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Abstract 
 
This paper suggests a simple method based on a Chebyshev approximation at Chebyshev 
nodes to approximate partial differential equations. It consists in determining the value 
function by using a set of nodes and basis functions. We provide two examples: pricing a 
European option and determining the best policy for shutting down a machine. The suggested 
method is flexible, easy to programme and efficient. It is also applicable in other fields, 
providing efficient solutions to complex systems of partial differential equations. 
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1. Introduction 
 
The study of partial differential equations (PDE) is a fundamental topic in applied 

mathematics, as well as in physics, natural science and finance. For example, in finance 

PDEs are used in arbitrage-based asset models. The widely cited Black and Scholes PDE, 

that must be satisfied by each European option within an arbitrage free market, is a 

canonical example. In this specific case, the PDE has an analytical solution; however, in 

many other interesting cases in finance, as well as in other fields, closed form solutions 

are very difficult to obtain and researchers rely on various numerical methods to obtain a 

solution. The study of these numerical methods represents the area of Computational 

Partial Differential Equations. 

The most simple applicable algorithms to approximate PDEs rely on the concept 

of discretisation - that is, replacing the PDE of interest by a finite dimensional problem. 

However, replacing the PDE by a discrete model is not at all trivial and generally the 

choice of the finite dimensional model to be used depends on the properties of the 

mathematical model itself. 

The development of high speed computers has made it easier to find accurate 

solutions to PDEs, even in the most extreme cases of very large systems of PDEs. In this 

study we show how to use polynomial methods to approximate PDEs. We shall only be 

focusing on second-order linear PDEs, although it would also be interesting to evaluate 

our methodology when dealing with non-linear types of PDEs. We leave this for future 

research. 

Crack-Nicolson (CN) implicit schemes are amongst the most widely used 

approximation methods. However, their effectiveness is affected by the choice of time 

steps, which, very often, depends on the problem one is facing.  Also, CN methods, in 

general, suffer from poor convergence. 

The method suggested in this paper relies on polynomial interpolation to 

approximate the PDE characterising the option pricing problem. In our two applications, 

we use Monte Carlo methods to solve the boundary condition for the PDE, and fit the 
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functional at Chebyshev nodes to estimate the coefficients1. The advantage of our 

approach is its flexibility, and the fact that it is easily implementable and since the 

functional, at least in the first empirical example, is approximated using deterministic 

nodes, the estimates of the coefficients are less scattered.  In addition, our method is 

applicable in other fields, providing efficient solutions to complex systems of partial 

differential equations. These features make our approach very attractive. One reason why 

polynomial approximations of this type are underutilised (in comparison to direct ad hoc 

approximation methods) by applied researchers might be lack of familiarity. Therefore, in 

the following section, we provide some guidance on how to use them to solve systems of 

differential equations.  

 The layout of the paper is the following.  Section 2 outlines the approximation 

method we advocate. Section 3 describes an option pricing valuation model. In Section 4 

we apply our methodology to obtain the solution to the option pricing problem, as well as 

to an Investment Under Uncertainty problem. Section 5 summarises the main findings of 

this study and offers some concluding remarks. 

 
 
2.  Polynomial Approximation       
 
In this section we describe in greater detail the approximation method adopted in this 

paper. Let  be a function defined on the interval , which may well not be 

tractable analytically, and assume that  is a polynomial that interpolates V  at the 

distinct   points , with . In order to solve the problem by 

approximation we need to define: (a) the family of basis functions to approximate the 

function , (b) the interpolation nodes, . In this section we show that Chebyshev 

polynomials in conjunction with Chebyshev nodes offer the best solution to our problem. 
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1
 Tzavalis and Wang (2003) use a similar approach based on Chebyshev approximation to approximate the 

optimal exercise boundary in the context of a stochastic volatility model. Their method also relies on 
extrapolation procedures. 

 2



Theorem 1: if , then for all ],[ baV ℜ∈ 0>ε  there exists a polynomial  such that )(sP

ε≤− |)() sPs∈∀ (|],[ Vbas . 

 

Remark 1. The above theorem is known as the Weierstrass theorem. It states that any 

continuous function can be approximated with a certain degree of accuracy by using a 

polynomial. Although very important theoretically, this theorem is of little practical use since 

it does not give any indication of what polynomial is the most appropriate to use, or even 

what order polynomial is needed to achieve a certain degree of accuracy. 
 
