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STOCHASTIC OPTIMAL GROWTH WHEN THE
DISCOUNT RATE VANISHES

KAZUO NISHIMURA AND JOHN STACHURSKI

Abstract. It has been shown that long-run optimality of the

limit of discounted optima when the discount rate vanishes is im-

plied by a condition on the value function of the optimal program.

We suggest a new method to verify this condition in the context

of one-sector optimal growth. The idea should be more widely

applicable.

1. Introduction

Discounted dynamic programming is a standard paradigm for an-

alyzing economic outcomes when expectations are rational and infor-

mation is perfect. (For dynamics in imperfect information economies

see, for example, Chiarella and Szidarovzky [3] and references.) An

established theory exists, along with practical methods of numerical

computation. However, optimal behavior when the future is not dis-

counted has also been studied, perhaps most famously in the classic pa-

per of Ramsey [8].1 Another well-known example is the no-discounting

paper by Brock and Mirman [2], albeit much less so than its famous

discounting cousin [1].

A number of no-discounting criteria exist for optimality. In the math-

ematical literature on stochastic dynamic programming, however, no-

discounting research is now mainly focused on long-run average reward

(LAR) optimality, which maximizes the average of the undiscounted

Date: July 9, 2004.

Key words and phrases. Dynamic programming, Long-run optimality.
1According to Ramsey, “discount[ing] later enjoyments in comparison with ear-

lier ones [is] ethically indefensible, and arises merely from the weakness of the

imagination” [8, p. 543].
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sequence of period rewards.2 For example, LAR-optimality is the stan-

dard criterion for on-line computer task scheduling and network rout-

ing.

It is of great practical interest to identify relationships between dis-

counted reward (DR) optimal policies and LAR-optimal policies. (One

reason is that contraction mapping techniques allow many optimal

growth problems to be solved efficiently for a DR-optimal policy.) For

example, if π% is a DR-optimal policy for discount factor % ∈ (0, 1),

and if π% converges to a limit π1 when % ↑ 1, it seems likely that π1 will

be—at least in some sense—long-run optimal.

An important contribution to our understanding of the relationship

between DR- and LAR-optimality is the study of Dutta [5]. In this

short paper we use a condition established by Dutta [5, Theorem 3]

to verify the conjecture that π1 defined above is LAR-optimal for a

neoclassical stochastic optimal growth model with unbounded state.

Our proof is based on a “coupling” technique.

In his study Dutta [5] previously gave several useful applications

to neoclassical growth. Our technique extends these ideas to state

spaces which do not have a largest element. Such spaces are often

encountered in applications (see, for example, the dynamic stochastic

general equilibrium models estimated in macroeconomics). For these

models too Dutta’s condition is seen to be readily applicable.3

2. Formulation of the Problem

Consider the neoclassical infinite horizon economy of Brock and Mir-

man [1]. Depreciation is assumed total in each period for simplicity,

so that current savings, investment and the capital stock Kt can all

be identified. At time t income Yt is observed, a savings decision Kt is

made, the current shock ξt is then revealed to the agent, and production

takes place, realizing at the start t + 1 random output Yt+1 = f(Kt) ξt.

The process then repeats.

2If (rt)t≥0 is a bounded sequence of rewards, then the average is usually defined

to be limt→∞(1/t)
∑t−1

s=0 rs.
3As well as Dutta [5], a number of our ideas draw on the coupling techniques

used to study ergodicity in Rosenthal [9].
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Preferences are specified by period utility function u and discount

factor % ∈ (0, 1).

Assumption 2.1. Both the utility function u and the production func-

tion f are strictly increasing, continuously differentiable, bounded and

strictly concave. Also, u(0) = f(0) = 0 and u′(0) = f ′(0) = ∞.

Assumption 2.2. The sequence (ξt)
∞
t=0 is independent collection of

random variables on probability space (Ω, F ,P). Each ξt has identical

distribution function G on [0,∞). Also, E(ξ) < ∞, E(1/ξ) < ∞,

G(0) = 0 and 0 < G(x) < 1 for all x > 0.

