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Abstract

The usual measure of the undiversifiable risk of a portfolio is its beta.
Recent research has allowed beta estimates to vary over time, often based on
symmetric multivariate GARCH models. There is, however, widespread
evidence in the literature that the volatilities of asset returns, in particular those
from stock markets, show evidence of an asymmetric response to good and bad
news. Using UK equity index data,, this paper considers the impact of news on
time varying measures of beta. The results suggest that beta depends on two
sources of news - news about the market and news about the sector. The
asymmetric effect in beta is consistent across all sectors considered. Recent
research provides conflicting evidence as to whether abnormalities in equity
returns are a result of changes in expected returns in an efficient market or an
over-reaction to new information. The evidence in this paper suggests that such
abnormalities may occur as a result of changes in expected return caused by
time-variation and asymmetry in beta.
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1. Introduction

There is widespread evidence that the volatility of equity returns is higher in bull

markets than in bear markets. One potential explanation for such asymmetry in variance is the

so-called ’leverage effect’ of Black (1976) and Christie (1982). As equity values fall, the

weight attached to debt in a firm’s capital structure rises, ceteris paribus. This induces equity

holders, who bear the residual risk of the firm, to perceive the stream of future income

accruing to their portfolios as being relatively more risky.

An alternative view is provided by the 'volatility-feedback' hypothesis. Assuming

constant dividends, if expected returns increase when stock price volatility increases, then

stock prices should fall when volatility rises. Pagan and Schwert (1990), Nelson (1991),

Campbell and Hentschel (1992), Engle and Ng (1993), Glosten, Jagannathan and Runkle

(1993), and Henry (1998), inter alia, provide evidence of asymmetry in equity return

volatility using univariate GARCH models. Kroner and Ng (1995), Braun, Nelson and

Sunnier (1995), Henry and Sharma (1999) and Engle and Cho (1999) inter alia use

multivariate GARCH models to capture time-variation and asymmetry in the variance-

covariance structure of asset returns.

Such time-variation and asymmetry in volatility may be used to explain a time-

varying and asymmetric beta. A risk averse investor will trade off higher levels of expected

return for higher levels of risk. If the risk premium is increasing in volatility, and if beta is an

adequate measure of the sensitivity to risk, then time-variation and asymmetry in the

variance-covariance structure of returns may lead to time-variation and asymmetry in beta.

Recent research by Braun, Nelson and Sunnier (1995), hereafter BNS, explores time

variation and asymmetry in beta using a bivariate EGARCH model. Engle and Cho (1999),

hereafter EC, extend the BNS paper in two main directions. First, EC consider the differing

roles of market- and asset-specific shocks. This is important since a series of negative returns

caused by market or asset-specific shocks may lead to an increase in beta. Second, EC use

daily data on individual firms, rather than the aggregated data used by BNS.
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Our approach differs markedly from that of both BNS and EC. In particular we use a

linear as opposed to an exponential multivariate GARCH model to distinguish between the

role of idiosyncratic and market shocks in determining potential asymmetry in beta. The

exponential GARCH approach of BNS does not readily admit negative covariance estimates,

and moreover, the EGARCH form appears to dramatically overstate the response of the

conditional variance to a negative shock - see Engle and Ng (1993), and Henry (1998) inter

alia. Our approach allows for a (potentially negative) time varying and asymmetric

covariance between the risky asset and market portfolio, while guaranteeing a positive

definite variance-covariance matrix. Moreover we define the Conditional Beta Surface, an

extension of the News Impact Surface concept of Ng and Kroner (1995). Using this approach

it is possible to produce a graphical representation of the impact of idiosyncratic and market-

wide shocks upon estimates of beta. We also employ indicator dummy regressions to identify

sources of the observed asymmetry in the estimated beta series.

The remainder of the paper develops as follows. Section 2 outlines the strategy

employed for modelling the time-variation and asymmetry in beta, while section 3 describes

the data and presents the empirical results. The statistical properties of the estimated beta

series are reported in section 4. The final section of the paper provides a summary and some

concluding comments.