The error made by using a polynomial of order n  to approximate the function given in 

Theorem 1 can be easily calculated as: 
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The objective of using such an efficient polynomial consists in choosing a set of nodes  

so as to make the term ∏ as small as possible (Judd, 1998). One possibility is to 

approximate the function V at the n-evenly spaced nodes. However, it is well known that 

in general, even for smooth functions, polynomials of this type do not produce very good 

approximations.
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Our approach can be justified by appealing to Rivlin’s theorem, stating that Chebyshev 

node polynomial interpolants are nearly optimal polynomial approximants (Rivlin, 1990), 

                                              
2
 A classic example is Runge`s function (Rivlin, 1990). 
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and has been shown to perform well empirically (Rivlin, 1990). Chebyshev nodes are 

also known to possess a further convenient property, i.e. equi-oscillation 3(Judd, 1998). 

As important as the choice of the nodes interpolants is that of a family of 

functions from which the approximant P will be drawn. We suggest using a Chebyshev 

polynomial. This is defined as4: 

 
))cos(cos()( siasi =Γ  ni ,...,1,0=  
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A Chebyshev basis polynomial, in conjunction with Chebyshev interpolation nodes, 

produces an efficient interpolation equation which is very accurate and stable over n . 

However, in our case, to solve the problem given by (1), the polynomial we choose 

should be able to replicate, not just the function V at , but also its derivatives 

. Therefore the approximant that solves our problem can be defined as 

follows
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3
 This property states that the maximum error of a cubic function, for example, shall be reached at least five 

times, and the sign of this error should alternate between the interpolation points. 
4
 Note that in this application we use the general formula for the Chebyshev basis,; however, there exists 

also a recursive formula. 
5
 Note that, although one can also use Hermite polynomials to approximate the functional and the slopes, 

the latter are inefficient (Judd, 1998). 
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Once the basis functions (approximants) have been chosen and the approximant nodes 

defined, the basis coefficients  can be obtained. If we define the following Chebyshev-

Vandermode type matrix : 
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then the coefficients ;  of  solve ic )',...,,( 110 −= ncccc )(sV Vc =Τ , with being 

the j basis function evaluated at the i-th interpolation node. When  is allowed to vary 

over some other interval, say 

)( iiij sΓ=Γ
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t+ 6. 

 As an example of using different basis functions, we anticipate some of the 

empirical results presented in the next section and after pricing an European option we 

calculate the approximation error. We use two different basis functions (i.e. Chebyshev 

basis and spline basis). The approximation error is shown in Figures (1-2). 

 

Insert Figures (1-2) here 

 

As can be seen, when the approximation is calculated using Chebyshev basis functions 

the error is of the order of 1×10-15 for a polynomial of order 20. Spline functions do not 

 
6
 An interesting issue here is the non-singularity of the Vandermode matrix over Chebyshev basis as above. 

In theory, there is no guarantee that the matrix is non-singular. However, in practice, in general applications 
such as ours, we can conjecture that as long as the number of indeterminates exceeds the sparsity with 
respect to , non-singularity should hold. Alternatively, we suggest two ways to overcome the problem: 
(a) simply use the singular value decomposition of 

Τ
Τ ; (b) use the generalised Vandermode matrix over 

Chebyshev. In fact, for this type of matrix Werther (1993) proves that, as long as the indeterminates take a 
value [1, ∞], the generalised Vandermode matrix over Chebyshev basis is non-singular. 
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achieve a comparable degree of accuracy even increasing the order of the polynomial to 

30. Furthermore, Chebyshev polynomials exhibit their usual oscillation which appears 

fairly evenly over the interval we have considered. On the other hand, spline polynomials 

exhibit larger oscillations at the edges of the interval.  

 

3. The Valuation Model  
 
This section outlines an option pricing problem to which our method will be applied. 

Suppose that the price of a non-dividend-paying asset in period 0 is , and denote with 0S

K  the strike price of a put option written on that asset.  

