~

NP , in the definitions of N,ΔΔΨ , 

N,θΔΨ , N,
~

ΔΔΨ , and N,
~

θΔΨ . 
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IV. Two-Stages Least Squares (TSLS) Estimator for Nδ   

1. Instruments  
It is evident from model (1), that 0uY ≠′ )( NNE . In line with Kelejian and Prucha (2008), we 

consider a TSLS procedure to obtain consistent estimates of the parameters Nδ . The 

following assumptions are maintained. 
 
Assumption 8. 
The regressor matrix NX  has full column rank (for N large enough). Furthermore, the 

elements of NX  are bounded uniformly in absolute value. 

 
Assumption 9. 
The instrument matrix NH  has full column rank RKP +≥*  (for N  large enough). 

Furthermore, the elements of NH  are bounded uniformly in absolute value.  

 
Assumption 10. 
 ])[(lim 1

NNN NT HHQHH ′= −
→∞  is finite and nonsingular. 

 ])[(plim 1
NNN NT ZHQHZ ′= −

→∞  is finite and non-singular. 

   
Regarding the choice of instruments, note that 
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NNr EEE βXWIIWyWyW −
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===
∑∑∑∑ −⊗== λ   

 NN
i

i
R

r
NrNrNT

R

r
Nr βXWIIW ∑ ∑∑

∞

= =′
′′

=

+⊗=
1 1

,,
1

, ]})([{ λ , (45) 

 

provided that 1
1

,, <∑
=′

′′

R

r
NrNr Wλ  for some matrix norm   ⋅  (compare Horn and Johnson, 1985, 

p. 301). The instrument matrices NH  are used to instrument ),( NNN YXZ =  in terms of their 

predicted values from a least squares regression on NH , i.e., NN N
ZPZ H=ˆ , where 

NNNNN
HHHHPH ′′= −1)( . In light of (45) it is reasonable to select NH  to include NX  and a 

subset of the linearly independent columns of terms of the sum  
 

 N

Q

i

i
R

r
NrT XWI ∑ ∑

= =′
′⊗

1 1
, ])([ , (46) 
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where Q  is some predefined constant.11 Note that such a choice of NH  implies that the 

second part of Assumption 9 will be fulfilled (by Assumptions 3 and 8) and that NX  is 

instrumented by itself.  
 
2. Definition of TSLS Estimator and Asymptotic Results 
Estimation of the model in equation (1) proceeds in three steps. In the first step, model (1a) is 
estimated by TSLS using instruments NH . In the second step, the spatial autoregressive 

parameters NSN ,,1 ,..., ρρ , and the variances of the error components 2
vσ  and 2

1σ  are estimated 

using the GM estimators defined in Section III in (17) and (18), based on consistent estimates 
of Nu  from the first step. In the third step, the model is re-estimated by feasible generalized 

two-stages least squares (FGTSLS), which is equivalent to performing a TSLS estimation on 
a transformed version of equation (1). The advantage of this approach as compared to the use 
of heteroskedasticity-and-autocorrelation-consistent estimates is that joint hypotheses about 

Nδ  and Nθ  may be formulated and tested.  

 
The TSLS estimator of model (1a) is defined as  
 

 NNNNN yZZZδ ′′= − ˆ)ˆ(~ 1 , where (47) 

 )ˆ,(ˆ
NNNN N

YXZPZ H == , and   

 NN N
YPY H=ˆ .  

 
In the second step, the parameters Ns ,ρ , Ss ,...,1= , 2

vσ , and 2
1σ , are estimated using the GM 

estimator defined by (18), based on the first step residuals NNnN δZyu ~~ −= . As above these 

estimators are denoted as Ns ,
~ρ , Ss ,...,1= , 2

,
~

Nvσ , and 2
,1

~
Nσ . 

 
The following lemma shows that the various assumptions maintained in Section III are 

automatically satisfied by the TSLS estimator Nδ
~  and the corresponding residuals Nu~ . 

 
Lemma 1.12  

                                                 
11 Kelejian, Prucha, and Yuzefovich (2004) consider the results using alternative sets of 
instruments in the estimation of a cross-section SARAR(1,1) model. Their Monte Carlo 
simulation results suggest that choosing 2=Q  will be sufficient in many applications.  
12 Compare Kelejian and Prucha (2008) for analogous results in case of a cross-section 
SARAR(1,1) model and Badinger and Egger (2008b) in case of a cross-section SARAR(R,S) 
model.   
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Suppose that Assumptions 1-3 and 8-10 hold, and that ∞<≤ bNN βsup . Let NN ZD −= , 

then, the fourth moments of the elements of ND  are bounded uniformly in absolute value, 

Assumption 6 holds, and  

(a)  )1()()()1()()~()( ,
2/1

,
2/12/12/1

pNNNNvpNNNN oNTNToNTNT +′+′=+′=− −−− μTvTξTδδ μ , where  

 ),( ′′′= NNN μvξ , ),( ,, ′′′= NNvN μTTT ,  

NNvNv PFT ,, = , NNN PFT ,, μμ = , 

 111 )( −−− ′= HZHHHZHZHH QQQQQPN ,  

 N

S

m
NmNmNTNv HMIIF ∑

=

−′−⊗=
1

1
,,, ])([ ρ , and 

 N

S

m
NmNmNTNTN HMIIIeF ∑

=

−′−⊗⊗′=
1

1
,,, ])()[( ρμ . 

(b) )1()( 2/1
pNN ONT =′− ξT ; 

(c) )1(pN O=P  and )1(~
pNN o=− PP  for  

11111111 ]})[(])][()]{[()[(])[(~ −−−−−−−− ′′′′′= NNNNNNNNNNN NTNTNTNTNT ZHHHHZZHHHP . 

 
The condition ∞<≤ bNN βsup  is trivially satisfied if ββ =N . Note that (a) and (b) together 

imply that Nδ
~  is a 2/1N -consistent estimator of Nδ . 

 
Regarding Assumption 4, we now have NNNN ΔDuu =−~ , where NN ZD −=  and 

NNN δδΔ −=
~ . Lemma 1 shows that under Assumptions 1-3 and 8-10 the TSLS residuals 

automatically satisfy the conditions postulated in Assumptions 4, 6, and 7 with respect to ND , 

NΔ , and NT . Hence, Theorems 1 and 2 apply to the GM estimator Nθ
~ , which is based on the 

TSLS residuals. The lemma also establishes that the elements of ND  are bounded uniformly 

in absolute value, gives explicit expressions for NP  and NP~ , and verifies that the conditions 

concerning these matrices made in Theorems 3 and 4 are fulfilled. Hence, Theorems 3 and 4 

cover the GM estimator Nθ
~  and the TSLS estimator Nδ

~ . In particular, Theorem 4 gives the 

joint limiting distribution of )~(2/1
NNN θθ −  and )~(2/1

NNN δδ − , where NN ZD −= , the 

matrices NN PP ~, , Nv,F , N,μF  are as in Lemma 1, N

S

m
NmNmNTNv HMIIF ∑

=

+′−⊗=
1

,,, ])~([~ ρ  and 

N

S

m
NmNmNTNTN HMIIIeF ∑

=

+′−⊗⊗′=
1

,,, ])~()[(~ ρμ . 

 
We now turn to the third step of the estimation. Consider the transformed model (1b), with 
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 ******
NNNN uδZy += ,  (48) 

 
where 
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NmNmNTN HMIIH ∑
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 ****1********** )(ˆ
** NNNNNNN

N
ZHHHHZPZ

H
′′== − . 

 

The generalized two-stages least squares (GTSLS) estimator, denoted as Nδ̂ , is then obtained 

as a two-stages least squares estimator applied to the transformed model (56), using the 

transformed instruments ∑
=

−=
S

m
NNmNmN

1
,,

** )( HMIH ρ , i.e., 

 

 ****1**** ˆ)ˆ(ˆ
NNNNN yZZZδ ′′= − . (49) 

 

The feasible generalized two-stages least squares (FGTSLS) estimator, denoted as Nδ̂
~ , is 

defined analogously, after replacing Nρ  by Nρ~  ( N,εΩ  by N,
~

εΩ ), i.e.,  

 

 ****1**** ~~̂)~~̂(~̂
NNNNN yZZZδ ′′= − , (50) 

 
where 
 

 **
~

** ~~̂
** NN

N
ZPZ

H
= , with ′′= − **1****** ~)~~(~

NNNNN
HHHHPH , 

 N
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 N

S

m
NmNmNTNN yMIIΩy ε ∑

=

− −⊗=
1

,,
2/1

,
** )]~([~~ ρ . 

 
 
Kelejian and Prucha (2008) and Arraiz, Drukker, Kelejian and Prucha (2007) use the 
untransformed instrument matrix NH  in the FGTSLS estimation of cross-section 

SARAR(1,1) models. While this choice does not affect consistency, it has implications for the 
efficiency of the estimates. In light of (45), the ideal instruments matrix for **

NY  in the 

transformed model is given by **
NH .  

 
The following lemma shows that the various assumptions maintained in Section III are 

automatically satisfied by the (feasible) generalized TSLS estimator Nδ̂
~  and the 

corresponding residuals. The proof is given in Appendix B. 
 
Lemma 2.13   

Suppose the Assumptions of Lemma 1 hold14, and let Nδ̂
(

 be defined as in equation (50), 

where Nθ
(

 is any 2/1N -consistent estimator of Nθ  (such as the GM estimator Nθ
~  based on the 

TSLS residuals). Then 
(a) )1()()()1()()( **

,
2/1**

,
2/1**2/1**2/1

pNNNNvpNNN oNTNToNTNT +′+′=+′= −−− μTvTξTΔ μ , where  

),( ′′′= NNN μvξ , ),( **
,
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,

** ′′′= NNvN μTTT ,    

****
,

**
, NNvNv PFT = , ****

,
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, NNN PFT μμ = , 

1
****

1
************
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** )(**
−−− ′= ZHHHZHZHHH QQQQQPN ,  

N
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NmNmNTNNNNvNv HMIIΩHQQF ε ∑
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,

*
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2
1,0

2**
, )]([)( ρσσ ,  

N

S
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NmNmNTNTNNTN HMIIIeHIeF ∑
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−− −⊗⊗′=⊗′=
1

,,
2

1
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1
**
, )]()][([)]([ ρσσμ . 

(b) )1()( **2/1
pNN ONT =′− ξT ; 

                                                 
13 Compare Kelejian and Prucha (2008) for analogous results in case of a cross-section 
SARAR(1,1) model and Badinger and Egger (2008b) in case of a cross-section SARAR(R,S) 
model.   

14 In light of the properties maintained with respect to the matrices ∑
=

−
S

m
NmNmN

1
,, )( MI ρ  and 

N,εΩ , this implies that Assumptions 9 and 10 will also be satisfied for the transformed 

instruments **
NH . 
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(c) )1(**
pN O=P  and )1(****

pNN o=− PP
(

 for  
1****11****1****1****11****1** ]})[(])][(){[(])[(])[( −−−−−−−− ′′′×′′= NNNNNNNNNNN NTNTNTNTNT ZHHHHZZHHHP

(((((((((((
. 

 
In light of Lemmata 1 and 2 the joint limiting distribution of the (feasible) generalized TSLS 

estimator Nδ̂
(

 and the GM estimator Nθ
(

 follows from Theorem 4 and the discussion 

thereafter, with NNN δδΔ −= ˆ** (
. The asymptotic variance-covariance matrix and its 

corresponding estimator are provided in Theorem 4 with the modifications as described in 
Remark 2 thereafter. 
 

Note that in light of Lemma 2 the residuals **** ˆˆ
NNNNNNN ΔDuδZyu +=−=

((  can be used to 

estimate Nθ  by the GM estimator defined by (18), where the discussion surrounding Lemma 

2 would also apply here. Taking this argument one step further, Nθ  and Nδ  can also be 

estimated by an iterative procedure. 
 
As a final point, note that the above theory carries over to cases where the regressor matrix 

NX  includes endogenous variables, provided that suitable instruments are available. To be 

more specific, let ),( NNN EXX =  and ),,( NNNNN YEXZD −=−= , where NX  satisfies 

Assumptions 8-10 with NX  replaced by NX  (including in the formulation of the instruments), 

and where NE  is a matrix of endogenous variables. Then, given the fourth moments of ND  

are  bounded uniformly, and Assumption 6 holds, parts (a), (b), and (c) of Lemma 1 and 2 still 

hold, but with ),,(ˆ
NNNN NN

YPEPXZ HH= , ****
**

ˆ
NN

N
ZPZ

H
= , and ****

**
ˆ

NN
N
ZPZ

H

((
(=  respectively.   

 
 
V. Monte Carlo Evidence 
In this section, we consider a Monte Carlos experiment for a SARAR(3,3) specification and 
restricted versions thereof. We assume that NN MW =  and that the matrix NX  includes two 

explanatory variables.  Hence we have15  
 

 uyWIxxy +⊗++= ∑
=

3

1
2211 )(

r
rTrββ λ , (51a) 

 εuWIu +⊗= ∑
=

3

1

)(
s

sTsρ . (51b) 

 

                                                 
15 For simplicity of notation, the subscript N  is suppressed in the following.  
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We consider two sample sizes: 100=N  and 500=N . The explanatory variables 1x  and 2x  
are generated as random draws from a standard normal distribution, scaled with a factor of 
five, and treated as fixed in repeated samples. Their parameters 1β  and 2β  are assumed to be 
unity in all Monte Carlo experiments considered.  
 
For our basic setup of the weights matrix, we follow Kelejian and Prucha (1999) and use a 
binary ‘up to 9 ahead and up to 9 behind’ contiguity specification. This means that the 
elements of the time-invariant, raw weights matrix 0W  are defined such that the i-th cross-
section element is related to the 9 elements after it and the 9 elements before it.  

 
The unnormalized NN ×  matrix 0W  is then split up into three NN ×  matrices 0

1W , 0
2W , 

and 0
3W , where 00

3
0
2

0
1 WWWW =++ . The matrices 0

1W , 0
2W , and 0

3W  are specified such 

that they contain the elements of 0W  for a different band of neighbours each. Otherwise, they 

have zero elements. We choose a design, where 0
1W  corresponds to an ‘up to 3 ahead and up 

to 3 behind’ specification, 0
2W  corresponds to a ‘4 to 6 ahead and 4 to 6 behind’ specification, 

and 0
3W  corresponds to a ‘7 to 9 ahead and 7 to 9 behind’ specification. 0

1W , 0
2W , and 0

3W  

have typical elements 0
,1 ijw , 0

,2 ijw , and 0
,3 ijw , respectively, where subscripts i  and j  indicate 

that the corresponding element captures the possible contiguity of unit i  with j . 0
,1 ijw , 0

,2 ijw , 

and 0
,3 ijw  are either unity or zero. By design, at most one of the three elements, 0

,1 ijw , 0
,2 ijw , or 

0
,3 ijw , can be unity. The final weights matrices 1W , 2W , and 3W  are obtained by separately 

row-normalizing 0
1W , 0

2W , and 0
3W , that is, by dividing their typical elements 0

,1 ijw , 0
,2 ijw , and 

0
,3 ijw  through the corresponding row sum, respectively.  

 
With three row-normalized matrices 1W , 2W , and 3W , the parameter space for λ  and ρ  

must satisfy 10 321 <++≤ λλλ  and 10 321 <++≤ ρρρ . We consider 3 parameter 

constellations. In constellation (1) there is third order spatial dependence in both the 
dependent variable and the disturbances, which is non-increasing in the order of 
neighbourhood, i.e., 321 λλλ ≥≥  and 321 ρρρ ≥≥ . In parameter constellation (2), there is 

first order spatial dependence in both y  and u . Finally, parameter constellation (3) considers 

zero dependence parameters for all spatial lags in y  and u , i.e., a non-spatial model.  
 
 < Table 1 here > 
 
Regarding the choice of instruments, we include linearly independent terms of up to the 
second order in equation (30b). In particular, the matrix of untransformed instruments H  
contains 18 columns and is given by  
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),,,,,,,,( 2312
2
3

2
2

2
1321 XWXWXWXWXWXWXWXWXH = ,   (52) 

where jiij WWW = .   

 
We assume further that the error components itv  and itμ  are drawn from a standard normal 
distribution with zero mean and unit variance, i.e., itvitv ,ζ=   and iit ,μζμ =  where each itv,ζ  

and i,μζ  are i.i.d. )1,0(N .  
 
For each Monte Carlo experiment, we consider 1000 draws. To ensure comparability, the 
same draws of itv,ζ  and it,μζ  are used for each parameter constellation. Results for the 

estimates of ,, ,2,1 NN ρρ  and N,3ρ  are obtained by the GM estimator defined in equation (18), 

using the optimal weighting matrix under normality as given in equation 1)~( −o
NΨ . The 

estimates reported for the regression parameters are FGTSLS estimates as defined in (50) 

using the transformed set of instruments **~H .  
 
For each single coefficient, we report the average bias and root mean squared error for each 
parameter constellation and the rejection rates for the test that the coefficient is equal to the 
true parameter value. Under parameter constellation (2) we also test the SARAR(3,3) against 
the SARAR(1,1) model, using 0: 3232

,*,
0 ==== ρρλλρλH . For the non-spatial model under 

parameter constellation (3), we report results for the tests of the joint hypothesis 
0: 321321

,
0 ====== ρρρλλλρλH . 

 
Using Theorem 4, the approximation of the small sample distribution of q~  is given by 

Q)q,q (~~ N , where ),,,,,,,( 32121321 ′= ρρρββλλλq  and )~(qQ Var= , which can be 

estimated using oN Ω~
~ 1−=Q . Tests referring to a single parameter are carried out using a 

standard t-test, e.g., 110
~: ρρρ =H  is tested using 

1
~

11
~

~

ρσ
ρρ −

=t , where 
1

~ρσ  is the corresponding 

main diagonal element of Q
~

.  
 
Tests regarding joint hypotheses are carried out using Wald tests. Generally, we test  

0=− tRq  :0H  against 0≠− tRq  :1H . Define the discrepancy vector: tqRm −= ~  . The 

null hypothesis can the be tested using 2-1 ~)
~

( GχmRQRm ′′ ,  where G  is the number of 
restrictions, i.e., the number of rows of R (e.g., Greene, 2003, pp. 95, 487). In the present 
context, we have  

for 0: 3232
,*,

0 ==== ρρλλρλH , ⎥
⎦

⎤
⎢
⎣

⎡
=

2

2

0000
0000

I0
0I

R  and 4=G ; 
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for 0: 321321
,

0 ====== ρρρλλλρλH , ⎥
⎦

⎤
⎢
⎣

⎡
=

3

3

00
00

I0
0I

R  and 6=G . 

 
Table 2 reports the results of the Monte Carlo analysis for the two sample sizes considered.16 
In terms of bias and RMSE, the estimator performs well, even in the small sample with 

100=N . On average over all parameter constellation the bias and RMSE amount to 0.0007 
and 0.0229 for the estimates of ),...,( 31 ′= λλλ  and to 0.0054 and 0.1096 for the estimates of 

),...,( 31 ′= ρρρ . With an average rejection rate of 0.0082, the performance of the single 

hypotheses tests referring to λ  and ρ  is satisfactory. The actual size of the joint hypotheses 
tests, however, differs significantly from the nominal size with an average rejection rate of 
0.1395.  
 

< Table 2 > 
 
However, performance improves quickly with growing sample size. For 500=N , the bias 
virtually disappears and the average RMSE of the estimates of ),...,( 31 ′= λλλ  shrinks to 

0.0010, that of the estimates of ),...,( 31 ′= ρρρ  shrinks to 0.0440. Also, the size of the tests 

improves and approaches the nominal size of 5 percent. Regarding the GM estimates of ρ , 
the average size of the tests involving only one parameter amounts to 0.0089, that for the 
FGTSLS estimates of λ  to 0.053. The average size of the joint hypothesis amounts to 0.084 
for the joint tests.  
 