 2. Modelling Time Variation and Asymmetry in Beta

The static Capital Asset Pricing Model (CAPM) predicts that the expected return to

investing in a risky asset or portfolio, E( tSR , ), should equal, fr , the risk free rate of return,

plus a risk premium. The risk premium is determined by a price of risk, the excepted return on

the market portfolio in excess of fr , and a quantity of risk, known as the ‘beta’ of asset S,

Sβ . The static CAPM may be written as

( ) SfMfS rRErRE β])([ −+= (1)
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where 2
, / MMSS σσβ = . By definition 1=Mβ , so portfolios with a beta greater than unity

are seen as being relatively risky. Estimates of Sβ  may be obtained from OLS estimates of

the slope coefficient in

ttMti uRbbR ++= ,10,  (2)

It has long been recognised that the volatility of asset returns is clustered. Thus the

assumption of constant variance (let alone covariance) underlying the estimation of (2) must

be regarded as tenuous. Bollerslev Engle and Wooldridge (1988), Braun, Nelson and Sunier

(1995) and Engle and Cho (1999), inter alia, report evidence of time variation in Sβ  based

upon the GARCH class of models. Braun, Nelson and Sunnier (1995) and Engle and Cho

(1999) use the bivariate EGARCH approach specifying the conditional mean equations as
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(3)

βS, the measure of undiversifiable risk associated with industry sector S, is defined as:
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where [.]1−tE  denotes the expectation at time t-1. The model is completed by the equations

defining the time series behaviour of tS,,,  and , βtStM hh
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where S,ttM zz  and , are contemporaneously uncorrelated i.i.d. processes with zero mean and

unit variance and [ ]1,1,1, )( −−− −= tititIi zEzzg  for i = M, S.

As noted by Braun et al. (1995), the bivariate EGARCH (5) implies some strong

assumptions. First, the model does not allow for feedback, as would be the case if
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tS,,,  and )ln(),ln( βtStM hh followed a VARMA process. Second, the model assumes a linear

autoregressive process for  βS. Third, although the model allows for leverage effects, it does

so in an ad-hoc fashion.

In contrast to Braun, Nelson and Sunnier (1995), and Engle and Cho (1999), our

approach allows for feedback between the conditional means and variances of tMR ,  and tSR , .

Furthermore, we make no formal assumptions as to the time series process underlying βS. We

assume a VARMA process for the returns and model the time variation in the variance-

covariance matrix using a linear as opposed to an exponential GARCH model. The

multivariate GARCH approach allows the researcher to examine the effects of shocks to the

entire variance-covariance matrix. Thus the effect of a shock to tMR ,  on the covariance

between tMR ,  and tSR , may be inferred directly from the parameter estimates. Moreover, the

conditional variance-covariance matrix may be parameterised to be time varying and

asymmetric. Given the role of covariances in asset pricing and financial risk management,

correct specification of the variance-covariance structure is of paramount. For example, the

conditional covariance may be used in the calculation of prices for options involving more

than one underlying asset (such as rainbow options), and is vital to the calculation of

minimum capital risk requirements. Both variance and covariance estimates may be used in

the calculation of the measure of undiversifiable risk from the Capital Asset Pricing Model. It

follows that if the variance and/or covariance terms are time-varying (and asymmetric), the

CAPM β is also likely to be time-varying (and asymmetric).

