Citation for published item:

Further information on publisher's website:
http://dx.doi.org/10.1136/jech.2007.067249

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.
“A hard day’s night?” The effects of Compressed Working Week interventions on the health and work-life balance of shift workers: a systematic review

C Bambra,1 M Whitehead,2 A Sowden,3 J Akers,3 M Petticrew4

ABSTRACT

Objective: To systematically review studies of the effects of the Compressed Working Week on the health and work-life balance of shift workers, and to identify any differential impacts by socio-economic group.

Methods: Systematic review. Following QUORUM guidelines, published or unpublished experimental and quasi-experimental studies were identified. Data were sourced from 27 electronic databases, websites, bibliographies, and expert contacts.

Results: Forty observational studies were found. The majority of studies only measured self-reported outcomes and the methodological quality of the included studies was not very high. Interventions did not always improve the health of shift workers, but in the five prospective studies with a control group, there were no detrimental effects on self-reported health. However, work-life balance was generally improved. No studies reported differential impacts by socio-economic group; however, most of the studies were conducted on homogeneous populations.

Conclusion: This review suggests that the Compressed Working Week can improve work-life balance, and that it may do so with a low risk of adverse health or organisational effects. However, better designed studies that measure objective health outcomes are needed.

Work has long been acknowledged as an important social determinant of health and health inequalities.1–4 Employment, or lack of it, and its quality and type are vital in terms of income and social status in all advanced industrialised societies. However, the nature of work has altered considerably over the past two decades, not least in terms of the cultivation of labour market practices in which skills, working hours, contracts, conditions, pay and location are more flexible.5–6 Similarly, a 24-hour society has started to emerge with associated concerns about abnormal working hours and work-life balance (WLB).7

In this context, recent reports from the UK Department of Health and Department of Work and Pensions, the US Department of Health and Human Services, and the World Health Organization show that the workplace is increasingly being considered by policymakers as an important intervention point at which health can be improved and health inequalities reduced.8–11 Attention to date has focused on the psychosocial work environment, in particular psychological demands and job control (individual decision authority), as explored in depth in the Whitehall studies.12–16 However, there is a largely untapped literature on the effects of particular types of work patterning on health and health inequalities, and, in particular, there is a large body of evidence spanning several decades that describes the negative effects of shift work on health and well-being.17–18

Reported health problems associated with shift work include sleep disturbances, fatigue, digestive problems, and stress-related illnesses, as well as increases in general morbidity, and in sickness absence.9 These health problems may derive from disruption to physiological, psychological and social circadian rhythms,17 18 as shift work, particularly that involving night work, disrupts the natural circadian rhythm, leading to disruption of sleep (as natural alerting mechanisms such as the cortisol surge and temperature rise will interrupt sleep) and daytime functioning (wakefulness at night will be reduced by temperature drops and melatonin surges). Sudden changes in schedule can, therefore, have an effect akin to “jet lag”. Disruption to the circadian rhythm can also lead to disharmony within the body as some functions (e.g. heart rate) adapt more quickly than others (typically endogenous functions such as body temperature, and melatonin).19 This leads to desynchronisation, which itself can result in psychological malaise, fatigue and gastrointestinal problems. Realignment can take several weeks.20 Most existing research emphasises these physiological changes, but shift work also involves significant social desynchronisation, involving working at times and on days that may make it difficult to maintain a balanced domestic and social life work life balance (WLB).20 Literature also suggests that cardiovascular problems such as hypertension and heart disease may be related to shift work.21 It has also been suggested that shift work is associated with breast cancer, (possibly due to circadian disruption) and the birth of pre-term (premature) babies, but the current evidence base is inconclusive.22–25 Shift work may also involve increased risk of injuries and accidents as performance fluctuates.26

Shift work may, therefore, be an important, but largely overlooked determinant of health and wellbeing for many workers. The practice is common with one in five European workers involved in shift work, though the definition of the term can be complex (the UK Labour Force Survey for example identifies ten different categories).27 Shift work is also socially patterned, being less common in graduates, and more common amongst manual workers and those working in the manufacturing or healthcare sectors.27
Changes to the organisation of shift work have the potential to reduce these negative health effects and perhaps also have an impact on social inequalities in health and wellbeing. A popular organisational level intervention is changing the hours of shift work by introducing a Compressed Working Week (CWW). The CWW is an alternative work schedule in which the hours worked per day are increased, whilst the days worked are decreased in order to work the standard number of weekly hours in less than five days.28 The CWW, therefore, represents a radical break from the 8-hour working day length favoured by workers and trade unions.27 However, a cap still remains on the number of hours worked per week (a maximum of 48 hours under the European Union Working Time Directive).7 The most popular forms of CWW are the 12-hour CWW, the 10-hour CWW and the Ottawa system.28 The 12-hour CWW involves four 12-hour shifts (day, night) over four days with three or four days off. Under a 10-hour CWW, four 10-hour shifts are worked followed by three days off. The Ottawa system consists of three or four 10-hour morning or afternoon shifts spread over four days, then two days off. This is followed by a block of seven eight-hour nights, then six days off.

In this paper, we present the results of the first systematic review of primary empirical studies on the health and WLB effects of changes to the organisation and experience of shift work brought about by CWW interventions, and any differential impacts by social group. Although previous literature reviews of the CWW exist, these concentrate on observational epidemiological (descriptive or comparative) studies rather than evaluative intervention studies, and have not been conducted using full systematic review methodology.7 29

METHODS

Inclusion and exclusion

We sought to identify all empirical studies (both prospective and retrospective, with or without control groups) that examined the effects of CWW interventions on the health and WLB of shift workers and their families. For the purposes of the review, shift work was defined as “any regularly taken employment outside the hours of 07:00 and 18:00”.18 Interventions had to be implemented in actual workplaces, so non-workplace laboratory-based studies were excluded. Health-related outcomes included specific diseases, as well as more general measures of physical or psychological health and wellbeing. Sickness absence, health behaviours and injuries resulting from workplace accidents were included, as were physiological measures, and measures of physical and mental wellbeing such as tiredness, fatigue and sleep.22 The social impacts of the interventions, specifically on WLB were also examined. Organisational effects (eg job satisfaction, individual or organisational performance), when reported alongside the primary outcomes (health and WLB), were also recorded to help in understanding the motivations behind the CWW interventions, and also their viability. Impacts on inequalities in health were considered as outcomes.