Overall, the Monte Carlo experiments illustrate that the proposed estimators work reasonably 
well in terms of bias and RMSE, even in very small samples. Regarding the estimates of the 
variance-covariance matrix of the parameter estimates and implied tests of single and joint 
hypotheses, some care is warranted in the interpretation of the results in small samples, 
though the difference to the true size of the tests is moderate at least for the single hypothesis 
tests. This suggest that in small samples it might be worth exploiting additional moment 
conditions as outlined in footnote 3. As the sample size increases, the rejection rates of the 
single and joint tests converge reasonably quickly to the true size such that they may be 
recommended for specification tests about the lag- and error-structure and the order of spatial 
dependence in medium to large samples. 
 

                                                 
16 Results for the variances of the error components are very similar to those of the GM 
estimates of the spatial regressive parameters of the disturbance process. The detailed results 
are thus omitted for the sake of brevity. The only notable difference is that the rejection rates 
for the estimates of 2

1σ  are worse with an average value of 0.175 for 100=N  and 0.138 for 
500=N . 
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VI. Conclusions and Suggestions for Future Research 
This paper derives GM and FGTSLS estimators for the parameters of a SARAR(R,S) model 
allowing the applied econometrician to study the strength and pattern of spatial 
interdependence more flexibly than existing SARAR(1,1) models. We also provide a detailed 
study of the asymptotic properties of the proposed two-step GM-FGLS estimators of the 
model parameters and derive their joint asymptotic distribution. This enables tests of the fairly 
general SARAR(R,S) model against restricted alternatives such as SARAR(0,S) and 
SARAR(R,0) or SARAR(1,1) with panel data. 
 
One suggestion for future research is to extend the analysis of tests towards a study of 
conditional and unconditional tests on the relevance of error components and spatial 
interaction. In particular, a comprehensive Monte Carlo study of GM estimators using 
alternative weighting schemes of the moments and alternative distributional assumptions 
should be instructive for related applied research. 
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APPENDIX  
In the following, we sketch the proofs of Theorems 1-4. They build on analogous proofs by 
Kelejian and Prucha (2008) for a cross-sectional SARAR(1,1) and Badinger and Egger 
(2008b) for a cross-section SARAR(R,S) model, as well as analogous proofs for a panel 
SARAR(0,1) model with nonstochastic regressors by Kapoor, Kelejian, and Prucha (2007). 
The full details of the proofs are given in a technical appendix to this paper. 
 
APPENDIX A  
Notation 
We adopt the standard convention to refer to matrices and vectors with acronyms in boldface. 
Let NA  denote some matrix. Its elements are referred to as Nija , ; Ni.,a  and Ni,.a  denote the i-

th row and the i-th column of NA  respectively. If NA  is a square matrix, 1−
NA  denotes its 

inverse; if  NA  is singular,  +
NA  denotes its generalized inverse. If NA  is a square, symmetric 

and positive definite matrix, 2/1
NA denotes the unique positive definite square root of NA  and 

2/1−
NA  denotes 2/11)( −

NA . The (submultiplicative) matrix norm   ⋅  is defined as 
2/1)]([ NNN Tr AAA ′= . Finally, unless stated otherwise, for expressions involving sums over 

elements of vectors or matrices that are stacked over all time periods, we adopt the convention 
to use single indexation i, running from NTi ,...,1= , to denote elements of the stacked vectors 

or matrices.17 
 
Remark A.1  

i) Definition of row and column sum boundedness (compare Kapoor, Kelejian, and Prucha, 
2007, p. 99): Let 1, ≥NNB , be some sequence of NTNT ×  matrices with T  some fixed 

positive integer. We will then say that the row and column sums of the (sequence of) matrices 

NB  are bounded uniformly in absolute value, if there exists a constant ∞<c , which does not 

depend on N, such that  
 

 cb
NT

j
NijNTi

≤∑
=≤≤ 1

,1
max  and cb

NT

i
NijNTj

≤∑
=

≤≤ 1
,1

max  for all N ≥ 1.    

 

The following results will be repeatedly used in the subsequent proofs.  

                                                 
17 Take the vector )](),...,1([ TNNN uuu ′′= , for example. Using indexation NTi ,...,1= , the 

elements  Niu Ni ,...,1 ,, =  refer to 1=t , elements NNiu Ni 2,...,1 ,, +=  refer to 2=t , etc., and 

elements NTNTiu Ni ,...,1)1( ,, +−=  refer to Tt = . The major advantage of this notation is 

that it avoids the use of double indexation for the cross-section and time dimension. 
Moreover, it allows us the invoke several results referring to the case of a single cross-section, 
which still apply to the case of T  stacked cross-sections.   
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ii) Let NR  be a (sequence of) NN ×  matrices whose row and column sums are bounded 

uniformly in absolute value, and let S  be some TT ×  matrix (with 1≥T  fixed). Then the row 
and column sums of the matrix NRS ⊗  are bounded uniformly in absolute value (compare 

Kapoor, Kelejian, and Prucha, 2007, p. 118). 

iii) If NA  and NB  are (sequences of) NTNT ×  matrices (with 1≥T  fixed), whose row and 

column sums are bounded uniformly in absolute value, then so are the row and column sums 
of NNBA  and NN BA + . If NZ  is a (sequence of) PNT ×  matrices whose elements are 

bounded uniformly in absolute value, then so are the elements of NN ZA  and 

NNNNT ZAZ′−1)( . Of course, this also covers the case NNNT ZZ′−1)(  for NTN IA =   (compare 

Kapoor, Kelejian, and Prucha, 2007, p. 119). 

iv) Suppose that the row and columns sums of the NTNT ×  matrices )( ,NijN a=A  are 

bounded uniformly in absolute value by some finite constant Ac ; then q
A

qNT

i
Nij ca ≤∑

=1
,  for 1>q  

(see Kelejian and Prucha, 2008, Remark C.1). 

v) Let Nξ  and Nη  be 1×NT  random vectors (with 1≥T  fixed), where, for each N, the 

elements are independently distributed with zero mean and finite variances. Then the elements 
of NNNT ξZ′− 2/1)(  are )1(pO  and NNNNT ηAξ′−1)(  is )1(pO  (compare Kelejian and Prucha, 

2004, Remark A.1).18  

vi) Let Nζ  be a 1×NT  random vector (with 1≥T  fixed), where, for each N, the elements are 

distributed with zero mean and finite fourth moments. Let Nπ  be some nonstochastic 1×NT  

vector, whose elements are bounded uniformly in absolute value and let NΠ  be a NTNT ×  

nonstochastic matrix whose row and column sums are bounded uniformly in absolute value. 
Define the column vector NNNN ζΠπd += . It follows that the elements of Nd  have finite 

fourth moments. (Compare Kelejian and Prucha, 2008, Lemma C.2, for the case 1=T  and 
independent elements of Nζ .)19  

                                                 
18 Kelejian and Prucha (2004) consider the case 1=T  and where the elements of Nξ  and Nη  

are identically distributed. Obviously, the results also holds for (fixed) 1≥T  and under 
heteroskedasticity, as long as the variances of the elements of Nξ  and Nη  are bounded 

uniformly in absolute value.  
19 The extension to (fixed) 1≥T  is obvious. Independence of the elements of Nζ  is not 

required for the result to hold. The fourth moments of the elements of NNNN ζΠπd +=  are 

given by ∑
=

+
NT

j
NjNijNiE

1

4
,,, )( ζππ ])([2

1

4
,,

4
,

4 ∑
=

+≤
NT

j
NjNijNiE ζππ  
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Remark A2.  
The matrices N,0Q  and N,1Q  have the following properties (see Kapoor, Kelejian, and Prucha, 

2007, p. 101): 
 

 )1()( ,0 −= TNtr NQ , Ntr N =)( ,1Q , 0IeQ =⊗ )(,0 NTN , )()(,1 NTNTN IeIeQ ⊗=⊗ ,  

NNNN vQεQ ,0,0 = , NNNNTNN vQμIeεQ ,1,1 )( +⊗= , )()( ,0,0 NTNNNT DIQQDI ⊗=⊗ ,  

)()( ,1,1 NTNNNT DIQQDI ⊗=⊗ , )()1(])[( ,0 NNNT trTtr DQDI −=⊗ , 

)(])[( ,1 NNNT trtr DQDI =⊗ , 
 

where ND  is an arbitrary N × N matrix. Obviously, the row and column sums of N,0Q  and 

N,1Q  are bounded uniformly in absolute value.  

 
 
APPENDIX B 
The following lemma will be repeatedly used in the subsequent proofs.  
Lemma B.120   
Let NA  be some nonstochastic NTNT × matrix (with T fixed), whose row and column sums 

are bounded uniformly in absolute value. Let Nu  be defined by (2c) and Nu~  be a predictor for 

Nu . Suppose that Assumptions 1 to 4 hold. Then 
 

(a) )1(1 OEN NNN =′− uAu , )1()( 1 oNVar NNN =′− uAu ,   

and  )1()()~~( 11
pNNNNNN oENN =′−′ −− uAuuAu .    

 

(b) )1(,.
1 OEN NNNj =′− uAd , Pj ,...,1= , where Nj ,.d  is the j-th column of the PNT ×  matrix 

ND , and )1()(~ 11
pNNNNNN oENN =′−′ −− uADuAD . 

 

(c) If furthermore Assumption 6 holds, then  
)1(~~ 2/12/12/1

pNNNNNNNN oNNN +′+′=′ −− ΔαuAuuAu  with ])([1
NNNNN EN uAADα ′+′= − .  

In light of (b), we have )1(ON =α  and )1(~)(1
pNNNNN oN =−′+′− αuAAD . 

The proof of Lemma B.1 is given in the technical appendix.  
 
                                                                                                                                                         

 ∞<≤+≤ ∑∑∑∑
= = = =

KE
NT

j
Nm

NT

k
Nl

NT

l
Nk

NT

m
NjNimNilNikNijNi ][2

1
,

1
,

1
,

1
,,,,,

4
,

4 ζζζζπππππ , by Hölder’s 

inequality as long as the fourth moments of the elements of Nζ  are bounded uniformly. 

20 Compare Lemma C.1 in Kelejian and Prucha (2008) for the case of a cross-sectional 
SARAR(1,1) model and Lemma C.1 in Badinger and Egger (2008b) for the case of a cross-
sectional SARAR(R,S) model. 
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Proof of Theorem 1a. Consistency of Initial GM Estimator 0ˆ
Nθ  

The objective function of the nonlinear least squares estimator in (17a) and its nonstochastic 
counterpart are given by  
 

 )~~()~~(),( 00000000
NNNNNNN bb ΓγΓγθR −′−=ω  and  (B.1a)  

 )()()( 00000000 bb NNNNN ΓγΓγθR −′−= . (B.1b) 
  

Since 0000 =− NNN bΓγ , we have 0)( 00 =NNR θ , i.e., 0)( 00 =θNR  at the true parameter vector 

),,...,( 2
1

0 ′= vSN σρρθ . Hence,  
 

 =− )()( 0000 θRθR NN  )()( 000000
NNNNN bbbb −′′− ΓΓ .   (B.2) 

 

In light of Rao (1973, p. 62) and Assumption 5, it follows that:  
 

 )())(()()( 000000
min

000
NNNNNN RR bbbb −′−′≥− ΓΓθθ 0 λ  and  

 )()()()( 0000
*

000
NNNN RR bbbb −′−≥− λ0θθ .  

 

By the properties of the norm 2/1)]([ AAA tr= , we have ≤−
200 θθ )()( 0000

NN bbbb −′−  such 

that 
200

*
0000 )()( θθθθ −≥− λNN RR . Hence, for every 0>ε  

 

 0inf)]()([inflim 2
*

200
*

}:{

0000

}:{ 000000
>=−≥−

≥−≥−∞→
ελλ

εε
θθθθ

θθθθθθ
NNN

RR , (B.3) 

 

which proves that the true parameter 0θ  is identifiable unique.  
 

Next, let )~,~( 000
NNN ΓγF −=  and ),( 000

NNN ΓγΦ −= . The objective function and its nonstochastic 

counterpart can then be written as  
 

 ),1(),1()( 000000 ′′′′= bb NNNR FFθ  and   

 ),1(),1()( 000000 ′′′′= bb NNNR ΦΦθ .    
 

Hence for ],[ ρρ aaρ −∈
21 and ],0[2 bv ∈σ  it holds that  

 

 ),1)()(,1()()( 0000000000 ′′′−′′=− bb NNNNNN RR ΦΦFFθθ .  

 

Moreover, since the norm   ⋅  is submultiplicative, i.e., BAAB  ≤ , we have 
 

                                                 
21 This should be read as ],[ ρρ aaρ

s
−∈  for all Ss ,...,1= . 
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 )()( 0000 θθ NN RR −
2

00000 ),1( ′′−′≤ NNNNN bΦΦFF      

 ])(
2

)1(2)([1 2420000 baSSSaSNNNN +
−+

++′−′≤ ρρΦΦFF .  

 

It is readily observed from (16), that the elements of the matrices 0
Nγ  and 0

NΓ  are all of the 
form NNN uAu′ , where NA  are nonstochastic NTNT × matrices (with T fixed), whose row 
and column sums are bounded uniformly in absolute value. In light of Lemma B.1, the 

elements of 0
NΦ  are O(1) and it follows that 000 p

NN →−ΦF  and 00000 p
NNNN →′−′ ΦΦFF  as 

∞→N . As a consequence, we have (for finite S) 
 

0])(
2

)1()([1 ][)()(sup 24200000000

],0[],,[ 2

p
NNNNNN

b
baSSaSRR

v

→+
−

++′−′≤−
∈−∈

ρρ

σρρ
ΦΦFFθθ

aaρ
 as ∞→N  

 (B.4) 
Together with identifiable uniqueness, the consistency of )~,~,...,~(~ 2

,,,1
0

NvNSNN σρρ=θ  now 

follows directly from Lemma 3.1 in Pötscher and Prucha (1997). 
 

Having proved that the estimators 2
,,,1

~,~...,~
NvNSN σρρ  are consistent for 2

,,1 ,..., vNSN σρρ , we now 

show that 2
1σ  can be estimated consistently from the last line )24( +S  of equation system 

(12), using   
 

 2
,1,1,24,,,24,1,1,24,24

2
,1

~~~~...~~~~
NNSSNSNSSNNSNSN ργργργγσ +++++ −−−−=   

 NSNSNSSSSNNNSSNSNSS ,,1,2/)1(2,24,2,1,12,24
2
,,2,24

~~~...~~~~~ ρργρργργ −−+++++ −−−− . (B.5) 
 

Since 00 =− NNN bΓγ , we have  
 

 

).~~()...~~(

)~()...~(

)~(...)~(

~~)~(...~~)~(

~)~(...~)~(

~)~(...~)~()~(~

,,1,,1,2/)1(2,24,2,1
2
,2,1,12,24

2
,

2
,,2,24

2
,1

2
,1,1,24

,,,,24,1,1,1,24

,,1,2/)1(2,24,2/)1(2,24,2,1,12,24,12,24

2
,,2,24,2,24

2
,1,1,24,1,24

,,,24,,24,1,1,24,1,24,24,24
2
1

2
1

NSNSNSNSNSSSSNNNNNSS

NSNSNSSNNNSS

NSNSNSSNNNS

NSNSNSSSSNSSSSNNNSSNSS

NSNSSNSSNNSSNSS

NSNSSNSSNNSNSNSNS

ρρρργρρρργ

ρργρργ

ρργρργ

ρργγρργγ

ργγργγ

ργγργγγγσσ

−−−++++

+++

++

−−++−++++++

++++++

++++++

−−−−

−−−−

−−−−−

−−−−−

−−−−−

−−−−−−=−

 (B.6) 

 

Since 000 p
NN →−ΦF  as N → ∞ and the elements of NΦ  are O(1) it follows from the 

consistency of NSN ,,1
~,...,~ ρρ  that 0~ 2

1
2
,1

p
N →−σσ  as N → ∞ . 
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Proof of Theorem 1b. Consistency of the Weighted GM Estimator 
The objective function of the weighted GM estimator and its nonstochastic counterpart are 
given by  
 

 )~~()~~()( bb NNNNNNR ΓγΘΓγθ −′−=  and (B.7a)  

 )()()( bb NNNNNNR ΓγΘΓγθ −′−=  (B.7b) 
 

First, in order to ensure identifiable uniqueness, we show that Assumption 5 also implies that 
the smallest eigenvalue of NNN ΓΘΓ′ is bounded away from zero, i.e.,  
 

 0min )( λλ ≥′ NNN ΓΘΓ  for some .00 >λ  (B.8) 
 

Let 00)( NNija ΓΓA ′==  and 11)( NNijb ΓΓB ′== . Note that 0
NΓ  and 1

NΓ  are of dimension 

)12( +S × ]12/)1(2[ +−+ SSS  (i.e., they have half the rows and one column less than than 

NΓ  ). A  and B  are of order ]12/)1(2[ +−+ SSS × ]12/)1(2[ +−+ SSS  (i.e., they have one 

row and column less than NN ΓΓ′ ). 
 

Next define ),( 10 ′′′= NNN ΓΓΓ
(((

, which differs from NΓ  only by the ordering of the rows. 0
NΓ
(

 

corresponds to 0
NΓ  with a zero column appended as last column, i.e., )0,( 00

NN ΓΓ =
(

, such that 
 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′
=′

+−++−++−+

+−+

0000
0
0.
0

00
0

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

00
00

SSSSSSSSS

SSS

NN
NN aa

aa

ΓΓΓΓ
((((

 . (B.9a) 

( 00
NN ΓΓ

(( ′  is of the same dimension as NNΓΓ′ , i.e., ]22/)1(2[ +−+ SSS × 

]22/)1(2[ +−+ SSS .) 
 

1
NΓ
(

 is a modified version of 1
NΓ , with a zero column included as second last column, such 

that  
 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=′

+−++−++−+

+−+

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

11

0.
0000
.0.

0

SSSSSSSSS

SSS

NN

bb

bb

ΓΓ
((

.    (B.9b) 

( 11
NN ΓΓ

(( ′ is of the same dimension as NNΓΓ′ , i.e., ]22/)1(2[ +−+ SSS × 

]22/)1(2[ +−+ SSS .) 
 

Since ),( 10 ′′′= NNN ΓΓΓ
(((

 differs from NΓ  only by the ordering of the rows, it follows that     
 

 NN ΓΓ ′  = 1100
1

0
10

NNNN
N

N
NNNN ΓΓΓΓ

Γ
Γ

ΓΓΓΓ
((((

(

(
(((( ′+′=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ ′′=′ ,  i.e., (B.10) 
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⎡
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⎥

⎦

⎤
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⎢

⎣

⎡
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+−+
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+−+
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NN

bb

bb

aa
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We can thus write  
 

 BNBANANNNNNN xBxxAxxΓΓxxΓΓxxΓΓx ′+′=′′+′′=′′ 1100 ((((
.  (B.11) 

 

The vector x is of dimension 1]22/)1(2[ ×+−+ SSS  (corresponding to the number of 

columns of NΓ ), wheras Ax  and Bx  are of dimension ]12/)1(2[ +−+ SSS , i.e. both have 

one row less: Ax  excludes the last element of x, i.e., 22/)1(2 +−+ SSSx , Bx  excludes the second-

last element of x , i.e., 12/)1(2 +−+ SSSx . 
 