The conditional mean equations of the model are specified in our study as a Vector

Autoregressive Moving Average (VARMA) which may be written as:
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where M and S denote the market and sector respectively. 1
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Under the assumption ),0(~| ttt HΩε , where εt represents the innovation vector in

(6) and defining ht as vec(Ht), where vec is the operator that stacks the columns of a matrix,

the bivariate VARMA(m,n) GARCH(1,1) vec model may be written

where

Restricting the matrices A1 and B1 to be diagonal gives the model proposed by

Bollerslev, Engle and Wooldridge (1988) where each element of the conditional variance-

covariance matrix, H,t, depends on past values of itself and past values of ’
11 −− tt εε . There are

21 free parameters in the conditional variance-covariance structure of the bivariate

GARCH(1,1) vec model (7) to be estimated, subject to the requirement that Ht be positive

definite for all values of εt in the sample. The difficulty of checking, let alone imposing such a

restriction led Engle and Kroner (1995) to propose the BEKK parameterisation

*
11

’
11

*’
11

*
111

*’
11

*
0

*’
0 BBAHACCH tttt −−− ++= εε (8)

The BEKK parameterisation requires estimation of only 11 free parameters in the conditional

variance-covariance structure and guarantees Ht positive definite. It is important to note that

the BEKK and vec models imply that only the magnitude of past return innovations is

important in determining current conditional variances and covariances. This assumption of

symmetric time-varying variance-covariance matrices must be considered tenuous given the

existing body of evidence documenting the asymmetric response of equity volatility to

positive and negative innovations of equal magnitude (see Engle and Ng, 1993, Glosten,

Jagannathan and Runkle, 1993, and Kroner and Ng, 1996, inter alia).
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Defining { }0,min, ttj εξ =  for j = market, sector, the BEKK model in (8) may be

extended to allow for asymmetric responses as

*
11

’
11

*’
11

*
11

’
11

*’
11

*
111

*’
11

*
0

*’
0 DDBBAHACCH tttttt −−−−− +++= ξξεε (9)

where









=








=









=








=

*
22

*
21

*
12

*
11*

11*
22

*
21

*
12

*
11*

11

*
22

*
21

*
12

*
11*

11*
22

*
12

*
11*

0

;

;;
0

dd

dd
D

bb

bb
B

aa

aa
A

c

cc
C

and 







= 2

,

2
,2

tS

tM
t ξ

ξ
ξ (10)

The symmetric BEKK model (8) is given as a special case of (9) for 0*
, =jid , for all values of

i and j. Given estimates of HMS,t, the conditional covariance between the return to the market

portfolio, RM,t, and the return to the individual sector, RS,t, and the variance of return to the

market portfolio, HM,t, it is possible to calculate a time varying estimate of βS, the measure of

undiversifiable risk associated with industry sector S as:
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where [.]1−tE  denotes the expectation at time t-1.

Kroner and Ng (1996) analyse the asymmetric properties of time-varying covariance

matrix models, identifying three possible forms of asymmetric behaviour. First, the

covariance matrix displays own variance asymmetry if ( )tStM hh ,, , the conditional variance of

( )tStM RR ,, , is affected by the sign of the innovation in ( )tStM RR ,, . Second, the covariance

matrix displays cross variance asymmetry if the conditional variance of ( )tStM RR ,,  is

affected by the sign of the innovation in ( )tMtS RR ,, . Finally, if the covariance of returns

tMSh , is sensitive to the sign of the innovation in return for either portfolio, the model is said to

display covariance asymmetry.
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The innovation in prices from time t-1 to time t, ttt PP ε=− −1 , represents changes in

information available to the market (ceteris paribus). Kroner and Ng (1996) treat such

innovations as a collective measure of news arriving to market j between the close of trade on

period t-1 and the close of trade on period t. Kroner and Ng (1996) define the relationship

between innovations in return and the conditional variance-covariance structure as the news

impact surface, a multivariate form of the news impact curve of Engle and Ng (1993). By

construction, the model allows βS, the measure of undiversifiable risk associated with industry

sector S to respond asymmetrically to news about the market portfolio and/or news about

sector S.