Assumption 2.2 is satisfied by the lognormal and other standard

distributions used in empirical modeling.4

Define Π to be the set of all feasible savings policies, which are Borel

functions π from the positive reals to itself satisfying π(y) ≤ y for all

y. Each π ∈ Π determines a Markov process for income (Yt)
∞
t=0 via

(MAR) Yt+1 = f(π ◦ Yt) ξt, Y0 ≡ y0 given.

Of course π ◦ Yt is the composition of π and the random variable Yt.

The optimal investment problem is then to solve

(DR-%) max
π∈Π

E

[
∞∑

t=0

%tu(Yt − π ◦ Yt)

]
, (Yt)

∞
t=0 given by (MAR).

A policy is called DR-%-optimal if it is feasible and solves (DR-%).

The value function v% is defined at y as the supremum of (DR-%) over

Π when Y0 ≡ y. The next result is very well-known.

Theorem 2.1 (Mirman and Zilcha [6]). For each % ∈ (0, 1), there

is a unique π% ∈ Π which attains the maximum in (DR-%). The

value function v% is increasing, concave and differentiable, with v′%(y) =

u′(y−π%(y)). The DR-%-optimal policy π% is increasing, continuous and

interior, as is the consumption function y 7→ y − π%(y).

4The restrictions on E(ξ) and E(1/ξ) bound the right and left hand tails respec-

tively, and can be interpreted as generalizations of the common assumption that the

shock has compact support [7]. Also note that our main results still hold without

G(0) = 0. In fact it is easy to show that when G(0) > 0 the distributions of the

state variables converge to the distribution concentrated at zero geometrically in

total variation norm. But this behavior is in some sense trivial so we avoid it.
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The other optimality criterion we consider is LAR-optimality. A

policy is called LAR-optimal if it solves

(LAR) max
π∈Π

lim
t→∞

E

[
1

t

t−1∑
s=0

u(Ys − π ◦ Ys)

]
,

where again π determines the process (Yt)
∞
t=0 via (MAR).5

3. Results

It has been observed [4, Theorem 5.1] that for the stochastic growth

model, the DR-%-optimal policy π% is pointwise increasing in %. In other

words, agents who discount the future more slowly invest more in all

states. Given this monotonicity, we can always define π1 := lim%↑1 π%.

It is natural to then conjecture that π1 is LAR-optimal.

One of the most readily applicable conditions for linking DR- and

LAR-optimality is value boundedness [5].

Condition 3.1 (Value Boundedness). There exists a z ∈ (0,∞), a

constant M and a real function y 7→ M(y) such that

−∞ < M(y) ≤ v%(y)− v%(z) ≤ M < ∞, ∀y ∈ (0,∞), % ∈ (0, 1).

It is immediate from Dutta [5, Theorem 3] that

Theorem 3.1. If value boundedness holds, then π1 := lim%↑1 π% is

LAR-optimal for the stochastic neoclassical growth model defined above,

where π% is the DR-%-optimal policy for each % ∈ (0, 1).6

The main result of this paper is

5The meaning of the average reward criterion is clearest when (Yt)∞t=0 is er-

godic. In that case the sequence Eu(Ys − π ◦ Ys) and in fact the average[
1
t

∑t−1
s=0Eu(Ys − π ◦ Ys)

]
converge to

∫
u(y − π(y))F ∗π (dy), where F ∗π is the er-

godic distribution corresponding to π. Then LAR-optimality becomes equivalent

to maximizing expected utility of consumption at the stochastic steady state—a

generalization of the Phelps–Solow golden rule.
6Dutta requires that the control space is compact. In this case we can take the

savings rate to be the control, rather than savings, and then define savings as the

rate multiplied by current income. Obviously the two controls are equivalent.
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Theorem 3.2. Under Assumptions 2.1 and 2.2, the stochastic neoclas-

sical growth model is value bounded. As a result, the pointwise limit as

% ↑ 1 of the sequence of DR-%-optimal policies is LAR-optimal.