Search strategy

We searched 27 electronic databases and websites for documents of any type, from any country, at any time and in any language. Details of the databases searched and an example search for MEDLINE are detailed in boxes 1 and 2. The full search strategy is available online (Appendix 1). We also searched bibliographies and reference lists.

Data extraction

We located 13 308 titles, of which 419 were examined in more detail, and of these 88 were retrieved for full-paper analysis. The lead reviewer (CB) excluded obviously irrelevant titles and abstracts from the initial literature search, and retrieved full-text copies of the remainder. Studies making any reference to health or wellbeing were independently appraised by two reviewers (CB and MP), who re-examined papers jointly to resolve disagreements. We included percentages, confidence intervals (CI), p values, and effect sizes when they were reported in the original study, or calculated these statistics (using final sample sizes) if sufficient information was available (although lack of data was a problem in some studies).

Critical appraisal

Critical appraisal criteria were adapted from existing systematic reviews of the health effects of employment interventions and, guidance for the evaluation of non-randomised studies (box 3).30–32 Two reviewers (CB and MP) independently appraised the included studies according to these criteria.33 The critical appraisal criteria were used for descriptive purposes only and to highlight variations in the quality of studies (see tables 1–3). No quality score was calculated.

These criteria were used to appraise all of the included studies. The results of this process are presented under the critical appraisal section of the results in tables 1–3, with the
numbers 1–10 representing satisfactory fulfilment of the corresponding criterion.

RESULTS
Forty studies examined the effects of CWW interventions on the health and WLB of shift workers. The majority of CWW studies examined changes to four days of 12-hour shifts, although four examined changes to 10-hour shifts. The majority of CWW studies were prospective designed studies (that is, the prospective cohorts with control group, thereby possibly leading to an exaggerated critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: significant. In another study of 70 UK police officers, all but 7.0, F = 8.8, p = 0.01), but sickness absence rates did not change, whilst others found no change. However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.

In a Swedish study of 46 chemical plant workers, self-reported sleep quality was generally better in the intervention group (intervention mean 8.1 to 13.9, comparison mean 7.9 to 11.0, F = 15.56, p = 0.001). However, our critical appraisal of this study identified notable differences in health at baseline between the control and intervention groups: the intervention group had a better baseline score than the control group, thereby possibly leading to an exaggerated intervention effect.
group, e.g. mean scores for “feeling rested when wake up” improved in the intervention group (from 4.06 to 4.47) whilst they worsened in the comparison group (4.38 to 4.23). However, self-reported changes in fatigue, sufficient levels of sleep and general health did not differ from the control group at follow-up. Our critical appraisal of this study queried the suitability of the control group, and noted a lack of adjustment for confounders or non-responders (table 1). In a Canadian study of 25 young male mine workers, self-reported sleep problems and tiredness showed no difference between the intervention and control groups; however, levels of sickness absence decreased substantially (reduction of 73% in the intervention group compared with only 2% in the control group), as did the number of accidents (reduction of 69% in the intervention group compared with only 10% in the control group). The critical appraisal of this study, though, suggests that the sample was not representative, the baseline and follow-up responses were low and that there was a lack of adjustment for confounders or non-responders (table 1).

In another study, of 45 UK police officers, self-reported health did not improve: chronic fatigue, physical health and GHQ-12 (a generic measure of psychological stress) scores did not improve, with increases in social/domestic interference and workload.

Table 1: Compressed Working Week: prospective cohort studies with a control group

<table>
<thead>
<tr>
<th>Study</th>
<th>Design and critical appraisal (see criteria in box 3)</th>
<th>Setting and participants</th>
<th>Summary results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barton-Cunningham, 1981, 1982</td>
<td>Five-month and six-month follow-ups</td>
<td>Police force, Canada</td>
<td>Sporting activities ↑</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 30 (17 intervention, 13 control)</td>
<td>Police officers, majority men</td>
<td>Absenteeism ↓ ↔</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 4 7 9</td>
<td>Five eight-hour shifts, two days off to Four 10-hour shifts, three days off</td>
<td>Time spent on domestic chores ↑</td>
</tr>
<tr>
<td></td>
<td>Barton-Cunningham, 1989</td>
<td>Unspecified follow-up</td>
<td>Mine, Canada</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 85 (68 intervention, 17 control)</td>
<td>Mine operatives and plant operators, young married males, age<39</td>
<td>Time spent with spouse ↑</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 7 9 10</td>
<td>Five eight-hour shifts, two days off to Four 12-hour shifts, four days off</td>
<td>Time spent socialising with friends ↑</td>
</tr>
<tr>
<td></td>
<td>Totterdell & Smith, 1992</td>
<td>Six-month follow-up</td>
<td>Police service, UK</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 70 (40 intervention, 30 control)</td>
<td>Police officers</td>
<td>GHQ ↓</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 2 3 5 7 9 10</td>
<td>Seven eight-hour shifts, two days off to Ottawa system (10-hour days and eight-hour nights)</td>
<td>Lack of sleep ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fatigue ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Headaches ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stomach aches ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sleep duration ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stress ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feeling unwell ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Irregular meals ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sleep quality ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insufficient time for family ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insufficient time for friends ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insufficient time for social life ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Personal life disrupted ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Planning social life difficult ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor relations with family ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not enough free time ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Effective at work ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fatigue affects work ↑</td>
</tr>
<tr>
<td></td>
<td>Lowden et al, 1998</td>
<td>10-month follow-up</td>
<td>Chemical plant, Sweden</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 46 (32 intervention, 14 control)</td>
<td>Plant operators, mainly men</td>
<td>Rested when wake up ↑</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 2 4 5 7 9 10</td>
<td>Five eight-hour shifts, three days off to two or three 12-hour shifts, up to five days off</td>
<td>Sleep quality ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fatigue ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sufficient sleep ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General health ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time for social/family activities ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Satisfaction with hours ↑</td>
</tr>
<tr>
<td></td>
<td>Smith et al, 1998</td>
<td>Six-month follow-up</td>
<td>Police service, UK</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 45 (27 intervention, 18 control)</td>
<td>Police officers, mainly men</td>
<td>Standard Shiftwork Index ↑ ↓</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 2 4 7 8 9 10</td>
<td>Five or seven eight-hour shifts, two or three days off to site A: flexible starts with four 12-hour shifts, then four days off; or site B: rigid starts with four 12-hour shifts, then four days off</td>
<td>Sleep quality (rest) ↓ ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Shiftwork Index ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chronic fatigue Standard Shiftwork Index ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physical health Standard Shiftwork Index ↑</td>
</tr>
</tbody>
</table>
| | | | GHQ-12 ↑ ↔
| | | | Workload ↑ ↑ |
| | | | Social/domestic interference ↔ |

Effect sizes have been added to the text where appropriate and the detailed results are available in online table E1.