Again, we invoke Rao (1973, p. 62) for each quadratic form. It follows 
 

 xxxxxxxxBxxAxBxxAx ′≥′+′≥′+′≥′+′ **
minmin )()()( λλλλ BBAABBNAANBNBANA   (B.12) 

 

for any ),...,,( 2221 += Sxxxx . Hence, we have shown that  xxxΓΓx ′≥′′ *λNN , or, equivalently, 
  

 *λ≥
′

′′
xx

xΓΓx NN   for 0x ≠ . (B.13) 

 

Next, note that in light of Rao (1973, p. 62), 
 

 0inf)( *min >≥
′

′′
=′ λλ

xx
xΓΓxΓΓ NN

xNN . (B.14) 

 

Using Mittelhammer (1996, p. 254) we have  
 

 
xx
ΓΘΓxΓΘΓ

′
′′

=′ xNNN
xNNN inf)(minλ  

xx
xΓΓx

′
′′

≥ − NN
xNΞ inf)( 1

minλ     
 

 0)()( 0minmin >≥′= λλλ NNN ΓΓΘ , (B.15) 

 
with **0 λλλ =  since 0)( *min >≥= λλ NΘ  by assumption (see Theorem 2). 
 

This ensures that the true parameter vector ),,,...,( 2
1

2
,,1 ′= σσρρ vNSNNθ  is identifiable unique. 
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Next note that in light of the assumptions in Theorem 2, NΘ  is O(1) by the equivalence of 

matrix norms. Analogous to the prove of Theorem 1, observe that 0)( =θNR , i.e., 0)( =θNR  

at the true parameter vector ),,,...,( 2
1

2
,,1 ′= σσρρ vNSNNθ .  It follows that 

  

 )()()()( NNNNNNNN RR bbbb −′′−=− ΓΘΓθθ . (B.16) 
 

Moreover, let )~,~( NNN ΓγF −= and ),( NNN ΓγΦ −= , then,  
 

 ),1(),1()( ′′′′= bb NNNNR FΘFθ  and (B.17a) 

 ),1(),1()( ′′′′= bb NNNNR ΦΘΦθ . (B.17b) 
 

The remainder of the proof is now analogous to that of Theorem 1a. 
 
 
Proof of Theorem 2. Asymptotic Normality of Nθ

~   

To derive the asymptotic distribution of the vector Nq , defined in (30)  we invoke the central 

limit theorem for vectors of linear quadratic forms given by Kelejian and Prucha (2008, 
Theorem A.1), which is an extension of the central limit theorem for a single linear quadratic 
form by Kelejian and Prucha (2001, Theorem 1). The vector of quadratic forms in the present 
context, to which the Theorem is applied is *

Nq . The variance-covariance matrix of Nq  was 

derived above and is denoted as NΨ . Accordingly, the variance-covariance matrix of 

NN N qq 2/1* =  is given by NN NΨΨ =*  and 2/12/12/1* )( −−− = NN N ΨΨ .  
 

Note that in light of Assumptions 1, 2 and 7 (and Lemma B.1), the stacked innovations Nξ , 

the matrices NsNs ,,4,,1 ,...,AA , Ss ,...,1= , Na,A , and Nb,A , and the vectors Ns ,,1a , …, Ns,,4a , 

Ss ,...,1= , Na,a , and Nb,a  satisfy the assumptions of central limit theorem by Kelejian and 

Prucha (2008, Theorem A.1). In the application of Theorem A.1, note that the sample size is 
given by )1( +=+ TNNNT  rather than N . As Kelejian and Prucha (2001, p. 227, fn. 13) 

point out, Theorem A.1 “also holds if the sample size is taken to be nk  rather than n  (with 

∞↑nk  as ∞→N ).” In the present case we have NTKN )1( += , with 1≥T  and fixed, 

which ensures that ∞↑nK  as ∞→N . Consequently, Theorem A.1 still applies to each 

quadratic form in *
Nq . Moreover, as can be observed from the proof of Theorem A.1 in 

Kelejian and Prucha (2008), the extension of the Theorem from a scalar to a vector of vector 
of quadratic forms holds up under by this alternative definition of the sample size.  
 

It follows that  
  

 ),()( 24
2/1*2/12/1*2/1*

+
−−−− →−=−=− S

d
NNNNNN N I0ΨΨΨ qqq , (B.18) 
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since 0)()()( minmin
1*

min
1 >== −−

NNN NNN ΨΨΨ λλλ  by assumption as required in Theorem 

A.1. 
 

Since the row and column sums of the matrices NsNs ,,4,,1 ,...,AA , Ss ,...,1= , Na,A , and Nb,A , 

and the vectors Ns ,,1a , …, Ns,,4a , Ss ,...,1= , Na,a , and Nb,a , and the variances 2
,Nvσ  and 2

,Nμσ  

are bounded uniformly in absolute value, it follows in light of (38) that the elements of NΨ  

and also those of 2/1
NΨ  are bounded uniformly in absolute value. 

 

We next turn to the derivation of the limiting distribution of the GM estimator Nθ
~ . In 

Theorem 1 we showed that the GM estimator Nθ
~  defined by (18) is consistent. It follows that 

– apart from a set of the sample space whose probability tends to zero – the estimator satisfies 
the following first order condition:22 
 

0ΔθqΘ
θ
ΔθqΔθqΘΔθq

ρ
=

′∂
∂

=′
∂
∂ ),~(~),~(),~(~),~( NNNN

NNN
NNNNNNN , (B.19)  

     

which is a 1)2( ×+S  vector, the rows corresponding the partial derivatives of the criterion 

function with respect to Ns,ρ , Ss ,...,1= , 2
vσ , and 2

1σ . 
 

Substituting the mean value theorem expression  
 

)~(),(),(),~( NN
NNN

NNNNNN θθ
θ
ΔθqΔθqΔθq −

′∂
∂

+= , (B.20) 

 

where Nθ  is some between value, into the first-order condition yields 
 

),(~),~()~(),(~),~( 2/12/1
NNNN

NNN
NN

NNN
N

NNN NN ΔθqΘ
θ
Δθqθθ

θ
ΔθqΘ

θ
Δθq

∂
∂

−=−
′∂

∂
∂

∂ .  (B.21)  

 

Observe that NN
NN BΓ

θ
Δθq ~),(

=
′∂

∂  and consider the two )2()2( +×+ SS  matrices  

 

NNNNN
NNN

N
NNN

N BB ΓΘΓ
θ
ΔθqΘ

θ
ΔθqΞ ~~~~),(~),~(~ ′′=

′∂
∂

∂
∂

= ,    (B.22) 

NNNNNN BB ΓΘΓΞ ′′= , (B.23) 

 

where NB
~  and NB  correspond to NB  as defined above with Nθ

~  and Nθ  substituted for 

Nθ . Notice that NΞ  is positive definite, since NΓ  and NΘ  are positive definite by assumption 

and the )2(]22/)1(2[ +×+−+ SSSS  matrix NB  has full column rank.  
 

                                                 
22 The leading two and the negative sign are ignored without further consequences for the proof. 
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In the proof of Theorem 1 (and Lemma B.1) we have demonstrated that 0ΓΓ p
NN →−~  and 

that the elements of NΓ  and NΓ
~  are )1(O  and )1(pO , respectively. By Assumption 5, 

)1(~
pNN o=−ΘΘ , )1(ON =Θ  and )1(~

pN O=Θ . Since Nρ~  and Nρ  (and thus also NB
~  and 

NB ) are consistent and bounded uniformly in probability, if follows that )1(~
pNN o=−ΞΞ , 

)1(~
pN O=Ξ , and )1(ON =Ξ . Moreover, NΞ  is positive definite and thus invertible, and its 

inverse 1−
NΞ  is also )1(O .  

 

Denote +
NΞ

~  as the generalized inverse of NΞ
~ . It then follows as a special case of Lemma F1 in 

Pötscher and Prucha (1997) that NΞ
~  is non-singular with probability approaching 1 as 

∞→N , that +
NΞ~  is )1(pO , and that )1(~ 1

pNN o=− −+ ΞΞ . 
 

Pre-multiplying (B.21) with +
NΞ

~  we obtain, after rearranging terms,      
 

 ),(~),~(~)~()~~()~( 2/12/1
2

2/1
NNNN

NNN
NNNNNSNN NNN ΔθqΘ

θ
ΔθqΞθθΞΞIθθ

∂
∂

−−−=− ++
+ .(B.24) 

   

In light of the discussion above, the first term on the right-hand side is zero on ω-sets of 
probability approaching 1 (compare Pötscher and Prucha, 1997, pp. 228). This yields 
 

 )1(),(~),~(~)~( 2/12/1
pNNNN

NNN
NNN oNN +

∂
∂

−=− + ΔθqΘ
θ
ΔθqΞθθ .       (B.25) 

 

Next observe that 
 

 )1(~),~(~ 1
pNNNNN

NNN
N o=′′−

∂
∂ −+ ΘΓΞΘ

θ
ΔθqΞ B , (B.26) 

 

since )1(~ 1
pNN o=− −+ ΞΞ  and )1(),~(

pNN
NNN o=′′−

∂
∂ Γ

θ
Δθq

B . 

 

As we showed in section III, the elements of ),(2/1
NNNN Δθq  can be expressed as  

 

 ),(2/1
NNNN Δθq )1()1(*2/1

pNpN ooN +=+= − qq . (B.27) 
  

where *
Nq  is defined in (27), and that  

 

 ),()( 24
2/1*2/12/1*2/1*

+
−−−− →−=−=− S

d
NNNNNN N I0ΨΨΨ qqq . (B.28) 

 

It now follows from (B.25), (B.26), and (B.27) that  
 

 )1()()~( 2/12/112/1
pNNNNNNNN oN +−′=− −− qΨΨΘJΞθθ . (B.29) 
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Since all nonstochastic terms on the right hand side from (B.29) are )1(O  it follows that 

)~(2/1
NNN θθ −  is )1(pO . To derive the asymptotic distribution of )~(2/1

NNN θθ − , we invoke 

Corollary F4 in Pötscher and Prucha (1997). In the present context, we have  
 

 ),(~ 24
2/1

+
− →−= S

d
NNN N I0ζΨζ q ,   

  )1()~(2/1
pNNNN oN +=− ζθθ A , with 

 2/11
NNNNN ΨΘJΞ ′= −A . 

 

Furthermore, )1()~(2/1
pNN ON =− θθ  and its variance-covariance matrix is  

 

 11
~ )()()( −− ′′′= NNNNNNNNNNNNN

JΘJJΘΨΘJJΘJΘΩθ , 
 

where 
Nθ

Ω~  is positive definite. 
 

As a final point it has to be shown that 0)(inflim min >′→∞ NNN AAλ  as required in Corollary 

F4 in Pötscher and Prucha (1997). Observe that  
 

 =′ )(min NNAAλ )( 11
min

−− ′′ NNNNNNN ΞJΘΨΘJΞλ  (B.30) 

   0)()()()()( minmin
11

minminmin >′′′≥ −−
NNNNNNNNN BBλλλλλ ΓΓΞΞΘΘΨ , 

 

since the matrices involved are all positive definite. 
 
 
Consistency Proof for Estimates of Third and Fourth Moments of the Error Components 
Consistent estimates for the second moments of Nitv ,  and Ni,μ  are delivered by the GM 

estimators defined in (17) and (18), respectively (See Theorems 1a and 1b). In the technical 
appendix, it is shown that the estimators for the third and fourth moments of Nitv ,  and Nit ,μ , 

defined in (39) and (40) are also consistent.  
 
 
III. Proof of Theorem 3 (Variance-Covariance Estimation) 
Lemma B.2 

Suppose Assumptions 1-4 hold. Furthermore, assume that 1sup
1

, <∑
=

S

m
NmN ρ , and that the row 

and column sums of Nm,M , Sm ,...,1=  are bounded uniformly in absolute value by 1 and 

some finite constant respectively. Let  2~
vσ , 2

1
~σ , and Nsρ ,

~ , Ss ,...,1= , be estimators, satisfying 

)1(~ 22
pvv o=− σσ , )1(~ 2

1
2

1 po=−σσ , )1(~
,, pNsNs oρρ =− , Ss ,...,1= . Let the NTNT ×  or NN ×  

matrix NF  be of the form (compare Lemmata 1 and 2): 



 56

(a) =Nv,F N

S

m
NmNmNT HMII ∑

=

−′−⊗
1

1
,, ])([ ρ ,  

 =N,μF N

S

m
NmNmNTNT HMIIIe ∑

=

−′−⊗⊗′
1

1
,, ])()[( ρ , 

(b) =**
,NvF N

S

m
NmNmNTNNNNv HMIIΩHQQ ε ∑

=

−−− −⊗=+
1

,,
1
,

*
,1

2
1,0

2 )]([)( ρσσ ,  

 =**
,NμF N

S

m
NmNmNTNTNNT HMIIIeHIe ∑

=

−− −⊗⊗′=⊗′
1

,,
2

1
*2

1 )]()][([)]([ ρσσ ,  

where NH  is a *PN ×  matrix whose elements are bounded uniformly in absolute value by 

some constant ∞<c . The corresponding estimates Nv,
~F , N,

~
μF , **

,
~

NvF , and **
,

~
NμF  are defined 

analogously, replacing 2
1

2 ,σσ v , N,εΩ , and Nm,ρ , Sm ,...,1= , with 2
1

2 ~,~ σσ v , N,
~

εΩ , and Nm,
~ρ , 

Sm ,...,1= , respectively.  

(i) Then,  )1(~~ 11
pNNNN oNN =′−′ −− FFFF  and )1(1 ON NN =′− FF . 

(ii) Let Na  be some 1×NT  or 1×N  vector, whose elements are bounded uniformly in 

absolute value. Then )1(~ 11
pNNNN oNN =′−′ −− aFaF  and )1(,

1 ON NNv =′− aF . 

The proof of Lemma B.2 is given in the technical appendix.  
 
Proof of Theorem 3 

As part of proving Theorem 3 it has to be shown that )1(~
pNN o=−ΨΨ . Observe that in light 

of (15), each element of NΨ~  and the corresponding element of NΨ  can be written as 
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**,*,
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for ),(,4,...,1, baqp = , 1,...,1, += Ssr 23, where  
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μμ σσσσ ,   

and 
 

                                                 
23 See equations (34) in the main text for the structure of the matrix NΨ  and the proper 

indexation of its elements. 
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v
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Invoking Lemma B.2, it is shown in the technical appendix that  )1(~ ,*,
,,

,*,
,, p

qp
Nsr

qp
Nsr o=−EE , 

)1(~ *,*,
,,

*,*,
,, p

qp
Nsr

qp
Nsr o=−EE , )1(~ **,*,

,,
**,*,

,, p
qp

Nsr
qp

Nsr o=−EE , and )1(~ ***,*,
,,

***,*,
,, p

qp
Nsr

qp
Nsr o=−EE  for all elements 

of NΨ , ),(,4,...,1, baqp = , 1,...,1, += Ssr . It follows that )1(~
pNN o=−ΨΨ .  

 

