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Abstract 

 

 The conventional formula for estimating the extended Gini coefficient is a 

covariance formula provided by Lerman and Yitzhaki (1989). We suggest an 

alternative estimator obtained by approximating the Lorenz curve by a series of linear 

segments. In a Monte Carlo experiment designed to assess the relative bias and 

efficiency of the two estimators, we find that, when using grouped data with 20 or less 

groups, our new estimator has less bias and lower mean squared error than the 

covariance estimator.  When individual observations are used, or the number of 

groups is 30 or more, there is little or no difference in the performance of the two 

estimators. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6561858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

2

 
1. INTRODUCTION 

 The Gini coefficient is a popular measure of income inequality. A generalisation 

of it, known as the extended Gini coefficient, was introduced by Yitzhaki (1983) to 

accommodate differing aversions to inequality. While a number of algebraically-

equivalent formulas have been described in the literature for estimating the original 

Gini coefficient (for example, Nygård and Sandström 1981, Table 8.1; Creedy 1996, 

p.10, 20), estimation of the extended Gini coefficient seems to have been confined to 

a covariance formula suggested by Lerman and Yitzhaki (1989). We suggest an 

alternative estimator obtained by approximating the Lorenz curve by a series of linear 

segments. The covariance formula and our linear-segment estimator are identical for 

the original Gini coefficient, but are not equal in general for the extended Gini 

coefficient. Thus, for the original Gini coefficient, any choice between the two 

estimators is made on the basis of computational convenience only. For the extended 

Gini coefficient, however, both computational convenience and estimator sampling 

properties are important considerations. In a Monte Carlo experiment that we conduct, 

the two estimators have similar properties when calculated from individual 

observations; when calculated from grouped data, our new estimator outperforms the 

covariance estimator in terms of both bias and mean-squared error. Our results have 

relevance not just for estimation of the extended Gini coefficient, but also for 

estimation of social welfare measures that are dependent on the extended Gini 

coefficient.  See, for example, Lambert (1993, p.123-130). 

 In Section 2 we introduce required notation and describe two versions of the 

original Gini coefficient. In Section 3 we present the extended Gini coefficient and its 

corresponding covariance estimator, and go on to derive our alternative estimator, 
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leaving some of the details to an appendix. The setups and results of the Monte Carlo 

experiment are described in Section 4 and some summary remarks are made in 

Section 5. 

2. THE GINI COEFFICIENT 

 Let )(xF=π  represent the distribution function for income x and let )(1 xF=η  

be the corresponding first moment distribution function. The relationship between η 

and π, defined for ∞<≤ x0  is the Lorenz curve. We denote it by )(π=η L . The 

much-used Gini coefficient is equal to twice the area between a 45-degree line and the 

Lorenz curve. That is, 

(1)   
1

0
1 2 ( )G L d= − π π∫  

It can also be written as (see, for example, Lambert 1993, p. 43) 

  
0

21 ( ) ( )
x

G x F x f x dx
∞

= − +
µ ∫   

(2)   { }2 cov , ( )
x

x F x=
µ

 

where )(xEx =µ  is mean income and dxxdFxf )()( =  is the density function for 

income. 

 Algebraically-equivalent discrete versions of equations (1) and (2) are often 

used to estimate G. To introduce the notation necessary to describe these two 

estimators, suppose that income data have been sampled and classified into M income 

groups. The estimators that we describe can be used with grouped data or with 

individual observations.  In the case of individual observations, M is the number of 

observations, and, in what follows, there is one observation in each ‘group’, with the 
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proportion of observations in each group being 1/ .ip M=  Given this level of 

generality, we assume the following information is available for the i-th group: 

1. Average income ix . 

2. The proportion of observations ip . 

3. The cumulative proportion of observations ii ppp +++=π …21 . 

4. The proportion of income 
1

M

i i i j j
j

p x p x
=

φ = ∑ . 

5. The cumulative proportion of income ii φ++φ+φ=η …21 . 

Also, let 
1

M

i i
i

x p x
=

=∑  denote the sample mean income. 

