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Abstract 
 
In the environmental economics literature the standard approach of modeling nonlinear 
production and abatement processes is to treat waste emissions "simply as another factor of 
production" (Cropper and Oates 1992). That approach doesn't map the materials flow 
involved completely and hides, moreover, the exact links between production, residuals 
generation and abatement. This paper shows that production functions with emissions treated 
as inputs can be reconstructed as a subsystem of a comprehensive production-cum-abatement 
technology that is in line with the materials-balance principle. In a simple economy with full 
regard of the materials flow it also explores the consequences for allocative efficiency and 
efficiency-restoring taxation of multiple and interdependent residuals generated in the 
transformation processes of production, abatement and consumption. Finally, the paper 
demonstrates that efficiency may require setting the emissions tax rate above or below 
conventionally defined marginal abatement cost if the residual subject to abatement is not the 
only residual causing pollution. 
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Nonlinear production, abatement, pollution 
and materials balance reconsidered 1 

Rüdiger Pethig, University of Siegen 

 

1. The problem 

As is well-known from the law of mass conservation, the flow of materials taken from the 

environment for economic uses generates a flow of materials from the economy back into the 

environment that is of equal weight (after accounting for time delays). The economic activi-

ties of production and consumption are merely processes of transforming materials that only 

change the physical and chemical attributes and the composition of the materials flow. Quite 

obviously, the composition of the flow of residuals from the economy into the environment is 

of great significance because different kinds of residuals differ in their detrimental impact on 

the environment.2 

As a consequence, a sensible strategy for alleviating the problem of environmental degrada-

tion is to control the process of materials transformation by reducing the emission of the most 

harmful pollutants through residuals abatement activities. Like production and consumption, 

this activity is a process of transforming materials subject to the materials-balance principle: 

the weight of all material outputs of that process equals the weight of all material inputs. 

In their seminal paper on 'production, consumption and externalities', Ayres and Kneese 

(1969) made a strong case for the need of a consistent and encompassing application of the 

materials-balance principle to all transformation processes. In their formalized materials-

balance approach they employed linear technologies with fixed input-output coefficients but 

since then the profession has revealed a preference for modeling non-linear rather than linear 

technologies. In fact, the notion and empirical evidence of strictly increasing (real) marginal 

abatement costs is at the core of many pollution control studies. 

To be sure, it is possible to bring non-linear (abatement) technologies into line with materials-

balance requirements, too. This has been demonstrated in various previous studies the most 

general and ambitious of which probably is Krysiak and Krysiak (2003). Yet fully regarding 

the materials-balance principle in theoretical analysis comes at the cost of enormous addi-

                                                 
1 Helpful comments by Thomas Eichner, Reyer Gerlagh and by two anonymous referees are gratefully acknowl-
edged. Remaining errors are the author's sole responsibility. 
2  A more detailed analysis would need to focus on further determinants such as the medium of discharge and the 
local environmental medium's assimilative capacity. 
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tional complexity which tends to prevent the derivation of informative results. To avoid such 

complexities many environmental economists became reluctant to explicitly and properly 

regard the materials-balance principle as the correct theoretical foundation of their analyses 

(Pezzey and Toman 2002, 202; Pethig 2003). Therefore Ayres and Kneese's (1969, 283) ver-

dict still applies to much of the present work that production processes are viewed "… in a 

manner that is somewhat at variance with the law of conservation of mass". 

To be more specific, consider the simple production function 3:Y + +→  with 

( )y Y e, , m= ,                        (1) 

where two inputs, labor  and material m, are employed to produce two outputs as joint 

products, a wanted consumer good, y, and an unwanted production residual, e (with e for 

emissions). This type of technology was already applied in the early 1970s, e. g. by Forster 

(1972) and Klevorick and Cramer (1972). Varying grossly in its degree of generality, it be-

came a widespread and accepted tool of analysis within few years (e. g. in Mäler 1974, Pethig 

1975, Baumol and Oates 1975). 

In their survey on environmental economics, Cropper and Oates (1992) refer to the production 

function (1) as the standard approach in the environmental economics literature3. They ob-

serve that the treatment of waste emissions "simply as another factor of production … seems 

reasonable since attempts … to cut back on waste discharge will involve the diversion of 

other inputs to abatement activities - thereby reducing the availability of these other inputs for 

the production of goods" (Cropper and Oates 1992, p. 678). This citation reveals these au-

thors' awareness of technology (1) as a concept that implicitly involves both the generation of 

a production residual and an abatement activity. Cropper and Oates (1992, p. 678) also find it 

reasonable "...to assume the usual curvature properties ..." that is, they require function Y from 

(1) to exhibit the 

Properties (Y):  3:Y + +→  is concave and satisfies 0, 0 0e mY Y and Y> > > . 

It is not clear, however, what exactly is the link between the production of a consumer good, 

residuals generation and abatement which Cropper and Oates conjecture as being hidden in 

(1). To put it differently, it is not clear how an explicit and comprehensive analysis of interde-

                                                 
3  As compared to our equation (1), the equation (2) in Cropper and Oates (1992, p. 678) is slightly more general 
in that they allow for an arbitrarily large vector of conventional inputs (which is reduced to the two-dimensional 
vector ( ), m  in (1)) and allow the level of pollution to be a negative productivity-reducing externality. This 
externality is omitted in the present paper to keep the analysis simple. 
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pendent production, residuals generation and abatement would relate to production functions 

of type (1).4 

The main objectives of the present paper are (i) to undertake a fresh exploration of that issue 

with the important qualification to keep the analysis strictly (and explicitly!) in line with the 

materials-balance principle and (ii) to assess the consequences of (i) for allocative efficiency 

and pollution control. An immediate implication of adopting a rigorous materials-balance 

perspective is to insist that the treatment of emissions in (1) as 'conventional inputs in produc-

tion functions' is only acceptable as a convenient though purely formal analytical device not 

meant to deny the emissions' true nature as unwanted by-products generated in the process of 

producing wanted goods and then discharged into the environment. 

To further clarify this point suppose  and m are constant in (1). Since eY , the marginal 

abatement cost in terms of the wanted output, is positive, one can choose from a menu of 

good things, y, and bad things, e, but more of the good inadvertently comes along with more 

of the bad. While this property of (1) serves the needs of model building in environmental 

economics well, (1) is less appealing, if not outright embarrassing, regarding its materials-

balance implications. To see that suppose all units of the outputs y and e as well as all units of 

input m are defined such that each unit is equal to one unit of weight. Suppose further that the 

technology (1) is understood as a process of transforming the material m into the outputs y 

and e. With these qualifications one may wish to know whether (1) can be considered the de-

scription of a transformation process that involves no material inputs other than m and no ma-

terial outputs other than y and e. The answer is an outright and definitive no. (1) would bla-

tantly violate the materials-balance principle, since that principle requires m = e + y if no 

other inputs and outputs are involved. An obvious implication of m e y= +  is 1dy de = −  for 

constant m, which is, of course, inconsistent with properties (Y) that requires 0eY > . 