Notice further that )1(~
pNN o=−ΘΘ , )1(ON =Θ  and )1(~

pN O=Θ  by Assumption 5. Let 

NNNNNNNN BB ΓΘΓΘJJΞ ′′=′=  (as in Theorem 2) and NNNNNNNN BB
~~~~~~~~~ ΓΘΓJΘJΞ ′′=′= .24  

In Theorem 2, we showed that )1(~
pN O=J , )1(ON =J , and )1(~

pNN o=− JJ  and that 

)1(~
pN O=+Ξ , )1(1

pN O=−Ξ  and )1(~ 1
pNN o=− −+ ΞΞ . It now follows that )1(~

~~ po
NN

=− θθ ΩΩ . 

 
 
III. Proof of Theorem 4 (Joint Distribution of Nρ~  and Other Model Parameters) 

The subsequent proof will focus on the case Nv,F  and Nv,F ; this also convers the case for **
, NvF  

and **
, NμF . The first line in Theorem 4 holds in light of Assumption 7 (for NN Δ2/1 ), bearing in 

mind that NNvNv PFT ,, = , and Theorem 2 (for )~(2/1
NNN θθ − ). 

 

We next prove that ),(),( 24
2/12/1

,, * ++
−− →′′′= SP

d
NNNNoNo NN I0FξΨξ q  by verifying that the 

assumptions of the central limit theorem A.1 by Kelejian and Prucha (2008) are fulfilled. Note 
that 0)( *

,min >≥
o

cNo ΨΨλ  by assumption. In Theorem 2, we verified that the stacked 

innovations Nξ , the matrices NsNs ,,4,,1 ,...,AA , Ss ,...,1= , Na,A , and Nb,A , and the vectors 

Ns ,,1a , …, Ns,,4a , Ss ,...,1= , Na,a , and Nb,a  satisfy the assumptions of central limit theorem 

by Kelejian and Prucha (2008, Theorem A.1).  
 

Next, consider the two blocks of ),( ,, ′′′= NNvN μFFF , which are given by   
 

                                                 
24 There is a slight discrepancy to the definition of NΞ

~  in Theorem 2: Here NB
~  is used rather 

than NB , which does not affect the proof, however, noting that both Nρ~  and Nρ  are 

consistent. 
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 =Nv,F N

S

m
NmNmNT HMII ∑

=

−′−⊗
1

1
,, ])([ ρ , and 

=N,μF N

S

m
NmNmNTNNT HMIIΩIe ε ∑

=

−− ′−⊗⊗′
1

1
,,,

2
1 ])([)]([ ρσ . 

Since the row and columns sums of )]([ 2
1 NT Ie ⊗′−σ , N,εΩ , and ∑

=

−′−⊗
S

m
NmNmNT

1

1
,, ])([ MII ρ  

are uniformly bounded in absolute value and since the elements of the matrix NH  are 

uniformly bounded in absolute value, it follows that the elements of  NF  are also uniformly 

bounded in absolute value. Hence, the linear form NNNNvNN μFvFξF ,, μ′+′=′  also fulfils the 

assumptions of Theorem A.1. As a consequence, ),( 24, * ++
→ SP
d

No N I0ξ . 
 

In the proofs of Theorems 2 and 3, we showed that )1(~
pNN o=−ΨΨ , )1(ON =Ψ , and 

)1(~
pN O=Ψ . By analogous arguments, this also holds for the submatrices N,ΔΔΨ  and N,θΔΨ . 

Hence, )1(~
,, pNoNo o=−ΨΨ ,  )1(, ONo =Ψ  and )1(~

,, pNoNo o=−ΨΨ , and thus )1(~
, pNo O=Ψ .  

 

By assumption  )1(~
pNN o=− PP , )1(ON =P , and )1(~

pN O=P  as well as )1(~
pNN o=−ΘΘ , 

)1(ON =Θ  and )1(~
pN O=Θ . In the proof of Theorem 2 we showed that )1(~

pNN o=− JJ , 

)1(ON =J , and )1(~
pN O=J , and that )1()()~~~( 1

pNNNNNN o=′−′ −+ JΘJJΘJ , )1()( 1 ONNN =′ −JΘJ , 

and )1()~~~( pNNN O=′ +JΘJ . It now follows that )1(~
,, pNoNo o=−ΩΩ  and )1(, ONo =Ω  and thus 

)1(~
, pNo O=Ω . 

 
 
APPENDIX C. 
Proof of Lemma 1. 
In light of equations (4a) and (4b), Assumptions 3 and 8, as well as ∞<≤ bNN βsup , it 

follows that all columns of ),( NNN YXZ =  are of the form NNNN εΠπ +=ϑ , where the 

elements of the vector Nπ  and the row and column sums of the matrix NΠ  are bounded 

uniformly in absolute value (see Remark A.1 in Appendix A). It follows from Lemma C.2 in 
Kelejian and Prucha (2008) that the fourth moments of the elements of the matrix NN ZD −=  

are bounded uniformly by some finite constant and that Assumption 6 holds. 
 

Next, note that  
 

 NNNNNvNNN NTNTNT μFPvFPδδ ,
2/1

,
2/12/1 )(~)(~)~()( μ′′+′′=− −− ,    

 

where NP~  is defined in the Lemma, and  
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 N

S

m
NmNmNTNv HMIIF ∑

=

−′−⊗=
1

1
,,, ])([ ρ  and  

 N

S

m
NmNmNTNNTN HMIIΩIeF ∑

=

−− ′−⊗⊗′=
1

1
,,,

2
1, ])([)]([ ρσ εμ . 

 

In light of Assumption 10, )1(~
pNN o=− PP  and )1(ON =P , with NP  as defined in the Lemma. 

By Assumptions 2, 3 and 9, the elements of Nv,F  and N,μF  are bounded uniformly in absolute 

value. By Assumption 2, 0v =)( NE , 0μ =)( NE , and the diagonal variance-covariance 

matrices of Nv  and Nμ  have uniformly bounded elements. Thus, 0vF =′− ])[( ,
2/1

NNvNTE  and 

the elements of the variance-covariance matrix of NNvN vF ,
2/1 ′− , i.e., NvNvvNT ,,

21)( FF′− σ , are 

bounded uniformly in absolute value (see Remark A.1 in Appendix A). Moreover, 
0μF =′− ])[( ,2

2/1
NNNTE , and the elements of the variance-covariance matrix of NNN μF ,

2/1
μ′

− , 

i.e., NNNT ,,
21)( μμμσ FF′− , are bounded uniformly in absolute value. It follows from 

Chebychev’s inequality that )1()( ,
2/1

pNNv ONT =′− vF , )1()( ,
2/1

pNN ONT =′− μFμ , and 

consequently )1()()()~()( ,
2/1

,
2/12/1

pNNNNNvNNN oNTNTNT +′+′=− −− μFPvFPδδ μ  and 

)1()()( ,
2/1

,
2/1

pNNNNNvN ONTNT =′+′ −− μFPvFP μ . This completes the proof, recalling that 

),(),( ,,,, ′′′′′=′′′= NNNvNNNvN μμ FPFPTTT . 

 
 
Proof of Lemma 2. 
The structure of the proof of Lemma 2 is similar to that of Lemma 1, applied to the 
transformed model and accounting for the use of generated instruments. It is given in full 
detail in the technical appendix. 
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Table 1. Parameter Constellations in Monte Carlo Experiments 
Parameter 

constellation 1λ  2λ  3λ  1ρ  2ρ  3ρ  

(1) 0.5 0.3 0.1 0.4 0.25 0.1 
(2) 0.5 0 0 0.4 0 0 
(3) 0 0 0 0 0 0 

Note: 121 == ββ  under all parameter constellations. 
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Table 2. Monte Carlo Results  

 N = 100  N = 500 
Parameter 
constellation1) (1) (2) (3) (1) (2) (3) 
λ1 0.5 0.4 0 0.5 0.4 0 
Bias 0.0004 0.0014 0.0013 0.0005 0.0000 0.0003 
RMSE 0.0203 0.0230 0.0244 0.0088 0.0100 0.0099 
Rej. Rate 0.0540 0.0590 0.0490 0.0590 0.0710 0.0380 

λ2 0.3 0 0 0.3 0 0 
Bias 0.0008 0.0001 0.0001 -0.0002 0.0000 -0.0001 
RMSE 0.0213 0.0226 0.0251 0.0094 0.0097 0.0104 
Rej. Rate 0.0490 0.0520 0.0620 0.0620 0.0410 0.0480 

λ3 0.1 0 0 0.1 0 0 
Bias -0.0003 -0.0005 0.0010 0.0001 -0.0002 0.0000 
RMSE 0.0213 0.0232 0.0250 0.0093 0.0102 0.0101 
Rej. Rate 0.0520 0.0490 0.0690 0.0630 0.0530 0.0490 

β1 1 1 1 1 1 1 
Bias 0.0001 -0.0004 -0.0003 0.0001 0.0000 0.0000 
RMSE 0.0134 0.0132 0.0138 0.0061 0.0060 0.0061 
Rej. Rate 0.0560 0.0500 0.0560 0.0550 0.0600 0.0480 

β2 1 1 1 1 1 1 
Bias -0.0007 -0.0002 -0.0001 0.0001 -0.0001 0.0002 
RMSE 0.0130 0.0142 0.0133 0.0060 0.0058 0.0059 
Rej. Rate 0.0460 0.0740 0.0550 0.0500 0.0520 0.0510 

ρ1 0.4 0.3 0 0.4 0.3 0 
Bias -0.0050 -0.0064 -0.0073 0.0013 0.0025 0.0027 
RMSE 0.0946 0.1037 0.1261 0.0385 0.0426 0.0496 
Rej. Rate 0.1070 0.1200 0.1330 0.0890 0.0910 0.0940 

ρ2 0.25 0 0 0.25 0 0 
Bias -0.0091 -0.0036 -0.0047 -0.0007 0.0002 0.0008 
RMSE 0.1077 0.1107 0.1214 0.0444 0.0433 0.0477 
Rej. Rate 0.1180 0.1090 0.1140 0.0870 0.0810 0.0790 

ρ3 0.1 0 0 0.1 0 0 
Bias -0.0079 -0.0020 -0.0028 -0.0027 0.0002 -0.0003 
RMSE 0.1005 0.1044 0.1169 0.0404 0.0423 0.0475 
Rej. Rate 0.0900 0.0980 0.0920 0.0790 0.0780 0.0860 

Joint Tests 2)       
Rej. Rate  - 0.1280 0.1510 - 0.0790 0.0880 

Note: 1) Each column corresponds to one parameter constellation (see Table 1). 2) Rejections rates for the 
following hypotheses: (2): 0: 3232

,*,
0 ==== ρρλλρλH ; (3): 0: 321321

,
0 ====== ρρρλλλρλH .   
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TECHNICAL APPENDIX 
The proofs for the panel data error component SARAR(R,S) framework are given in full 
length to the benefit of the reader. They build on analogous proofs by Kelejian and Prucha 
(2008) for a cross-sectional SARAR(1,1) and Badinger and Egger (2008b) for a cross-section 
SARAR(R,S) model, as well as analogous proofs for a panel SARAR(0,1) model with 
nonstochastic regressors by Kapoor, Kelejian, and Prucha (2007). 
 
APPENDIX A  
Notation 
We adopt the standard convention to refer to matrices and vectors with acronyms in boldface. 
Let NA  denote some matrix. Its elements are referred to as Nija , ; Ni.,a  and Ni,.a  denote the i-

th row and the i-th column of NA  respectively. If NA  is a square matrix, 1−
NA  denotes its 

inverse; if  NA  is singular,  +
NA  denotes its generalized inverse. If NA  is a square, symmetric 

and positive definite matrix, 2/1
NA denotes the unique positive definite square root of NA  and 

2/1−
NA  denotes 2/11)( −

NA . The (submultiplicative) matrix norm   ⋅  is defined as 
2/1)]([ NNN Tr AAA ′= . Finally, unless stated otherwise, for expressions involving sums over 

elements of vectors or matrices that are stacked over all time periods, we adopt the convention 
to use single indexation i, running from NTi ,...,1= , to denote elements of the stacked vectors 

or matrices.1 
 
Remark A.1  

i) Definition of row and column sum boundedness (compare Kapoor, Kelejian, and Prucha, 
2007, p. 99): Let 1, ≥NNB , be some sequence of NTNT ×  matrices with T  some fixed 

positive integer. We will then say that the row and column sums of the (sequence of) matrices 

NB  are bounded uniformly in absolute value, if there exists a constant ∞<c , which does not 

depend on N, such that  
 

 cb
NT

j
NijNTi
≤∑

=≤≤ 1
,1

max  and cb
NT

i
NijNTj
≤∑

=
≤≤ 1

,1
max  for all N ≥ 1.    

 
The following results will be repeatedly used in the subsequent proofs.  
                                                 
1 Take the vector )](),...,1([ TNNN uuu ′′= , for example. Using indexation NTi ,...,1= , the 

elements  Niu Ni ,...,1 ,, =  refer to 1=t , elements NNiu Ni 2,...,1 ,, +=  refer to 2=t , etc., and 

elements NTNTiu Ni ,...,1)1( ,, +−=  refer to Tt = . The major advantage of this notation is 

that it avoids the use of double indexation for the cross-section and time dimension. 
Moreover, it allows us the invoke several results referring to the case of a single cross-section, 
which still apply to the case of T  stacked cross-sections.   
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ii) Let NR  be a (sequence of) NN ×  matrices whose row and column sums are bounded 

uniformly in absolute value, and let S  be some TT ×  matrix (with 1≥T  fixed). Then the row 
and column sums of the matrix NRS⊗  are bounded uniformly in absolute value (compare 

Kapoor, Kelejian, and Prucha, 2007, p. 118). 

iii) If NA  and NB  are (sequences of) NTNT ×  matrices (with 1≥T  fixed), whose row and 

column sums are bounded uniformly in absolute value, then so are the row and column sums 
of NNBA  and NN BA + . If NZ  is a (sequence of) PNT ×  matrices whose elements are 

bounded uniformly in absolute value, then so are the elements of NN ZA  and 

NNNNT ZAZ′−1)( . Of course, this also covers the case NNNT ZZ′−1)(  for NTN IA =   (compare 

Kapoor, Kelejian, and Prucha, 2007, p. 119). 

iv) Suppose that the row and columns sums of the NTNT ×  matrices )( ,NijN a=A  are 

bounded uniformly in absolute value by some finite constant Ac ; then q
A

qNT

i
Nij ca ≤∑

=1
,  for 1>q  

(see Kelejian and Prucha, 2008, Remark C.1). 

v) Let Nξ  and Nη  be 1×NT  random vectors (with 1≥T  fixed), where, for each N, the 

elements are independently distributed with zero mean and finite variances. Then the elements 
of NNNT ξZ′− 2/1)(  are )1(pO  and NNNNT ηAξ′−1)(  is )1(pO  (compare Kelejian and Prucha, 

2004, Remark A.1).2  

vi) Let Nζ  be a 1×NT  random vector (with 1≥T  fixed), where, for each N, the elements are 

distributed with zero mean and finite fourth moments. Let Nπ  be some nonstochastic 1×NT  

vector, whose elements are bounded uniformly in absolute value and let NΠ  be a NTNT ×  

nonstochastic matrix whose row and column sums are bounded uniformly in absolute value. 
Define the column vector NNNN ζΠπd += . It follows that the elements of Nd  have finite 

fourth moments. (Compare Kelejian and Prucha, 2008, Lemma C.2, for the case 1=T  and 
independent elements of Nζ .)3  

                                                 
2 Kelejian and Prucha (2004) consider the case 1=T  and where the elements of Nξ  and Nη  

are identically distributed. Obviously, the results also holds for (fixed) 1≥T  and under 
heteroskedasticity, as long as the variances of the elements of Nξ  and Nη  are bounded 

uniformly in absolute value.  
3 The extension to (fixed) 1≥T  is obvious. Independence of the elements of Nζ  is not 

required for the result to hold. The fourth moments of the elements of NNNN ζΠπd +=  are 

given by ∑
=

+
NT

j
NjNijNiE

1

4
,,, )( ζππ ])([2

1

4
,,

4
,

4 ∑
=

+≤
NT

j
NjNijNiE ζππ  
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Remark A2.  
The matrices N,0Q  and N,1Q  have the following properties (see Kapoor, Kelejian, and Prucha, 

2007, p. 101): 
 
 )1()( ,0 −= TNtr NQ , Ntr N =)( ,1Q , 0IeQ =⊗ )(,0 NTN , )()(,1 NTNTN IeIeQ ⊗=⊗ ,  

NNNN vQεQ ,0,0 = , NNNNTNN vQμIeεQ ,1,1 )( +⊗= , )()( ,0,0 NTNNNT DIQQDI ⊗=⊗ ,  

)()( ,1,1 NTNNNT DIQQDI ⊗=⊗ , )()1(])[( ,0 NNNT trTtr DQDI −=⊗ , 

)(])[( ,1 NNNT trtr DQDI =⊗ , 

 
where ND  is an arbitrary N × N matrix. Obviously, the row and column sums of N,0Q  and 

N,1Q  are bounded uniformly in absolute value.  

 
 
APPENDIX B 
The following lemma will be repeatedly used in the subsequent proofs.  
 
Lemma B.14   
Let NA  be some nonstochastic NTNT × matrix (with T fixed), whose row and column sums 

are bounded uniformly in absolute value. Let Nu  be defined by (2c) and Nu~  be a predictor for 

Nu . Suppose that Assumptions 1 to 4 hold. Then 

 
(a) )1(1 OEN NNN =′− uAu , )1()( 1 oNVar NNN =′− uAu ,   

and  )1()()~~( 11
pNNNNNN oENN =′−′ −− uAuuAu .    

 

(b) )1(,.
1 OEN NNNj =′− uAd , Pj ,...,1= , where Nj ,.d  is the j-th column of the PNT ×  matrix 

ND , and )1()(~ 11
pNNNNNN oENN =′−′ −− uADuAD . 

 
(c) If furthermore Assumption 6 holds, then  

)1(~~ 2/12/12/1
pNNNNNNNN oNNN +′+′=′ −− ΔαuAuuAu  with ])([1

NNNNN EN uAADα ′+′= − .  

                                                                                                                                                         

 ∞<≤+≤ ∑∑∑∑
= = = =

KE
NT

j
Nm

NT

k
Nl

NT

l
Nk

NT

m
NjNimNilNikNijNi ][2

1
,

1
,

1
,

1
,,,,,

4
,

4 ζζζζπππππ , by Hölder’s 

inequality as long as the fourth moments of the elements of Nζ  are bounded uniformly. 
4 Compare Lemma C.1 in Kelejian and Prucha (2008) for the case of a cross-sectional 
SARAR(1,1) model and Lemma C.1 in Badinger and Egger (2008b) for the case of a cross-
sectional SARAR(R,S) model. 
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In light of (b), we have )1(ON =α  and )1(~)(1
pNNNNN oN =−′+′− αuAAD . 

 
Proof of part (a) 
Let  
 

 NNNN N uAu′= −1ϑ  and NNNN N uAu ~~~ 1 ′= −ϑ , (B.1)   

 
then given (4a), we have NNNN N εBε′= −1ϑ , with the symmetric NTNT ×  matrix NB  defined 

as  
 

∑∑
=

−

=

− −⊗′+′−⊗=
S

m
NmNmNTNN

S

m
NmNmNTN

1

1
,,

1

1
,, ])()[(])()[2/1( MIIAAMIIB ρρ      (B.2)  

 
By Assumptions 1-3 and Remark A.1 in Appendix A, the row and column sums of the 
matrices NB  and N,εΩ  are bounded uniformly in absolute value. It follows that the row and 

column sums of the matrices NNNN ,, εε ΩBΩB  are bounded uniformly in absolute value.  

 
In the following let ∞<K  be a common bound for the row and column sums of the absolute 
value of the elements of NB , N,εΩ , and NNNN ,, εε ΩBΩB  and of the absolute value of their 

respective elements. Then  
 

 ∑∑
= =

−=
NT

i

NT

j
NjNiNijN bNEE

1 1
,,,

1 εεϑ  (B.3) 

 ∑∑
= =

−≤
NT

i

NT

j
NjNiNij EbN

1 1
,,,

1 εε  

 ∑∑
= =

−≤
NT

i

NT

j
jiNijbN

1 1
,,,

1
εε σσ      

 3TK≤ , 
 
where we used Hölder’s inequality in the last step. This proves that NEϑ  is O(1). 

 
Now consider )( NVar ϑ , invoking Lemma A.1 in KP (2008): 

 
 =)( NVar ϑ ),( 11

NNNNNN NNCov εBεεBε ′′ −−  (B.4a) 

 ∑
=

−− −+=
NT

i
NiiNNNN i

bNTrN
1

)4(
,

2
,*

2
,,

2 ]3[)(2 ηεε μΩBΩB , 

 ]}3)([)({)(2 4
,,...,1

2
*,,...,1

2
,,

2 −+= ==
−−

NiNTiNiiNTiNNNN EdiagbdiagTrNTrN ηεε ΩBΩB  (B.4b) 
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where Niib *,  is the i-th diagonal element of NNNNijN b SBSB ′′== )( ,*,

*  and )4(
, Niη

μ  is the fourth 

moment of the i-th element of the 1×NT  vector NNN εSη 1−= , i.e., )( 4
,

)4(
, NiN E

i
ημη = . In light of 

Assumption 1 and the properties and N,0Q  and N,1Q , the row and column sums (and the 

elements) of NNvN ,11,0 QQS σσ +=  are bounded uniformly in absolute value by some finite 

constant, say *K . W.o.l.o.g. we can choose the bound K  used above such that KK ≤* .  
 
Moreover, the row and column sums (and the elements) of NNvN ,1

1
1,0

11 QQS −−− += σσ  are also 

bounded uniformly in absolute value by some constant **K . W.o.l.o.g. we can choose K  such 
that KK ≤** .  
 
In light of Remark A.1 and Assumption 1 it follows that the elements of NN εSη 1−=  have 

finite fourth moments. Denote their bound by ***K . W.o.l.o.g. we assume that KK ≤*** . 
 
Hence, we have  
 
 )( NVar ϑ )]([)(2 2

,...,1
22 KKdiagTrNKTrN NTiNT =

−− +≤ I . 

 )1()2(2 31311 oTKTKNTKNTKN =+=+= −−− . 
 
The claim in part (a) of Lemma B.1 that )1()()( 11

pNNNNNN oENN =′−′ −− uAuuAu  now 

follows from Chebychev’s inequality (see, for example, White, 2001, p. 35).  
 
We now prove the second part of (a), i.e., )1()()~~( 11

pNNNNNN oENN =′−′ −− uAuuAu . Since 

)1()( pNN oE =− ϑϑ , it suffices to show that )1(~
pNN o=−ϑϑ . By Assumption 4, we have 

NNNN ΔDuu =−~ , where ),...,( .,.,1 ′′′= NNTNN ddD . Substituting NNNN ΔDuu +=~  into the 

expression for Nϑ
~  in (B.1), we obtain 

 

 NNNNNNNNNNNN NN uAuΔDuADΔu ′−+′′+′=− −− 11 )()(~ ϑϑ  (B.5) 

 )(1
NNNNNNNNNNNNNNNNNNNN uAuΔDADΔΔDAuuADΔuAu ′−′′+′+′′+′= −  

 )(1
NNNNNNNNNNNNNN ΔDADΔΔDAuuADΔ ′′+′+′′= −   

 )(1
NNNNNNNNNNNNNN ΔDADΔuADΔuADΔ ′′+′′′+′′= −  

 ])([1
NNNNNNNNNNN ΔDADΔuAADΔ ′′+′+′′= −  

 NN ψφ += ,  
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where  
 

=Nφ }])()[({])([
1

1
,,

11 ∑
=

−−− −⊗′+′′=′+′′
S

m
NNmNmNTNNNNNNNNN NN εMIIAADΔuAADΔ ρ , (B.6) 

)(1
NNNNN εCDΔ ′′= − , with 

 ),..,(])()[( .,.,1
1

1
,, ′′′=−⊗′+= ∑

=

−
NNTN

S

m
NmNmNTNNN ccMIIAAC ρ , 

 =Nψ NNNNNN ΔDADΔ ′′−1 .  (B.7) 

 
By Assumption 3 and Remark A.1, the row and column sums of NC  are bounded uniformly 

in absolute value. We next prove that )1(pN o=φ  and )1(pN o=ψ .  

 
Proof that )1(pN o=φ : 

 =Nφ NNNNN εCDΔ ′′−1   (B.8) 

 N

NT

i
NiNiNN εcdΔ∑

=

− ′′=
1

.,.,
1  

 ∑
=

− ′′≤
NT

i
NNiNiNN

1
.,.,

1   εcdΔ   

 ∑ ∑
= =

− ′′=
NT

i

NT

j
NjNijNiN cN

1 1
,,.,

1   εdΔ   

 ∑ ∑
= =

− ′′≤
NT

i

NT

j
NjNijNiN cN

1 1
,,.,

1   εdΔ  

 ∑ ∑
= =

− ′′=
NT

i

NT

j
NjNijNiN cN

1 1
,,.,

1    εdΔ   

 ∑∑
==

− ′′=
NT

i
NijNi

NT

j
NjN cN

1
,.,

1
,

1   dΔ ε  

 
qNT

i

q

Nij

pNT

i

p
Ni

NT

j
NjN cN

/1

1
,

/1

1
.,

1
,

1    ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ′′≤ ∑∑∑
===

− dΔ ε  

 ( )
qNT

i

q

Nij

pNT

i

p
Ni

NT

j
NjN

p cNNNNNNN
/1

1
,

/1

1
.,

1

1
,

12/1/12/11    ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′= ∑∑∑

==

−

=

−−− dΔ ε  

 ( )
qNT

i

q

Nij

pNT

i

p
Ni

NT

j
NjN

p cNNNN
/1

1
,

/1

1
.,

1

1
,

12/12/1/1    ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑∑

==

−

=

−− dΔ ε  

 

Note that ∞<≤⎟
⎠

⎞
⎜
⎝

⎛∑
=

Kc
NT

i
Nij

1
,  by Assumption. In the following we denote by K  the uniform 

bound for the row and column sums of the absolute value of the elements of NA  and NC . 



 7

From Remark C.1 in KP (2008) (see Remark A.1 in Appendix A) it follows that 

q
NT

i

q

Nij Kc ≤⎟
⎠

⎞
⎜
⎝

⎛∑
=1

,  and thus 
qNT

i

q

Nijc
/1

1
, ⎟

⎠

⎞
⎜
⎝

⎛∑
=

K≤ .  Factoring K  out of the sum yields  

 

 Nφ ( )
pNT

i

p
Ni

NT

j
NjN

p NTTNNNK
/1

1
.,

1

1
,

12/12/1/1  )( ⎟
⎠

⎞
⎜
⎝

⎛ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤ ∑∑

=

−

=

−− dΔ ε . 

 
This holds for δ+= 2p  for some 0>δ  as in Assumption 4 and 1/1/1 =+ qp . By 

Assumption 4, ( ) )1(2/1
pN ON =Δ . Assumption 4 also implies that 

)1( )(
/1

1
.,

1
p

pNT

i

p
Ni ONT =⎟

⎠

⎞
⎜
⎝

⎛ ′∑
=

− d  for δ+= 2p  and some 0>δ .  

 

Moreover, ∞<≤ KE Nj ,ε , which implies that )1(
1

,
1

p

NT

j
Nj ON =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

− ε . Since 02/1/1 →−pN  as 

∞→N  it follows that =Nφ )1(po . 

 
 
Next consider 
 

 =Nψ NNNNNN ΔDADΔ ′′−1 = ∑∑
= =

− ′′
NT

i

NT

j
NNjNijNiN aN

1 1
.,,.,

1 ΔddΔ  (B.9) 

 Nij

NT

i

NT

j
NjNiN aN ,

1 1
.,.,

21  ∑ ∑
= =

− ′≤ ddΔ  

 
q

NT

j

q

Nij

NT

i

p
NT

j

p

NjNiN aN
/1

1
,

1

/1

1
.,.,

21  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′≤ ∑∑ ∑

== =

− ddΔ  

 
p

NT

j

p

Nj

NT

i
NiN

p NNKN
/1

1
.,

1

1
.,

12/1  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ′≤ ∑∑
=

−

=

− ddΔ  

 ( ) )1( 
/2

1
.,

122/12/12/1/1
p

p
NT

j

p

NjN
p oNNKNN =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

−−− dΔ . 

 
From the last inequality we can also see that )1(2/1

pN oN =ψ . Summing up, we have proved 

that )1(~
pNNNN o=+=− ψφϑϑ . 

 
 
Proof of part (b) 
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Denote by *
, Nsϑ  the s-th element of NNNN uAD′−1 . By Assumptions 3 and 4 and Remark A.1 

in Appendix A there exists a constant ∞<K  such that KuE Ni ≤)( 2
,  and KdE

p

Nij ≤,  with 

δ+= 2p  for some 0>δ . W.o.l.o.g. we assume that the row and column sums of the 

matrices NA   are bounded uniformly by ∞<K . Notice first that  

 

 ( ) ( ) 2/12
,

2/12
,,, NjsNiNjsNi EdEuduE ≤        

 ( )
pp

NjsNi dEEu
/1

,
2/12

, ⎟
⎠
⎞⎜

⎝
⎛≤                     

 pp KKK /12/1/12/1 +=≤  with p  as before. 
 
It follows that  
 

 ∑∑
= =

−=
NT

i
NjsNi

NT

j
NijNs duEaNE

1
,,

1
,

1*
,  ϑ  (B.10) 

 ∞<=≤≤ +−+

= =

−+ ∑∑ pp
NT

i

NT

j
Nij

p KTKNTNKaNK /12/31/12/1

1 1
,

1/12/1  ,  

 

which shows that indeed )1(,.
1 ONE NNNs =′− uAd . Of course, the argument also shows that  

 
 )1(])([1 OEN NNNNN =′+′= − uAADα .  

 
It is readily verified that )1()( * oVar s =ϑ , such that we have )1()( **

pss oE =− ϑϑ . Next observe 

that  
 
 *11 ~

NNNNNNN NN φ+′=′ −− uADuAD ,                     (B.11) 

 
where NNNNN N ΔDAD′= −1*φ . By arguments analogous to the proof that 

=Nφ )1(])([1
pNNNNN oN =′+′′− uAADΔ , it follows that )1(*

pN o=φ . Hence )1(~ **
pss o=−ϑϑ , 

and thus )1()(~ **
pss oE =− ϑϑ , which also shows that )1(~)(1

pNNNNN oN =−′+′− αuAAD . 

 
 
Proof of part (c) 
In light of the proof of part (a)  
 
 =′−

NNNN uAu ~~2/1
NNNNNNNNN NNNN ψ2/12/112/1 ])([ +′+′+′ −− ΔDAAuuAu , (B.12) 
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where )1(2/1

pN oN =ψ  as shown above, and in light of (b) and since )1(2/1
pN ON =Δ  by 

Assumption 4, we have  
 
 )1(~~ 2/12/12/1

pNNNNNNNN oNNN +′+′=′ −− ΔαuAuuAu . (B.13) 

 
 

Proof of Theorem 1a. Consistency of Initial GM Estimator 0ˆ
Nθ  

The objective function of the nonlinear least squares estimator in (17a) and its nonstochastic 
counterpart are given by  
 
 )~~()~~(),( 00000000

NNNNNNN bb ΓγΓγθR −′−=ω  and  (B.14a)  

 )()()( 00000000 bb NNNNN ΓγΓγθR −′−= . (B.14b) 

  
Since 0000 =− NNN bΓγ , we have 0)( 00 =NNR θ , i.e., 0)( 00 =θNR  at the true parameter vector 

),,...,( 2
1

0 ′= vSN σρρθ . Hence,  

 

 =− )()( 0000 θRθR NN  )()( 000000
NNNNN bbbb −′′− ΓΓ .   (B.15) 

 
In light of Rao (1973, p. 62) and Assumption 5, it follows that:  
 

 )())(()()( 000000
min

000
NNNNNN RR bbbb −′−′≥− ΓΓθθ 0 λ  and  

 )()()()( 0000
*

000
NNNN RR bbbb −′−≥− λ0θθ .  

 

By the properties of the norm 2/1)]([ AAA tr= , we have ≤−
200 θθ )()( 0000

NN bbbb −′−  such 

that 
200

*
0000 )()( θθθθ −≥− λNN RR . Hence, for every 0>ε  

 

 0inf)]()([inflim 2
*

200
*

}:{

0000

}:{ 000000
>=−≥−

≥−≥−∞→
ελλ

εε
θθθθ

θθθθθθ
NNN

RR , (B.16) 

 
which proves that the true parameter 0θ  is identifiable unique.  
 
Next, let )~,~( 000

NNN ΓγF −=  and ),( 000
NNN ΓγΦ −= . The objective function and its nonstochastic 

counterpart can then be written as  
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 ),1(),1()( 000000 ′′′′= bb NNNR FFθ  and   

 ),1(),1()( 000000 ′′′′= bb NNNR ΦΦθ .    

 
Hence for ],[ ρρ aaρ −∈

5 and ],0[2 bv ∈σ  it holds that  

 

 ),1)()(,1()()( 0000000000 ′′′−′′=− bb NNNNNN RR ΦΦFFθθ .  

 
Moreover, since the norm   ⋅  is submultiplicative, i.e., BAAB  ≤ , we have 

 

 )()( 0000 θθ NN RR −
2

00000 ),1( ′′−′≤ NNNNN bΦΦFF      

 ])(
2

)1(2)([1 2420000 baSSSaSNNNN +
−+

++′−′≤ ρρΦΦFF .  

 
It is readily observed from (16), that the elements of the matrices 0

Nγ  and 0
NΓ  are all of the 

form NNN uAu′ , where NA  are nonstochastic NTNT × matrices (with T fixed), whose row 
and column sums are bounded uniformly in absolute value. In light of Lemma B.1, the 

elements of 0
NΦ  are O(1) and it follows that 000 p

NN →−ΦF  and 00000 p
NNNN →′−′ ΦΦFF  as 

∞→N . As a consequence, we have (for finite S) 
 

0])(
2

)1()([1 ][)()(sup 24200000000

],0[],,[ 2

p
NNNNNN

b
baSSaSRR

v

→+
−

++′−′≤−
∈−∈

ρρ

σρρ
ΦΦFFθθ

aaρ
 as ∞→N  

 (B.17) 
Together with identifiable uniqueness, the consistency of )~,~,...,~(~ 2

,,,1
0

NvNSNN σρρ=θ  now 

follows directly from Lemma 3.1 in Pötscher and Prucha (1997). 
 
Having proved that the estimators 2

,,,1
~,~...,~

NvNSN σρρ  are consistent for 2
,,1 ,..., vNSN σρρ , we now 

show that 2
1σ  can be estimated consistently from the last line )24( +S  of equation system 

(12), using   
 

 2
,1,1,24,,,24,1,1,24,24

2
,1