 
Assumption 1: We assume that the option value depends on the stock price at expiry of 

the option and time, . ),( tSV tt

 

Suppose also that the process for  is described by the following geometric Brownian 

motion: 

S

 
tttt dZSrdtSdS σ+=                   (2) 

 
 
where   is a standard increment of a Wiener process, and dZ σ the variance parameter.  

We can expand 
dt

dVE 1)( , using Ito`s Lemma and the stochastic process above to 

obtain: 
 

               ssts VSVrSVrV 22
2
1 σ++=     (3) 

           
where  represents the derivative with respect to the argument in the subscript. (.)V

 
All European options, in absence of arbitrage, must satisfy Equation (3). A call option 

will have at expiry a payoff given by KS − , if , while for a put option at expiry 

the payoff is , if  . Therefore, in our specific case, the boudary condition is 

given by 

KS >

SK − SK >

 

 6



),0max(),( SKtSV −=     (4) 

 

If we set the value function above )()(),( tcstsV φ≈ , where φ  is a suitable basis for an n-

dimensional family of approximating functions and  is an n-vector of time-varying 

coefficients, equation (3) can be re-written as follows: 

)(tc
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To determine , we select n-values (nodes) of , , and solve (4) for that particular 

set of values. Given the n-dimensional family of basis functions chosen, (5) can now be 

re-written in the form of a system as follows: 

)(tc s is

 

)()(' tctc Ψ=Φ                (6) 
 
 
where Φ and   are two  matrices. Ψ nn×
 
 
Once the coefficients have been obtained as in (6), to price the financial option, first we 

use the process in (2) to obtain estimates of (4). Then, we multiply it by the estimated 

coefficients. Averaging gives the price of the option.  

 

4. Two Empirical Examples: Option Pricing and Investment Under Uncertainty 

In order to show how to use in practice the proposed method we now provide two 

examples. The first is the valuation problem described in section 2. We use the proposed 

methodology to value an European put option written on a stock . In this case, we can 

compare our empirical results with the Black and Scholes closed-form solution. We use 

the absolute error (ASE) as a measure of accuracy.  

 

Table 1 shows the results for the entire set of options considered. We also report 

the results using the Black and Scholes method (1973 - B&S henceforth).  
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Insert Table 1 here 

 

We fit (4) using the first twenty Chebyshev basis to estimate the parameters in (4)ic 7. 

The basis number has been chosen using Theorem 6.4.2 in Judd (1998). Once the 

coefficients have been estimated, we estimate the boundary condition in (3) by simulating 

200,000 paths for the stock. We can see that our method produces rather accurate option 

prices. This is confirmed by the absolute error reported at the bottom of Table 1.  

 

The second empirical example we consider is taken from the theory of Investment Under 

Uncertainty. The problem is to decide when it is optimal to shutdown a machine, 

assuming that there is no maintenance cost for maintaining it alive. Suppose that )(tπ is 

the profit generated by the machine at time t , and suppose that it follows the Brownian 

motion process below 

 

dzadttd σπ +=)( ,  0)0( ππ =   (7) 

 

where is the rate of depreciation of the investment, a σ is the volatility of profit, and 

is an increment of a Wiener process. dz

 

We report three paths of the process in Figure 3. We consider the parameters reported at 

the bottom of Table 3, and the time 10=T  has been divided in one-hundred time steps. It 

appears that the investment will, in general, produce a loss before 3 years. However, the 

decision to shutdown the machine cannot be only taken by looking at these dynamic 

paths. In fact, this is a more complex problem since once the machine has been shutdown 

it cannot be re-started again, that is, the investment is irreversible. Therefore, one has to 

consider the optimal policy to decide when it is convenient to shut it down. 

 

Following Dixit and Pindyck (1994), suppose that ),( tF π is a claim on the profit flow, 

π , and suppose it is determined as  
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∫ −
Γ∈=

T
rt dtteEtF

0

)(max),( ππ τ     (8) 

 

where r is the risk free rate of interest, T is the time and Γ∈τ is a random stopping time. 

 

Suppose that the machine can be shut down only up to time 
−

T . After that time it has to 

run forever. We assume that if it is shut down it cannot be re-installed, which highlights 

the irreversibility of the investment. 