It is not our intention to join in the chorus of those who declare all pieces of research in envi-

ronmental economics fundamentally flawed that are found guilty of not properly regarding the 

materials-balance principle. We rather aim at answering the intriguing question whether, and 

if so how, the production activity (1) can be reconciled with the materials-balance principle. 

We will show that (1) can be reconstructed, indeed, as part of a comprehensive production-

cum-abatement technology that is in line with the materials-balance principle. 

                                                 
4 The only theoretical inquiry into that issue we are aware of is offered in Siebert et al. (1980). Yet these authors 
fail to fully account for the materials-balance principle which is why their approach is of limited relevance for 
our subsequent analysis. 
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Maintaining the standard technological assumptions of concavity, non-linearity,5 and smooth 

factor substitution, the proper regard of materials-balance requirements will make it necessary 

to also account for residuals other than the production residuals represented by the variable e 

in (1). We will also demonstrate that these additional interdependent residuals do not render 

incorrect the conventional analysis of pollution control based on (1) if and only if their emis-

sion doesn't contribute to environmental degradation. Insofar we provide a rigorous rationale 

and justification for conventional model building. However, if the emitted production residu-

als, e, are not the only pollutants, the conditions determining allocative efficiency will be 

shown to differ markedly from those derived in conventional analysis. In that case, the con-

ventional marginal cost of abating production residuals, eY , will turn out to deviate from the 

social marginal cost of abating these residuals because we deal with a pollution problem in-

volving multiple and interdependent pollutants. This finding will be shown to have non-trivial 

implications for efficiency-restoring tax schemes. 

Section 2 introduces a comprehensive technology of production and residuals abatement 

based on the materials-balance principle, and we will rigorously derive the production func-

tion (1) as a proper though incomplete technological subsystem of the comprehensive produc-

tion-cum-abatement technology. Moreover, the entire comprehensive production-cum-

abatement technology will be shown to be completely represented by (1) and two further pro-

duction functions mapping the domain of (1) into the abatement residuals. In Section 3 we 

will incorporate the comprehensive production-cum-abatement technology developed in Sec-

tion 2 into a simple economy subject to pollution, and we will derive the pertaining rules for 

an efficient allocation. If residuals other than (unabated) production residuals also cause pol-

lution, the optimality rules become complex, since all these pollutants are generated in strict 

technological interdependence. Section 4 explores the consequences of that interdependence 

for the design of efficiency-restoring tax schemes. Taking the conventional Pigouvian tax rule 

as a benchmark we show that if residuals other than production residuals contribute to pollu-

tion in addition to the latter, it is not efficient, in general, to set the tax on production residuals 

equal to the conventional marginal abatement cost, eY . 

 

 

                                                 
5  Ayres and Kneese (1969) developed their 'materials balance approach' in a model with strictly linear produc-
tion processes. That makes it quite easy to keep track of material balance but fails to account for realistic substi-
tution and transformation possibilities. See also Pethig (2003). 
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2. Abatement and production in line with materials balance 

Suppose during the process of producing a consumer good a production residual is generated 

with each unit equal to one unit of weight. This residual is assumed to be an unwanted prod-

uct, useless for consumptive and productive purposes, and harmful if discharged into the envi-

ronment. It is therefore a candidate for abatement. Although it is quite common to equate 

abatement with disappearance into the void, abatement is clearly an activity of combining 

scarce inputs, both material inputs and services, for the purpose of transforming the residuals 

under consideration into outputs with different physical and/or chemical attributes. Abatement 

does "not destroy the residuals but only alters their form" (Ayres and Kneese 1969, 283). 

To formalize such an abatement activity in a very simple way, let a be the amount of the pro-

duction residuals to be abated. Technically speaking, a is an input in the transformation proc-

ess to be described and needs to be combined with other inputs to make the transformation 

work. Suppose two other inputs are necessary: a service, called labor, a , and a physical in-

put, called material, am . With these 'ingredients', the aim of abatement is to use labor for 

transforming both material inputs, a and am , into two distinct kinds of material residuals de-

noted abatement residuals, which are assumed to differ from production residuals, a, and ma-

terial, am , in some significant way. But it is also obvious that with given positive amounts a  

and am  one cannot transform arbitrarily large amounts of production residuals into abatement 

residuals. In fact, we assume that there is a technology ( ) →a aA : , m a  such that the amount 

( )a aA , m  of the production residual can be abated when labor input is a  and material input 

is am . We assume the function A to have the 

Properties (A):  2:A + +→  is concave and satisfies ( ) ( )0 0 0a aA , m A ,= = ,  
                          0A > ,  0mA > , 0A < , 0mmA <  and 0mA > . 

0A >  and 0mA >  implies that a  and am  can be substituted against each other when a 

given amount of production residuals is to be abated. To sum up, ( )a aa, , m  is considered a 

feasible abatement activity, if ( )a aA , m a= . 

The next step is to specify the generation of abatement residuals. How exactly and in which 

amounts abatement residuals are generated is an engineering issue that will not be pursued 

here. For expository purposes we will consider here the very simple case where all 'abated' 

production residuals are turned into one kind of abatement residuals, called abatement residu-



 6

als of type 1, and where all material input used in the process of abatement is turned into an-

other kind of abatement residuals, called abatement residuals of type 2. Denoting the amounts 

of abatement residuals by 
1ar  and 

2ar , respectively, our simple technological assignment is 

1aa r=  and 
2a am r= . 

The technology of producing consumer goods is introduced in form of the production function 

  ( )y yy F , m= , 

where y  denotes labor input, ym  denotes material input and y is the amount of consumer 

good produced.  

Properties (F):  2:F + +→  is concave and satisfies ( ) ( )0 0 0y yF , m F ,= = , 

                          0F > , ] [0 1mF ,∈ , 0F <  0mmF <  and 0mF > .6 

The constraint ] [0 1mF ,∈  is absent from conventional production functions and therefore 

demands an explanation. Our simple production model assumes that there is one and only one 

material input whose quantity ym  is transformed into at least two different outputs, the con-

sumer good (quantity y) and some production residuals (specified below), since the entropy 

law prevents the full transformation of material into the desired output. Since we conceive of 

y as a material output whose units are of constant weight, it follows immediately that  

  ( ) 1
y , y

m mF <    for ym  = 0   and 0y ≥ . 