~~~~...~~~~
NNSSNSNSSNNSNSN ργργργγσ +++++ −−−−=   

 NSNSNSSSSNNNSSNSNSS ,,1,2/)1(2,24,2,1,12,24
2
,,2,24

~~~...~~~~~ ρργρργργ −−+++++ −−−− . (B.18) 

 

                                                 
5 This should be read as ],[ ρρ aaρ

s
−∈  for all Ss ,...,1= . 
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Since 00 =− NNN bΓγ , we have  

 

 

).~~()...~~(

)~()...~(

)~(...)~(

~~)~(...~~)~(

~)~(...~)~(

~)~(...~)~()~(~

,,1,,1,2/)1(2,24,2,1
2
,2,1,12,24

2
,

2
,,2,24

2
,1

2
,1,1,24

,,,,24,1,1,1,24

,,1,2/)1(2,24,2/)1(2,24,2,1,12,24,12,24

2
,,2,24,2,24

2
,1,1,24,1,24

,,,24,,24,1,1,24,1,24,24,24
2
1

2
1

NSNSNSNSNSSSSNNNNNSS

NSNSNSSNNNSS

NSNSNSSNNNS

NSNSNSSSSNSSSSNNNSSNSS

NSNSSNSSNNSSNSS

NSNSSNSSNNSNSNSNS

ρρρργρρρργ

ρργρργ

ρργρργ

ρργγρργγ

ργγργγ

ργγργγγγσσ

−−−++++

+++

++

−−++−++++++

++++++

++++++

−−−−

−−−−

−−−−−

−−−−−

−−−−−

−−−−−−=−

(B.19) 

 

Since 000 p
NN →−ΦF  as N → ∞ and the elements of NΦ  are O(1) it follows from the 

consistency of NSN ,,1
~,...,~ ρρ  that 0~ 2

1
2
,1

p
N →−σσ  as N → ∞ . 

 
 
Proof of Theorem 1b. Consistency of the Weighted GM Estimator 
The objective function of the weighted GM estimator and its nonstochastic counterpart are 
given by  
 
 )~~()~~()( bb NNNNNNR ΓγΘΓγθ −′−=  and (B.20a)  

 )()()( bb NNNNNNR ΓγΘΓγθ −′−=  (B.20b) 

 
First, in order to ensure identifiable uniqueness, we show that Assumption 5 also implies that 
the smallest eigenvalue of NNN ΓΘΓ′ is bounded away from zero, i.e.,  

 
 0min )( λλ ≥′ NNN ΓΘΓ  for some .00 >λ  (B.21) 

 

Let 00)( NNija ΓΓA ′==  and 11)( NNijb ΓΓB ′== . Note that 0
NΓ  and 1

NΓ  are of dimension 

)12( +S × ]12/)1(2[ +−+ SSS  (i.e., they have half the rows and one column less than than 

NΓ  ). A and B are of order ]12/)1(2[ +−+ SSS × ]12/)1(2[ +−+ SSS  (i.e., they have one row 

and column less than NN ΓΓ′ ). 

 
Next define ),( 10 ′′′= NNN ΓΓΓ

(((
, which differs from NΓ  only by the ordering of the rows. 0

NΓ
(

 

corresponds to 0
NΓ  with a zero column appended as last column, i.e., )0,( 00

NN ΓΓ =
(

, such that 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′
=′

+−++−++−+

+−+

0000
0
0.
0

00
0

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

00
00

SSSSSSSSS

SSS

NN
NN aa

aa

ΓΓΓΓ
((((

 . (B.22a) 

( 00
NN ΓΓ

(( ′  is of the same dimension as NNΓΓ′ , i.e., ]22/)1(2[ +−+ SSS × 

]22/)1(2[ +−+ SSS .) 
 

1
NΓ
(

 is a modified version of 1
NΓ , with a zero column included as second last column, such 

that  
 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=′

+−++−++−+

+−+

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

11

0.
0000
.0.

0

SSSSSSSSS

SSS

NN

bb

bb

ΓΓ
((

.    (B.22b) 

( 11
NN ΓΓ

(( ′ is of the same dimension as NNΓΓ′ , i.e., ]22/)1(2[ +−+ SSS × 

]22/)1(2[ +−+ SSS .) 
 
Since ),( 10 ′′′= NNN ΓΓΓ

(((
 differs from NΓ  only by the ordering of the rows, it follows that     

 

 NN ΓΓ ′  = 1100
1

0
10

NNNN
N

N
NNNN ΓΓΓΓ

Γ
Γ

ΓΓΓΓ
((((

(

(
(((( ′+′=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ ′′=′ ,  i.e., (B.23) 

 

 

.

0.
0000
.0.

0

             

0000
0
0.
0

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

12/)1(2,12/)1(21,12/)1(2

12/)1(2,11,1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=′

+−++−++−+

+−+

+−++−++−+

+−+

SSSSSSSSS

SSS

SSSSSSSSS

SSS

NN

bb

bb

aa

aa

ΓΓ

 

 
We can thus write  
 
 BNBANANNNNNN xBxxAxxΓΓxxΓΓxxΓΓx ′+′=′′+′′=′′ 1100 ((((

.  (B.24) 
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The vector x is of dimension 1]22/)1(2[ ×+−+ SSS  (corresponding to the number of 

columns of NΓ ), wheras Ax  and Bx  are of dimension ]12/)1(2[ +−+ SSS , i.e. both have 

one row less: Ax  excludes the last element of x, i.e., 22/)1(2 +−+ SSSx , Bx  excludes the second-

last element of x , i.e., 12/)1(2 +−+ SSSx . 

 
Again, we invoke Rao (1973, p. 62) for each quadratic form. It follows 
 
 xxxxxxxxBxxAxBxxAx ′≥′+′≥′+′≥′+′ **

minmin )()()( λλλλ BBAABBNAANBNBANA   (B.25) 

 
for any ),...,,( 2221 += Sxxxx . 

 
Hence, we have shown that  xxxΓΓx ′≥′′ *λNN , or, equivalently,   

 

 *λ≥
′
′′

xx
xΓΓx NN   for 0x ≠ . (B.26) 

 
Next, note that in light of Rao (1973, p. 62), 

 

 0inf)( *min >≥
′
′′

=′ λλ
xx

xΓΓxΓΓ NN
xNN . (B.27) 

 
Using Mittelhammer (1996, p. 254) we have  

 

 
xx
ΓΘΓxΓΘΓ

′
′′

=′ xNNN
xNNN inf)(minλ  

xx
xΓΓx

′
′′

≥ − NN
xNΞ inf)( 1

minλ     

 
 0)()( 0minmin >≥′= λλλ NNN ΓΓΘ , (B.28) 

 
with **0 λλλ =  since 0)( *min >≥= λλ NΘ  by assumption (see Theorem 2). 

 
This ensures that the true parameter vector ),,,...,( 2

1
2

,,1 ′= σσρρ vNSNNθ  is identifiable unique. 

 
Next note that in light of the assumptions in Theorem 2, NΘ  is O(1) by the equivalence of 

matrix norms. 
 
Analogous to the prove of Theorem 1, observe that 0)( =θNR , i.e., 0)( =θNR  at the true 

parameter vector ),,,...,( 2
1

2
,,1 ′= σσρρ vNSNNθ .  It follows that 
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 )()()()( NNNNNNNN RR bbbb −′′−=− ΓΘΓθθ . (B.29) 

 
Moreover, let )~,~( NNN ΓγF −= and ),( NNN ΓγΦ −= , then,  

 
 ),1(),1()( ′′′′= bb NNNNR FΘFθ  and (B.30a) 

 ),1(),1()( ′′′′= bb NNNNR ΦΘΦθ . (B.30b) 

 
The remainder of the proof is now analogous to that of Theorem 1a. 
 
 
Proof of Theorem 2. Asymptotic Normality of Nθ

~   

To derive the asymptotic distribution of the vector Nq , defined in (30)  we invoke the central 

limit theorem for vectors of linear quadratic forms given by Kelejian and Prucha (2008, 
Theorem A.1), which is an extension of the central limit theorem for a single linear quadratic 
form by Kelejian and Prucha (2001, Theorem 1). The vector of quadratic forms in the present 
context, to which the Theorem is applied is *

Nq . The variance-covariance matrix of Nq  was 

derived above and is denoted as NΨ . Accordingly, the variance-covariance matrix of 

NN N qq 2/1* =  is given by NN NΨΨ =*  and 2/12/12/1* )( −−− = NN N ΨΨ .  

 
Note that in light of Assumptions 1, 2 and 7 (and Lemma B.1), the stacked innovations Nξ , 

the matrices NsNs ,,4,,1 ,...,AA , Ss ,...,1= , Na,A , and Nb,A , and the vectors Ns ,,1a , …, Ns,,4a , 

Ss ,...,1= , Na,a , and Nb,a  satisfy the assumptions of central limit theorem by Kelejian and 

Prucha (2008, Theorem A.1). In the application of Theorem A.1, note that the sample size is 
given by )1( +=+ TNNNT  rather than N . As Kelejian and Prucha (2001, p. 227, fn. 13) 

point out, Theorem A.1 “also holds if the sample size is taken to be nk  rather than n  (with 

∞↑nk  as ∞→N ).” In the present case we have NTKN )1( += , with 1≥T  and fixed, 

which ensures that ∞↑nK  as ∞→N . Consequently, Theorem A.1 still applies to each 

quadratic form in *
Nq . Moreover, as can be observed from the proof of Theorem A.1 in 

Kelejian and Prucha (2008), the extension of the Theorem from a scalar to a vector of vector 
of quadratic forms holds up under by this alternative definition of the sample size.  
 
 
It follows that  
  

 ),()( 24
2/1*2/12/1*2/1*

+
−−−− →−=−=− S

d
NNNNNN N I0ΨΨΨ qqq , (B.31) 
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since 0)()()( minmin
1*

min
1 >== −−

NNN NNN ΨΨΨ λλλ  by assumption as required in Theorem 

A.1. 
 
Since the row and column sums of the matrices NsNs ,,4,,1 ,...,AA , Ss ,...,1= , Na,A , and Nb,A , 

and the vectors Ns ,,1a , …, Ns,,4a , Ss ,...,1= , Na,a , and Nb,a , and the variances 2
,Nvσ  and 2

,Nμσ  

are bounded uniformly in absolute value, it follows in light of (38) that the elements of NΨ  

and also those of 2/1
NΨ  are bounded uniformly in absolute value. 

 

We next turn to the derivation of the limiting distribution of the GM estimator Nθ
~ . In 

Theorem 1 we showed that the GM estimator Nθ
~  defined by (18) is consistent. It follows that 

– apart from a set of the sample space whose probability tends to zero – the estimator satisfies 
the following first order condition:6 
 

0ΔθqΘ
θ
ΔθqΔθqΘΔθq

ρ
=

′∂
∂

=′
∂
∂ ),~(~),~(),~(~),~( NNNN

NNN
NNNNNNN , (B.32)  

     
which is a 1)2( ×+S  vector, the rows corresponding the partial derivatives of the criterion 

function with respect to Ns,ρ , Ss ,...,1= , 2
vσ , and 2

1σ . 

 
Substituting the mean value theorem expression  
 

)~(),(),(),~( NN
NNN

NNNNNN θθ
θ
ΔθqΔθqΔθq −

′∂
∂

+= , (B.33) 

 
where Nθ  is some between value, into the first-order condition yields 

 

),(~),~()~(),(~),~( 2/12/1
NNNN

NNN
NN

NNN
N

NNN NN ΔθqΘ
θ
Δθqθθ

θ
ΔθqΘ

θ
Δθq

∂
∂

−=−
′∂

∂
∂

∂ .  (B.34)  

 

Observe that NN
NN BΓ

θ
Δθq ~),(

=
′∂

∂  and consider the two )2()2( +×+ SS  matrices  

 

NNNNN
NNN

N
NNN

N BB ΓΘΓ
θ
ΔθqΘ

θ
ΔθqΞ ~~~~),(~),~(~ ′′=

′∂
∂

∂
∂

= ,    (B.35) 

                                                 
6 The leading two and the negative sign are ignored without further consequences for the 
proof.      
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NNNNNN BB ΓΘΓΞ ′′= , (B.36) 

 

where NB
~  and NB  correspond to NB  as defined above with Nθ

~  and Nθ  substituted for 

Nθ . Notice that NΞ  is positive definite, since NΓ  and NΘ  are positive definite by assumption 

and the )2(]22/)1(2[ +×+−+ SSSS  matrix NB  has full column rank.  

 

In the proof of Theorem 1 (and Lemma B.1) we have demonstrated that 0ΓΓ p
NN →−~  and 

that the elements of NΓ  and NΓ
~  are )1(O  and )1(pO , respectively. By Assumption 5, 

)1(~
pNN o=−ΘΘ , )1(ON =Θ  and )1(~

pN O=Θ . Since Nρ~  and Nρ  (and thus also NB
~  and 

NB ) are consistent and bounded uniformly in probability, if follows that )1(~
pNN o=−ΞΞ , 

)1(~
pN O=Ξ , and )1(ON =Ξ . Moreover, NΞ  is positive definite and thus invertible, and its 

inverse 1−
NΞ  is also )1(O .  

 

Denote +
NΞ

~  as the generalized inverse of NΞ
~ . It then follows as a special case of Lemma F1 in 

Pötscher and Prucha (1997) that NΞ
~  is non-singular with probability approaching 1 as 

∞→N , that +
NΞ~  is )1(pO , and that )1(~ 1

pNN o=− −+ ΞΞ . 

 

Pre-multiplying (B.34) with +
NΞ

~  we obtain, after rearranging terms,      

 

 ),(~),~(~)~()~~()~( 2/12/1
2

2/1
NNNN

NNN
NNNNNSNN NNN ΔθqΘ

θ
ΔθqΞθθΞΞIθθ

∂
∂

−−−=− ++
+ .(B.37) 

   
In light of the discussion above, the first term on the right-hand side is zero on ω-sets of 
probability approaching 1 (compare Pötscher and Prucha, 1997, pp. 228). This yields 
 

 )1(),(~),~(~)~( 2/12/1
pNNNN

NNN
NNN oNN +

∂
∂

−=− + ΔθqΘ
θ
ΔθqΞθθ .       (B.38) 

 
Next observe that 
 

 )1(~),~(~ 1
pNNNNN

NNN
N o=′′−

∂
∂ −+ ΘΓΞΘ

θ
ΔθqΞ B , (B.39) 

 

since )1(~ 1
pNN o=− −+ ΞΞ  and )1(),~(

pNN
NNN o=′′−

∂
∂ Γ

θ
Δθq

B . 
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As we showed in section III, the elements of ),(2/1

NNNN Δθq  can be expressed as  

 
 ),(2/1

NNNN Δθq )1()1(*2/1
pNpN ooN +=+= − qq . (B.40) 

  
where *

Nq  is defined in (27), and that  

 

 ),()( 24
2/1*2/12/1*2/1*

+
−−−− →−=−=− S

d
NNNNNN N I0ΨΨΨ qqq . (B.41) 

 
It now follows from (B.38), (B.39), and (B.40) that  
 

 )1()()~( 2/12/112/1
pNNNNNNNN oN +−′=− −− qΨΨΘJΞθθ . (B.42) 

 
Since all nonstochastic terms on the right hand side from (B.42) are )1(O  it follows that 

)~(2/1
NNN θθ −  is )1(pO . To derive the asymptotic distribution of )~(2/1

NNN θθ − , we invoke 

Corollary F4 in Pötscher and Prucha (1997). In the present context, we have  
 

 ),(~ 24
2/1

+
− →−= S

d
NNN N I0ζΨζ q ,   

  )1()~(2/1
pNNNN oN +=− ζθθ A , with 

 2/11
NNNNN ΨΘJΞ ′= −A . 

 

Furthermore, )1()~(2/1
pNN ON =− θθ  and its variance-covariance matrix is  

 
 11

~ )()()( −− ′′′= NNNNNNNNNNNNN
JΘJJΘΨΘJJΘJΘΩθ , 

 
where 

Nθ
Ω~  is positive definite. 

 
As a final point it has to be shown that 0)(inflim min >′→∞ NNN AAλ  as required in Corollary 

F4 in Pötscher and Prucha (1997). Observe that  
 
 =′ )(min NNAAλ )( 11

min
−− ′′ NNNNNNN ΞJΘΨΘJΞλ  (B.43) 

   0)()()()()( minmin
11

minminmin >′′′≥ −−
NNNNNNNNN BBλλλλλ ΓΓΞΞΘΘΨ , 

 
since the matrices involved are all positive definite. 
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Consistency Proof for Estimates of Third and Fourth Moments of the Error Components 
Consistent estimates for the second moments of Nitv ,  and Ni,μ  are delivered by the GM 

estimators defined in (17) and (18), respectively (See Theorems 1a and 1b). In the following 
we prove that the estimators for the third and fourth moments of Nitv ,  and Nit ,μ , defined in 

(39) and (40) are also consistent. The proof draws on Gilbert (2002), who considers the 
estimation of third and fourth moments in error component models without spatial lags and 
without spatial regressive disturbances. For reasons that will become clear below, we depart 
from the convention adopted so far to use indexation NTi ,...,1=  for the stacked series. In the 

subsequent proof we use the double indexation it , with Ni ,...,1= , Tt ,...,1= . 
 
Preliminary Remarks 
Note first that  
 

=Nε~  NN ηε + , where  (B.44) 

 

Nη N

S

m
NmNmNT

S

m
NmTNmNm εMIIMI ])([])~([ 1

1
,,

1
,,,

−

==
∑∑ −⊗⊗−= ρρρ  

 NN

S

m

S

m
NmTNmNmNNNmNmNT ΔDMIΔDMII ∑ ∑

= =

⊗−+−⊗+
1 1

,,,,, )])(~([)]([ ρρρ . 

 
This can also be written as 
 
 NNN gRη = ,  (B.45) 

 
where 
 
 ),,( ,3,2,1 NNNN RRRR =  with    

 N,1R ∑
=

−⊗=
S

m
NNmNmNT

1
,, ,)( DMII ρ  

 }])()[(,...,])()[{( 1

1
,,,

1

1
,,,1,2 N

S

m
NmNmNTNSTN

S

m
NmNmNTNTN εMIIMIεMIIMIR −

=

−

=
∑∑ −⊗⊗−⊗⊗= ρρ , 

 ])(,...,)[( ,,1,3 NNSTNNTN DMIDMIR ⊗⊗= ,   

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊗−
−=

NNN

NN

N

N

Δρρ
ρρ

Δ

)~(
)~(g . 
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In light of Assumption 3 and since the elements of ),...,( .,.,1 ′′′= NNNN ddD  have bounded fourth 

moments (by Assumption in Theorem 3), each column of the matrix NR  is of the form 

NNN ξΠπ + , where the elements of the 1×NT  vector Nπ  are bounded uniformly in absolute 

value by some finite constant, the row and column sums of the NTNT ×  matrix NΠ  are 
bounded uniformly in absolute value by some finite constant, and the fourth moments of the 
elements of Nξ  are also bounded by some finite constant. It follows that the fourth moments 

of the elements of NR  are also bounded by some finite constant by Lemma C.2 in Kelejian 

and Prucha (2008).7  
 

As a consequence, NNN g Rη ≤ , or for the i-th element of the 1×NT  vector Nη ,  

 

 NiNNiNNi ,.,,   βαη =≤ rg ,  (B.46) 

where Ni.,r  denotes the i-th row of NR , NN g =α ,  and NiNi .,,  r=β  with ∞<≤ ββ KE Ni

4

, . 

Without loss of generality we can select βK  such that β
γβ KE Ni ≤)( ,  for 4≤γ . By 

Assumption 1 there is also some εK  such that ∞<≤ ε

γ
ε KE Ni,  for 4≤γ . In the following 

we use K  to denote the larger bound, i.e., ),max( βε KKK = . Also note that )1(2/1
pN ON =α .   

 
Estimation of Third Moments  

We first consider )( 3
,

)3(
NitE εσε =  and its estimate ∑∑

= =

=
N

i

T

t
NitN NT 1 1

3
,

)3(
,

~1~ εσε . 

Using (B.44) we have 
 

 ∑∑
= =

+=
N

i

T

t
NitNitN NT 1 1

3
,,

)3(
, )(1~ ηεσε  (B.47) 

∑∑
= =

+++=
N

i

T

t
NitNitNitNitNitNitNT 1 1

3
,,

2
,,

2
,

3
, )33(1 ηεηηεε   

∑∑∑∑∑∑∑∑
= == == == =

+++=
N

i

T

t
Nit

N

i

T

t
NitNit

N

i

T

t
NitNit

N

i

T

t
Nit NTNTNTNT 1 1

3
,

1 1
,

2
,

1 1
,

2
,

1 1

3
,

1331 ηεηηεε  

 NNNN ,4,3,2,1 ϕϕϕϕ +++= . 

 
By the weak law of large numbers for i.i.d. random variables, N,1ϕ  converges to )3(

εσ  as 

∞→N .  
 

                                                 
7 See also Remark A.1 in Appendix A. 
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Next consider 
  

  ∑∑
= =

=
N

i

T

t
NitNitN NT 1 1

,
2
,,2 31 ηεϕ  (B.48)   

 ∑∑
= =

≤
N

i

T

t
NitNitNNT 1 1

,
2
,

3 βεα  

 
2/1

1 1

2
,

2/1

1 1

4

,
3

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
≤ ∑∑∑∑

= == =

N

i

T

t
Nit

N

i

T

t
NitNNT

βεα  

 )1()()()(3
2/1

1 1

2
,

1
2/1

1 1

4

,
12/12/1

p

N

i

T

t
Nit

N

i

T

t
NitN oNTNTNN =⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑∑∑

= =

−

= =

−− βεα , 

 

since ∞<≤ KE Nit

4

,ε  and thus )1()(
2/1

1 1

4

,
1

p

N

i

T

t
Nit ONT =⎟

⎠

⎞
⎜
⎝

⎛ ∑∑
= =

− ε , ∞<≤ KE Nit
2

,β  and thus 

)1()(
2/1

1 1

2
,

1
p

N

i

T

t
Nit ONT =⎟

⎠

⎞
⎜
⎝

⎛ ∑∑
= =

− β , )1(2/1
pN ON =α , and )1(2/1 oN =− . 

 
Observe further that  
 

∑∑
= =

=
N

i

T

t
NitNitN NT 1 1

,
2

,,3 31 εηϕ  (B.49) 

∑∑∑
== =

=≤
NT

i
NitNiN

N

i

T

t
NitNiN NTNT 1

,
2
,

2

1 1
,

2
,

2 33 εβαεβα  

 )1()()()(3
2/1

1 1

4

,
1

2/1

1 1

2
,

1122/1
p

N

i

T

t
Ni

N

i

T

t
NitN oNTNTNN =⎟
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⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