There were significant differences between intervention and control groups at baseline.

Effect disappeared when shift work experience was controlled for.
not differ between the intervention and the control group at follow-up, and the significant improvement in sleep duration in the intervention group disappeared when shift work experience was taken into account. This study was not notably different from the others in terms of methodological quality.

Although these studies were robust in terms of study design (employing control groups), the sample sizes were small, ranging from 23 to 85, and the lengths of follow-up were relatively short. No study followed up respondents for at least a year, which may be the optimum as it allows for the possibility of controlling for possible seasonal effects. It should also be noted that three of the five controlled prospective studies were conducted in the police force and so care is needed in generalising from these results to other occupational groups involved in shift work.

The uncontrolled prospective studies (table 2) were also inconclusive, as, whilst the majority identified an improvement in one or another of the various health outcomes measured, they found little effect for other health outcomes.

Amongst the five largest studies (sample sizes >100), 49, 51, 59–61, two reported mixed health effects, 49, 59 two reported health improvements 60, 61 and one recorded a negative health effect. 61 Williams’ study of 131 male chemical plant workers 62 recorded an improvement in self-reported depression (decreased from 2.43 to 2.12, t = 2.32, p < 0.05), but found no change in absence and injury rates. 61 Similarly, a study of Canadian mine workers 63 found that after the introduction of CWW, sleep (mean difference = −0.3, t = 2.43, p < 0.01) and tiredness (mean difference = 0.9; t = 4.77, p < 0.001) worsened on the day shift whilst gastrointestinal problems (mean difference = −0.4, t = 2.35, p < 0.01) and headaches (mean difference = −0.3, t = 2.07, p = 0.05) improved. Two studies of American production workers 64, 65 reported various improvements in self-reported health, including a decrease in the prevalence of common shift-related health disorders (such as heartburn, acid stomach and diarrhea) from 43.8% to 27% (p < 0.001) 66 and a decrease in sickness absence (eg from 11.39 to 4.69 days). 61 However, in a study of 150 UK nurses, 67 dissatisfaction with levels of mental (0.8 (0.53 to 1.07)) and physical (0.7 (0.50 to 0.90)) fatigue increased.

A number of smaller studies of varying methodological quality and sample size reported no changes in any of the health indicators. 40, 41, 43, 49, 53, 55, 56, 60 Other studies were more conclusive, finding significant improvements in sleep duration, 62 absence, 68 physiological distress, fatigue and stress, 40 sleep between shifts, sleep difficulties, and health disorders. 69 In all these studies, 42, 47, 48, 60 employees were either involved in the design and implementation of the intervention or they were supportive of the change. Importantly, only two studies, both based in healthcare settings, found that all the self-reported measures of health worsened after the introduction of the CWW. 41, 53 Overall, the prospective studies were rather limited in terms of length of follow-up and sample size: only three studies had lengths of follow-up of 12 months or more, and the studies were small (tending to involve 15 to 50 participants).

The pattern was similar for the retrospective studies (table 3), with only a minority reporting any significant intervention effect (table S). 72, 74, 75–78, 81 The majority of the significant effects, though, were positive, particularly in terms of self-reported general health and morbidity, 72, 75, 76 headaches, gastric upset, diarrhea, and alcohol problems; 77 sleep; 78 and injuries. 79, 81, 82 These retrospective studies were generally of low quality; all had sample sizes <100; and low response rates. However, one of the larger and better-quality retrospective studies, 75, 76 with a sample of 247, a response rate >60% and adjustment for demographic confounders, reported a significant decrease in the age-standardised morbidity ratio amongst men from 1.02 (95% CI 1.00 to 1.05) to 0.47 (95% CI 0.46 to 0.48), but a non-significant decrease in women from 0.76 (95% CI 0.71 to 0.82) to 0.67 (95% CI 0.63 to 0.71).

Fatigue

Shift work is often associated with fatigue 10, 20–26 and it might be expected that CWW, due to the longer working day, the potential for moonlighting, or excessive overtime, might further increase problems of fatigue amongst shift workers. However, of the 18 intervention studies covered in this review that measured fatigue or tiredness, in only four was there an adverse change in fatigue levels after the introduction of CWW. 41, 51, 59, 67 Three studies recorded improvements, 52, 53, 59 and in the other eleven there was no intervention effect. 11, 45–47, 51, 72, 73, 75, 80, 81, 86 The introduction of longer working days under CWW does not, therefore, appear to adversely affect fatigue; however, this may well be because of the extended rest period, which means that the normal weekly working hours are not exceeded in a seven-day period. 28 However, it may also be due to the popularity of CWW interventions amongst workers (as they increase leisure time and/or enable moonlighting) 39, and this may bias the findings of evaluations in a positive direction, especially in studies with a short follow-up period. Subsequently, it is important that employee safeguards such as the EU Working Time Directive or other measures that limit overtime and moonlighting are incorporated into CWW schedules.

Work-life balance

The majority of studies that examined WLB outcomes noted improvements after the introduction of CWW. 54, 55, 57, 58, 60–66, 73, 74, 87–89 with only a few reporting no intervention effect 39, 47, 50 or a worsening in WLB. 45, 46, 51, 54 However, CWW are often popular amongst shift workers, largely because they value the additional days off that are afforded by the CWW model. 54 Indeed, in 22 of the CWW studies, the intervention was either specifically requested by the employees 39, 40, 45, 51, 55, 56, 57, 58, 60, 61, 65, 67, 71, 74, 76, 85 or implemented with their support. 40, 54, 56, 60, 61, 65, 67, 71, 74, 76, 85 Similarly, the ability of an individual worker to adapt the new schedule to his/her needs may have influenced findings.