 

The Bellman Equation for the optimal stopping problem can be written as 

 

)],([)1(,0max(),( 1 dttdFErdtdttF ++−+= − ππππ      (9) 

 

 

Therefore, if the machine is shut down the profit will be zero.  If it is kept alive, then  

profit is given by the conditional expectation in (9). One can show that, for this case, the 

value function F , in the continuation region, satisfies the following Bellman equation  

 

 

πππ σπ FaFrF 22/1++=     (10) 

 

where is the derivative with respect to the sub-script. (.)F

 

Under the assumption that, if not abandoned by 
−

T , the machine has to run forever, the 

terminal condition can be written as . )/2^/,0),( ππ rraTF +=
−

max(

                                                                                                                                       
7
 Note that we estimate these coefficients using Chebyshev nodes and Chebyshev basis. 
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We can still use the same approach as in Section (2) to solve this optimal stopping 

problem. However, now solving (10) at each stopping times require more effort. One 

possibility would be to use finite difference methods. However, this approach turns out to 

be very time consuming. On the other hand, using Richardson extrapolation methods 

would increase the speed but at a cost of, sometimes, poor convergence. The method 

described in Section (2) can be adapted to this specific case. In fact, it is very similar in 

spirit to the Least-Squares algorithm introduced in Longstaff and Schwartz (2001). The 

coefficient in Section 2 are still estimated using Chebyshev polynomials and the same 

approach as before but now the interpolant nodes are projected using (7)

c
8. We assume 

that there is a threshold at $0.87 and once it has been reached one has to decide if it is 

convenient to shut down the machine. Using 200 time steps, four Chebyshev basis 

functions and one hundred thousands replications, we estimate that it is optimal to shut 

down the machine soon after its second year of life. This empirical result is in line with 

the three paths shown in Figure (3). 

 

5. Conclusions 

 

In this study we suggest a simple method to approximate partial differential equations 

based on a Chebyshev approximation at Chebyshev nodes. We provide two empirical 

examples, in both cases obtaining highly satisfactory results. The first example consisted 

in pricing an European put option, the second in solving an optimal stopping problem. In 

the latter case stochastic rather than determinist nodes were used to approximate the 

functional. Our method is simple to apply and to extend and provides a reliable 

framework which can be used either for pricing more complex derivative instruments or 

in many interesting cases in economics and in other fields.  Our future research will carry 

out further applications to provide additional evidence of the advantages of our approach. 

                                              
8

 We have also tried to estimates the parameters using Chebyshev nodes but in this specifi case we obtained a poor fit. Therefore we 

suggest, when dealing with optimal stopping problems, not to use Chebyshev nodes. 
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Figure 1 
 
Approximation error using (8) and Chebyshev polynomial when volatility is equal to 0.2 
and the interest rate is 0.048. 
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Figure 2 
 
Approximation error using (8) and splines basis when volatility is equal to 0.2 
and the interest rate is 0.048 
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K Sigma t (yrs) B&S CC (2008) 

40 0.2 0.0833 0.8403 0.838 

40 0.2 0.3333 1.5221 1.472 

40 0.2 0.5833 1.8812 1.802 

45 0.2 0.0833 4.8399 4.837 

45 0.2 0.3333 4.7804 4.771 

45 0.2 0.5833 4.84 4.813 

40 0.3 0.0833 1.2988 1.297 

40 0.3 0.3333 2.4275 2.426 

40 0.3 0.5833 3.0634 3.062 

45 0.3 0.0833 4.9796 4.976 

45 0.3 0.3333 5.5288 5.517 

45 0.3 0.5833 5.9723 5.946 

40 0.4 0.0833 1.7575 1.758 

40 0.4 0.3333 3.3336 3.3335 

40 0.4 0.5833 4.2473 4.246 

45 0.4 0.0833 5.236 5.235 

45 0.4 0.3333 6.3767 6.359 

45 0.4 0.5833 7.1654 7.131 

ABE    0.0151 

Table 1 
Column 4 shows the results using the Black and Scholes (1973) method.  
Column 5 shows the results using our suggested method (Caporale and Cerrato – CC). 
RMSE at the bottom of the table is the root mean square error. 
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Figure 3 
 
The stochastic process in Figure 3 has been simulated using 1.0−=a , 2.0=σ , and 

10 =π . 
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