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= =

−

= =

−− βεα , 

 

since ∞<≤ KE Nit

2

,ε  and thus )1()(
2/1

1 1

2

,
1

p

N

i

T

t
Nit ONT =⎟

⎠

⎞
⎜
⎝

⎛ ∑∑
= =

− ε , ∞<≤ KE Ni
4

,β  and thus 

)1()(
2/1

1 1

4
,

1
p

N

i

T

t
Ni ONT =⎟

⎠

⎞
⎜
⎝

⎛ ∑∑
= =

− β , )1(2/1
pN ON =α , and )1(1 oN =− . 

 
Finally,  
 

  ∑∑
= =

=
N

i

T

t
NitN NT 1 1

3
,,4

1 ηϕ    (B.50) 

 ∑∑
= =

=
N

i

T

t
NiNNT 1 1

3

,

31 βα  
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 ⎟
⎠

⎞
⎜
⎝

⎛
≤ ∑∑

= =

−−
N

i

T

t
NiN NNNN

NT 1 1

3

,
12/332/1 )(1 βα  

 )1()()(
1

3

,
12/332/1

p

NT

i
NiN oNTNN =⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

−− βα , 

 

since ∞<≤ KE Ni )(
3

,β  and thus )1()(
1

3

,
1

p

NT

i
Ni ONT =⎟

⎠

⎞
⎜
⎝

⎛ ∑
=

− β , )1(2/1
pN ON =α , and 

)1(2/3 oN =− . As a consequence, we have )1(~ )3()3(
, pN o=− εε σσ ,  )1()3( O=εσ  by Assumption 1, 

and )1(~ )3(
, pN O=εσ .  

 
Next consider the third moments of the unit-specific error component )3(

μσ  and its estimate 
)3(~

μσ , which can be expressed (compare Gilbert, 2002, p. 48ff.) as  

 
 )( 2

,,
)3(

NitNisE εεσμ =  for any given i and ts ≠ , (B.50a) 

 ∑∑∑
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≠
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=
N

i
Nit

T
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T

st
t

NisN TNT 1

2
,

1 1
,

)3(
,

~~
)1(

1~ εεσμ .  (B.50b) 

 
Notice that by Assumption 1, )3(

μσ  is invariant to the choice of  i, s and t. Using (B.44), we 

have  
 

 ∑∑∑
= =

≠
=

++
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=
N

i
NitNit

T

s

T

st
t

NisNisN TNT 1

2
,,

1 1
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)3(
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1~ ηεηεσμ  (B.51) 
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,,,

2
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NNNNNN ,6,5,4,3,2,1 φφφφφφ +++++=  

 
Observe that  
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++==
N
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NitNitNisNis
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 22

By the weak law of large numbers N,11φ  converges in probability to )3(
μσ . Notice further that, 

by the properties of Nitv ,  and Nit ,μ  (see Assumption 1), NNNN ,15,14,13,12 ,,, φφφφ , and N,16φ  are all 

)1(po . As a consequence, N,1φ  converges in probability to )3(
μσ .  

 
Next observe that  
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because NN α2/1  is )1(pO  and the terms in brackets expressions are all )1(pO , since 

∞<< KE Nis
γ

ε ,  and ∞<< KE Nit

γ
β ,  for 4≤γ  and all N. It follows that 

)1(~ )3()3(
, pN o=− μμ σσ ,  )1()3( O=μσ  by Assumption 1, and that )1(~ )3(

, pN O=μσ . Obviously, we then 

also have that )1(~)~~( )3()3(
,

)3()3(
,

)3(
, pvNvvNN o=−=−− σσσσσ με . 

 
 
Estimation of Fourth Moments  
Consider the fourth moment of Ni,μ  and its estimate, which can be expressed as (compare 

Gilbert, 2002, p. 48ff.): 
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Observe that  
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The first term N,11δ  can also be written as  
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By the properties of Nitv ,  and Nit ,μ  (see Assumption 1), N,11δ  converges in probability to 

22)4( 3 vσσσ μμ + . 

 
Moreover, it follows from the properties of Nv  and Nμ  (see Assumption 1), that the terms 

NNNNNNN ,18,17,16,15,14,13,12 ,,,,,, δδδδδδδ  are )1(po . It follows that N,1δ  converges in probability 

to 22)4( 3 vσσσ μμ + . 

 
Next consider  
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which converges to 2

μσ  by the weak law of large numbers, since  

2

1
,, ]

)1(
11[ μσεε =
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st
NitNis TT

E  for ts ≠  by the properties of Nitv ,  and Nit ,μ  and the sum 

over the remainder terms appearing in N,2δ  are )1(po  by arguments analogous to those for 

N,2φ  and N,5φ  (see B.53 and B.56). Finally, by arguments similar to the proof for the 

consistency of the estimate of the third moment, it follows that =2
,

~
Nεσ ∑∑

= =

N

i

T
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NitNT 1 1

2
,

~1 ε  

converges in probability to 2
εσ . As a consequence, )1(~ )4()4(

, pN o=− μμ σσ ,  )1()4( O=μσ  by 

Assumption 1, and that )1(~ )4(
, pN O=μσ . 

 
We next consider the fourth moment of Nitv ,  and its estimate, which can be written as 

(compare Gilbert, 2002, p. 48ff.): 
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We have already shown that N,1δ  converges in probability to 22)4( 3 vσσσ μμ +  and that 

)~(3 ,2
2
,,2 NNN δσδ ε − converges in probability to 223 vσσμ . Next, expanding N,1χ , we obtain 
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Observing that ∑∑
= =

N

i

T

s
NitNT 1 1

4
,

1 ε  converges in probability to 22)4()4( 6 vv σσσσ μμ ++  and that the 

remainder terms of N,1χ  are all )1(po , it follows that )1(~ )4()4(
, pvNv o=−σσ ,  )1()4( Ov =σ  by 

Assumption 1, and that  )1(~ )4(
, pNv O=σ . 

 
 
III. Proof of Theorem 3 (Variance-Covariance Estimation) 
Lemma B.2 

Suppose Assumptions 1-4 hold. Furthermore, assume that 1sup
1

, <∑
=

S

m
NmN ρ , and that the row 

and column sums of Nm,M , Sm ,...,1=  are bounded uniformly in absolute value by 1 and 

some finite constant respectively. Let  2~
vσ , 2

1
~σ , and Nsρ ,

~ , Ss ,...,1= , be estimators, satisfying 
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)1(~ 22
pvv o=−σσ , )1(~ 2

1
2

1 po=−σσ , )1(~
,, pNsNs oρρ =− , Ss ,...,1= . Let the NTNT ×  or NN ×  

matrix NF  be of the form (compare Lemmata 1 and 2): 

(a) =Nv,F N

S

m
NmNmNT HMII ∑

=

−′−⊗
1

1
,, ])([ ρ ,  

 =N,μF N

S
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NmNmNTNT HMIIIe ∑
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−′−⊗⊗′
1

1
,, ])()[( ρ , 

(b) =**
,NvF N

S

m
NmNmNTNNNNv HMIIΩHQQ ε ∑

=

−−− −⊗=+
1

,,
1
,

*
,1

2
1,0

2 )]([)( ρσσ ,  

 =**
,NμF N

S

m
NmNmNTNTNNT HMIIIeHIe ∑

=

−− −⊗⊗′=⊗′
1

,,
2

1
*2

1 )]()][([)]([ ρσσ ,  

where NH  is a *PN ×  matrix whose elements are bounded uniformly in absolute value by 

some constant ∞<c . The corresponding estimates Nv,
~F , N,

~
μF , **

,
~

NvF , and **
,

~
NμF  are defined 

analogously, replacing 2
1

2 ,σσ v , N,εΩ , and Nm,ρ , Sm ,...,1= , with 2
1

2 ~,~ σσ v , N,
~

εΩ , and Nm,
~ρ , 

Sm ,...,1= , respectively.  

(i) Then,  )1(~~ 11
pNNNN oNN =′−′ −− FFFF  and )1(1 ON NN =′− FF . 

(ii) Let Na  be some 1×NT  or 1×N  vector, whose elements are bounded uniformly in 

absolute value. Then )1(~ 11
pNNNN oNN =′−′ −− aFaF  and )1(,

1 ON NNv =′− aF . 

 
Proof of part (i) of Lemma B.2 

Under the maintained assumptions there exists a *ρ  with 1sup *
1

, <<∑
=

ρρ
S

m
Nm . It follows 

immediately by the properties of the matrices Nm,M  that the row and column sums of 

Nm,*Mρ , Sm ,...,1=  are bounded uniformly in absolute value by 1 and some finite constant 

respectively. For later reference, note that the elements of the vector Ns
k
N

k
,.* hMρ  are also 

bounded uniformly in absolute value by c for some finite integer k.  
 

Next define NNN KGF =  with N

S

m
NmNmNTN HMIIK ∑

=

−′−⊗=
1

1
,, ])([ ρ . Denote the (r,s)-th 

element of  the difference NNNN NN FFFF 11 ~~ −− −′  as Nν , which is given by 

 

 )~~( ,.,.,.,.
1

NsNrNsNrN N ffff ′−′= −ν , *,...,1, Psr = , (B.64a) 

 
or 
 

 )~~~~( ,.,.,.,.
1

NsNNNrNsNNNrN N kGGkkGGk ′′−′′= −ν . (B.64b) 
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Define further NNN GGE ′= , such that )~~~( ,.,.,.,.
1

NsNNrNsNNrN N kEkkEk ′−′= −ν . 

 
Proof under Assumption (a) 

Consider first the case NN ,μFF = ; then it holds that NNN T ,1
~ QEE == .8 (The subsequent proof 

also covers the case NvN ,FF =  with NTNN IEE == ~ .) Hence, 

)~~( ,.,.,.,.
1

NsNNrNsNNrN N kEkkEk ′−′= −ν , which can be written as ∑
=

=
3

1
,

i
NiN νν  with   
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Note that 
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1
,,,.

1
,,,.,. ])([)~([~ hMIIhMIIkk −
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We next show that )1(, pNi o=ν , 3,...,1=i , invoking the following theorem (see, e.g., Resnik, 

1999, p. 171): Let 1,,( ≥NXX N ) be real valued random variables. Then, XX p
N →  if and 

only if each subsequence aNX  contains a further subsequence aNX ′  that converges almost 

surely to X .  
 
As we show below we will be confronted with terms of the form:  
 
 Ns

k
NTN

l
NTNr

kllk
N pN ,.,.*

1),( )()( hMIEMIh ⊗′⊗′=ℵ +− , (B.67) 

 
where NM  is a matrix, whose row and column sums are bounded uniformly in absolute value 

by some constant 
M

c . By the properties of NN T ,1QE = , the row and column sums of the 

matrix )()( k
NTN

l
NT MIEMI ⊗′⊗  are bounded uniformly in absolute value, and )1(),( Olk

N =ℵ  

(compare Remark A.1 in the Appendix). 

                                                 
8 For NN ,μFF = , we have  )( NTN IeG ⊗′= . Hence  

)( NTNN IeGG ⊗=′ )( NT Ie ⊗′  

)( NTT Iee ⊗′= )( NT IJ ⊗= NT ,1Q= . 
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Now, let the index aN  denote some subsequence. In light of the aforementioned equivalence, 

there exists a subsequence of this subsequence ( aN ′ ) such that for events A∈ω , with 

0)( =CAP , it holds that  
 

 0)(~
,, →− ′′ aa NmNm ρρ ω , Sm ,...,1=  (B.68) 

 
and that for some ωNNa ≥′ ,  

 

 ℵ′ ≤ℵ Klk
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In the following, assume that ωNNa ≥′ . Since 1)(~
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ωρ , it follows from Horn and 

Johnson (1985, p. 301) that ))(~(
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MI ωρ  is invertible, such that  
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Substituting into 

aN ′,1ν , we have 
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where 

aa NN T ′′ = ,1QE  for NN ,μFF =  (and NTN IE =  for NvN ,FF = ). A single element with index 

(k,l) of this infinite double sum over k and l  is given by  
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Next note that for any values of 

aN ′ρ  and any )(~ ω
aN ′ρ  there exist matrices 
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whose row and column sums are bounded uniformly in absolute value, such that:  
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 can thus be factored out of the sum, yielding 
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By the same reasoning, for any values of ⎟
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Substituting 

aN ′M  into 
aN ′,1ν , we obtain  
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Hence, we can write  
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Note that 0),( →′
lk
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a  in light of the aforementioned results and since ∞<≤ℵ ℵ′ Klk
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follows that 0),( →′
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X . Moreover,  
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For ωNNa ≥′ , ℵ′ ≤ℵ Klk
N a

)(),( ω , such that we have  
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Hence, there exists a dominating function ),( klB  for all values of k,l. Moreover, since 

1
*

** <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ  by construction, we also have that  
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i.e., the dominating function is integrable (summable). It follows from dominated 
convergence that  
 
 =′∞→′ aa NN ,1lim ν 0 . (B.83) 

 
The same holds for the 

aNi ′,ν , 3,...,2=i . It follows that 0, →′aNiν  as ∞→′aN  and in light of 

Resnik, 1999, p. 171)  that )1(pN o→ν .  

 

Thus, )1(~~ 11
pNNNN oNN =′−′ −− FFFF . That )1(1 ON NNN =′− FEF  follows from the properties of 

NF  and NE  (compare Remark A.1). As already mentioned above, an analogous proof applies 

to the case NvN ,FF =  with NTNN IEE == ~ . 

  
 
Proof under Assumption (b)  
We first consider the case **

,NvN FF = . Then, NNN KGF =  with 1
,
−= NN εΩG  and 

N

S

m
NmNmNTN HMIIK ∑

=

−⊗=
1

,, )]([ ρ , such that =NE )( ,1
4

1,0
42

,
1
,

1
, NNvNNN QQΩΩΩ εεε

−−−−− +== σσ  

and =NE~ )~~(~
,1

4
1,0

42
, NNvN QQΩε

−−− += σσ . Notice that the subsequent proof also covers the case 
**
, NN μFF = .9 

 

First, we rewrite )~~~( ,.,.,.,.
1

NsNNrNsNNrN N kEkkEk ′−′= −ν  as ∑
=

=
7

1
,

i
NiN νν ,  with 

 

 )~)(~()~( ,.,.,.,.
1

,1 NsNsNNNrNrN N kkEEkk −−′−= −ν , (B.84) 

 NsNNNrNrN N ,.,.,.
1

,2 )~()~( kEEkk −′−= −ν , 

 )~)(~( ,.,.,.
1

,3 NsNsNNNrN N kkEEk −−′= −ν , 

 NsNNNrN N ,.,.
1

,4 )~( kEEk −′= −ν , 

 )~()~( ,.,.,.,.
1

,5 NsNsNNrNrN N kkEkk −′−= −ν , 

                                                 
9 In case N

S

m
NmNmNTNTNN HMIIIeFF ∑

=

− −⊗⊗′==
1

,,
2

1
**
, )]()][([ ρσμ , we have 

)]([ 2
1 NTN IeG ⊗′= −σ , such that NNTTNTNTN ,1

4
1

4
1

2
1

2
1 )()()( QIeeIeIeE −−−− =⊗′=⊗′⊗= σσσσ .  
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 NsNNrNrN N ,.,.,.
1

,6 )~( kEkk ′−= −ν , 

 )~( ,.,.,.
1

,7 NsNsNNrN N kkEk −′= −ν . 

 
For the sake of simplicity, we define NNN ,1,0 EEE += , where NvN ,0

4
,0 QE −= σ  and 

NN ,1
4

1,1 QE −= σ  and consider only N,1E  in the following; it is obvious that an analogous proof 

applies to N,0E  and thus also NE . Next, consider  
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NmNmNTNsNs ,.

1
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1
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We next show that )1(, pNi o=ν , 7,...,1=i . Consider  
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and note that for any values of Nm,

~ρ  and Nm,ρ , there exists a matrix NM ,  whose row and 

column sums are uniformly bounded in absolute value, such that 
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1
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1
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Substituting 

aN ′M  into (the first part of) the expression for N,1ν , we obtain  
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S

m
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m
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1
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1
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 )1()1()1()1( ppp oOoo == . 

 
The same holds for the 

aNi ′,ν , 7,...,2=i . Obviously, an analogous proof applies for N,0E  and 

thus also for NNN ,1,0 EEE += . It follows that )1(pN o→ν . Thus, 

)1(~~~ 11
pNNNNNN oNN =′−′ −− FEFFEF . That )1(1 ON NNN =′− FEF  follows from the properties the 

NF  elements of N,1E  ( N,0E ). 

 
 
 
Proof of part (ii) of Lemma B.2 

Denote the r-th element of  the difference NNNN NN aFaF ′−′ −− 11~  as Nw , which is given by 

 

 )~( ,.,.
1

NNrNNrN Nw afaf ′−′= − , *,...,1 Pr = , (B.89) 

 
or 
 

 )~~( ,.,.
1

NNNrNNNrN Nw aGkaGk ′′−′′= − . 

 
Proof under Assumption (a) 

Consider first the case == NN ,μFF N

S

m
NmNmNTNT HMIIIe ∑

=

−′−⊗⊗′
1

1
,, ])()[( ρ . We then have 

NNN KGF =  with N

S

m
NmNmNTN HMIIK ∑

=

−′−⊗=
1

1
,, ])([ ρ  and )( NTN IeG ⊗′= . Hence, 

)( NTN IeG ⊗=′ . Obviously, the subsequent proof also covers the case NvN ,FF = . It follows 
that 
 

))~( ,.,.
1

NNrNrN Nw akk ′−′= − , (B.90) 
 
where the elements of the vector NNTN aIea )( ⊗=  are uniformly bounded in absolute value 
since the row and columns sums of )( NT Ie ⊗  are uniformly bounded in absolute value and 
since the elements of Na  are uniformly bounded in absolute value. (See Remark A.1 in the 
Appendix.) 
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In light of the properties of N,0Q , N,1Q , and Na , it follows directly from the proof of part (i) 

of Lemma B.2, where we showed that )1()~( ,.,.,.
1

,2 pNsNNrNrN oN =′−= − kEkkν , that 

)1(pN ow =  and thus )1(~ 11
pNNNN oNN =′−′ −− aFaF . That )1(1 ON NN =′− aF  follows 

immediately from the properties of NF  and Na  by Remark A.1. 
 
 
Proof under Assumption (b) 
Consider first the case **

,NvN FF = . Then, we have NNN KGF =  with 1
,
−= NN εΩG  and 

N

S

m
NmNmNTN HMIIK ∑

=

−⊗=
1

,, )]([ ρ . Notice that the subsequent proof also covers the case 

**
, NN μFF = . In that case, 
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1
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1 −−− −′+ . 
 
Substituting NNvN ,1

2
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21
,