Three of the five prospective cohort studies with control groups (table 1) recorded significant improvements in self-reported WLB amongst the intervention group compared with the control group. 44, 45, 37, 38 In the Barton-Cunningham study of 30 Canadian police officers, 34, 35 all four of the indicators of wellbeing used in the study were significantly improved in the intervention group (eg time spent on domestic chores improved in the intervention group (eg from 2.43 to 2.12, t = 2.32, p < 0.01). These improvements all disappeared when the old eight-hour schedule was restored. 34, 35 Similarly, in the Totterdell and Smith study of 70 UK police officers 39 all WLB indicators were improved in the intervention group (eg from 11.39 to 4.69 days), 31 whereas the comparison mean worsened from 8.6 to 6.5, F = 14.7, p < 0.01). These improvements also disappeared when the old eight-hour schedule was restored. 34, 35.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design and critical appraisal (see criteria in box 3)</th>
<th>Setting and participants</th>
<th>Summary results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective cohort studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stinson & Hazlett, 1975a</td>
<td>One-month follow-up</td>
<td>Hospital, Canada</td>
<td>Tired on the job ↔</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 23</td>
<td>Nurses, mainly female</td>
<td>Time available for recreation ↑</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 2 4 7 9 10</td>
<td>Five eight-hour shifts, two days off to three/four 12-hour shifts, four/three days off</td>
<td>Not feeling overloaded with work ↔</td>
</tr>
<tr>
<td>Eaton & Gottselig, 1980a</td>
<td>Six-month follow-up</td>
<td>Hospital, Canada</td>
<td>Personal Health Survey: ↓</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 24</td>
<td>Nurses, mainly female</td>
<td>Health complaints ↓</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 2 7 9 10</td>
<td>Eight-hour shifts to 12-hour shifts</td>
<td>Anxiety ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anger-frustration ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nurses perception questionnaire: ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fatigue →</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Felt more rested ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Absence ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Accidents and injuries ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minnesota Satisfaction Questionnaire: ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Job satisfaction ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Turnover ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incidents and errors ↔</td>
</tr>
<tr>
<td>Peacock et al, 1983a</td>
<td>Six-month follow-up</td>
<td>Police Force, Canada</td>
<td>Sleep duration ↑</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 75</td>
<td>Police officers</td>
<td>Alertness ↔</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 7 9 10</td>
<td>Eight eight-hour shifts, four days off to five 12-hour shifts, three days off</td>
<td></td>
</tr>
<tr>
<td>Rosa et al, 1989; Lewis & Swaim, 1986; Rosa, 1991a, c</td>
<td>Seven-month follow-up</td>
<td>Processing plant, USA</td>
<td>Gastrointestinal state (night) ↑</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 50</td>
<td>Control room operators, mainly male aged 25–34</td>
<td>Gastrointestinal state (day) ↔</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 5 9 10</td>
<td>Five/seven eight-hour shifts, two/four days off to three/four 12-hour shifts, three/six days off</td>
<td>Exercise ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Napping after shift (night) ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Napping after shift (day) ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stress ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total sleep time ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of awakenings ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sleep depth ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sleep quality ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sleep latency ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adjust personal routine for work ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Missed social events ↔</td>
</tr>
<tr>
<td>Jansen & Mull, 1990a</td>
<td>Six-month follow-up</td>
<td>Confectionary Factory, Netherlands</td>
<td>Fatigue ↔</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 87</td>
<td>Packaging department workers, all female, 46 full-time, 41 part-time</td>
<td>Gastrointestinal complaints ↔</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 2 7 9 10</td>
<td>Five eight-hour shifts, two days off to three 12-hour shifts, four days off</td>
<td>Time spent with family ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Satisfaction with leisure time ↑</td>
</tr>
<tr>
<td>Slota & Balas-Stevens, 1990a</td>
<td>Three-month follow-up</td>
<td>Hospital, USA</td>
<td>Absence ↑</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 36</td>
<td>Nurses, all female</td>
<td>Concern about scheduling of vacation time ↔</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 2 9 10</td>
<td>Five eight-hour shifts, two days off to three 12.5-hour shifts, four days off</td>
<td>Ability to request time off ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incidents and errors ↔</td>
</tr>
<tr>
<td>Pierce & Dunham, 1992a</td>
<td>12-month follow-up</td>
<td>Police Force, USA</td>
<td>Personal productivity ↔</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 50</td>
<td>Police officers, mainly male</td>
<td>Physiological distress ↑</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 2 4 7 9 10</td>
<td>Seven/tenth eight-hour shifts, two/three days off to four 12-hour shifts, four days off</td>
<td>Fatigue ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schedule interference with personal activities ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stress ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Satisfaction with leisure time ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Life satisfaction ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Satisfaction with organisational association ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Satisfaction with workload ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Job satisfaction ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Organisational effectiveness ↑</td>
</tr>
<tr>
<td>Williams, 1992a</td>
<td>Six-month follow-up</td>
<td>Chemical Plant, USA</td>
<td>Performance ↑</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 131</td>
<td>Operators, mainly white males</td>
<td>Depression ↑</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 1 2 4 5 6 7 9 10</td>
<td>Six/seven eight-hour shifts, two/four days off to three/four 12-hour shifts, two to seven days off</td>
<td>Absence ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Accidents ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General life satisfaction ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conflict between work and non-work time ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Social/community involvement ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Planning activities with family ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Job satisfaction ↑</td>
</tr>
</tbody>
</table>