3. Data Descriptions and Empirical Results

Weekly UK equity index data for the period 01/01/1965 to 01/12/1999 was obtained

from Datastream International. The FT-All Shares index was used as a proxy for the market

portfolio. The paper considers six Industry sector return indices, namely Basic Industries

(BASICUK), Total Financials (TOTLFUK), Healthcare, (HLTHCUK), Publishing

(PUBLSUK), Retail (RTAILUK) and Real Estate, (RLESTUK). In all cases the data was in

accumulation index form and was transformed into continuously compounded returns for

sector i as

)/ln(100 1,,, −×= tititi PPR (12)

Summary statistics for the data are presented in table 1. As one might anticipate, the

data display evidence of extreme non-normality. In only one case, Healthcare, is the degree of

skewness not statistically significant. In all cases the data display strong evidence of excess

kurtosis. Columns 1 and 2 of Figure 1 display the index and returns data respectively. Visual

inspection of the graph of the returns data suggests that there is strong volatility clustering. A

Ljung-Box test on the squared return data suggests that there is strong evidence of

Autoregressive Conditional Heteroscedasticity (ARCH) in the data. The final column of table
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1 displays static estimates of undiversifiable risk obtained from OLS estimation of  (2). The

range of estimates runs from 0.930 for Health Care to 1.079 for Retailing.

The Akaike and Schwarz Information criteria were used to determine the lag order of

the VARMA model (6). In all cases, the restricted VARMA(2,1) given as (12) was deemed

optimal:
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Maximum likelihood techniques were used to obtain estimates of parameters for equations (9)

and (12) assuming a Student’s-t distribution with unknown degrees of freedom for the errors.

The parameter estimates for the conditional mean and variance equations are displayed in

Tables 2a and 2b respectively. Shocks to volatility appear highly persistent. Estimates of the

main diagonal elements of *11A are, in general, close to unity. There is strong evidence of own

variance, cross variance and covariance asymmetry in the data. This is highlighted by the

significance of the parameters in the *11D  matrix. The insignificance of the off-diagonal

elements in the *
11B  matrix suggests that the majority of important volatility spillovers from

the market to the sector are associated with negative realisations of tMR , . With the exception

of the financial sector, the models all pass the usual Ljung-Box test for serial correlation in

the standardised and squared standardised residuals displayed in table 3.

Figures 2-7 display the variance and covariance news impact surfaces for the

estimates of the Multivariate GARCH model displayed in Table 2. Following Engle and Ng

(1993) and Ng and Kroner (1996), each surface is evaluated in the region [ ]5,5, −=tjε  for j

= Market, Sector, holding information at time t-1 and before constant. There are relatively

few extreme outliers in the data, which suggests that some caution should be exercised in

interpreting the news impact surfaces for larger absolute values of tj ,ε . Despite this caveat,

the asymmetry in variance and covariance is clear from each figure. The sign and magnitude
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of idiosyncratic and market shocks have clearly differing impacts on elements of tH . In the

cases of the basic industries, retail and healthcare sectors, a market-wide shock has a bigger

impact on subsequent volatility than an idiosyncratic shock of the same size. In fact, an

idiosyncratic shock has virtually no effect on volatility since that part of the surface on the

first diagram is flat. On the other hand, in the cases of the financial and real estate sectors,

idiosyncratic socks have a much stronger role to play.

Holding information at time t-1 and before constant, and evaluating tS ,β  in the

range [ ]5,5, −=tjε  for j = Market, Sector as before yields the response of the measure of

undiversifiable risk to news. The fourth panel of figures 2-7 graphs the response of tS ,β  to

news using the estimates displayed in Table 2. Again, the asymmetry in response to market

and idiosyncratic shocks is clear.

4. Properties of the tS ,β̂  series

The third column of Figure 1 plots the estimated tS ,β̂ . The time variation of the

measure of undiversifiable risk across each sector is evident. Table 3 presents descriptive

statistics for the tS ,β̂  series. The most volatile of the tS ,β̂ series is associated with the

healthcare industry. Here the tS ,β̂ ranges from a minimum of 0.53 to a maximum of 2.09. In

terms of the average value of tS ,β̂ , retailing appears to be the riskiest sector, with a

tS ,β̂ =1.15, indicating that retailing has higher risk than the market portfolio which has