When this property of F is combined with the (conventional) assumption 0mmF < , we con-

clude that 1mF <  holds on the entire domain of the function F.7 

From the preceding discussion it is obvious that ( )y yy F , m=  is not a complete description 

of the production technology. After all, F allows us to maintain some level (and weight) of 

output y while varying the amount of material input. A minimum requirement for satisfying 

                                                 
6 Note that the materials-balance principle also implies ( )0 ,y

y y y yF m d mλ λ∫ ≤  for all 0ym ≥ , since the output 

is made up of material ym  only and the weight per unit of output y is constant. This constraint is compatible 

with the assumptions 0Y >  and 0Y <  if and only if lim 0
y

F
→∞

= . 

7 The upper bound 1mF <  is usually absent in textbook treatments of production functions, and it is violated, in 
particular, by the popular Cobb-Douglas function. 
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the materials-balance principle is the existence of at least one more output, say a production 

residual yr , to fill the materials-balance gap: 

  ( )y y y yr F m , m+ =   (and 0yr ≥ ). 

In other words, bringing the conventional non-linear production function ( )y yy F , m=  in 

line with the materials-balance principle requires to look at production as transforming the 

material input, ym , into two distinct outputs: the consumer good, y, whose generation is the 

purpose of the activity, and some production residuals, considered unwanted and environmen-

tally harmful. From ( )y y y yr m F m ,= −  follows ( )/ 1y y mdr dm F= −  which is positive due to 

the assumption ] [0 1mF ,∈ .  

At this point, production and abatement need to be linked up. Without any abatement, the 

total amount of production residuals generated, ( )y y y yr m F m ,= − , would be discharged 

into the environment. But one can also hold back part of the production residuals from dis-

charging, say the amount a, for abatement such that only the amount 0ye r a= − ≥ . 

To sum up, the combined technologies of production and abatement are given by 

( )y yy F , m≤   (2a)       a y+ =          (2e) 

y yr m y= −    (2b)       a ym m m+ =          (2f) 

( )a aa A , m≤    (2c)       
1ar a=           (2g) 

ye r a= −     (2d)       
2a ar m=           (2h) 

The properties (A) and (F) are satisfied               (2i) 

As discussed in the introduction, environmental economists have always been serious about 

joint production of wanted and unwanted outputs, about environmental damage caused by the 

emission of the latter and about residuals abatement to reduce emissions. But rather than fo-

cusing on comprehensive production-cum-abatement technologies such as (2), many of them 

used to employ production functions of type (1), i. e. the functional form ( )y Y e, , m= , 

where y, e,  and m are defined in the same way as in (2). 

The comparison between (1) and (2) readily confirms that if the production function of type 

(1) is at all compatible with the production-cum-abatement technology (2) it is an incomplete 
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description of that technology (2). The intriguing question is, therefore, what the precise rela-

tionship is between (1) and (2).8 Can a function of type (1) with property (Y) be shown to be 

implied by (2) or is (1) incompatible with (2)? In the latter case, one would need to discard the 

technology (1) since the materials-balance principle cannot be dispensed with.  

To see what the link between (1) and (2) is like we now scrutinize the comprehensive tech-

nology (2) to elicit its major properties in several steps. 

Proposition 1:  

(i) Define  ( ) ( ){ }4   : y, e, , m z z v for z y, e, , m and vϒ = ∈ = = ∈Ω ,  where ( )z v  

is the component z of vector ( )
1 2a y a y a a yv a, e, , , , m, m , m ,r ,r ,r , y= 12

+∈  and where  

{ }2 2: v v satisfies ( a ) ( i )Ω = − . The set ϒ  is convex.9 

(ii) If (2a) and (2b) hold as equalities there is a mapping ( )G : e, , m y→  implied by the 

production system (2) whose image is set valued. 

To establish proposition 1(i), it suffices to prove convexity of the set Ω , since if Ω  is con-

vex, its projection ϒ  into the subspace of all vectors ( )y, e, , m  is convex, too. Consider 

[ ]0 1,α ∈ , ( )1 21v : v vα α α= + −  and ( )
2i

i i i i i i i i i i i i i
a y a y a a yv : a , e , , , , m , m , m , r , r , r , y=  for i = 

1, 2. By definition, Ω  is convex if for any pair 1 2v , v ∈Ω  it is true that vα ∈Ω  for all 

[ ]0 1,α ∈ . Hence we need to show that (2a) - (2i) is satisfied for vα . Consider y yr , m , yα α α  and 

confirm that these variables satisfy (2b) by calculating 

ym yα α−  = ( ) ( )1 2 1 21 1y ym m y yα α α α+ − − − − ( ) ( )( )1 1 2 21y ym y m yα α= − + − − =  

= ( )1 21y yr rα α+ −  yr
α=  

Quite obviously, the same procedure can be applied to all linear equations in (2). It therefore 

only remains to show that (2a) and (2c) are satisfied for vα . This is easily established by ob-

serving that ( ) ( ) ( ) ( )1 2 1 1 2 21 1y y y yy y y F , m F , mα α α α α= + − ≤ + −  ( )y yF , mα α≤ , where the 

last inequality is due to the assumption that F is a concave function. Since the function A is 

also assumed concave, convexity of Ω  is proved. 

                                                 
8  An early discussion on the relationship between technological concepts similar to (1) and (2) can be found in 
Siebert et al. (1980), where the technology of type (1) is referred to as net-emissions approach and that of type 
(2) as gross-emissions approach. Yet the technological concepts employed in Siebert et al. (1980) are not in line 
with the materials-balance principle. See also Pethig (2003). 
9  The sets Ω  and ϒ  are also closed since (2) doesn't contain inequalities excluding the equality sign. 
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We now turn to proving proposition 1(ii). Let (2a) and (2c) hold as equalities and consider 

(2a), (2c) and (2d) - (2f) to turn (2b) into ( ) ( )y y y y ym e A , m m F , m= + − − + . Total dif-

ferentiation of this equation yields, after some rearrangement of terms, 

  1
1 1 1 1

m
y y

m m m m m m m m

AA A Fdm de d d dm
A F A F A F A F

−
= + − +

+ − + − + − + −
.       (3) 

Next we set 0de d dm= = =  in (4), totally differentiate (2a) and (2c) to obtain, under con-

sideration of (2e) and (2f), 

( )1
0

1
m m

y m y y
m m

F A F A
dy F d F dm d

A F
>
<

+ −
= + =

+ −
,             (4a) 

  ( )1
0

1
m m

y m y y
m m

A F A F
da A d A dm d

A F
+ −

= − − = − <
+ −

   and hence        (4b) 

( )
( )
1

0
1

m m

m m

F A F Ady
da A F A F

>
<

− +
=

+ −
.                    (4c) 

Since ] [0 1mF ,∈  and 0mA >  by assumption we have 1 0m mA F+ − > . However, the numera-

tor on the right side of (4a) may attain either sign so that y may increase or decrease by shift-

ing inputs from production, ( )y y, m , to abatement, ( )a a, m , while leaving net emissions e 

unchanged. Equation (4c) demonstrates that for given ( )e, , m  shifting the inputs labor and 

material between production and abatement affects both the amount of production residuals 

abated and the amount of consumer goods produced. The sign of dy/da in (4c) is unclear. 