Continued
Table 2 Continued

<table>
<thead>
<tr>
<th>Study</th>
<th>Design and critical appraisal (see criteria in box 3)</th>
<th>Setting and participants</th>
<th>Summary results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosa & Bonnet, 1993</td>
<td>Eight-month follow-up</td>
<td>Gas Processing Plant, USA</td>
<td>Sleepiness (day) ↑</td>
</tr>
<tr>
<td>Final sample: n = 10</td>
<td></td>
<td>Computer operators, all male</td>
<td>Sleepiness (night) ↔</td>
</tr>
<tr>
<td>Critical appraisal: 1 7 9 10</td>
<td></td>
<td>Four/seven eight-hour shifts, two/three 12-hour shifts, two/three days off</td>
<td>Total sleep time (night) ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two/seven eight-hour shifts off to two/three 12-hour shifts, two/three days off</td>
<td>Total sleep time (day) ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sleep depth ↓</td>
<td>Sleep latency ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of awakenings ↔</td>
<td>Exercise ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work-related adjustment of meal times ↔</td>
<td>Work-related adjustment of personal schedules ↔</td>
</tr>
<tr>
<td>Todd et al, 1993</td>
<td>Six-month follow-up</td>
<td>Hospital, UK</td>
<td>Dissatisfaction with fatigue ↓</td>
</tr>
<tr>
<td>Final sample: n = 150</td>
<td></td>
<td>Nurses, mainly female</td>
<td>Dissatisfaction with ease of getting childcare ↓</td>
</tr>
<tr>
<td>Critical appraisal: 1 2 4 7 9 10</td>
<td></td>
<td>Three/four 12-hour shifts, three/four days off</td>
<td>Dissatisfaction with amount of time spent with family ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissatisfaction with how personal life is put second</td>
<td>Job satisfaction ↓</td>
</tr>
<tr>
<td>Williamson et al, 1994</td>
<td>Seven-month follow-up</td>
<td>Computer Company, Australia</td>
<td>Loss of appetite ↑</td>
</tr>
<tr>
<td>Final sample: n = 18</td>
<td></td>
<td>Computer operators (80%) and supervisors (20%)</td>
<td>Gastrointestinal symptoms ↑</td>
</tr>
<tr>
<td>Critical appraisal: 1 2 4 7 9 10</td>
<td></td>
<td>Two to five eight-hour shifts, one/two days off to four 12-hour shifts, four days off</td>
<td>Sleep and fatigue ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Headaches ↑</td>
<td>Irritability ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heart problems ↓</td>
<td>GHQ ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visit to doctor ↓</td>
<td>Consumption of social drugs ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Job satisfaction ↓</td>
<td>Performance ↔</td>
</tr>
<tr>
<td>Freer & Murphy-Black, 1995</td>
<td>One-month follow-up</td>
<td>Hospital, UK</td>
<td>Stress ↔</td>
</tr>
<tr>
<td>Final sample: n = 13</td>
<td></td>
<td>Nurses and midwives</td>
<td>Enjoyment at work ↑</td>
</tr>
<tr>
<td>Critical appraisal: 1 4 5 6 9</td>
<td></td>
<td>12-hour flexible shifts</td>
<td>Morale at work ↑</td>
</tr>
<tr>
<td>Campolo et al, 1998</td>
<td>12-month follow-up</td>
<td>Hospital, Australia</td>
<td>Fatigue ↑</td>
</tr>
<tr>
<td>Final sample: n = 20</td>
<td></td>
<td>Nurses, all female</td>
<td>Gastrointestinal symptoms ↑</td>
</tr>
<tr>
<td>Critical appraisal: 1 2 4 9</td>
<td></td>
<td>Six-hour morning shifts, eight-hour afternoon</td>
<td>Absence ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>short shifts to four 12-hour shifts, three days off</td>
<td>Sleep length ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sleep quality ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Work demands ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time spent on hobbies ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time with family and friends ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Performance ↔</td>
</tr>
<tr>
<td>Di Milia, 1998</td>
<td>Two-, three-, four- and five-month follow-ups</td>
<td>Coal mine, Australia</td>
<td>Sleep duration ↔</td>
</tr>
<tr>
<td>Final sample: n = 3</td>
<td></td>
<td>Electricians, all male</td>
<td></td>
</tr>
<tr>
<td>Critical appraisal: 1 5 9 10</td>
<td></td>
<td>Seven eight-hour shifts, two/four days off to four 12-hour shifts, two/eight days off</td>
<td></td>
</tr>
<tr>
<td>Paley et al, 1994a; 1994b;</td>
<td>16-month follow-up</td>
<td>Fire Department, USA</td>
<td>Sleep length (night) ↑</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td>Fire fighters, all male</td>
<td>Sleep length (day) ↔</td>
</tr>
<tr>
<td>Critical appraisal: 1 2 4 5 9 10</td>
<td></td>
<td>Five/seven eight-hour shifts, two/three days off to two 10-hour day shifts, two 14-hour night shifts, four days off</td>
<td>Sleepiness ↔</td>
</tr>
<tr>
<td>Heslegrave et al, 2000</td>
<td>One-month follow-up</td>
<td>Metal Mine, Canada</td>
<td></td>
</tr>
<tr>
<td>Final sample: n = 120</td>
<td></td>
<td>Mining operatives, mostly male</td>
<td>Sleep duration (day) ↓</td>
</tr>
<tr>
<td>Critical appraisal: 1 2 7 9 10</td>
<td></td>
<td>Five eight-hour shifts, two days off (weekends) to two/three/four 10-hour shifts, two/three days off</td>
<td>Sleep duration (night) ↔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Five eight-hour shifts, two days off</td>
<td>Sleep duration (rest) ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Five eight-hour shifts, two days off</td>
<td>Tiredness (day) ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Five eight-hour shifts, two days off</td>
<td>Tiredness (rest) ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Four eight-hour shifts, two days off</td>
<td>Tiredness (night) ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Four eight-hour shifts, two days off</td>
<td>Gastrointestinal problems ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Four eight-hour shifts, two days off</td>
<td>Headaches ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Four eight-hour shifts, two days off</td>
<td>Performance (day) ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Four eight-hour shifts, two days off</td>
<td>Performance (night) ↑</td>
</tr>
<tr>
<td>Johnson & Sharit, 2001</td>
<td>11-month and 5-year follow-ups</td>
<td>Manufacturing Company, USA</td>
<td>Sleep between shifts ↑</td>
</tr>
<tr>
<td>Final sample: n = 104</td>
<td></td>
<td>Production workers</td>
<td>Sleep difficulties ↑</td>
</tr>
<tr>
<td>Critical appraisal: 1 4 7 8 9 10</td>
<td></td>
<td>Eight-hour rotating shifts to 12-hour rotating shifts</td>
<td>Eight-hour rotating shifts to 12-hour rotating shifts</td>
</tr>
</tbody>
</table>
The Swedish study of 46 chemical plant workers also saw significant improvements in WLB with both time for social/family activities (intervention mean 2.65 to 3.02, comparison mean 3.25 to 3.02, p < 0.05), and satisfaction with hours (intervention mean 3.53 to 4.62, comparison mean 4.29 to 4.5, p < 0.05) increasing amongst the intervention group. There are some issues (as above) about the suitability of the non-randomised, non-matched control group (see table 1).