~~~ QQΩε
−−− += μσσ , we have 1

N
v
NN www += , where  
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1
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Considering v

Nw , we have v
N

v
N

v
N www ,2,1 += , where  
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v
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=v
Nw ,2 NNNrvv N aQk ,0,.

122 )~( ′− −−− σσ . 
 

The first term )1(,1 p
v

N ow =  by arguments analogous to the proof of Part (i) under Assumption 

(b) by the consistency of Ns,
~ρ , Ss ,...,1= . In light of the properties of Nr ,.k , N,0Q , and Na , 

)1(,0,.
1 ON NNNr =′− aQk  and since )1()~( 22

, pvNv o=− −− σσ , it follows that )1(,2 p
v

N ow =  by 
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22
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221

,
1
, )~()~(~ QQΩΩ εε

−−−−−− −+−=− μμ σσσσ . Analogous arguments apply to 
1
Nw  such that )1(pN ow = . Since this holds for all *,...,1 Pr = , we have that 

)1(~ **
,

1**
,

1
pNNvNNv oNN =′−′ −− aFaF . That )1(**

,
1 ON NNv =′− aF  follows from immediately from the 

properties of **
, NvF  and Na  by Remark A.1. Analogous proof can be used to show that  

)1(~ **
,

1**
,

1
pNNvNNv oNN =′−′ −− aFaF  and that )1(,

1 ON NNv =′− aF , which completes the proof. 
 
Proof of Theorem 3 
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As part of proving Theorem 3 it has to be shown that )1(~
pNN o=−ΨΨ . Observe that in light 

of (15), each element of NΨ~  and the corresponding element of NΨ  can be written as 
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To proof that )1(~
pNN o=−ΨΨ , we show that )1(~ ,*,
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10 See equations (34) in the main text for the structure of the matrix NΨ  and the proper 

indexation of its elements. 
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and note that the row and column sums of the matrices v
Nrp ,,A , v

Nsq ,,A , μ
Nrp ,,A , and μ

Nsq ,,A  are 

uniformly bounded in absolute value by some constant, say AK . It follows that  
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ii) Proof that )1(~ *,*,
,,

*,*,
,, p

qp
Nsr

qp
Nsr o=−EE  
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Note that )1()~( 22
, pvNv o=−σσ  and that )1(~2

, pNv O=σ . By assumption )1(~
pNN o=− PP , 

)1(ON =P  and thus )1(~
pN O=P , where the dimension of NP  is PP ×* ; by Lemma B.1 

)1(~
pNN o=−αα , )1(ON =α  and thus )1(~

pN O=α , where the dimension of Nα  is 1×P . 

Moreover, NvNvNvNv NN ,,
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1 ON NvNv =′− FF  by Lemma B.2. It 
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Nsr o=−EE , and in light of Lemma B.2 
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it is readily observed that this also holds when **
, NμF  and **

, NvF  are used instead of N,μF  and 

Nv,F . 

 
 

iii) Proof that )1(~ **,*,
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,, p
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Observe that  
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Next consider vqp
Nsr
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v
Nrp ,,,,,
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vector made up of the main diagonal elements v
Niirpa ,,,  of matrix v

Nrp ,,A . It follows that  
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, pNv O=σ . Moreover, by the properties of 

v
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v
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v
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)1(po . Next note that v
NrpNvNNrp

v
Nrp

v
Nrp ,,,,,,,,,

~~~~ aFPαaa ′′′=′ , and v
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pN O=P , where the dimension of NP  is PP ×* . Moreover, )1(~

pNN o=− αα , 

)1(ON =α  and thus )1(~
pN O=α , where the dimension of Nα  is 1×P . By Lemma B.2, part 

(ii), we have that )1(~
,,,

1
,,,

1
p

v
NrpNv

v
NrpNv oNN =′−′ −− aFaF  and )1(,,,

1 ON v
NrpNv =′− aF . It follows 

that )1(~~~
,,,

1
,,,,,

1
,, p

v
NrpNvNNrp

v
NrpNvNNrp oNN =′′′−′′′ −− aFPαaFPα . By analogous arguments the 

second term in the first line is )1(po , from which it follows that )1(*,*,*,
,, p

vqp
Nsr o=Δ .  An 

analogous proof can be used to show that )1(*,*,*,
,, p

qp
Nsr o=Δ μ . Hence, )1(~ **,*,

,,
**,*,

,, p
qp

Nsr
qp

Nsr o=−EE . 
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iv) Proof that )1(~ ***,*,
,,

***,*,
,, p

qp
Nsr

qp
Nsr o=−EE  

Consider 
 

 =− ***,*,
,,

***,*,
,,

~ qp
Nsr

qp
Nsr EE v

Nsq
v

Nrpvvvv N ,,,,
14)4(4)4( )]3()~3~[( aa ′−−− −σσσσ  

   μμ
μμμμ σσσσ NsqNrpN ,,,,

14)4(4)4( )]3()~3~[( aa ′−−−+ − . 

 
By the properties of the matrices v

Nrp ,,A , v
Nsq ,,A , μ

Nrp ,,A , and μ
Nsq ,,A , it follows by arguments 

analogous to above that )1(,,,,
1 ON v

Nsq
v

Nrp =′− aa  and that )1(,,,,
1 ON NsqNrp =′− μμ aa . Since  

)1()~( )4()4(
, pvNv o=−σσ  and )1()~( )4()4(

, pN o=− μμ σσ , and since )1()~( 22
, pvNv o=−σσ , 

)1()~( 22
, pN o=− μμ σσ , and thus also )1()~( 44

, pvNv o=−σσ , )1()~( 44
, pN o=− μμ σσ , it follows that 

)1(~ ***,*,
,,

***,*,
,, p

qp
Nsr

qp
Nsr o=−EE .  

 

We have shown that )1(~ ,*,
,,

,*,
,, p

qp
Nsr

qp
Nsr o=−EE , )1(~ *,*,

,,
*,*,

,, p
qp

Nsr
qp

Nsr o=−EE , )1(~ **,*,
,,

**,*,
,, p

qp
Nsr

qp
Nsr o=−EE , 

and )1(~ ***,*,
,,

***,*,
,, p

qp
Nsr

qp
Nsr o=−EE  for all elements of NΨ , ),(,4,...,1, baqp = , 1,...,1, += Ssr . It 

follows that )1(~
pNN o=−ΨΨ .  

 
We are now ready to prove consistency of the estimate of the variance-covariance matrix, i.e., 

that )1(~
~~ po

NN
=− θθ ΩΩ , where 11

~ )()()( −− ′′′= NNNNNNNNNNNNN
JΘJJΘΨΘJJΘJΘΩθ . As 

proved above, we have )1(~
pNN o=−ΨΨ . By Assumption 5, we have )1(~

pNN o=−ΘΘ , 

)1(ON =Θ  and )1(~
pN O=Θ . Let NNNNNNNN BB ΓΘΓΘJJΞ ′′=′=   as defined in Theorem 2 

and NNNNNNNN BB
~~~~~~~~~ ΓΘΓJΘJΞ ′′=′= .11 In Theorem 2, we showed that )1(~

pN O=J , )1(ON =J ,  

and )1(~
pNN o=− JJ  and that )1(~

pN O=+Ξ , )1(1
pN O=−Ξ  and that )1(~ 1

pNN o=− −+ ΞΞ . It now 

follows that )1(~
~~ po

NN
=− θθ ΩΩ . 