4. Proof

We begin by outlining our overall strategy for proving Theorem 3.2.

In all of what follows let z ∈ (0,∞) be fixed. Note for starters that

|v%(y) − v%(z)| ≤ 2K/(1 − %), where K := sup u. Therefore when

establishing value boundedness we can and do assume (in all of what

follows) that % ∈ [%̂, 1) for some fixed %̂ ∈ (0, 1). So now fix any

% ∈ [%̂, 1), and any initial condition y0 ∈ (0,∞).

Suppose to begin with that y0 ≥ z, in which case v%(y0)− v%(z) ≥ 0.

To verify value boundedness, then, we need only bound this number

from above independent of y0 ∈ [z,∞) and % ∈ [%̂, 1).

We use a coupling approach: Consider two economies with identical

structure (u, f, G), which we call Country A and Country B. Both

discount future utility according to %. Country A is perturbed by the

sequence of shocks (ξt)
∞
t=0 as above, with (Y a

t )∞t=0 defined by (MAR)

using the unique DR-%-optimal policy π% defined in Theorem 2.1.

Country B is exactly the same, except that it is perturbed by a

different and independent sequence of shocks (ξ′t)
∞
t=0—also temporally

independent and identically distributed by G. The output series for this

economy (Y b
t )∞t=0 is then defined recursively by (MAR) with identical

DR-%-optimal policy π%.

The other difference between the two countries is initial income.

Country A (resp., Country B) has initial income Y a
0 ≡ y0 (resp.,

Y b
0 ≡ z), where y0 and z are chosen above. Also, the sequences (ξt)

∞
t=0

and (ξ′t)
∞
t=0 are again taken to be defined on (Ω, F ,P)—clearly it can

be so constructed.

We now show that the term v%(y0) − v%(z) that we seek to bound

from above will become arbitrarily large as % → 1 when Country A,

starting with higher income level y0, continues to enjoy higher income

into the distant future relative to that of Country B, which starts at

z. To understand this, first define r(y) := u(y − π%(y)), the value of

period utility under policy π% when income equals y. Note that r is
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always increasing in y. It follows that if A’s income stream is expected

to remain larger than B, then each value of the term E(r ◦Y a
t − r ◦Y b

t )

will be large. Finally, note that we can write (this is the coupling step)

∞∑
t=0

%t
E(r ◦ Y a

t − r ◦ Y b
t ) = E

∞∑
t=0

%t r ◦ Y a
t −E

∞∑
t=0

%t r ◦ Y b
t

= v%(y0)− v%(z).

This suggests the following decomposition of the probability space.

Define the random variable τ : Ω → N ∪ {∞} by

(1) τ := inf{t ∈ N : Y a
t ≤ Y b

t },

with the usual convention inf ∅ := ∞. That is, τ is the first time that

relative incomes reverse, and Country A becomes poorer than Country

B. On that subset of Ω where τ ≤ t, we would imagine that Country

A has lower expected time t utility than Country B. In other words,

integrating over only these outcomes would lead to E(r ◦ Y a
t − r ◦ Y b

t )

being negative:

Lemma 4.1. E[ (r ◦ Y a
t − r ◦ Y b

t )1{τ ≤ t} ] ≤ 0 holds for all t.7

∴ E(r ◦ Y a
t − r ◦ Y b

t ) = E[ (r ◦ Y a
t − r ◦ Y b

t )(1{τ ≤ t}+ 1{τ > t}) ]

≤ E[ (r ◦ Y a
t − r ◦ Y b

t )1{τ > t} ]

≤ KP{τ > t} (∵ r ≤ K := sup u).

(2) ∴ v%(y0)− v%(z) ≤ K

∞∑
t=0

%tP{τ > t} ≤ K

∞∑
t=0

P{τ > t}.