1, =tMβ  by definition. The averages of the tS ,β̂  compare favourably with the static

estimates presented in table 1. On the basis of a sequence of Dickey-Fuller unit root tests, the

tS ,β̂  series appear stationary.
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What factors underlay the observed asymmetry in tS ,β̂ ? EC argue that shocks to the

market and idiosyncratic shocks determine asymmetric effects in tS ,β̂ . This logic underlies

the News Impact Surface that we propose for tS ,β̂  depicted in Figures 2 to 6. To identify

negative returns to the market, let tMI ,  represent an indicator variable, which takes the value

of unity when tMR , , the return to the market portfolio, is negative and zero otherwise.

Similarly, in order to identify the magnitude of negative market returns, let

tMtMtM RIR ,,, ×=− . Similar variables may be defined to identify negative return innovations

and the corresponding magnitudes for each individual sector.

Consider the OLS regression

ttMtStStStMtMtS uCCRIRI +++++++= −−
,7,6,5,4,3,21,

ˆ φφφφφφφβ     (13)

where tStMtS RIC ,,, ×= , and tMtStM RIC ,,, ×=  represent dummy variables designed to

capture the sector return when the market return is negative ( tSC , ) and the market return

when the sector return is negative ( tMC , ).

The results from estimation of (13) are displayed in table 4. Periods of negative

returns to the market only significantly affect tS ,β̂  for the health and publishing sectors, in

both cases leading to a fall in the value of the measure of undiversifiable risk. However, large

negative innovations to the market portfolio uniformly lead to an increase in tS ,β̂  across all

sectors considered. There is no pattern of correlation between a negative return to the sector

and changes in tS ,β̂ . Similarly,  tSC ,  and tMC ,  do not appear to significantly affect estimates

of systematic risk.
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5. Summary and Conclusions

Recent research provides conflicting evidence as to whether abnormalities in equity

returns are a result of changes in expected returns in an efficient market or an over-reaction to

new information in a market that is inefficient. De Bondt and Thaler (1985), Chopra,

Lakonishok and Ritter (1992), and Jegadeesh and Titman (1993) inter alia, conclude that the

return to a portfolio formed by buying stocks which have suffered capital losses (losers) in the

past, and selling stocks which have experienced capital gains (winners) in the past, has a

higher average return that predicted by the CAPM. All three studies conclude that such over-

reaction is inconsistent with efficiency, since such contrarian strategies should not

consistently earn excess returns.

On the other hand, Chan (1988), and Ball and Kothari (1989) argue that the time

variation in expected return due to time-variation in beta can explain the success of the

‘losers’ portfolio. The studies find that there exists predictive asymmetry in the response of

the conditional beta to large positive and negative innovations. Braun, Nelson and Sunier

(1995) find weak evidence of asymmetry in beta, but conclude that it is not sufficient to

explain the over-reaction to information, or mean reversion in stock prices. Engle and Cho

(1999) argue that this lack of evidence of asymmetry in beta is due to stock price aggregration

and lack of cross-sectional variation in the monthly data used by Braun, Nelson and Sunier

(1995). Engle and Cho (1999) argue that the use of daily data on individual stocks makes the

detection of asymmetry an easier task.

This paper employs weekly data on industry sectors from the UK equity market to

examine the impact of news on time-varying measures of beta. The use of weekly data on

sectors of the market should overcome the potential price aggregation problems associated

with lower frequency data, and maintain sufficient cross-sectional variation to detect time

variation and asymmetry in beta.

Treating prices innovations as a collective measure of news arriving to the market

between time t –1 and time t, the results suggest that time-variation in beta depends on two

sources of news - news about the market and news about the sector. However, the asymmetric
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response of beta to news appears related only to large negative innovations to the market. Bad

news about each individual sector does not appear to significantly affect the measure of

undiversifiable risk. The asymmetric effect in beta is consistent across all sectors considered.

Given the magnitude of the asymmetry identified in beta, the evidence in this paper

suggests that abnormalities such as mean reversion in stock prices may occur as a result of

changes in expected return caused by time-variation and asymmetry in beta, rather than as a

by-product of market inefficiency.