The other prospective study with a control group of 45 UK police officers found no changes in WLB (workload, social

Table 2 Continued

<table>
<thead>
<tr>
<th>Study</th>
<th>Design and critical appraisal (see criteria in box 3)</th>
<th>Setting and participants</th>
<th>Summary results</th>
<th>Effect sizes have been added to the text where appropriate and the detailed results are available in online table E2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Von Borkenhagen-Chandler, 2004</td>
<td>One-month follow-up Final sample: n = 121 Critical appraisal: 1 7 9</td>
<td>Aerospace Manufacturing Company, USA Final assembly and flight test workers Five eight-hour shifts, two days off to four 10-hour shifts (Mon–Thurs) with three days off or three 12-hour shifts (Fri–Sun) with four days off</td>
<td>Absence ↑ Job satisfaction ↑ ↑</td>
<td></td>
</tr>
<tr>
<td>Prosp. repeat cross-section studies with control group Duchon et al, 1994, 1997; Keran et al, 1994</td>
<td>10-month follow-up Final sample: n = 22 (17 intervention, 5 control) Critical appraisal: 1 4 5 7 9</td>
<td>Metal mine, Canada Miners Seven eight-hour shifts, two/three days off to four 12-hour shifts, four days off</td>
<td>Health problems ↔ Eating habits ↑ Sleep difficulties after night shift ↓ Minor aches and pains ↓ Stress ↔ Stanford Sleepiness Scale: Sleepiness ↔ Sleep length ↑ Family life ↑ Morale ↑</td>
<td></td>
</tr>
<tr>
<td>Smith et al, 1998</td>
<td>Six-month follow-up Final sample: n = 62 (47 intervention, 15 control) Critical appraisal: 1 2 4 5 7 8 9 10</td>
<td>Sewage treatment plant, Australia Sewage workers Seven eight-hour shifts, two/days off to two/three 12-hour shifts, two/four days off</td>
<td>GHQ-12: Psychological complaints ↑ Minor health complaints ↔ Circadian malaise ↔ Muscular complaints ↔ Minor infections ↔ Day sleep quality ↔ Night sleep quality ↔ Tiredness ↔ Fatigue ↔ Physical health ↔ Mental health ↔ Interference of work with home life ↑ Interference of work with social life ↑ Work-life satisfaction ↔ Work performance ↔</td>
<td></td>
</tr>
<tr>
<td>Cydulka et al, 1994</td>
<td>One- and six-month follow-ups Final sample: n = 140 (27 intervention, 113 control) Critical appraisal: 1 2 4 5 7 8 9 10</td>
<td>Hospital, USA Ambulance workers and paramedics Six eight-hour shifts, two days off to three 12-hour shifts, two days off</td>
<td>Somatic distress ↔ Organisational stress ↔ Job dissatisfaction ↔</td>
<td></td>
</tr>
<tr>
<td>Prospective repeat cross-section studies Heslegrave et al, 2000</td>
<td>12-month follow-up Final sample: n = 66 Critical appraisal: 1 2 4 5 7 9 10</td>
<td>Nuclear Power Plant, Canada Power plant operators, mainly male Three/four/seven nine-hour shifts, two/six days off to four 12.5-hour shifts, four days off</td>
<td>Fatigue ↓ Sleep ↔ Performance ↓</td>
<td></td>
</tr>
<tr>
<td>Mitchell & Williamson, 2000</td>
<td>Six-month follow-up Final sample: n = 12 Critical appraisal: 1 2 4 5 7 9 10</td>
<td>Electrical Power Station, Australia Power station workers (supervisors, fire fighters, turbine operators), all male Seven eight-hour shifts, one/two/four days off to five/six 12-hour shifts, two/three/seven days off</td>
<td>Health complaints ↑ Alcohol consumption ↑ Sleep quality ↓ Absence ↓ Sleep disturbance ↔ Sleep length ↔ Chronic fatigue ↔ Physical health ↔ GHQ ↔ Somatic anxiety ↔ Feeling stressed ↔ Social life ↑ Domestic life ↑ Coping with social life ↑ Coping with home life ↑ Work performance ↔</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Compressed Working Week – retrospective studies (grouped by study design)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design and critical appraisal (see criteria in box 3)</th>
<th>Setting and participants</th>
<th>Summary results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>↑ = improvement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>↔ = little change</td>
</tr>
<tr>
<td>Retrospective cohort studies with control group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venne, 1993; 1997¹⁴ ²⁶</td>
<td>Historical data: 12-month pre-average, 24-month post-average</td>
<td>Prison, Canada</td>
<td>Absence</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 102</td>
<td>Prison guards</td>
<td>↔</td>
</tr>
<tr>
<td></td>
<td>(70 intervention, 32 control)</td>
<td>Five eight-hour shifts, two days off to two/three 12-hour shifts, two/three days off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 4 5 7 9 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yamada et al, 2001¹⁷</td>
<td>Historical data: 2-, 8-, 14- and 24-month follow-ups</td>
<td>Electronic parts manufacturer, Japan</td>
<td>Lower back pain</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 205</td>
<td>Processing machine operators</td>
<td>Stiff shoulder</td>
</tr>
<tr>
<td></td>
<td>(189 intervention, 16 control)</td>
<td>Five eight-hour shifts, two days off to two/three 12-hour shifts, two/three days off</td>
<td>Joint pain</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 2 4 5 6 9</td>
<td></td>
<td>Limb pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dimmed sight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sore throat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor sleep</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diminished alertness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiredness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Irritation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Head heaviness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blood pressure</td>
</tr>
<tr>
<td>Retrospective cohort studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laundry & Lees, 1989; 1991¹² ¹³</td>
<td>Historical data: 120-month pre-average, 120-month post-average</td>
<td>Synthetic yarn factory, Canada</td>
<td>Morbidity (male)</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 247</td>
<td>Factory workers, 85% male</td>
<td>Morbidity (female)</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 2 4 5 7 8 9 10</td>
<td>Five eight-hour shifts, two days off to 12-hour shifts</td>
<td>Headaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gastric upset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diarrhoea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alcohol problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General malaise</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nervous conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minor injury rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Severe injury rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Injury rate (male)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Injury rate (female)</td>
</tr>
<tr>
<td>Conrad-Beetschart, 1990¹⁰</td>
<td>After only recall data: one-month post</td>
<td>Oil refinery, Switzerland</td>
<td>Sleep</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 78</td>
<td>Operators, mainly male</td>
<td>Health</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 2 4 7 9</td>
<td>Five eight-hour shifts, two days off to two/three 12-hour shifts, two/three days off</td>
<td>Leisure time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time with partner</td>
</tr>
<tr>
<td>Pollock et al, 1994¹⁵</td>
<td>Historical data: 18-month pre-average, 18-month post-average</td>
<td>Petrochemical manufacturer and fertiliser manufacturer, Australia</td>
<td>Injury rates</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 300</td>
<td>Manufacturing workers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 2 4 5 9</td>
<td>Five eight-hour shifts, two days off to four 12-hour shifts, four/six days off</td>
<td></td>
</tr>
<tr>
<td>Barter-Trenholm, 1997¹⁵</td>
<td>After only recall data</td>
<td>Police Force, Canada</td>
<td>Sleep patterns</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 218</td>
<td>Police officers</td>
<td>Tiredness</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 2 4 7 9 10</td>
<td>Five eight-hour shifts, one in three weekends off to 12-hour shifts, one in two weekends off</td>
<td>Effectiveness</td>
</tr>
<tr>
<td>Vega & Gilbert, 1997¹⁷</td>
<td>After only recall data: eight-month post</td>
<td>County Sheriff’s Department, USA</td>
<td>Fatigue</td>
</tr>
<tr>
<td></td>
<td>Historical data: 12-month pre-average, 12-month post-average</td>
<td>Patrol officers, majority male and white</td>
<td>Quality of professional lives</td>
</tr>
<tr>
<td></td>
<td>Final sample: 34</td>
<td>Five eight-hour shifts, two days off to three 13.5-hour shifts, four days off</td>
<td>Quality of personal lives</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 2 7 9 10</td>
<td></td>
<td>Family and personal activities</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Productivity</td>
</tr>
<tr>
<td>Richbell et al, 1998¹⁰ ¹⁶</td>
<td>After only recall data</td>
<td>Police force, UK</td>
<td>Health</td>
</tr>
<tr>
<td></td>
<td>Historical data: 12-month pre-average, 12-month post-average</td>
<td>Police officers</td>
<td>Absence</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 90</td>
<td>Five-eight hours to Ottawa system</td>
<td>Quality of life</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 2 9</td>
<td>(9/10-hour days 10-hour nights).</td>
<td>Morale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Service</td>
</tr>
<tr>
<td>Wootten, 2000a, 2000b²⁸</td>
<td>Historical data: three-month pre-average, three-month post-average</td>
<td>Hospital, UK</td>
<td>Absence</td>
</tr>
<tr>
<td></td>
<td>Final sample: n = 20</td>
<td>Nurses</td>
<td>Accidents</td>
</tr>
<tr>
<td></td>
<td>Critical appraisal: 2 4 5 9</td>
<td>7.5-hour to 12-hour shifts</td>
<td>Staffing costs</td>
</tr>
</tbody>
</table>