The message of proposition 1(i) is that if there is a function of type (1) implied by (2) it will 

be concave. Unfortunately, proposition 1(ii) informs us that there is a correspondence rather 

than a function. Yet this lack of uniqueness can be overcome in a natural way since we are 

interested, of course, in the level of abatement which, for any given ( )e, , m , yields the 

maximum possible amount of the wanted output. That particular level of abatement will be 

called efficient. To characterize the efficient abatement we maximize with respect to a , a , 

y , am , ym  and yr   the wanted output ( )y yF , m  subject to (2b) – (2f). The associated La-

grangean reads  

( ) ( )y y y a a a e y

a y m a y

L y F , m y A , m a e a y m

m m m ,

λ λ λ

λ λ

⎡ ⎤ ⎡ ⎤⎡ ⎤= + − + − + + + −⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − − + − −⎣ ⎦ ⎣ ⎦
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where yλ , aλ , eλ , λ  and mλ  are Lagrangean multipliers. Since the objective function is 

linear and all terms in the cornered brackets are concave functions the Kuhn-Tucker condi-

tions are necessary and sufficient for a maximum. An interior solution implies 

( )1 m
m

F A A
F

⋅ + =  as well as A F> .                   (5) 

Note that (5) also follows from setting 0dy / da =  in (5c). A F>  follows from rearranging 

the equation in (5): ( ) ( )1 0m m mF A F F A F+ − = − > . 

With the concept of efficient abatement we now continue our inquiry into the relationship 

between the production system (2) and the production function (1). 

Proposition 2: If abatement is efficient, the production-cum-abatement technology (2) implies 

a production function Y : D +→  that exhibits the properties (Y*) defined as 

(a)  Y exhibits the properties (Y), 

(b)  Y satisfies ] [0m mY , F∈   [where ] [0 1mF ,∈  due to properties (F)], 

(c)  The domain of Y is ( ) ( ){ } 3: , , ,D e m e m F m += ≤ − ⊂ ; 

Proposition 2 will now be proved in six steps. 

Step 1: If abatement is efficient, the set of equations (2a) – (2f) implies a function 

( ) yM : e, , m m→  such that10 

  ( )ym M e, , m
+ + +

= .                           (6) 

Rewrite (5a) as ( )1 m mF A A F+ = , totally differentiate this equation and combine the result 
with a yd d d= +  and a ydm dm dm= +  from (2e) and (2f). After some rearrangements, 
these operations result in  

  y

y y y

m m
y yd dm d dm

γ γγ
γ γ γ

= + − ,                     (7) 

where ( )1 0
y m m m m: A F F A A F F Aγ = + − + − > , 0m m: F A F Aγ = − > , 

 ( )1 0
ym m m m m mm mm: F A A F F A A Fγ = + + − − >   and  0m m m mm: F A F Aγ = − > . 

                                                 
10  A plus or minus sign underneath an argument of a function indicates the (assumed) sign of the corresponding 
first partial derivative. 
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Next we insert yd  from (7) into (3): 

( )
( )

1 y

y

m
y m m m y

A F
dm A F de A d A dm dm

γ

γ

−
+ − = + + −

( ) ( )
y y

mA F A F
d dm

γ γ
γ γ
− −

− + . 

Rearranging this equation yields 

1 1 1

1 m mm
y

m m m
dm de d dmπ π

π π π
= + + ,                     (8) 

where ( ) ( )1 1 0
y ym m m mA F A Fπ γ γ= + − + − > , ( ) 0

ymm m mA A Fπ γ γ= + − >   

and  ( ) ( ) ( )1 0
ym m mA A F A F A F A F Aπ γ γ γ ⎡ ⎤= − − = + + − + >⎣ ⎦ . 

Obviously, equation (8) determines the first derivatives of a function ( ) yM : e, , m m→ . 

Hence (6) is established. 

Step 2: If abatement is efficient, the set of equations (2a) – (2f) implies a function 

( ) yL : e, , m →  such that 

( )y
?

L e, , m
+ +

= .                           (9) 

ydm  from (3) is now plugged into (7) yielding after some calculations 

  
1 1 1

ym m
y

m m m
d de d dm

γ ρρ
π π π

= + + ,                   (10) 

where  ( )1 0
ym m m: A F Aρ γ γ= + − + >   and  ( ) ( )1 1m m m m m mm m: F A F A F Aρ γ ⎡ ⎤= − − + −⎣ ⎦ . 

In view of (10) there is a function ( ) yL : e, , m → , satisfying ( )y
?

L e, , m
+ +

= . 

Step 3: The preceding steps 1 and 2 imply a production function ( )Y : e, , m y→  satisfying 

0 0eY , Y> >  and ] [0m mY , F∈ . 

Invoking (6) and (9) the production function (2a) is turned into 

  ( ) ( ) ( ).
?

y F L e, , m ,M e, , m :Y e, , m
+ + + + +

= =⎡ ⎤⎣ ⎦                (11) 

The function Y defined above obviously exhibits 0eY >  and 0Y >  but the sign of 

m m m mY F L F M= +                         (12) 
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is unclear. To prove ] [0m mY , F∈ , let (2a) and (2c) hold as equalities and combine the equa-

tions (2a) – (2f), (6) and (9) to rewrite (2b) as 

( ) ( ) ( ) ( ) ( ), , , , , , , , , , , ,e A L e m m M e m F L e m M e m M e m⎡ ⎤ ⎡ ⎤+ − − + =⎣ ⎦ ⎣ ⎦ . 

We differentiate this equation with respect to m (keeping e and  constant): 

  ( )1m m m m m m mA L A M F L F M M− + − + + =  

which yields, after rearrangement of terms, 

  ( )1m m m m
m

A A F M
L

A F
− + −

=
−

. 

Next we substitute this term for mL  in (11) and get 

( )1 m mm
m m m m m m

F A FA FY F L F M F M
A F A F

⎡ ⎤+ −
= + = − −⎢ ⎥− −⎣ ⎦

 mA F
A F

=
−

, 

since owing to (5) the term in the cornered brackets is zero. Moreover, , andmA A F  are 

positive due to the properties (A) and (F), and A F−  is positive due to (5). Therefore 

0m
m

A FY
A F

= >
−

. By invoking (5) again we find ( )1 mm
m m m

F FA FY F F
A F A F

−
= = − <

− −
. 

Step 4: The production function Y from (11) is concave. 

In view of the complex terms constituting its first derivatives there is no way to further spec-

ify its curvature by determining the sign of its second-order derivatives. Yet concavity of Y is 

straightforward from the convexity of the set ϒ  that was established in proposition 1(i).  