Footnotes
1We also considered GARCH-M versions of (6). However, on the basis of Wald and LR tests, the
VARMA-GARCH was chosen as the optimal conditional data characterisation.
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Tables and Figures

Table 1: Summary statistics for the returns data

Series Mean Variance Skew E.K. ρ1 Q(5) Q2(5) β

FTALL 0.280 6.288 -0.323

[0.000]

9.082

[0.000]

0.071 56.67

[0.000]

231.036

[0.000]

1.00

BASIC 0.226 7.690 -0.517

[0.000]

7.975

[0.000]

0.079 44.447

[0.000]

55.825

[0.000]

0.976

(0.012)

TOTLF 0.303 7.260 0.007

[0.900]

6.941

[0.000]

0.111 56.668

[0.000]

342.389

[0.000]

0.978

(0.010)

HLTH 0.280 10.842 -0.061

[0.290]

5.459

[0.000]

0.016 21.715

[0.001]

155.245

[0.000]

0.930

(0.022)

PUBLS 0.245 9.883 -0.650

[0.000]

10.531

[0.000]

0.107 48.013

[0.000]

107.912

[0.000]

1.040

(0.016)

RTAIL 0.256 11.129 0.168

[0.000]

3.737

[0.000]

0.002 6.009

[0.305]

122.797

[0.000]

1.079

(0.018)

RLEST 0.249 11.908 -0.159

[0.000]

6.579

[0.000]

0.097 33.713

[0.000]

391.338

[0.000]

1.032

(0.021)

Notes to Table 1: Marginal significance levels displayed as [.], standard errors displayed as

(.). Skew measures the third moment of the distribution and reports the marginal significance

of a test for zero skewness. E.K. reports the excess kurtosis of the return distribution and the

associated marginal significance level for the test of zero excess kurtosis. The first order

autocorrelation coefficient is ρ1. Q(5) and Q2(5) are Ljung-Box tests for fifth order serial

correlation in the returns and the squared returns, respectively. Both tests are distributed as

χ2(5) under the null. β is the OLS estimate of the measure of undiversifiable risk.
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Table 2a: Conditional Mean Estimates

BASIC TOTLF HLTH PUBLS RTAIL RLEST

)(Mµ 0.338

(0.027)

0.244

(0.020)

0.224

(0.032)

0.0293

(0.0300)

0.222

(0.032)

0.268

(0.032)

)(
,1
M
MΓ -0.255

(0.031)

-0.010

(0.009)

0.195

(0.021)

-0.104

(0.014)

0.145

(0.018)

-0.011

(0.016)

)(
,2
M
MΓ 0.013

(0.019)

0.044

(0.009)

0.044

(0.014)

0.127

(0.012)

0.150

(0.014)

0.083

(0.013)

)(
,1
M
SΓ 0.045

(0.020)

0.043

(0.009)

0.005

(0.012)

0.038

(0.010)

0.035

(0.010)

0.013

(0.011)

)(
,2
M
SΓ 0.002

(0.015)

0.074

(0.009)

0.062

(0.011)

-0.001

(0.012)

-0.026

(0.010)

0.024

(0.010)

)(
,1
M
MΘ 0.252

(0.053)

-0.016

(0.010)

-0.018

(0.019)

0.100

(0.013)

-0.178

(0.017)

0.029

(0.015)

)(Sµ 0.199

(0.029)

0.268

(0.022)

0.263

(0.051)

0.224

(0.037)

0.276

(0.052)

0.221

(0.045)

)(
,1
S
MΓ -0.011

(0.032)

0.004

(0.010)

0.113

(0.019)

0.048

(0.017)

-0.021

(0.019)

0.002

(0.019)

)(
,2
S
MΓ 0.103

(0.015)

0.021

(0.010)

0.088

(0.019)

0.202

(0.016)

0.164

(0.021)

0.031

(0.017)