Continued
domestic interference) once shift work experience had been taken into consideration. Similarly, the study of 85 mine workers found no differences between the intervention and control groups for family satisfaction. Importantly though, none of the prospective cohort studies with control groups identified a decrease in WLB after the implementation of the CWW interventions. As noted above, these studies tended to employ relatively short periods of follow-up and small samples, and so, despite the controlled design, the evidence they present is suggestive rather than convincing.

Consistently, the prospective uncontrolled studies (table 2), including two of the studies with at least 12 months follow-up, found that aspects of WLB improved after the introduction of CWW interventions. In all of the retrospective studies that measured the effects of CWW interventions on WLB, it was found to improve. For example, improvements were reported in leisure time and time spent with family, performance, quality of life and child care. However, the critical appraisal process suggested that these studies had some methodological problems particularly in terms of low baseline response rates, low or no follow-up response rates, and little adjustment for non-responders or confounders.

Health and work-life balance

The results of the CWW studies suggest a link between improved WLB and improved health. Three of the prospective studies with control groups, six of the prospective studies without a control group and three of the retrospective studies reporting increases in WLB also reported improvements in health, particularly mental health. Changes in WLB were less likely to be accompanied by changes in physical health. For example, in five studies, health improvements occurred despite no accompanying changes in WLB. This tentatively suggests that whilst changes in mental or physical health and WLB can clearly occur separately, positive changes in WLB can translate into positive mental health effects. The relationship between WLB and physical health, however, is less clear. Of course, this finding may reflect the self-reported nature of the health and WLB outcomes. However, this link and possible causal pathway should be examined further in future prospective studies.

Organisational outcomes

Generally, the studies suggested that the organisational effects of the CWW were small or absent with most studies finding no evidence of either benefit or detriment. Three of the prospective cohort studies with control groups (table 1) measured effects on performance (job satisfaction or...
Although the 40 studies reviewed represent the best available evidence on the health and work-life balance effects of Compressed Working Week (CWW) interventions, they were subject to a number of methodological and other limitations.

- No trials and only five prospective cohort studies with a control group were located. The control groups were not matched or randomised, and in at least one case there were significant differences in health at baseline between the intervention and control groups. 37

- We elected to include all studies regardless of sample size. However, it needs to be noted that a number of studies were based on such small final sample sizes that their research value is limited. For example, nine studies 50–55 58 59 68 70 80 82 had final sample sizes of 20 or fewer, and there was one study with only three participants. 58 Therefore, in our synthesis, we have highlighted the larger studies.

- Studies were often conducted in homogeneous populations. For example, three of the five controlled prospective cohorts were conducted amongst police officers. 34–36 38 39 The generalisability of the results to other occupations is, therefore, limited.

- The number of small studies also raises the possibility that any positive findings may be due to publication bias, in which small studies with positive findings are more likely to be published (or are otherwise more easily located by reviewers) than those with negative findings. Similarly, bias may have arisen as we were only able to locate studies in the public domain, thus excluding the majority of commercial studies.

- The health, work-life balance and organisational measures were usually self-reported and they varied greatly from study to study. Bias may, therefore, have occurred, as employees were aware of the intervention and in some cases highly involved in its design and implementation. There was a dearth of well-validated questionnaires, such as the General Health Questionnaire 37 39 52 84 or the Standard Shift Work Index. 39

- The study follow-ups were generally 12 months or less 34–35 37 39 50–53 55 58 74 76–80 82 and so it was not possible to analyse the longer term health or work-life balance effects of the CWW interventions, which may be particularly important in terms of accumulated fatigue and physical health. The short follow-ups may also account for the lack of a health effect (either positive or negative) in the majority of the studies.