Step 5: The domain of the production function Y 

We now determine the domain D of function Y by observing that (3) yields  

  1 m m
y

de A F
dm

= + −  > 0   and   
y

de A F
d

= −  > 0 

for given  and m. That implies, in turn, 

( ) ( ) ( ) ( ) ( )
,

max , , 0, 0 , ,
y y

y y y y ym
m A m m F m m A F m m F m⎡ ⎤− − − − = − − = −⎣ ⎦ . 

Consequently, for given inputs  and m the amount of production residuals emitted is largest 

when no abatement takes place at all. As an implication, the domain of Y from (11) is D as 
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defined above. The upper bound which is placed on e in D is due to the fact that e is an output 

and the law of mass conservation doesn't allow for an arbitrary expansion of a material output 

in a production process with a limited (finite) amount of material input. This completes the 

proof of proposition 2. 

Proposition 2 constitutes an important step toward reconciling the use of the production func-

tion (1) with material-balance requirements. It shows (i) that if efficient abatement is presup-

posed, the output of the consumer good is uniquely determined by ( )e, , m  and (ii) that the 

implied production function satisfies the properties (Y) since it satisfies the properties (Y*). 

Thus we confirmed that the properties (Y) are necessary for any production function to be 

compatible with the technology (2). We also showed, however, that (2) imposes further con-

straints on the function Y from (11) concerning its domain and the derivative mY . Both these 

additional restrictions can be easily violated if production functions Y of type (1) are em-

ployed that exhibit the properties (Y) only. In particular, ] [0m mY , F∈  implies that popular 

parametric production functions such as Cobb-Douglas functions don’t qualify for represent-

ing technologies of type (2). 

In proposition 2 we didn't account for the residuals resulting from the abatement process. 

Now we make up for this omission in 

Proposition 3:  

(i) Provided that the abatement activity is always kept at an efficient level, the produc-

tion-cum-abatement technology (2) is equivalent to three functions 1 2, ,Y R and R  that 

map ( )∈e, , m D  into ( ) ( ) ( )1 2Y e, , m , R e, , m and R e, , m , where D and Y are 

specified as in proposition 2, and where 

( ) ( ) ( )
1

1 0ar R e, , m : A L e, , m , m M e, , m⎡ ⎤= = − − ≥⎣ ⎦ ,           (13) 

( ) ( ) ( )
2

2 1 0ar R e, , m : T R e, , m , L e, , m⎡ ⎤= = − ≥⎣ ⎦ ,  and          (14) 

( )a aT : a, m→  is a function such that ( )a am T a,= , if and only if ( )a aa A , m= . 

(ii) The functions 1R  and 2R are concave. Its derivatives are indeterminate in sign except 

for 1 0<eR  and 2 0<eR . 
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First we specify the functions 1R  and 2R  from (13) and (14), respectively. As for the abate-

ment residuals of type 1, we combine (2c), (2e) - (2g), (8) and (10) to obtain (13). Since 

2a ar m=  due to (2h), we obtain ( )a ar T a,=  (with T as defined in proposition 3(i)). When 

combined with (9), (13), (2e) and (2g), this equation  yields (14). Concavity of the functions 
1R  and 2R  follows immediately from the convexity of the set Ω  established in the proof of 

proposition 1(i). 

To see how the generation of abatement residuals reacts on the emission of production residu-

als we take the partial derivatives 

( )1
e e m eR A L A M= − +    and   ( )2

e a m e a e eR T A M T A T L M⎡ ⎤= − + + = −⎣ ⎦ . 

While 1 0eR <  is obvious, 2 0e eR M= − <  is explained by observing that total differentiation of 

( )a aa A , m=  yields 1
y a

m m

Adm da d
A A

= −  and that in view of the definition of function T 

above we clearly have ( )1a mT A=  and ( )mT A A= − . The signs of the partial derivatives 

1
eR  and 2

eR  are as expected: If the scale of abatement is stepped up (such that the emissions e 

are reduced) more abatement residuals are generated and vice versa. Checking the remaining 

partial derivatives of (13) and (14) reveals that their sign is ambiguous. This indeterminacy 

demonstrates that the impact of  and m on 
1ar  and 

2ar  is quite complex in spite of the simple 

hypotheses (2g) and (2h). 

In view of the propositions 2 and 3 the technology (2) is completely and compactly described 

by  

  ( ) ( )
1

1= =ay Y e, , m , r R e, , m   and  ( )
2

2=ar R e, , m .           (15) 

where Y, 1R  and 2R  are as defined in (11), (13) and (14), respectively. In proposition 2 the 

function Y from (11) has been shown to satisfy properties (Y*) while the curvature of 1R  and 
2R  is less well known (proposition 3(ii)). With proposition (2) our main goal is clearly 

achieved, namely to show that the properties (Y) are necessary conditions for functions (1) to 

represent a subsystem of the comprehensive technology (2). In proposition (2) we even 

proved that the properties (Y) are not sufficient since the properties (Y*) are more restrictive 

than the properties (Y).  
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Yet the characterization of the relationship between (1) and (2) is still incomplete from a theo-

retical point of view. One may want to know which the comprehensive set of conditions is 

that must be satisfied by the functions Y, 1R  and 2R  from (15) to secure that these functions 

are equivalent to some technology (2). Unfortunately there is little hope to make progress to-

ward this end because the properties of Y, 1R  and 2R  from (15) are made up of a complex 

mix of first and higher-order derivatives of the functions A and F from (2). The basic produc-

tion functions A and F determine the curvature of Y, 1R  and 2R  in a very complex and inter-

dependent way involving a constrained maximization procedure (efficient abatement).  

It is true that without a complete set of conditions we cannot decide whether a given conven-

tional production function (1) is compatible with the comprehensive technology (2) or not. 

Yet the value of such a result is not so clear. The information provided in propositions 2 and 3 

appears to be sufficient for most theoretical modeling exercises, since in those studies first 

and higher-order derivatives are usually not quantitatively (let alone numerically) specified. 

For applied research, it is hardly appropriate to start out with some ‘arbitrary’ function Y satis-

fying the properties (Y*). One would rather have to start with the empirically valid specifica-

tion of the true technology (2) anyway, since (11), (13) and (14) are and always will be de-

rived from the true empirically observable technology (2). 

 

3. Allocative efficiency and materials balance in an economy with production, abate-

ment and pollution 

We now envisage a simple economy where an (aggregate) firm applies technology (2). The 

consumption of the only wanted output y is modeled as a process of material transformation 

like production and abatement: it consists in turning the amount y of the consumer good into 

the amount cr  of a post-consumption residual. Both are equal in weight, 

  cy r= .                            (16) 

Thus we now deal with four different types of residuals: 1 2a ae, r , r  and cr , each of which has 

the potential to degrade the environment after having been discharged. Denote by x an index 

of the ambient concentration of pollutants, called pollution for short. We define 

  ( )1 2
0 0 0+ ≥ ≥ ≥

= a a cx X e, r , r , r     with  X (0, 0, 0, 0) = 0               (17) 
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as the pollution that results from releasing the residuals 1 2a ae, r , r  and cr  into the environment. 