)(
,1
S
SΓ 0.040

(0.048)

0.029

(0.011)

-0.078

(0.013)

0.053

(0.014)

-0.065

(0.012)

0.101

(0.013)

)(
,2
S
SΓ 0.013

(0.017)

0.090

(0.009)

0.004

(0.014)

-0.047

(0.013

-0.072

(0.015)

0.009

(0.012)

)(
,1
S
SΘ 0.014

(0.038)

0.024

(0.011)

0.038

(0.014)

-0.010

(0.016)

0.039

(0.013)

-0.018

(0.012)

Notes to table 2a: Standard errors displayed as (.)
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Table 2b: Conditional Variance Estimates

BASIC TOTLF HLTH PUBLS RTAIL RLEST

c11 0.362

(0.060)

0.220

(0.040)

0.467

(0.064)

0.527

(0.060)

0.341

(0.041)

0.488

(0.062)

c12 0.351

(0.078)

0.318

(0.055)

0.088

(0.068

-0.102

(0.093)

0.130

(0.065)

0.385

(0.042)

c22 -0.201

(0.031)

0.135

(0.030)

0.485

(0.095)

0.503

(0.118)

0.030

(0.070)

0.260

(0.050)

a11 0.955

(0.013)

0.982

(0.008)

0.903

(0.023)

0.796

(0.030)

0.904

(0.011)

0.919

(0.022)

a12 0.003

(0.015)

0.006

(0.008)

-0.043

(0.035)

-0.017

(0.054)

-0.065

(0.013)

-0.059

(0.024)

a12 -0.010

(0.014)

-0.023

(0.009)

0.032

(0.016)

0.138

(0.028)

0.037

(0.007)

0.011

(0.017)

a22 0.947

(0.156)

0.945

(0.010)

0.957

(0.022)

0.956

(0.046)

1.017

(0.006)

0.969

(0.016)

b11 0.186

(0.044)

0.265

(0.026)

0.164

(0.051)

0.038

(0.066)

0.244

(0.031)

0.247

(0.046)

b12 -0.067

(0.048)

0.127

(0.028)

0.089

(0.062)

0.383

(0.071)

0.090

(0.039)

0.113

(0.044)

b21 0.028

(0.039)

-0.047

(0.023)

0.022

(0.030)

0.037

(0.052)

-0.017

(0.025)

-0.043

(0.033)

b22 0.251

(0.043)

0.121

(0.031)

0.237

(0.042)

-0.108

(0.059)

0.086

(0.033)

0.174

(0.035)

d11 0.456

(0.069)

-0.020

(0.045)

0.405

(0.064)

-0.440

(0.072)

0.457

(0.058)

0.035

(0.098)

d12 0.397

(0.082)

-0.150

(0.048)

0.347

(0.109)

-0.153

(0.081)

0.335

(0.062)

0.137

(0.092)

d21 -0.202

(0.078)

0.224

(0.043)

-0.074

(0.070)

0.089

(0.059)

-0.247

(0.038)

0.207

(0.064)

d22 -0.114

(0.100)

0.357

(0.057)

-0.106

(0.109)

-0.153

(0.066)

-0.088

(0.046)

0.360

(0.063)

Notes to Table 2b: Standard errors displayed as (.)
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Table 2c: Residual Diagnostics

BASIC TOTLF HLTH PUBLS RTAIL RLEST

η 9.479

(0.678)

9.162

(0.583)

8.169

(0.699)

8.059

(0.613)

8.217

(0.486)

8.752

(0.254)

Log L -4748.50 -4541.90 -5888.67 -5400.53 -5582.29 -5720.45

Q(5)M 8.893

[0.110]

12.134

[0.033]

13.434

[0.020]

10.324

[0.067]

12.309

[0.031]

11.481

[0.043]

Q2(5)M 0.767

[0.979]

0.764

[0.979]

1.069

[0.957]

1.383

[0.926]

1.844

[0.870]

0.536

[0.991]