Inequality (2) contains the essential idea of our paper. If P{τ > t},
the probability that Country A is always richer than Country B in

the period up until t, diminishes sufficiently quickly with t, then value

boundedness will hold.

That it does diminish sufficiently quickly for the neoclassical opti-

mal growth model is proved as follows. If the income of initially poorer

7The proofs of this and all other lemmata are deferred to the end of the paper.
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Country B converges to zero in probability then P{τ > t} might con-

ceivably be large, even for large t. If, however, Y b
t always returns

to some region such as (c,∞), where c > 0, then on those occasions

income rank reverses with positive probability at least ε > 0, to be cal-

culated below. The fundamental stability of the Brock–Mirman model

implies that Y b
t does indeed always return to a region (c,∞), where c

depends on the parameters of the model. Together these facts imply

that P{τ > t} → 0 relatively quickly.

Let Ft be the σ-algebra generated by (Y a
s , Y b

s ), s ≤ t.8 From (MAR)

it is intuitively clear (and can easily be proved) that if w is any bounded

or nonnegative real function then our time t prediction of the value

w ◦ Y b
t+1 satisfies

(3) E[w ◦ Y b
t+1 |Ft] =

∫
w[f(π% ◦ Y b

t )z]G(dz) P-a.s.

An identical relation holds for Country A.

The next step of the proof is to bound the far right hand term in

(2) independent of y0 ∈ [ z,∞) and % ∈ [ %̂, 1). To do so we need the

following lemma, which is a simple consequence of the Euler equation.

Lemma 4.2. There are positive constants λ, β and a decreasing, real

valued function w on (0,∞), all independent of %, y0 and z, such that

(i) w ≥ 1, (ii) w(x) →∞ as x → 0, (iii) λ < 1, and

(4) E[w ◦ Y b
t+1 |Ft]· ≤ λ · w ◦ Y b

t + β P-a.s.

Corollary 4.1. There is a constant c > 0 and an α ∈ (0, 1), both

independent of %, y0 and z, such that

(5) E[w ◦ Y b
t+1 |Ft] · 1{Y b

t ≤ c} ≤ α · w ◦ Y b
t · 1{Y b

t ≤ c}.

Proof. By (ii) there is a c > 0 such that w(c) > β(1− λ)−1. Since w is

decreasing, w(x) ≥ w(c) for all x ∈ (0, c]. Define

α := λ +
β

w(c)
,

so that λ < α < 1. By Lemma 4.2, then,

E[w ◦ Y b
t+1 |Ft] · 1{Y b

t ≤ c} ≤ (λ · w ◦ Y b
t + β) · 1{Y b

t ≤ c}.
8Since Ft represents information at time t, it does not contain ξt or ξ′t, otherwise

it would contain Y a
t+1 and Y b

t+1 in light of (MAR).
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∴
E[w ◦ Y b

t+1 |Ft] · 1{Y b
t ≤ c}

w ◦ Y b
t

≤
(

λ +
β

w ◦ Y b
t

)
1{Y b

t ≤ c}

≤ α1{Y b
t ≤ c}.

�

Now define Nt :=
∑t

i=0 1{Y b
i > c}, so that Nt is the number of times

that Country B has income exceeding c in the period 0, . . . , t. We have

(6) P{τ > t} = P{τ > t} ∩ {Nt > j}+ P{τ > t} ∩ {Nt ≤ j}.

The two terms on the right hand side need to be bounded. The first

term has the following simple bound. The intuition is that whenever

Y b
t > c the income ranking reverses with independent probability at

least ε.

Lemma 4.3. There is an ε > 0 independent of %, z and y0 such that

P{τ > t} ∩ {Nt > j} ≤ (1− ε)j.

It remains to bound the second term in (6). For this purpose, let

B := α−1
∫

w[f(π%̂(c))z]G(dz), which can be shown to be finite using

(4). Next, let Mt := α−tB−Nt−1 w ◦ Y b
t , where N−1 := 0, so M0 =

w ◦ Y b
0 ≡ w(z).