 As noted by Lerman and Yitzhaki (1989), the discrete version of (2) that 

provides an estimator for G, is 

(3)  1
1

2ˆ ˆ( )( )
M

i i i
i

G p x x
x =

= − π − π∑  

where 2)(ˆ 1 iii π+π=π −  and 
1

ˆ
M

i i
i

p
=

π = π∑ . 

 To obtain a discrete version of equation (1) to use as an estimator for G, the 

Lorenz curve )(πL  is approximated by a number of linear segments, with the i-th 

linear segment being a straight line joining ),( 11 −− ηπ ii  to ),( ii ηπ . Then, the area 

defined by equation (1) can be estimated by aggregating the areas between the linear 

segments and the 45-degree line. This process leads to another familiar expression for 

the Gini coefficient 

(4)  
1 1

2 1 1
1 1

ˆ
M M

i i i i
i i

G
− −

+ +
= =

= η π − η π∑ ∑  
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 It can be shown that 21
ˆˆ GG = . However, when the estimation principles used to 

obtain 1Ĝ  and 2Ĝ  are applied to the extended Gini coefficient introduced by Yitzhaki 

(1983), they yield estimators that are, in general, not identical. Previous literature has 

focused on a covariance formula similar to 1Ĝ  (Lerman and Yitzhaki 1989). The 

purpose of our note is to derive an expression for the extended-Gini counterpart of 2Ĝ  

and to compare the bias and efficiency of the two alternative estimators via a Monte 

Carlo experiment. 

3.  A NEW ESTIMATOR FOR THE EXTENDED GINI COEFFICIENT 

 The extended Gini coefficient can be written as 

(5)  
1 2

0
( ) 1 ( 1) (1 ) ( )vG v v v L d−= − − − π π π∫  

  1

0
1 [1 ( )] ( )v

x

v x F x f x dx
∞

−= − −
µ ∫  

(6)  { }1cov , [1 ( )]v

x

v x F x −= − −
µ

 

where v is an inequality aversion parameter. The coefficient ( )G v  is defined for 1>v  

and is equal to the original Gini coefficient when 2=v . 

 The covariance-formula estimator, given by the empirical discrete version of 

equation (6) is (Lerman and Yitzhaki 1989) 

(7)  1
1

1

ˆ ˆ( ) ( )[(1 ) ]
M

v
i i i

i

vG v p x x m
x

−

=
= − − − π −∑  

where 1

1
ˆ(1 )

M
v

i i
i

m p −

=
= − π∑ . 

 To derive an alternative estimator obtained by approximating the Lorenz curve 

in equation (5) with a series of linear segments, we write the equation of a linear 
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segment from ),( 11 −− ηπ ii  to ),( ii ηπ  as ii dc +π=η  where /i i ic p= φ  and 

1 1( ) /i i i i i id p− −= π η − π η .  Then, a linear-segment approximation to ( )G v  is given by 

(8)  
1

2
2

1

ˆ ( ) 1 ( 1) (1 ) ( )
i

i

M
v

ii
i

G v v v c d d
−

π
−

π
=

= − − −π π+ π
 

∑ ∫ 
 

 

In the appendix we show that this expression reduces to  

(9)  2 1
1

ˆ ( ) 1 [(1 ) (1 ) ]
M

v vi
i i

i i

G v
p −

=

 φ= + − π − − π 
 

∑  

This expression is a relatively simple one which is easy to calculate, despite the 

tedious algebra necessary to derive it.  Its sampling properties are assessed in Section 

4. It can be shown that )(ˆ)(ˆ
21 vGvG =  if 2v = .  However, in general, the two 

estimators are not identical.  

 

4.  THE RELATIVE PERFORMANCE OF THE TWO ESTIMATORS 

 Given the existence of two reasonable alternative estimators for the extended 

Gini coefficient, their relative sampling performance is of interest. To evaluate this 

performance, we report the results of a Monte Carlo experiment with two hypothetical 

income distributions. One distribution is a lognormal distribution where log( )x  is 

normally distributed with mean 5µ =  and standard deviation 1.5σ = . The second 

distribution is one suggested by Singh and Maddala (1976), with distribution function  

  qa

b
x

xF

















+

−==π

1

11)(  0.84, 400, 2.4a b q= = =  

Both these distributions exhibit a similar and relatively high level of inequality with, 

approximately, (1.33) 0.43G = , (2) 0.71G =  and (5) 0.92G = . Monte Carlo results 
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were also obtained for other parameterisations, with lower levels of inequality. These 

results are available from the authors upon request. They lead to the same conclusions 

as the results reported here. 