Q(5)S 6.183

[0.235]

9.855

[0.079]

10.016

[0.075]

3.138

[0.679]

3.053

[0.692]

7.224

[0.203]

Q2(5)S 0.781

[0.978]

2.933

[0.710]

9.7063

[0.084]

0.987

[0.964]

4.573

[0.470]

10.479

[0.063]

Notes to Table 2c: Standard errors displayed as (.). Marginal significance levels

displayed as [.].η represents the degrees of freedom parameter estimated from the

students-t density. Q(5)i and Q2(5)i represent Ljung Box tests  for serial dependence in

the standardised residuals and their corresponding squares for i=Market, Sector
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Table 3: Descriptive Statistics for tS ,β̂

BASIC TOTLF HLTH PUBLS RTAIL RLEST

Mean 0.990 0.966 0.883 0.969 1.115 0.913

Variance 0.009 0.014 0.032 0.008 0.024 0.038

Skew -0.002

[0.976]

0.375

[0.000]

1.458

[0.000]

0.486

[0.000]

-0.201

[0.000]

0.428

[0.000]

EK 0.830

[0.000]

0.016

[0.883]

6.037

[0.000]

1.2030

[0.000]

-0.348

[0.003]

-0.143

[0.]

Min 0.653 0.597 0.530 0.666 0.617 0.459

Max 1.326 1.325 2.092 1.506 1.500 1.507

ADF -7.007 -5.554 -7.619 -10.752 -5.938 -6.750

Notes to Table 3: Marginal significance levels displayed as [.]. Skew measures the

third moment of the distribution and reports the marginal significance of a test for

zero skewness. E.K. reports the excess kurtosis of the distribution and the associated

marginal significance level for the test of zero excess kurtosis. ADF is an

Augmented Dickey-Fuller (1981) test for a unit root in tS ,β̂ , The 5% critical value

for the ADF test is –3.41.
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Table 4: Sources of Asymmetry in tS ,β̂

BASIC TOTLF HLTH PUBLS RTAIL RLEST

φ1 0.994*

(0.003)

0.962*

(0.004)

0.899*

(0.006)

0.979*

(0.003)

1.132*

(0.005)

0.9156*

(0.006)

φ2 0.008

(0.007)

0.002

(0.009)

-0.042*

(0.011)

-0.018*

(0.006)

0.003

(0.010)

-0.011

(0.012)

φ3 0.055*

(0.007)

0.052*

(0.011)

0.019*

(0.008)

0.017*

(0.005)

0.055*

(0.009)

0.030*

(0.009)

φ4 -0.003

(0.007)

-0.009

(0.009)

-0.040

(0.011)

-0.021*

(0.006)

-0.005

(0.011

-0.065*

(0.011)

φ5 0.012*

(0.006)

-0.031

(0.010)

-0.021*

(0.006)

-0.003

(0.005)

-0.009

(0.006)

-0.035*

(0.006)

φ6 -0.031

(0.006)

-0.014

(0.011)

-0.014

(0.008)

-0.005

(0.005)

-0.028*

(0.009)

-0.015*

(0.008)

φ7 -0.034

(0.007)

-0.016

(0.010)

-0.005

(0.006)

-0.019*

(0.004)

-0.022*

(0.006)

-0.014*

(0.006)

LM 136.95

[0.000]

134.382

[0.000]

98.0915

[0.000]

190.263

[0.000]

81.865

[0.000]

277.212

[0.000]

Notes to Table 4: Marginal significance levels displayed as [.]. Standard errors

displayed as (.). * denotes significance at the 5% level.
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 Figure 1: Sector index, sector return and estimated sector beta
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Figure 2: News Impact Surfaces for Basic Industries
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Figure 3: News Impact Surfaces for Total Financial
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Figure 4: News Impact Surfaces for Healthcare



26

Figure 5: News Impact Surfaces for Publishing
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 Figure 6: News Impact Surfaces for Retail
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Figure 7: News Impact Surfaces for Real Estate