Lemma 4.4. The sequence (Mt)
∞
t=0 is a supermartingale with respect

to the filtration (Ft)
∞
t=0.

It follows in particular that EMt ≤ EM0 = w(z), whence

P{τ > t} ∩ {Nt ≤ j} ≤ P{Nt−1 ≤ j}

= P{B−Nt−1 ≥ B−j} (∵ B ≥ 1)

≤ Bj
EB−Nt−1 (∵ Chebychev’s ineq.)

≤ αtBj
EMt (∵ w ≥ 1)

≤ αtBj w(z).

Recall that all of these terms in the final bound are independent of

%, y0 and z. Choose n ∈ N such that δ := αnB < 1, and set j = t/n, so
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that αtBj = δt/n. Combining this bound with (2), (6) and Lemma 4.3

gives

v%(y0)− v%(z) ≤ K

∞∑
t=0

[(1− ε)t/n + δt/nw(z)].

That is, v%(y0) − v%(z) ≤ Q + R · w(z), where constants Q and R are

independent of %, z and y0. Thus v%(y0)−v%(z) is indeed bounded from

above independent of y0 ∈ [z,∞) and % ∈ [%̂, 1), as was to be shown.

It remains to consider the case y0 ∈ (0, z). We need to check that

−∞ < −M(y0) ≤ v%(y0) − v%(z), or, in other words, v%(z) − v%(y0) ≤
M(y0) for all % ∈ [%̂, 1). Since the problem is entirely symmetric, by

repeating all of the above argument exactly, but swapping “Country

A” with “Country B” and “Y a
t ” with “Y b

t ” gives v%(z) − v%(y0) ≤
Q + R · w(y0) for all % ∈ [%̂, 1). This completes the proof.

Appendix A

Remaining proofs are now given. In what follows, B is the Borel

sets on (0,∞). Also bB is the bounded Borel functions on (0,∞), and

ibB is those functions in bB which are nondecreasing. Let P be the

probabilities on ((0,∞), B). For µ ∈ P and h ∈ bB we sometimes use

the notation 〈h, µ〉 for
∫

hdµ. The symbol ≤s denotes the stochastic

dominance ordering on P. That is, µ ≤s µ′ iff 〈µ, h〉 ≤ 〈µ′, h〉 for all

h ∈ ibB.

Proof of Lemma 4.1. Unfortunately some new concepts and notations

are necessary. To begin, a transition probability function [10, p. 212]

is a function Q : (0,∞) × B → [0, 1] such that Q(y, ·) ∈ P for each

y ∈ (0,∞) and Q(·, B) ∈ bB for each B ∈ B. Define also the iterates

of Q:

Qt(y, B) :=

∫
Q(y, dy′)Qt−1(y′, B), Q1 := Q.

(All of these iterates are themselves transition probability functions.)

For t = 0 let Qt be the identity map. We define using Q two opera-

tors. One acts on functions to the right, mapping bB into itself, and is

defined at h ∈ bB by (Qh)(y) :=
∫

Q(y, dy′)h(y′). The other acts on

measures to the left, maps P into itself, and is defined at µ ∈ P by

(µQ)(B) :=
∫

Q(y, B)µ(dy). It is well-known and easy to check that
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these two operators are adjoint in the sense that 〈Qh, µ〉 = 〈h, µQ〉 for

all h ∈ bB, µ ∈ P.

Corresponding to each first order stochastic difference equation there

is a transition probability function Q whereby Q(y, B) is the probabil-

ity that the state is in set B next period given that currently it is y.

For (MAR) this representation is given by

(7) Q(y, B) =

∫
1{f(π%(y))z ∈ B}G(dz).

In this case the real number Qth(y) can be thought of as the expecta-

tion of h ◦ Yt when Y0 ≡ y and the state evolves according to (MAR).

More generally, the Markov property states that for any h ∈ bB and

any s, t ∈ N with s ≤ t,

(8) E[h ◦ Yt |Fs] = Qt−sh ◦ Ys P-a.s.