X is assumed to be non-decreasing and convex. If 0vX =  for 1 2 ora a cv r , r , r=  the level of the 

residual under consideration is small enough to be fully neutralized by nature's  assimilative 

capacity. Environmental degradation as described by x negatively affects the consumers' util-

ity 

  ( )i
i iu U x, y

− +
=   i = 1, …, n.                     (18) 

The general equilibrium model is completed by introducing the standard resource constraints 

  iiy y≥ ∑ ,     ≥      and     m m≥ ,                  (19) 

where  and m  are the economy's fixed factor endowments. To characterize a Pareto effi-

cient allocation of the economy (15) - (19) we solve the Lagrangean 

 ( ) ( ) ( )1 2
i

i i f x a a ci U x, y Y e, , m y x X e, r , r , rα λ λ ⎡ ⎤+ − + − +⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ( )1
1 1ar R e, , mλ ⎡ ⎤−⎣ ⎦  + 

( ) ( )2
2 2a y iir R e, , m y yλ λ⎡ ⎤+ − + − +⎣ ⎦ ∑ ( ) ( ) ( )c c mr y m mλ λ λ− + − + − ,      (20) 

where iα  are arbitrary positive numbers for i = 1, …, n. Under the assumption that an inte-

rior11 solution exists the first-order conditions are 

  i
y i yUλ α=  i = 1, …, n    (21a)       y f cλ λ λ= +       (21f) 

  i
x i xi Uλ α= −∑       (21b)       

cc x rXλ λ=       (21g) 

  j
f e x e j ejY X Rλ λ λ= +∑    (21c)       

11 ax rXλ λ=      (21h) 

  j
f jjY Rλ λ λ= +∑     (21d)       

22 ax rXλ λ=      (21k) 

  j
f m m j mjY Rλ λ λ= +∑     (21e) 

Proposition 4: The efficient allocation of the economy (15) - (19) is characterized by 

e
x

e

YMD Q
X

= ⋅   with  
i
x

x i i
y

UMD :
U

= −∑  and 

1
c

aj

i
x

r ei i
y

j
e r ej

UX X
U

Q :
X X R

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠=
+

∑

∑
.       (22) 

As a consequence, 

                                                 
11  In the present context, an interior solution implies that ( )e, , m  is in the interior of the domain D of function 
Y. This doesn't only require all variables to be bounded away from zero but also that the inequality 

( )e m F , m≤ −  is not binding. For the sake of completeness one would have had to consider this inequality as 
an additional constraint in (20). But with the strict inequality sign in the solution the associated Lagrange multi-
plier would be zero and therefore need not be introduced in the first place. 
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{ }x e eMD X Y>⋅ <     if    
1 2

1 2

1 2

0  0  0,

0

0  > 0. 

a a c

a a c

a a c

r r r

r r r

r r r

X and / or X and X

X X X ,

X X and X

⎧ > > =
⎪⎪ = = =⎨
⎪ = =⎪⎩

       (23) 

To derive (22) from (21), we first consider (21f) and (21g) to obtain y f c

f f

λ λ λ
λ λ

+
= =  

1
c

x
r

f
Xλ

λ
= + . Next we combine this equation with (21a) to turn (21b) into 

1
1

c

c

i
x

i ii i
y yx x x x

ri ii i i
f f fy y x

r i i
y

U
UU UX

U U UX
U

λλ λ
λ λ λ

⎛ ⎞
= − = − + = −⎜ ⎟⎜ ⎟

⎝ ⎠ +

∑
∑ ∑

∑
.          (24) 

In (24), ] [1 0 1
c

i
x

r i i
y

UX ,
U

⎛ ⎞
+ ∈⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , since 0x fλ λ >  in an interior solution. We proceed by infer-

ring  
aj

x e
j

f e r ej

Y
X X R

λ
λ

=
+∑

  from (21c), (21h) and (21k). (22) is then obtained by inserting 

this equation into (24). 

Clearly, (22) characterizes the efficient level of pollution generated jointly via the emission of 

all residuals. xMD  is the damage from a marginal increase in pollution evaluated by the con-

sumers' aggregate marginal willingness-to-pay in terms of the consumer good for avoiding 

that increase. The right side of (22) represents the marginal benefit of pollution that comes in 

form of an increase in the consumer good made possible by a small increase in pollution 

through stepping up emissions. Equivalently, one can interpret xMD  as the marginal benefit 

and e eY Q X  as the marginal cost of reducing pollution. To further interpret the term e eY Q X  

observe that eY  is the amount of consumer goods that cannot be produced anymore when the 

emission of production residuals is reduced by a small amount. It is known as marginal 

abatement costs of production residuals (in terms of the consumer good) in models where no 

residuals other than production residuals are considered. For convenience, we will refer to eY  

as conventional marginal abatement costs of production residuals. 

If we multiply both sides of (22) by eX  we obtain x e eMD X Y Q⋅ = ⋅ . The left side of this 

equation represents the marginal benefit of reducing the emission of production residuals and 
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the right side consists of the marginal abatement costs of production residuals. Those costs 

differ from eY  unless Q = 1. In fact, inspection of the definition of Q in (22) reveals that 

given 0eX >  (which we presuppose throughout) Q may be greater or smaller than unity de-

pending on which other residuals contribute to pollution. More specifically, the optimality 

condition x e eMD X Y Q⋅ = ⋅  and the definition of Q from (22) imply (23). 

The striking result is that eY , the conventional marginal abatement cost of production residu-

als, is an incorrect measure of the social marginal abatement costs of production residuals, in 

general, when in addition to production residuals other residuals contribute to pollution, too.12 

As shown in (23), if abatement residuals are pollutants in addition to production residuals but 

post-consumption residuals are not, eY  underestimates the true marginal abatement costs of 

production residuals. This is so because the abatement of production residuals generates a 

negative pollution externality through the increase of abatement residuals which it unavoid-

ably brings about but which is not accounted for in eY . Conversely, if post-consumption re-

siduals pollute in addition to production residuals but abatement residuals don't, we infer from 

(23) that eY  overestimates the (true) marginal abatement costs of production residuals since 

this time abatement induces a positive externality in form of a small reduction in pollution 

caused by post-consumption residuals which is not captured by eY . 

 

4. Corrective taxes in the competitive market economy 

Consider now the economy of Section 3 with perfectly competitive markets for labor, material 

and the consumer good and denote the associated prices by mp , p  and yp , respectively. 