 The other dimensions over which sensitivity was assessed were the value of v 

and the number of income groups. For v, we used (1.33, 1.67, 2, 3, 5)v =  Sampling 

performance was evaluated by drawing 5000 samples, each of size 2000, from each 

distribution. In addition to using the individual observations ( 2000)M = , results 

were obtained for three income groupings (10, 20, 30)M = .  

 The results from the Monte Carlo experiment appear in Tables 1 and 2. The bias 

of the two estimators appears in Table 1. Their relative variance, and their relative 

mean-squared error appear in Table 2. Values of relative variance and mean-squared 

error greater than one imply the covariance estimator )(ˆ
1 vG  is outperforming our 

linear-segment estimator ).(ˆ
2 vG  

[Insert Tables 1 and 2 near here.] 

 From Table 1 we can make the following observations about bias: 

1. The bias of both estimators is always negative, reflecting the fact they 

implicitly assume no inequality within each group. 

2. When 2000,M =  both estimators have negligible and almost identical bias; 

the bias is also relatively small for 30M = . 

3. The absolute bias of the covariance estimator is never less, and often 

substantially more, than the absolute bias of the linear-segment estimator. 

4. The relative performance of the linear-segment estimator improves the 

further is the departure of v from 2, and the smaller the number of groups 

M. 
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 From the results in Table 2, we see that the lower bias for the linear-segment 

estimator comes at a cost of higher variance. Since a comparison of biases favors the 

linear-segment estimator, and a comparison of variances favors the covariance 

estimator, a mean-squared error comparison is useful.  The results using this criterion 

appear in parentheses in Table 2. These results show that: 

1. For M = 30 and M = 2000 the performance of the two estimators is very 

similar except when v = 5 and M = 30, where the linear-segment estimator is 

noticeably better. 

2. For M = 10 and M = 20 the linear segment estimator is always better, and 

sometimes very much better than the covariance estimator. 

5.  SUMMARY 

 An estimator for the extended Gini coefficient has been derived by 

approximating the Lorenz curve by a series of linear segments. This estimator is 

simple to compute and has less bias than a covariance-based estimator that has been 

used in the literature. For grouped data where the number of groups is 20 or less, it 

also has lower mean-squared error than the covariance estimator. The experimental 

evidence is sufficiently strong to recommend that, for grouped data where the number 

of groups is 20 or less, practitioners should use our new estimator in preference to the 

covariance estimator. If the number of groups is 30 or more, or individual 

observations are available, both estimators perform equally well. Finally, it should be 

emphasized that both estimators require knowledge of arithmetic mean income in 

each group; these values are not always available. 
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APPENDIX 

 In this appendix we show that equation (8) can be simplified to equation (9). 

The summation in equation (8) can be written as 

  
1

2
1 2

1 1
(1 ) ( ) [ ( ) ( )]

i

i

M M
v

ii
i i

c d d I i I i
−

π
−

π
= =

−π π+ π = +∑ ∑
 
∫ 
 

  

where 

   
1

2
1( ) (1 )i

i

v
iI i c d

π

π
π π π

−

−= −∫  

        1 1
1 1[ (1 ) (1 ) ]

1
v vi

i i i i
c

v
− −

− −
−= π − π − π − π
−

 1[(1 ) (1 ) ]
( 1)

v vi
i i

c
v v −− − π − − π

−
  

     
1

2
2 ( ) (1 )i

i

v
iI i d d

π

π
π π

−

−= −∫ 1 1
1[(1 ) (1 ) ]

1
v vi

i i
d

v
− −

−= − − π + − π
−

  

Substituting for ic  and id , and adding these two equations, yields, after some algebra,  

  1 1
1 2 1 1

1( ) ( ) [ (1 ) (1 ) ]
1

v v
i i i iI i I i

v
− −

− −+ = − η − π − η − π
−

 