It is also well-known [10] that in the case of optimal growth, the

operator µ 7→ µQ is monotone, which is to say that whenever µ, µ′ ∈ P

and µ ≤s µ′ we have µQ ≤s µ′Q. (In fact this is easy to verify from

(7) and monotonicity of f ◦ π%.) Monotonicity clearly extends from Q

to Qj for any j ≥ 0.

As is standard, Fτ will be the collection of all E ∈ F such that

E ∩ {τ ≤ t} ∈ Ft for all t ≥ 0. Fix t ∈ N. Evidently

E[(r ◦ Y a
t − r ◦ Y b

t )1{τ ≤ t}] = E[E[(r ◦ Y a
t − r ◦ Y b

t )1{τ ≤ t} |Fτ ]].

Let c stand for either a or b. A simple decomposition and the Markov

property yield

E[r ◦ Y c
t 1{τ ≤ t} |Fτ ] =

t∑
i=0

E[r ◦ Y c
t |Fτ ]1{τ = i}

=
t∑

i=0

E[r ◦ Y c
t |Fi]1{τ = i},

where the second equality is a straightforward exercise in measure the-

ory. Also, by the Markov property,

E[r ◦ Y c
t |Fi]1{τ = i} = Qt−ir ◦ Y c

i 1{τ = i}

= Qt−τr ◦ Y c
τ 1{τ = i}.
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Reversing the decomposition gives

E[r ◦ Y c
t 1{τ ≤ t} |Fτ ] = Qt−τr ◦ Y c

τ 1{τ ≤ t}.

Since conditional expectation is linear, it follows that

E[(r ◦Y a
t − r ◦Y b

t )1{τ ≤ t} |Fτ ] = (Qt−τr ◦Y a
τ −Qt−τr ◦Y b

τ )1{τ ≤ t}.

But on {τ ≤ t} the definition of τ implies that Y a
τ ≤ Y b

τ , and, since

r ∈ ibB (Theorem 2.1) and Qj is ≤s-monotone for any j ≥ 0, we have

(Qt−τr ◦ Y a
τ −Qt−τr ◦ Y b

τ )1{τ ≤ t} ≤ 0 P-a.s.

The conclusion of the Lemma is now clear. �

Proof of Lemma 4.2. By a simple manipulation of the Euler equation,

Nishimura and Stachurski [7, Proposition 4.2] show under assumptions

weaker than Assumptions 2.1 and 2.2 that∫
w[f(π%̂(y))z]G(dz) ≤

[
E(1/ε)

%̂f ′(π%̂(y))

]1/2

w(y)

holds for all y ∈ (0,∞), where w(y) :=
√

u′(y − π%̂(y)). Of course here

π%̂ is the optimal policy when the discount factor is equal to %̂. By

Assumptions 2.1 and 2.2 we have E(1/ε) < ∞ and %̂f ′(π%̂(y)) →∞ as

y → 0. Evidently, then, when λ ∈ (0, 1) is taken as fixed,

∃ δλ s.t. y < δλ =⇒
∫

w[f(π%̂(y))z]G(dz) ≤ λw(y).

Note that the constants λ and δλ and the function w are independent

of %, y0 and z.

Since the optimal savings policy is pointwise increasing in the dis-

count factor we have π% ≥ π%̂, and since w is clearly decreasing, it then

follows that

(9) y < δλ =⇒
∫

w[f(π%(y))z]G(dz) ≤ λw(y).

By the same rationale,

(10) y ≥ δλ =⇒
∫

w[f(π%(y))z]G(dz) ≤ β

when β :=
∫

w[f(π%̂(δλ))z]G(dz). Once again, the constant β is inde-

pendent of %, y0 and z. Combining (9) and (10) gives

(11)

∫
w[f(π%(y))z]G(dz) ≤ λw(y) + β, ∀y ∈ (0,∞).
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From (3) and (11) we get (4).