Quite obviously, such a market economy fails to be efficient in the absence of environmental 

policy. We are therefore interested in exploring what kind of tax schemes is capable to restore 

efficiency. As is well-known, if we would replace in our model (15) by (1) and replace (17) 

by ( )x X e=  with 0eX > , the pollution externality would be internalized by the time-

honored Pigouvian tax rule according to which the tax rate et  on emissions e is to be set equal 

to the conventional marginal abatement cost, eY . But in our model with the comprehensive 

production-cum-abatement technology (2) it is also interesting to investigate the deviations 

                                                 
12  The added term 'in general' weakens that statement slightly. Yet it is necessary since marginal pollution ef-
fects of abatement residuals and post-consumption residuals are opposite in sign. It cannot be excluded, there-
fore, that both effects compensate each other incidently. 
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from that conventional Pigouvian tax rule required in a model containing (15) and (17) and 

when 1 2ra raX , X  and/or rcX  are positive. 

To address this issue we need to look at the agents' optimization problems as implicitly de-

scribed by the Lagrangeans13 

  ( ) ( )i
i i i m i i yU x, y p p m g b p yµ θ⎡ ⎤+ + + + −⎣ ⎦  and             (25) 

  ( ) ( ){ } ( )1 1 2 2y m m a a a a c c e c cp y p t p t m t r t r t r t e r yµ− + − + − − − − + − +  

  ( ) ( ) ( )1 2
1 1 2 2f a aY e, , m y r R e, , m r R e, , mµ µ µ⎡ ⎤ ⎡ ⎤+ − + − + −⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .       (26) 

With regard to post-consumption residuals, implicit in (25) and (26) is the so-called take-back 

rule as modeled, e. g., in Eichner and Pethig (2000). Each consumer i purchases the amount 

iy  of consumer goods, and after consumption she returns the post-consumption residuals to 

the producers. By institutional design, producers are responsible for the (orderly) deposition 

of these residuals, and they may be therefore charged an emission fee, ct , if the post-

consumption residuals cause pollution after having been emitted. This institutional arrange-

ment explains why post-consumption residuals don't enter the consumers' optimization calcu-

lus (25),14 but rather are part of the (aggregate) firm's profit maximization calculus. 

The (aggregate) firm employs the technology (15) and is charged input taxes, t  and mt , as 

well as emission taxes, 1 2e a at , t , t  and ct . Some of these tax rates may be zero, of course. The 

first-order conditions associated to an (interior) solution to (25) and (26) are conveniently 

summarized in 

i
i y yp Uµ = ,       (27a)    ( ) j

y c ajjp t Y p t t R− = + +∑ ,   (27c) 

( ) j
y c e e aj ejp t Y t t R− = +∑ , (27b)    ( ) j

y c m m m aj mjp t Y p t t R− = + +∑ .  (27d) 

Proposition 4: 

                                                 
13  For v = , m, consumer i's factor endowment is iv  with ii

v v=∑ . iθ  is her share in the firm's profit, g, and 

the government's budget surplus, b. The consumers' profit and surplus shares satisfy 1jj
θ =∑ . 

14  One can easily account for that alternative by modifying (25) and (26) in the following way: In (25), add the 
term "

ic ct r− " to the second expression in brackets and add the Lagrange constraint " ( )
i i ic c c ir r yλ − " at the end. 

In (26), delete the term " c ct r− " and the Lagrange constraint " ( )
ic cr yµ − ". In the absence of institution-specific 

costs the conditions for allocative efficiency are the same in both regimes (Eichner and Pethig 2000). 
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(i) Suppose, that 1 2 c f m x, , , , , ,λ λ λ λ λ λ λ  and yλ  are the values attained by the Lagrange 

multipliers in the solution to (20) and that the partial derivatives eX  and j
hR  for j = 1, 2 and 

h , m=  are also evaluated at that solution. Set prices m m y yp , p , pλ λ λ= = =  and con-

sider the alternative tax schemes A and B: 

- A is defined by:    1 1 2 2
A A A A
a a c c e x et , t , t , t Xλ λ λ λ= = = =   and  0A A

mt t= = ; 

- B is defined by:    1 2 0   B B B B j B j
a a c c e x e j e j ej jt t , t , t X R , t R andλ λ λ λ= = = = + =∑ ∑   

   B j
m j mjt Rλ= ∑ . 

With these prices and either tax scheme A or tax scheme B all markets clear and the equilib-

rium allocation is efficient. 

(ii) When the tax scheme A is implemented, the efficient tax rates satisfy 

  { }A
e et Y>

<     if    
1 2

1 2

1 2

0  and/or  0 and 0,

0

0 and > 0. 

a a c

a a c

a a c

r r r

r r r

r r r

X X X

X X X ,

X X X

⎧ > > =
⎪⎪ = = =⎨
⎪ = =⎪⎩

          (28) 

To prove Proposition 4i insert the prices and tax rates as assigned in Proposition 4 into (27) 

and verify that this substitution makes (27) coincide with (21). The tax scheme A in Proposi-

tion 4i is a pure emissions tax scheme in the sense that a tax is levied on the emission of each 

polluting residual, while non-emission items like the inputs labor and material are not taxed. 

We infer from (21) that (in equilibrium) with the tax scheme A all tax rates are set equal to the 

marginal environmental damage of the respective residuals15: 

  
i

A x v
v x v i i

y

U Xt MD X :
U

= = −∑  for 
1 2a av e, r , r , c=                (29) 

We also know that if abatement takes place, optimal emissions tax rates need to equal mar-

ginal abatement costs. In our model production residuals are the only residuals subject to 

abatement. Therefore we will now focus on those residuals. Invoking (27b) we obtain, after 

some rearrangement of terms, 

  = − −∑A A j A
e e aj e c ejt Y t R t Y .                      (30) 

                                                 
15  To simplify the comparison of marginal conditions characterizing either efficient allocations or market alloca-
tions we measure all prices and tax rates in terms of the consumer good by setting 1yp ≡ . 
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Maintaining the assumption 0eX >  (which implies 0A
et >  owing to (29)) we now wish to 

juxtapose alternative scenarios where one, two or all of the (efficient!) tax rates 1 2
A A
a at , t  and 

A
ct  may be zero. In view of 10 0e eY , R> <  and 2 0eR < , it is straightforward that (29) and (30) 

imply (28). (28) complements (24), in fact, but (28) was derived via (30) rather than via (23) 

and thus offers insights in the determinants of the efficient emissions tax rate et . 

Suppose first, pollution is caused by the emission of production residuals only 

( )1 2 0ra ra rcX X X= = = . Then e et Y=  is optimal due to (28), i. e. the tax rate et  is required to 

be set equal to the conventional marginal costs of abating production residuals. When com-

bined with (29) e et Y=  yields 

  
i
x e

e ei i
y

U X t Y
U

− = =∑                         (31) 

which constitutes the conventional Pigouvian tax rule. Yet in view of possible deviations 

from that rule, as described in (29) and (31), (31) is not a trivial result because we specified 

conditions under which the conventional Pigouvian tax rule is valid. 