  1
1 [(1 ) (1 ) ]

( 1)
v vi

i i
iv v p −

 φ− − π − − π −  
 

Summing this expression over all groups, we obtain 

 1
1 2 1

1 1

1[ ( ) ( )] [(1 ) (1 ) ]
( 1)

M M
v vi

i i
i i i

I i I i
v v p

−
−

= =

 φ+ = − − π − − π −  
∑ ∑  

Substituting this expression into equation (8) gives the desired result. 
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TABLE 1 

BIAS OF THE ESTIMATORS 

  v 

Groups Estimator 1.33 1.67 2 3 5 

       
  Lognormal 

M = 10 )(ˆ
1 vG  

)(ˆ
2 vG  

-0.020 
-0.016 

-0.013 
-0.012 

-0.010 
-0.010 

-0.012 
-0.008 

-0.021 
-0.007 

M = 20 )(ˆ
1 vG  

)(ˆ
2 vG  

-0.009 
-0.007 

-0.005 
-0.004 

-0.003 
-0.003 

-0.004 
-0.003 

-0.007 
-0.002 

M = 30 )(ˆ
1 vG  

)(ˆ
2 vG  

-0.006 
-0.004 

-0.003 
-0.003 

-0.002 
-0.002 

-0.002 
-0.002 

-0.003 
-0.001 

M = 2000 )(ˆ
1 vG  

)(ˆ
2 vG  

-0.002 
-0.002 

-0.001 
-0.001 

-0.001 
-0.001 

-0.001 
-0.001 

-0.000 
-0.000 

       
  Singh-Maddala 

M = 10 )(ˆ
1 vG  

)(ˆ
2 vG  

-0.024 
-0.020 

-0.015 
-0.014 

-0.011 
-0.011 

-0.013 
-0.009 

-0.022 
-0.008 

M = 20 )(ˆ
1 vG  

)(ˆ
2 vG  

-0.012 
-0.010 

-0.007 
-0.006 

-0.005 
-0.005 

-0.005 
-0.004 

-0.007 
-0.003 

M = 30 )(ˆ
1 vG  

)(ˆ
2 vG  

-0.008 
-0.007 

-0.005 
-0.005 

-0.004 
-0.004 

-0.003 
-0.002 

-0.004 
-0.002 

M = 2000 )(ˆ
1 vG  

)(ˆ
2 vG  

-0.005 
-0.004 

-0.003 
-0.003 

-0.002 
-0.002 

-0.001 
-0.001 

-0.001 
-0.001 

 
 



 

 

12

 
TABLE 2 

RELATIVE VARIANCE )](ˆvar[/)](ˆvar[ 12 vGvG   

AND RELATIVE MEAN SQUARED ERROR 2 1
ˆ ˆMSE[ ( )] MSE[ ( )]G v G v  

 v 

Groups 1.33 1.67 2 3 5 

      
 Lognormal 

      
M = 10 1.038 1.003 1.000 1.024 1.087 
 (0.815) (0.964) (1.000) (0.715) (0.178) 

M = 20 1.031 1.003 1.000 1.007 1.025 
 (0.955) (0.996) (1.000) (0.940) (0.494) 

M = 30 1.021 1.002 1.000 1.003 1.012 
 (0.993) (0.999) (1.000) (0.983) (0.791) 

M = 2000 1.008 1.001 1.000 1.000 1.000 
 (1.006) (1.000) (1.000) (1.000) (1.000) 

      
 Singh-Maddala 

      
M = 10 1.039 1.003 1.000 1.026 1.097 
 (0.874) (0.975) (1.000) (0.772) (0.204) 

M = 20 1.035 1.004 1.000 1.007 1.029 
 (0.978) (0.998) (1.000) (0.954) (0.537) 

M = 30 1.023 1.002 1.000 1.003 1.013 
 (1.003) (1.000) (1.000) (0.986) (0.814) 

M = 2000 1.012 1.001 1.000 1.000 1.000 
 (1.010) (1.001) (1.000) (1.000) (1.000) 
      

 
 Note: The relative MSEs appear in parentheses below the relative variances. 
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