The only claims of Lemma 4.2 we have not verified are that w(x) →
∞ as x → 0 and w ≥ 1. The first is obvious given the definition of

w. The second is not necessarily true, but if the bound (4) holds for

w, λ and β then clearly it also holds for ŵ := w + 1, λ̂ := λ < 1 and

β̂ := β + 1 < ∞. �

Proof of Lemma 4.3. Let σi be the time of the i-th visit of Y b
t to (c,∞),

so that Nt = j if and only if σj ≤ t and σj+1 > t. In order to prove

Lemma 4.3 we first show that

Lemma A.1. Let S := sup f and T := f(π%̂(c)). If τ > t and Nt > j,

then S · ξσi
> T · ξ′σi

for all i = 1, . . . , j.

Proof. Suppose instead that Sξσi
≤ Tξ′σi

for some i with 1 ≤ i ≤ j.

Then f(π% ◦ Y a
σi

)ξσi
≤ Sξσi

≤ Tξ′σi
≤ f(π%(c))ξ

′
σi
≤ f(π% ◦ Y b

σi
)ξ′σi

,

since π% ≥ π%̂ and Y b
σi
≥ c. In other words, Y a

σi+1 ≤ Y b
σi+1, so that

τ ≤ σi + 1. Also, we know that Nt ≥ j + 1, so σj+1 ≤ t, and hence

σi + 1 ≤ σj + 1 ≤ σj+1 ≤ t. This is a contradiction, because τ > t. �

To continue with the proof of Lemma 4.3, note by Lemma A.1 that

P{τ > t} ∩ {Nt > j} ≤ P

j⋂
i=1

{S · ξσi
> T · ξ′σi

}

=

j∏
i=1

P{S · ξσi
> T · ξ′σi

}

=

j∏
i=1

[ 1−P{S · ξσi
≤ T · ξ′σi

} ].

Now pick any b > 0. Clearly

(12) {S · ξσi
≤ T · ξ′σi

} ⊃ {ξ′σi
≥ b} ∩ {S · ξσi

≤ T · b}.

Letting ε := P{ξ′σi
≥ b}P{S ·ξσi

≤ T ·b} we have P{S ·ξσi
≤ T ·ξ′σi

} ≥ ε

by (12) and the independence of ξσi
and ξ′σi

. That ε > 0 follows from

Assumption 2.2. Evidently it is independent of y0, z and %. The

conclusion of Lemma 4.3 follows. �

Proof of Lemma 4.4. Clearly Mt is Ft-measurable. It will be inte-

grable provided that we can verify the key supermartingale property
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E[Mt+1 |Ft] ≤ Mt. To this end, let F := 1{Y b
t > c} and F c := 1−F =

1{Y b
t ≤ c}, so that

E[Mt+1 |Ft] = E[Mt+1 |Ft] · F +E[Mt+1 |Ft] · F c.

Consider the first term. On F we have Nt = Nt−1 + 1, so

E[Mt+1 |Ft] · F = α−(t+1)B−Nt−1B−1
E[w ◦ Y b

t+1 |Ft] · F

= α−(t+1)B−Nt−1B−1

∫
w(f(π% ◦ Y b

t )z)G(dz) · F

≤ α−(t+1)B−Nt−1B−1

∫
w(f(π%̂(c))z)G(dz) · F

≤ α−tB−Nt−1F.

Using this bound and w ≥ 1 gives E[Mt+1 |Ft] · F ≤ Mt · F . Also, on

the set F c we have Nt = Nt−1, and Corollary 4.1 applies. Hence,

E[Mt+1 |Ft] · F c = α−tB−Nt−1α−1
E[w ◦ Y b

t+1 |Ft] · F c

≤ α−tB−Nt−1w ◦ Y b
t+1 · F c.

∴ E[Mt+1 |Ft] · F c ≤ Mt · F c.

∴ E[Mt+1 |Ft] ≤ Mt.

�
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