 
 
III. Proof of Theorem 4 (Joint Distribution of Nρ

~  and Other Model Parameters) 

                                                 
11 There is a slight discrepancy to the definition of NΞ

~  in Theorem 2: Here NB
~  is used rather 

than NB , which does not affect the proof, however, noting that both Nρ
~  and Nρ  are 

consistent. 
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The subsequent proof will focus on the case Nv,F  and Nv,F ; this also convers the case for **
, NvF  

and **
, NμF . The first line in Theorem 4 holds in light of Assumption 7 (for NN Δ2/1 ), bearing in 

mind that NNvNv PFT ,, = , and Theorem 2 (for )~(2/1
NNN θθ − ). 

 

We next prove that ),(),( 24
2/12/1

,, * ++
−− →′′′= SP

d
NNNNoNo NN I0FξΨξ q  by verifying that the 

assumptions of the central limit theorem A.1 by Kelejian and Prucha (2008) are fulfilled. Note 
that 0)( *

,min >≥
o

cNo ΨΨλ  by assumption. In Theorem 2, we verified that the stacked 

innovations Nξ , the matrices NsNs ,,4,,1 ,...,AA , Ss ,...,1= , Na,A , and Nb,A , and the vectors 

Ns ,,1a , …, Ns,,4a , Ss ,...,1= , Na,a , and Nb,a  satisfy the assumptions of central limit theorem 

by Kelejian and Prucha (2008, Theorem A.1).  
 
Next, consider the two blocks of ),( ,, ′′′= NNvN μFFF , which are given by   

 

 =Nv,F N

S

m
NmNmNT HMII ∑

=

−′−⊗
1

1
,, ])([ ρ , and 

=N,μF N

S

m
NmNmNTNNT HMIIΩIe ε ∑

=

−− ′−⊗⊗′
1

1
,,,

2
1 ])([)]([ ρσ . 

 

Since the row and columns sums of )]([ 2
1 NT Ie ⊗′−σ , N,εΩ , and ∑

=

−′−⊗
S

m
NmNmNT

1

1
,, ])([ MII ρ  

are uniformly bounded in absolute value and since the elements of the matrix NH  are 

uniformly bounded in absolute value, it follows that the elements of  NF  are also uniformly 

bounded in absolute value. Hence, the linear form NNNNvNN μFvFξF ,, μ′+′=′  also fulfils the 

assumptions of Theorem A.1. As a consequence, ),( 24, * ++
→ SP
d

No N I0ξ . 

 

In the proofs of Theorems 2 and 3, we showed that )1(~
pNN o=−ΨΨ , )1(ON =Ψ , and 

)1(~
pN O=Ψ . By analogous arguments, this also holds for the submatrices N,ΔΔΨ  and N,θΔΨ . 

Hence, )1(~
,, pNoNo o=−ΨΨ ,  )1(, ONo =Ψ  and )1(~

,, pNoNo o=−ΨΨ , and thus )1(~
, pNo O=Ψ .  

 

By assumption  )1(~
pNN o=− PP , )1(ON =P , and )1(~

pN O=P  as well as )1(~
pNN o=−ΘΘ , 

)1(ON =Θ  and )1(~
pN O=Θ . In the proof of Theorem 2 we showed that )1(~

pNN o=− JJ , 

)1(ON =J , and )1(~
pN O=J , and that )1()()~~~( 1

pNNNNNN o=′−′ −+ JΘJJΘJ , )1()( 1 ONNN =′ −JΘJ , 
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and )1()~~~( pNNN O=′ +JΘJ . It now follows that )1(~
,, pNoNo o=−ΩΩ  and )1(, ONo =Ω  and thus 

)1(~
, pNo O=Ω . 

 
 
APPENDIX C. 
Proof of Lemma 1. 
In light of equations (4a) and (4b), Assumptions 3 and 8, as well as ∞<≤ bNN βsup , it 

follows that all columns of ),( NNN YXZ =  are of the form NNNN εΠπ +=ϑ , where the 

elements of the vector Nπ  and the row and column sums of the matrix NΠ  are bounded 

uniformly in absolute value (see Remark A.1 in Appendix A). It follows from Lemma C.2 in 
Kelejian and Prucha (2008) that the fourth moments of the elements of the matrix NN ZD −=  

are bounded uniformly by some finite constant and that Assumption 6 holds. 
 
Next, note that  
 

 NNNNNvNNN NTNTNT μFPvFPδδ ,
2/1

,
2/12/1 )(~)(~)~()( μ′′+′′=− −− ,    

 

where NP~  is defined in the Lemma, and  

 

 N

S

m
NmNmNTNv HMIIF ∑

=

−′−⊗=
1

1
,,, ])([ ρ  and  

 N

S

m
NmNmNTNNTN HMIIΩIeF ∑

=

−− ′−⊗⊗′=
1

1
,,,

2
1, ])([)]([ ρσ εμ . 

 

In light of Assumption 10, )1(~
pNN o=− PP  and )1(ON =P , with NP  as defined in the Lemma. 

By Assumptions 2, 3 and 9, the elements of Nv,F  and N,μF  are bounded uniformly in absolute 

value. By Assumption 2, 0v =)( NE , 0μ =)( NE , and the diagonal variance-covariance 

matrices of Nv  and Nμ  have uniformly bounded elements. Thus, 0vF =′− ])[( ,
2/1

NNvNTE  and 

the elements of the variance-covariance matrix of NNvN vF ,
2/1 ′− , i.e., NvNvvNT ,,

21)( FF′− σ , are 

bounded uniformly in absolute value (see Remark A.1 in Appendix A). Moreover, 
0μF =′− ])[( ,2

2/1
NNNTE , and the elements of the variance-covariance matrix of NNN μF ,

2/1
μ′

− , 

i.e., NNNT ,,
21)( μμμσ FF′− , are bounded uniformly in absolute value. It follows from 

Chebychev’s inequality that )1()( ,
2/1

pNNv ONT =′− vF , )1()( ,
2/1

pNN ONT =′− μFμ , and 

consequently )1()()()~()( ,
2/1

,
2/12/1

pNNNNNvNNN oNTNTNT +′+′=− −− μFPvFPδδ μ  and 
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)1()()( ,
2/1

,
2/1

pNNNNNvN ONTNT =′+′ −− μFPvFP μ . This completes the proof, recalling that 

),(),( ,,,, ′′′′′=′′′= NNNvNNNvN μμ FPFPTTT . 

 
 
Proof of Lemma 2. 
The FGTSLS estimator is given by  
 

 ****1**** ˆ)ˆ(ˆ
NNNNN yZZZδ ((((( ′′= − , where =**

Ny( ****
NNN uδZ ((

+  with   

 N

S

m
NmNmNTNN uMIIΩu ∑

=

− −⊗=
1

,,
2/1

,
** )]([ ρε

((( . 

Substituting  ****1********** )(ˆ
** NNNNNNN

N
ZHHHHZPZ H

(((((((( ′′== − , we obtain 

  

 ******2/1**2/12/1 )()(]ˆ[)( NNNNNN NTNTNT uHPΔδδ (((( ′′==− − , with  

 1****1****11****11****1****1** ])][()[(]})[(])][(){[( −−−−−−−− ′′′′′=′ NNNNNNNNNNN NTNTNTNTNT HHHZZHHHHZP
(((((((((((

. 

 
Next note that  
 

 NNTN

S

m
NmNmNNNN uMIΩθuθu )()()()( 2/1

,
1

,,
**** ⊗−−= −

=
∑ ερρ(

(
,   

  N

S

m
NmNmNTNN uMIIΩΩ ∑

=

−− −⊗−+
1

,,
2/1

,
2/1

, )]()[( ρεε

(
 

  NNTNN uMIΩΩ ))(( 2/1
,

2/1
, ⊗−+ −−

εε

(
 

  NNT

S

m
NmNmNN uMIΩΩ )()()(

1
,,

2/1
,

2/1
, ⊗−−− ∑

=

−− ρρεε
((

, 

 
where NM  is a matrix, whose row and columns sums are bounded uniformly in absolute 

value, satisfying  
 

=−∑
=

S

m
NmNmNm

1
,,, )( Mρρ( ∑

=

−
S

m
NNmNm

1
,, )( Mρρ( . 

 
Substituting for **

Nu( , we obtain  

 

 =− )ˆ()( 2/1
NNNT δδ

(
=**2/1)( NNT Δ NNNN,N ,5,4,3,21 ddddd ++++ ∑

=

=
5

1
,

i
Nid , where 
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 NNNNN NT εΩHP 2/1

,
****2/1

,1 )( −− ′′= ε

((
d ,       

N

S

m
NmNmNTNTN

S

m
NmNmNNNN NT εMIIMIΩHθP ∑∑

=

−−

=

− −⊗⊗−′′−=
1

1
,,

2/1
,

1
,,

****2/1
,2 ])()[()()()( ρρρ ε

(((
d , 

 NNNNNN NT εΩΩHP )()( 2/1
,

2/1
,

****2/1
,3

−−− −′′= εε

(((
d , 

 N

S

m
NmNmNTNTNNNNN NT εMIIMIΩΩHP ∑

=

−−−− −⊗⊗−′′=
1

1
,,

2/1
,

2/1
,

****2/1
,4 ])()[)(()( ρεε

(((
d , 

N

S

m
NmNmNTNTNN

S

m
NmNmNNN NT εMIIMIΩΩHP ∑∑

=

−−−

=

− −⊗⊗−−′′−=
1

1
,,

2/1
,

2/1
,

1
,,

****2/1
,5 ])()[)(()()( ρρρ εε

((((
d . 

 
Note that the FGTSLS estimator uses (generated) transformed instruments, which are based 

on the estimate Nθ̂ . Observe that  

 

 NNTN

S

m
NmNmNN HMIΩHH )()( 2/1

,
1

,,
**** ⊗−−= −

=
∑ ερρ(

(
      

 N

S

m
NmNmNTNN HMIIΩΩ ∑

=

−− −⊗−+
1

,,
2/1

,
2/1

, )]()[( ρεε

(
 

 NNTNN HMIΩΩ ))(( 2/1
,

2/1
, ⊗−+ −−

εε

(
 

 NNT

S

m
NmNmNN HMIΩΩ )()()(

1
,,

2/1
,

2/1
, ⊗−−− ∑

=

−− ρρεε
((

. 

 

Substituting for ′**
NH

(
, we obtain ∑

=

=
5

1
,,

j
NijNi dd , 5,...,1=i . Considering N,1d , we have 

 

 NNNNNNN NTNT μFPvFP ′′+′′= −− **
,2

**2/1**
,1

**2/1
,11 )()(

((
d , with 

=′**
,1 NF 1

,
*

,1
2

1,0
2* )[( −−− ′=+′

NNNNvN εσσ ΩHQQH , and 

 =′**
,2 NF )(2

1
*

NTN IeH ⊗′ −σ . 

 

 N,12d NNNTN

S

m
NmNmNNT εΩMIHP 1

,
1

,,
**2/1 )()()( −

=

− ′⊗′−′−= ∑ ερρ(
(

, 

 NNNN

S

m
NmNmNTNNN NT εΩΩΩMIIHP 2/1

,
2/1

,
2/1

,
1

,,
**2/1

,13 )()]([)( −−−

=

− −′−⊗′′= ∑ εεερ
((

d , 

 NNNNNTNNN NT εΩΩΩMIHP 2/1
,

2/1
,

2/1
,

**2/1
,14 ))(()( −−−− −′⊗′′= εεε

((
d , 

 NNNNNTN

S

m
NmNmNN NT εΩΩΩMIHP 2/1

,
2/1

,
2/1

,
1

,,
**2/1

,15 ))(()()( −−−

=

− −′⊗′−′−= ∑ εεερρ
(((

d  
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Regarding N,2d  we have 

 

 N

S

m
NmNmNTNTN

S

m
NmNmNNN NT εMIIMIΩHP ∑∑

=

−−

=

− −⊗⊗−′′=
1

1
,,

2/1
,

1
,,

****2/1
,21 ])()[()ˆ()( ρρρ ε

(
d , 

N

S

m
NmNmNTNTNNTN

S

m
NmNmNN NT εMIIMIΩMIHP ∑∑

=

−−

=

− −⊗⊗′⊗′−′−=
1

1
,,

1
,

1

2
,,

**2/1
,22 ])()[()()]([)( ρρρ ε

((
d , 

 N,23d ∑∑
==

− ′−⊗′−′=
S

m
NmNmNTN

S

m
NmNmNNT

1
,,

1
,,

**2/1 )]([)()( MIIHP ρρρ(
(

 

   N

S

m
NmNmNTNTNNN εMIIMIΩΩΩ ∑

=

−−−− −⊗⊗−×
1

1
,,

2/1
,

2/1
,

2/1
, ])()[()( ρεεε

(
, 

 )()()(
1

,,
**2/1

,24 NTN

S

m
NmNmNN NT MIHP ′⊗′−′= ∑

=

− ρρ(
(

d  

   N

S

m
NmNmNTNTNNN εMIIMIΩΩΩ ∑

=

−−−− −⊗⊗−×
1

1
,,

2/1
,

2/1
,

2/1
, ])()[()( ρεεε

(
, 

 =N,25d )(])([)( 2

1
,,

**2/1
NTN

S

m
NmNmNNT MIHP ′⊗′−′− ∑

=

− ρρ(
(

 

   N

S

m
NmNmNTNTNNN εMIIMIΩΩΩ ∑

=

−−−− −⊗⊗−×
1

1
,,

2/1
,

2/1
,

2/1
, ])()[()( ρεεε

(
. 

 
Regarding N,3d  we have  

 

 =N,31d NNNNNNT εΩΩHP )()( 2/1
,

2/1
,

****2/1 −−− −′′
εε

((
, 

 =N,32d NNNNNTN

S

m
NmNmNNT εΩΩΩMIHP )()()()( 2/1

,
2/1

,
2/1

,
1

,,
**2/1 −−−

=

− −′⊗′−′− ∑ εεερρ
(((

, 

 =N,33d NNNNN

S

m
NmNmNTNNNT εΩΩΩΩMIIHP ))(()]([)( 2/1

,
2/1

,
2/1

,
2/1

,
1

,,
**2/1 −−−−

=

− −−′−⊗′′ ∑ εεεερ
(((

 

 NNN

S

m
NmNmNTNNNT εΩΩMIIHP 22/1

,
2/1

,
1

,,
**2/1 )()]([)( −−

=

− −′−⊗′′= ∑ εερ
((

, 

 =N,34d NNNNNNTNNNT εΩΩΩΩMIHP ))()(()( 2/1
,

2/1
,

2/1
,

2/1
,

**2/1 −−−−− −−′⊗′′
εεεε

(((
 

 NNNNTNNNT εΩΩMIHP 22/1
,

2/1
,

**2/1 ))(()( −−− −′⊗′′= εε

((
, 

 =N,35d NNNNNNTN

S

m
NmNmNNT εΩΩΩΩMIHP ))()(()()( 2/1

,
2/1

,
2/1

,
2/1

,
1

,,
**2/1 −−−−

=

− −−′⊗′−′− ∑ εεεερρ
((((

 NNNNTN

S

m
NmNmNNT εΩΩMIHP 22/1

,
2/1

,
1

,,
**2/1 ))(()()( −−

=

− −′⊗′−′−= ∑ εερρ
(((

. 

 
Regarding N,4d  we have  
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 =N,41d N

S

m
NmNmNTNTNNNNNT εMIIMIΩΩHP ∑

=

−−−− −⊗⊗−′′
1

1
,,

2/1
,

2/1
,

****2/1 ])()[)(()( ρεε

((
, 

 =N,42d
2/1

,
1

,,
**2/1 )()()( −

=

− ′⊗′−′− ∑ NNTN

S

m
NmNmNNT ερρ ΩMIHP ((

 

   N

S

m
NmNmNTNTNN εMIIMIΩΩ ∑

=

−−− −⊗⊗−×
1

1
,,

2/1
,

2/1
, ])()[)(( ρεε

(
, 

 =N,43d ∑
=

− ′−⊗′′
S

m
NmNmNTNNNT

1
,,

**2/1 )]([)( MIIHP ρ
(

 

   N

S

m
NmNmNTNTNN εMIIMIΩΩ ∑

=

−−− −⊗⊗−×
1

1
,,

22/1
,

2/1
, ])()[()( ρεε

(
 

N

S

m
NmNmNTNTNNNTNNN NT εMIIMIΩΩMIHP ∑

=

−−−− −⊗⊗−′⊗′+′=
1

1
,,

22/1
,

2/1
,

**2/1
,44 ])()[())(()( ρεε

((
d

=N,45d )()()(
1

,,
**2/1

NTN

S

m
NmNmNNT MIHP ′⊗′−′− ∑

=

− ρρ(
(

 

   N

S

m
NmNmNTNTNN εMIIMIΩΩ ∑

=

−−− −⊗⊗−×
1

1
,,

22/1
,

2/1
, ])()[()( ρεε

(
 

      

Regarding N,5d  we have  

 

 =N,51d N

S

m
NmNmNTNTNN

S

m
NmNmNNNT εMIIMIΩΩHP ∑∑

=

−−−

=

− −⊗⊗−−′′−
1

1
,,

2/1
,

2/1
,

1
,,

****2/1 ])()[)(()()( ρρρ εε

(((
, 

 

 =N,52d
2/1

,
2

1
,,

**2/1 )(])([)( −

=

− ′⊗′−′ ∑ NNTN

S

m
NmNmNNT ερρ ΩMIHP ((

 

   N

S

m
NmNmNTNTNN εMIIMIΩΩ ∑

=

−−− −⊗⊗−×
1

1
,,

2/1
,

2/1
, ])()[)(ˆ( ρεε , 

 =N,53d ∑∑
==

− ′−⊗′−′−
S

m
NmNmNTN

S

m
NmNmNNT

1
,,

1
,,

**2/1 )]([)()( MIIHP ρρρ(
(

 

   N

S

m
NmNmNTNTNN εMIIMIΩΩ ∑

=

−−− −⊗⊗−×
1

1
,,

22/1
,

2/1
, ])()[()( ρεε

(
, 

 =N,54d )()()(
1

,,
**2/1

NTN

S

m
NmNmNNT MIHP ′⊗′−′− ∑

=

− ρρ(
(

 

   N

S

m
NmNmNTNTNN εMIIMIΩΩ ∑

=

−−− −⊗⊗−×
1

1
,,

22/1
,

2/1
, ])()[()( ρεε

(
, 

 =N,55d )(])([)( 2

1
,,

**2/1
NTN

S

m
NmNmNNT MIHP ′⊗′−′ ∑

=

− ρρ(
(

    

 N

S

m
NmNmNTNTNN εMIIMIΩΩ ∑

=

−−− −⊗⊗−×
1
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Summing up we have 
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Next note that, in light of Assumption 10 and since Nθ
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By Assumption 10b we also have )1(****
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It follows further that )1(****
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