Suppose next that 
1

0>
arX  and/or 

2
0>

arX  but 0
crX = . In this case the social marginal 

abatement costs of production residuals are A j
e aj e ejY t R Y− >∑ . The extra marginal costs, 

j
aj ej t R∑ , accrue because an increase in the abatement of production residuals inadvertently 

raises the generation of environmentally harmful abatement residuals. The result A
e et Y>  is 

worth noting: It is now optimal to abate less production residuals than under the conventional 

Pigouvian tax rule. Conversely, if abatement residuals don't degrade the environment but 

post-consumption residuals do ( )1 2
0 and 0= = >

a a cr r rX X X , then the social marginal abate-

ment costs of production residuals are A
e c e eY t Y Y− < . The extra marginal cost savings, A

c et Y , 

occur because an increase in the abatement of production residuals inadvertently reduces the 

amount of post-consumption residuals and consumer goods. Since post-consumption residuals 

are (now) pollutants by assumption, curbing cr  reduces that pollution which is, in turn, a 

beneficial external effect of abating production residuals. With A
e et Y<  it is now optimal to 

abate more production residuals than under the conventional Pigouvian tax rule. 
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Despite our main focus on the discussion of (28) one needs to keep in mind that according to 

(29) the efficient tax scheme A requires to levy a tax on all polluting residuals. It doesn't fol-

low from setting A
e et Y≠  as prescribed by (28) that no emissions tax other than et  is needed to 

achieve efficiency in case that the production residuals are not the only pollutants. For that 

scenario our analysis provides an important lesson: If all polluting residuals are taxed in an 

effort to correct for the allocative distortion, it is not efficient, in general, to set the tax rate of 

the production residuals equal to their marginal abatement cost, conventionally defined. 

Turning to the interpretation of tax scheme B we observe that B is also capable of restoring 

efficiency in the market economy and does so without any tax on abatement residuals. This 

scheme is a particularly interesting option for efficient pollution control if abatement residuals 

are difficult and costly to monitor and therefore cannot readily be used as a tax base. How-

ever, avoiding taxes on abatement residuals comes at the price of taxing labor and material (in 

addition to post-consumption and production residuals).16 Since the signs of the derivatives 
jR  and j

mR  for j = 1, 2 are ambiguous, it is not clear, whether mt  and t  are subsidies or 

taxes (proper). At any rate, securing efficiency by means of tax scheme B requires to drive tax 

wedges between demand prices and supply prices on all three markets. Taking a closer look at 

et  under tax scheme B shows that 

  ( )aj

i
j B Bx

e r e e e c ei ji
y

U X X R t Y t Y
U

− + = = −∑ ∑ .                (32) 

To the left of the first equality sign in (32) we have the sum of the direct (positive) and indi-

rect (negative) marginal benefits of a small reduction in the emission of production residuals. 

The indirect benefit is, in fact, the marginal environmental damage from the emission of 

abatement residuals caused by stepping up abatement. Correspondingly, the far right side of 

(32) represents the social marginal abatement cost which is the same as in tax scheme A for 

the case that 1 2 0ra raX X= = . Since B
e et Y< , it is optimal to abate more production residuals 

than under the conventional Pigouvian tax rule. 

 

5. Concluding remarks 

                                                 
16  One may wonder why there isn't a third efficiency restoring tax scheme, that taxes also labor and material 
(like B) but in which et  captures the impact of all kinds of residuals. After all, due to cr y= , post-consumption 
residuals are generated uno actu with all other outputs. However, when we set 1 2 0a a ct t t= = =  in (26) there is 
no way to find values for mt , t  and et  such that market equilibria turn out to be efficient. 
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It is a standard procedure in environmental economics to model abatement as a non-linear 

technological process to reduce the discharge into the environment of a residual generated as 

a by-product of a wanted good. It is also standard in formal analyses of production-cum-

abatement to map incompletely the materials flow that is inevitably involved in that process. 

The present paper shows how the standard way of modeling production-cum-abatement can 

be brought into line with physical constraints securing materials balance. It demonstrates, in 

particular, that the production function (1) can be reconstructed from a comprehensive pro-

duction-cum-abatement technology. Although (1) maps the materials flow incompletely, a 

production function of type (1) has been shown to be implied by each technology (2) that 

fully accounts for all materials flows involved. We have also been proved that the implied 

function Y satisfies the properties (Y*) that are sufficient but not necessary for the properties 

(Y). It remains an open question, therefore, whether for each function Y satisfying the afore-

mentioned properties (Y*) there exists a technology (2) such that Y is implied by that technol-

ogy. Therefore we also don’t know the comprehensive set of conditions that makes the func-

tions Y, 1R  and 2R  from (15) fully compatible with the technology (2).  

 Moreover, in a simple general equilibrium model with full regard of the materials flow the 

paper explores the consequences for allocative efficiency and efficiency-restoring taxation of 

multiple interdependent pollutants that are inevitably linked to the transformation processes of 

production, abatement and consumption. Finally, the paper demonstrates that efficiency may 

require setting the emissions tax rate above or below conventionally defined marginal abate-

ment cost if the residual subject to abatement is not the only residual causing environmental 

degradation. 

Krysiak and Krysiak (2003) address the issue of modeling all processes of materials transfor-

mation consistently in an analytical framework that aims at maximum generality. We pro-

ceeded, instead, by trading generality for more specific and more informative results about the 

emergence and consequences of multiple and interdependent residuals and pollutants involved 

in production-cum-abatement when the materials-balance principle is explicitly and fully re-

garded. 

As for the consequences of multiple residuals, we find, not surprisingly, that if the production 

residual, yr , is the only pollutant it suffices to employ the 'truncated' production-cum-

abatement technology (1). However, as soon as the emission of at least one additional residual 

in the pertaining materials flow also contributes to the degradation of the environment, the 

need for an integrated multi-pollutant control arises (Guruswanny 1991). There is a growing 
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awareness in both academia and the political arena (U.S. General Accounting Office 1996) 

that the most efficient control strategy is to consider multiple pollutants simultaneously rather 

than continue with the prevailing single-pollutant regulations. However, the demand for 

multi-pollutant control approaches is quite often rationalized by growing concerns about the 

potential risks to human health and/or to the environment from the interaction of multiple 

pollutants after their emission. These are certainly serious concerns in their own right. Yet the 

emphasis of the present paper is on allocative problems caused by multiple pollutants whose 

generation is interdependent. In that case, a first-best tax strategy also needs to account for 

the technical interdependencies among the residuals since such linkages impact on the effi-

cient levels of all tax rates. As a consequence, the time-honored rule of equating the emissions 

tax rate and marginal abatement cost, defined in the conventional way, is shown to be no 

longer efficient, in general. 
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