- There was also a lack of information provided in some studies about the background 34–35 58 62 74 76–80 82 of the interventions or how they had been implemented. 34–46 48 50–52 55–58 61–64 71–73 75–79 82 In those studies that reported background details, those in which the intervention was instigated by employees or the motivation was employee wellbeing, 34–37 41–44 47 50 60 62–64 66 68–71 74 78 80 82 84 86 tended to have more positive health and work-life balance effects, whilst the effects of those that were the most overtly driven by economic motives were often negative or negligible. 46 51 53 54 59 81 87 77

Overall, the evidence base on the health effects of CWW interventions is perhaps best described as cautiously positive: positive because whilst the CWW interventions might not always improve the self-reported health of shift workers, they are seldom detrimental (indeed, the five prospective cohorts with control groups found no detrimental effects on health); and cautious because of the methodological quality of the current evidence base (box 4). In contrast, the evidence on the effects of CWW interventions on the WLB of shift workers seems more conclusive (although the comments about methodological quality still apply): the CWW improves WLB.

Research implications

The evidence base on changing the organisation of shift work by introducing the CWW is relatively large by systematic review standards, both in terms of the intervention studies covered in this research report (40 in total), and the wider descriptive epidemiological literature. 29 However, there are still some large evidence gaps, most notably in terms of any effects of shift work interventions on inequalities in health amongst working-age populations. The majority of studies were conducted in fairly homogeneous populations (eg police officers, male production workers, or female nurses) and, perhaps in part due to this, only one study differentiated outcomes by gender. 72 73 and none of the studies differentiated by occupational grade or socio-economic group.

A key question remains of whether changing the organisation of shift work by introducing CWW has the potential to decrease health inequalities amongst the working-age population. An important consideration in this respect is the social patterning of shift work in the UK, which tends to be concentrated amongst workers from lower socio-economic groups (with the notable exceptions of medical and emergency services staff). 27 This contributes to the generally poorer, more health-damaging work environment experienced by manual compared with non-manual workers. It is plausible that CWW interventions that improve the health of shift workers may, therefore, on the whole, help to reduce the gap in health between manual and non-manual workers caused by the differences in working conditions between the two groups. This possibility should be explored further.

There is also little evidence on the effects of CWW on the health behaviours of shift workers. Only four of the 40 studies in this review examined health behaviours. Two studies reported on the effects on exercise with one reporting an increase, 34 35 whilst the other found no change; 50 one study reported an increase in alcohol consumption, 50 and another found no intervention effect on the consumption of social effectiveness at work). 34–37 None found any significant differences between the intervention and control groups. Similarly, in the other prospective cohort studies (table 2) the majority of the sixteen that measured organisational outcomes found no

DISCUSSION

Overall, the evidence base on the effects of CWW interventions is perhaps best described as cautiously positive: positive because whilst the CWW interventions might not always improve the self-reported health of shift workers, they are seldom detrimental (indeed, the five prospective cohorts with control groups found no detrimental effects on health); and cautious because of the methodological quality of the current evidence base (box 4). In contrast, the evidence on the effects of CWW interventions on the WLB of shift workers seems more conclusive (although the comments about methodological quality still apply): the CWW improves WLB.
drugs. Furthermore, there were only two studies on the Ottawa CWW system, and so the effects of particular CWW systems is another area that could be examined in future research.

In addition, the research studies reviewed were subject to a number of methodological limitations (see box 4) such as inadequate control groups, lack of detail about implementation, small sample sizes and short follow-ups. Perhaps most importantly, the majority of outcomes were self-reported and this may have led to confounding, particularly in terms of whether employees were supportive or unsupportive of the imposed intervention. Therefore, in the future, prospective, well-controlled studies, which measure objective health outcomes, and which describe the background to the study and the implementation of the intervention, are needed.

Policy implications

The evidence suggests that introducing the Compressed Working Week may enhance work-life balance for shift workers. It does not appear to be detrimental to self-reported health in the short term. Importantly, Compressed Working Week interventions tend to have either positive or negligible organisational effects and so health and wellbeing may be improved through the workplace without damaging productivity or competitiveness. The Compressed Working Week could, therefore, be an important tool for both policymakers and employers in terms of promoting healthier work places and improving working practices.

What is already known on this subject

A large number of observational studies suggest that shift work negatively affects employee health and work-life balance. Shift work is common: one in five European workers are involved in some form of shift work. Shift work is socially patterned – less common amongst graduates and more common amongst manual workers. One hypothesis is that organisational level interventions such as the Compressed Working Week may be effective in reducing these negative health effects and perhaps also impact upon social inequalities in health and work-life balance.

What this study adds

This is the first study to systematically review 40 intervention studies of the effects on the health and work-life balance of shift workers of Compressed Working Week interventions. The methodologically limited evidence base suggests that the Compressed Working Week appears to improve the work-life balance of shift workers, and that it appears to do so with little or no adverse health or organisational effects. It is unclear what the effects are on health inequalities, although as shift work is concentrated amongst lower occupational groups it is plausible that effective Compressed Working Week interventions could help reduce the health gap between manual and non-manual workers.

Policy implications

The existing evidence, albeit somewhat methodologically limited, suggests that introducing the CWW may enhance the WLB of shift workers. There is also evidence to suggest that it is not detrimental to self-reported health in the short term. Importantly, CWW interventions tend to have either positive or negligible organisational effects and so employee health and WLB may be improved through the workplace without damaging company productivity or competitiveness. This message may be a useful aid in implementing the recent cross-departmental Health and Safety Executive, Department of Health and Department for Work and Pensions’ “Health, Work and Wellbeing” strategy amongst employers. Changing shift work organisation and working practices to make them more conducive to a WLB does not necessarily need a warning caveat about the dangers to productivity or competitiveness.

Acknowledgements: The work in this paper was undertaken by the Centre for Public Policy and Health (University of Durham), the MRC Public and Social Health Sciences Unit (Glasgow), the Centre for Reviews and Dissemination (University of York), and the Department of Public Health (University of Liverpool) as part of the work of the Public Health Research Consortium (PHRC). The Public Health Research Consortium is funded by the Department of Health Policy Research Programme. The views expressed in the publication are those of the authors and not those of the DH. Information about the wider programme of the PHRC is available from www.york.ac.uk/phrc

Competing interests: None.

REFERENCES

47. Jansen B, Rosa R.
46.
44. Deeks J, McOrmond T.
43. Egan M, Smith L.
42. Health and Safety Executive.
41. Karasek R.
0. Rosa R, Colligan M, Lewis P. Extended work days: effects of 8 hour and 12 hour rotating shift schedules on performance, subjective alertness, sleep patterns, and psychosocial variables. Work & Stress 1989;3:21–32.

